In situ cultivation of previously uncultivable microorganisms using the ichip

This protocol details the construction and use of the ichip, a platform developed to isolate previously uncultivable microorganisms from a range of environmental samples, by enabling exposure to natural growth factors through in situ culture. Most microbial species remain uncultivated, and modifying...

Full description

Saved in:
Bibliographic Details
Published in:Nature protocols Vol. 12; no. 10; pp. 2232 - 2242
Main Authors: Berdy, Brittany, Spoering, Amy L, Ling, Losee L, Epstein, Slava S
Format: Journal Article
Language:English
Published: London Nature Publishing Group UK 01.10.2017
Nature Publishing Group
Subjects:
ISSN:1754-2189, 1750-2799, 1750-2799
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract This protocol details the construction and use of the ichip, a platform developed to isolate previously uncultivable microorganisms from a range of environmental samples, by enabling exposure to natural growth factors through in situ culture. Most microbial species remain uncultivated, and modifying artificial nutrient media brings only an incremental increase in cultivability. We reasoned that an alternative way to cultivate species with unknown requirements is to use naturally occurring combinations of growth factors. To achieve this, we moved cultivation into the microbes' natural habitat by placing cells taken from varying environmental samples into diffusion chambers, which are then returned to nature for incubation. By miniaturizing the chambers and placing only one to several cells into each chamber, we can grow and isolate microorganisms in axenic culture in one step. We call this cultivation platform the 'isolation chip', or 'ichip'. This platform has been shown to increase microbial recovery from 5- to 300-fold, depending on the study. Furthermore, it provides access to a unique set of microbes that are inaccessible by standard cultivation. Here we provide a simple protocol for building and applying ichips for environmental cultivation of soil bacteria as an example; the protocol consists of (i) preparing the ichip; (ii) collecting an environmental sample; (iii) serially diluting cells and loading them into the ichip; (iv) returning the ichip to the environment for incubation; (v) retrieving the ichip and harvesting grown material; and (vi) domestication of the ichip-derived colonies for growth in the laboratory. The ichip's full assembly and deployment is a relatively simple procedure that, with experience, takes ∼2–3 h. After in situ incubation, retrieval of the ichip and processing of its contents will take ∼1–4 h, depending on which specific procedures are used.
AbstractList Most microbial species remain uncultivated, and modifying artificial nutrient media brings only an incremental increase in cultivability. We reasoned that an alternative way to cultivate species with unknown requirements is to use naturally occurring combinations of growth factors. To achieve this, we moved cultivation into the microbes' natural habitat by placing cells taken from varying environmental samples into diffusion chambers, which are then returned to nature for incubation. By miniaturizing the chambers and placing only one to several cells into each chamber, we can grow and isolate microorganisms in axenic culture in one step. We call this cultivation platform the 'isolation chip', or 'ichip'. This platform has been shown to increase microbial recovery from 5- to 300-fold, depending on the study. Furthermore, it provides access to a unique set of microbes that are inaccessible by standard cultivation. Here we provide a simple protocol for building and applying ichips for environmental cultivation of soil bacteria as an example; the protocol consists of (i) preparing the ichip; (ii) collecting an environmental sample; (iii) serially diluting cells and loading them into the ichip; (iv) returning the ichip to the environment for incubation; (v) retrieving the ichip and harvesting grown material; and (vi) domestication of the ichip-derived colonies for growth in the laboratory. The ichip's full assembly and deployment is a relatively simple procedure that, with experience, takes [similar]2-3 h. After in situ incubation, retrieval of the ichip and processing of its contents will take [similar]1-4 h, depending on which specific procedures are used.
Most microbial species remain uncultivated, and modifying artificial nutrient media brings only an incremental increase in cultivability. We reasoned that an alternative way to cultivate species with unknown requirements is to use naturally occurring combinations of growth factors. To achieve this, we moved cultivation into the microbes' natural habitat by placing cells taken from varying environmental samples into diffusion chambers, which are then returned to nature for incubation. By miniaturizing the chambers and placing only one to several cells into each chamber, we can grow and isolate microorganisms in axenic culture in one step. We call this cultivation platform the 'isolation chip', or 'ichip'. This platform has been shown to increase microbial recovery from 5- to 300-fold, depending on the study. Furthermore, it provides access to a unique set of microbes that are inaccessible by standard cultivation. Here we provide a simple protocol for building and applying ichips for environmental cultivation of soil bacteria as an example; the protocol consists of (i) preparing the ichip; (ii) collecting an environmental sample; (iii) serially diluting cells and loading them into the ichip; (iv) returning the ichip to the environment for incubation; (v) retrieving the ichip and harvesting grown material; and (vi) domestication of the ichip-derived colonies for growth in the laboratory. The ichip's full assembly and deployment is a relatively simple procedure that, with experience, takes ∼2-3 h. After in situ incubation, retrieval of the ichip and processing of its contents will take ∼1-4 h, depending on which specific procedures are used.
Most microbial species remain uncultivated, and modifying artificial nutrient media brings only an incremental increase in cultivability. We reasoned that an alternative way to cultivate species with unknown requirements is to use naturally occurring combinations of growth factors. To achieve this, we moved cultivation into the microbes' natural habitat by placing cells taken from varying environmental samples into diffusion chambers, which are then returned to nature for incubation. By miniaturizing the chambers and placing only one to several cells into each chamber, we can grow and isolate microorganisms in axenic culture in one step. We call this cultivation platform the 'isolation chip', or 'ichip'. This platform has been shown to increase microbial recovery from 5- to 300-fold, depending on the study. Furthermore, it provides access to a unique set of microbes that are inaccessible by standard cultivation. Here we provide a simple protocol for building and applying ichips for environmental cultivation of soil bacteria as an example; the protocol consists of (i) preparing the ichip; (ii) collecting an environmental sample; (iii) serially diluting cells and loading them into the ichip; (iv) returning the ichip to the environment for incubation; (v) retrieving the ichip and harvesting grown material; and (vi) domestication of the ichip-derived colonies for growth in the laboratory. The ichip's full assembly and deployment is a relatively simple procedure that, with experience, takes ∼2-3 h. After in situ incubation, retrieval of the ichip and processing of its contents will take ∼1-4 h, depending on which specific procedures are used.Most microbial species remain uncultivated, and modifying artificial nutrient media brings only an incremental increase in cultivability. We reasoned that an alternative way to cultivate species with unknown requirements is to use naturally occurring combinations of growth factors. To achieve this, we moved cultivation into the microbes' natural habitat by placing cells taken from varying environmental samples into diffusion chambers, which are then returned to nature for incubation. By miniaturizing the chambers and placing only one to several cells into each chamber, we can grow and isolate microorganisms in axenic culture in one step. We call this cultivation platform the 'isolation chip', or 'ichip'. This platform has been shown to increase microbial recovery from 5- to 300-fold, depending on the study. Furthermore, it provides access to a unique set of microbes that are inaccessible by standard cultivation. Here we provide a simple protocol for building and applying ichips for environmental cultivation of soil bacteria as an example; the protocol consists of (i) preparing the ichip; (ii) collecting an environmental sample; (iii) serially diluting cells and loading them into the ichip; (iv) returning the ichip to the environment for incubation; (v) retrieving the ichip and harvesting grown material; and (vi) domestication of the ichip-derived colonies for growth in the laboratory. The ichip's full assembly and deployment is a relatively simple procedure that, with experience, takes ∼2-3 h. After in situ incubation, retrieval of the ichip and processing of its contents will take ∼1-4 h, depending on which specific procedures are used.
Not provided.
This protocol details the construction and use of the ichip, a platform developed to isolate previously uncultivable microorganisms from a range of environmental samples, by enabling exposure to natural growth factors through in situ culture.Most microbial species remain uncultivated, and modifying artificial nutrient media brings only an incremental increase in cultivability. We reasoned that an alternative way to cultivate species with unknown requirements is to use naturally occurring combinations of growth factors. To achieve this, we moved cultivation into the microbes' natural habitat by placing cells taken from varying environmental samples into diffusion chambers, which are then returned to nature for incubation. By miniaturizing the chambers and placing only one to several cells into each chamber, we can grow and isolate microorganisms in axenic culture in one step. We call this cultivation platform the 'isolation chip', or 'ichip'. This platform has been shown to increase microbial recovery from 5- to 300-fold, depending on the study. Furthermore, it provides access to a unique set of microbes that are inaccessible by standard cultivation. Here we provide a simple protocol for building and applying ichips for environmental cultivation of soil bacteria as an example; the protocol consists of (i) preparing the ichip; (ii) collecting an environmental sample; (iii) serially diluting cells and loading them into the ichip; (iv) returning the ichip to the environment for incubation; (v) retrieving the ichip and harvesting grown material; and (vi) domestication of the ichip-derived colonies for growth in the laboratory. The ichip's full assembly and deployment is a relatively simple procedure that, with experience, takes ∼2–3 h. After in situ incubation, retrieval of the ichip and processing of its contents will take ∼1–4 h, depending on which specific procedures are used.
Most microbial species remain uncultivated, and modifying artificial nutrient media brings only an incremental increase in cultivability. We reasoned that an alternative way to cultivate species with unknown requirements is to use naturally occurring combinations of growth factors. To achieve this, we moved cultivation into the microbes' natural habitat by placing cells taken from varying environmental samples into diffusion chambers, which are then returned to nature for incubation. By miniaturizing the chambers and placing only one to several cells into each chamber, we can grow and isolate microorganisms in axenic culture in one step. We call this cultivation platform the 'isolation chip', or 'ichip'. This platform has been shown to increase microbial recovery from 5- to 300-fold, depending on the study. Furthermore, it provides access to a unique set of microbes that are inaccessible by standard cultivation. Here we provide a simple protocol for building and applying ichips for environmental cultivation of soil bacteria as an example; the protocol consists of (i) preparing the ichip; (ii) collecting an environmental sample; (iii) serially diluting cells and loading them into the ichip; (iv) returning the ichip to the environment for incubation; (v) retrieving the ichip and harvesting grown material; and (vi) domestication of the ichip-derived colonies for growth in the laboratory. The ichip's full assembly and deployment is a relatively simple procedure that, with experience, takes â^¼2-3 h. After in situ incubation, retrieval of the ichip and processing of its contents will take â^¼1-4 h, depending on which specific procedures are used.
Most microbial species remain uncultivated, and modifying artificial nutrient media brings only an incremental increase in cultivability. We reasoned that an alternative way to cultivate species with unknown requirements is to use naturally occurring combinations of growth factors. To achieve this, we moved cultivation into the microbes' natural habitat by placing cells taken from varying environmental samples into diffusion chambers, which are then returned to nature for incubation. By miniaturizing the chambers and placing only one to several cells into each chamber, we can grow and isolate microorganisms in axenic culture in one step. We call this cultivation platform the 'isolation chip', or 'ichip'. This platform has been shown to increase microbial recovery from 5- to 300-fold, depending on the study. Furthermore, it provides access to a unique set of microbes that are inaccessible by standard cultivation. Here we provide a simple protocol for building and applying ichips for environmental cultivation of soil bacteria as an example; the protocol consists of (i) preparing the ichip; (ii) collecting an environmental sample; (iii) serially diluting cells and loading them into the ichip; (iv) returning the ichip to the environment for incubation; (v) retrieving the ichip and harvesting grown material; and (vi) domestication of the ichip-derived colonies for growth in the laboratory. The ichip's full assembly and deployment is a relatively simple procedure that, with experience, takes [similar]2-3 h. After in situ incubation, retrieval of the ichip and processing of its contents will take [similar]1-4 h, depending on which specific procedures are used. Keywords: Microbial, cultivation, uncultivated species, ichip, drug discovery, growth factors, microbe, microorganism, isolation chip, in situ cultivation, high-throughput culture, culture, bacterial culture, microbial culture, soil, soil sample, seawater, environmental microbiology, antimicrobial, antimicrobial drug, antimicrobial drug discovery, in situ culture, axenic culture, single-cell culture
This protocol details the construction and use of the ichip, a platform developed to isolate previously uncultivable microorganisms from a range of environmental samples, by enabling exposure to natural growth factors through in situ culture. Most microbial species remain uncultivated, and modifying artificial nutrient media brings only an incremental increase in cultivability. We reasoned that an alternative way to cultivate species with unknown requirements is to use naturally occurring combinations of growth factors. To achieve this, we moved cultivation into the microbes' natural habitat by placing cells taken from varying environmental samples into diffusion chambers, which are then returned to nature for incubation. By miniaturizing the chambers and placing only one to several cells into each chamber, we can grow and isolate microorganisms in axenic culture in one step. We call this cultivation platform the 'isolation chip', or 'ichip'. This platform has been shown to increase microbial recovery from 5- to 300-fold, depending on the study. Furthermore, it provides access to a unique set of microbes that are inaccessible by standard cultivation. Here we provide a simple protocol for building and applying ichips for environmental cultivation of soil bacteria as an example; the protocol consists of (i) preparing the ichip; (ii) collecting an environmental sample; (iii) serially diluting cells and loading them into the ichip; (iv) returning the ichip to the environment for incubation; (v) retrieving the ichip and harvesting grown material; and (vi) domestication of the ichip-derived colonies for growth in the laboratory. The ichip's full assembly and deployment is a relatively simple procedure that, with experience, takes ∼2–3 h. After in situ incubation, retrieval of the ichip and processing of its contents will take ∼1–4 h, depending on which specific procedures are used.
Audience Academic
Author Spoering, Amy L
Berdy, Brittany
Epstein, Slava S
Ling, Losee L
Author_xml – sequence: 1
  givenname: Brittany
  surname: Berdy
  fullname: Berdy, Brittany
  organization: Department of Biology, Northeastern University
– sequence: 2
  givenname: Amy L
  surname: Spoering
  fullname: Spoering, Amy L
  organization: NovoBiotic Pharmaceuticals
– sequence: 3
  givenname: Losee L
  surname: Ling
  fullname: Ling, Losee L
  organization: NovoBiotic Pharmaceuticals
– sequence: 4
  givenname: Slava S
  surname: Epstein
  fullname: Epstein, Slava S
  email: s.epstein@neu.edu
  organization: Department of Biology, Northeastern University, NovoBiotic Pharmaceuticals, LiDakSum Marine Biopharmaceutical Research Center, Ningbo University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29532802$$D View this record in MEDLINE/PubMed
https://www.osti.gov/biblio/1539795$$D View this record in Osti.gov
BookMark eNp9kstv1DAQxi1URNuFK0cU0QscsvUzTo5VRWGlIiQeZ8txnKyrrL3YTkX_-84-SllUiA-x7N83nvlmTtGRD94i9JrgOcGsPvfrGPKcYiLnWPJn6IRIgUsqm-Zou-clJXVzjE5TusGYS1bJF-iYNoLRGtMT9Hnhi-TyVJhpzO5WZxd8EfpiHe2tC1Ma74rJ7-_a0RYrZ2IIcdDepVUqpuT8UOSlLZxZuvVL9LzXY7Kv9v8Z-nH14fvlp_L6y8fF5cV1aUQtckl6o7HQvO1qWVFNcaNbTDsjuWn7rq0s1x2rrGWU9700omO8YrzjTYVJJ5hlM_R2Fzek7FQyLluzNMF7a7IigjUSCpyhdzsILPo52ZTVyiVjx1F7C5UpMI0JAkEJoGd_oTdhih5KUFRUFeGiYvh_FGm4JPBJ8UgNerTK-T7kqM3maXUhsKwFk7UEav4EBauzYDH0uHdwfiB4fyAAJttfedBTSmrx7esh-2af6NSubKfW0a10vFMPbQeA7wBoZkrR9gos3PYesnCjIlhtpkttp2tjlFQwXY9J_5Y9RP6n4HwnSAD6wcY_HHtacQ-0tN8Q
CitedBy_id crossref_primary_10_1007_s10482_018_1088_7
crossref_primary_10_1038_s41564_023_01511_x
crossref_primary_10_1038_s41596_025_01224_x
crossref_primary_10_1016_j_resconrec_2023_106883
crossref_primary_10_1128_mra_00365_22
crossref_primary_10_1080_17460441_2019_1588880
crossref_primary_10_3390_molecules30132868
crossref_primary_10_1039_D5NP00013K
crossref_primary_10_3389_fmicb_2022_984832
crossref_primary_10_1007_s42729_020_00222_0
crossref_primary_10_1128_mra_00138_24
crossref_primary_10_1038_s41587_019_0260_6
crossref_primary_10_1038_s41417_024_00833_0
crossref_primary_10_1007_s00203_023_03613_w
crossref_primary_10_1016_j_scib_2024_03_054
crossref_primary_10_3389_fmicb_2022_866681
crossref_primary_10_1111_1462_2920_15218
crossref_primary_10_3389_fmicb_2022_958660
crossref_primary_10_1016_j_tim_2021_04_007
crossref_primary_10_1016_j_drudis_2020_10_005
crossref_primary_10_1111_1758_2229_13014
crossref_primary_10_1016_j_soilbio_2020_107838
crossref_primary_10_1016_j_tim_2017_11_002
crossref_primary_10_1016_j_watres_2023_119589
crossref_primary_10_1111_1744_7917_70159
crossref_primary_10_1089_ast_2019_2070
crossref_primary_10_1007_s42995_020_00087_3
crossref_primary_10_1016_j_pedsph_2025_08_005
crossref_primary_10_1128_AEM_00088_21
crossref_primary_10_1016_j_mtcomm_2021_102185
crossref_primary_10_3389_fpls_2020_569742
crossref_primary_10_3389_fmicb_2021_675798
crossref_primary_10_1002_anie_201804971
crossref_primary_10_1099_mic_0_001571
crossref_primary_10_3390_microorganisms9102078
crossref_primary_10_1134_S207908642306004X
crossref_primary_10_1002_imt2_70035
crossref_primary_10_3390_microorganisms12091743
crossref_primary_10_3389_fmars_2025_1625011
crossref_primary_10_1080_21501203_2019_1708492
crossref_primary_10_3390_life13051073
crossref_primary_10_1111_jam_15225
crossref_primary_10_1093_icb_icad060
crossref_primary_10_1042_EBC20200132
crossref_primary_10_3389_fmicb_2021_537194
crossref_primary_10_1002_elsc_202300207
crossref_primary_10_1128_msystems_00367_22
crossref_primary_10_1002_bit_27633
crossref_primary_10_2478_am_2023_0011
crossref_primary_10_3389_fmicb_2021_745835
crossref_primary_10_3390_md19020069
crossref_primary_10_1007_s10482_021_01631_6
crossref_primary_10_1039_D4NP00072B
crossref_primary_10_1099_ijsem_0_005622
crossref_primary_10_3389_fmicb_2023_1167718
crossref_primary_10_1016_j_fbr_2023_100353
crossref_primary_10_1186_s40168_023_01510_4
crossref_primary_10_1186_s40168_023_01708_6
crossref_primary_10_15252_msb_202110785
crossref_primary_10_1128_aem_01794_24
crossref_primary_10_1128_mra_01148_21
crossref_primary_10_1111_1462_2920_15798
crossref_primary_10_3389_fmicb_2020_01024
crossref_primary_10_1155_2020_5738237
crossref_primary_10_3390_microorganisms12122422
crossref_primary_10_3390_molecules26092542
crossref_primary_10_1002_wer_1608
crossref_primary_10_1016_j_rser_2021_111481
crossref_primary_10_1111_jam_14766
crossref_primary_10_1016_j_microb_2025_100288
crossref_primary_10_3390_plants11131654
crossref_primary_10_1371_journal_pone_0304366
crossref_primary_10_1002_adma_201900284
crossref_primary_10_1016_j_tibs_2019_05_005
crossref_primary_10_3389_fmicb_2021_632684
crossref_primary_10_1016_j_soilbio_2022_108620
crossref_primary_10_1016_j_cej_2025_168770
crossref_primary_10_1128_mra_00553_22
crossref_primary_10_1016_j_tplants_2025_04_007
crossref_primary_10_3389_fmicb_2024_1473666
crossref_primary_10_3390_microorganisms11041080
crossref_primary_10_1016_j_isci_2023_108374
crossref_primary_10_1016_j_ymeth_2023_12_007
crossref_primary_10_1002_cbdv_202000221
crossref_primary_10_3390_cimb46110789
crossref_primary_10_3390_md20040269
crossref_primary_10_1016_j_tibtech_2018_11_011
crossref_primary_10_3390_microorganisms7100468
crossref_primary_10_7717_peerj_11359
crossref_primary_10_3389_fbioe_2021_649906
crossref_primary_10_1016_j_cell_2022_06_040
crossref_primary_10_3390_microorganisms10071471
crossref_primary_10_1128_mbio_02389_25
crossref_primary_10_3390_microorganisms9112235
crossref_primary_10_1111_1751_7915_13953
crossref_primary_10_1128_spectrum_00007_22
crossref_primary_10_1099_ijsem_0_006059
crossref_primary_10_1007_s10123_022_00279_0
crossref_primary_10_1016_j_copbio_2019_09_001
crossref_primary_10_1080_10643389_2025_2463335
crossref_primary_10_1038_s41429_019_0226_4
crossref_primary_10_3390_microorganisms10122340
crossref_primary_10_1007_s10482_021_01574_y
crossref_primary_10_1038_s41522_020_0131_4
crossref_primary_10_3389_fmicb_2023_1089630
crossref_primary_10_1038_s41564_020_0733_x
crossref_primary_10_1007_s12275_020_0452_2
crossref_primary_10_1186_s12866_021_02314_y
crossref_primary_10_1038_s41396_019_0484_y
crossref_primary_10_1016_j_csbj_2021_12_024
crossref_primary_10_3390_microorganisms8020160
crossref_primary_10_3390_biology11111676
crossref_primary_10_1007_s42995_020_00063_x
crossref_primary_10_1016_j_tifs_2021_02_011
crossref_primary_10_1016_j_copbio_2023_102894
crossref_primary_10_1128_AEM_01569_20
crossref_primary_10_3390_jof7090703
crossref_primary_10_1128_aem_01325_24
crossref_primary_10_1016_j_trac_2023_117168
crossref_primary_10_1016_j_actbio_2023_01_003
crossref_primary_10_1093_femsec_fiad119
crossref_primary_10_3389_fmicb_2023_1194466
crossref_primary_10_3390_md17040200
crossref_primary_10_1007_s10123_024_00483_0
crossref_primary_10_1038_s41570_019_0107_1
crossref_primary_10_3389_fmicb_2025_1530273
crossref_primary_10_1038_d41586_020_01684_z
crossref_primary_10_1016_j_foodres_2023_113249
crossref_primary_10_1128_msystems_00017_21
crossref_primary_10_3389_fmicb_2023_1238779
crossref_primary_10_1007_s00253_018_9193_0
crossref_primary_10_1016_j_mib_2023_102359
crossref_primary_10_1099_ijsem_0_006230
crossref_primary_10_1128_mSystems_00782_20
crossref_primary_10_1186_s12866_023_02803_2
crossref_primary_10_3390_md23030116
crossref_primary_10_3389_fmicb_2022_957397
crossref_primary_10_3390_microorganisms10061177
crossref_primary_10_1002_ange_201804971
crossref_primary_10_3389_fmicb_2020_583120
crossref_primary_10_3389_fphar_2020_00390
crossref_primary_10_1016_j_eti_2025_104519
crossref_primary_10_1111_1751_7915_13782
crossref_primary_10_1016_j_cois_2025_101427
crossref_primary_10_1016_j_copbio_2021_10_013
crossref_primary_10_1016_j_envpol_2024_125059
crossref_primary_10_1007_s42995_020_00067_7
crossref_primary_10_4155_fmc_2020_0247
crossref_primary_10_3389_fntpr_2025_1617079
crossref_primary_10_1016_j_copbio_2025_103321
crossref_primary_10_1111_1462_2920_16573
crossref_primary_10_1016_j_ejmech_2025_117317
Cites_doi 10.1007/978-3-540-85465-4_2
10.1111/j.1574-6941.2009.00682.x
10.1146/annurev.micro.57.030502.090759
10.1038/ja.2010.87
10.1128/AEM.06813-11
10.1126/science.1070633
10.3354/meps117289
10.3354/meps151011
10.1038/nature17645
10.1146/annurev.mi.39.100185.001541
10.1038/nature14098
10.1128/AEM.01754-09
10.1038/nmicrobiol.2016.203
10.4319/lo.1980.25.5.0943
10.1016/j.mib.2013.08.003
10.1128/AEM.00376-10
10.1128/AEM.00393-08
10.1128/AEM.02542-08
10.1128/AEM.01309-07
10.1128/9781555816827.ch1
ContentType Journal Article
Copyright Springer Nature Limited 2017
COPYRIGHT 2017 Nature Publishing Group
Copyright Nature Publishing Group Oct 2017
Nature Publishing Group, a division of Macmillan Publishers Limited. All Rights Reserved. 2017.
Copyright_xml – notice: Springer Nature Limited 2017
– notice: COPYRIGHT 2017 Nature Publishing Group
– notice: Copyright Nature Publishing Group Oct 2017
– notice: Nature Publishing Group, a division of Macmillan Publishers Limited. All Rights Reserved. 2017.
CorporateAuthor Northeastern Univ., Boston, MA (United States)
CorporateAuthor_xml – name: Northeastern Univ., Boston, MA (United States)
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
ISR
3V.
7QG
7T5
7T7
7TM
7X7
7XB
88E
8FD
8FE
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
ATCPS
AZQEC
BBNVY
BENPR
BHPHI
C1K
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
H94
HCIFZ
K9.
LK8
M0S
M1P
M7N
M7P
P64
PATMY
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PYCSY
RC3
7X8
OTOTI
DOI 10.1038/nprot.2017.074
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Gale In Context: Science
ProQuest Central (Corporate)
Animal Behavior Abstracts
Immunology Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Nucleic Acids Abstracts
ProQuest Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
One Sustainability
ProQuest Central UK/Ireland
Agricultural & Environmental Science Collection (ProQuest)
ProQuest Central Essentials
Biological Science Database
ProQuest Central
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
Health & Medical Collection (Alumni Edition)
PML(ProQuest Medical Library)
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biological Science Database
Biotechnology and BioEngineering Abstracts
Environmental Science Database
ProQuest Central Premium
ProQuest One Academic
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Environmental Science Collection
Genetics Abstracts
MEDLINE - Academic
OSTI.GOV
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest Central Student
ProQuest Central Essentials
Nucleic Acids Abstracts
SciTech Premium Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
Industrial and Applied Microbiology Abstracts (Microbiology A)
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Environmental Science Collection
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Environmental Science Database
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Genetics Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Algology Mycology and Protozoology Abstracts (Microbiology C)
Agricultural & Environmental Science Collection
AIDS and Cancer Research Abstracts
ProQuest SciTech Collection
ProQuest Medical Library
Animal Behavior Abstracts
Immunology Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
MEDLINE
MEDLINE - Academic

ProQuest Central Student
ProQuest Central Student



Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1750-2799
EndPage 2242
ExternalDocumentID 1539795
A507853787
29532802
10_1038_nprot_2017_074
Genre Research Support, U.S. Gov't, Non-P.H.S
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIH HHS
  grantid: 1RC1DE020707-01
– fundername: NIAID NIH HHS
  grantid: R43 AI085612
– fundername: NIH HHS
  grantid: 1R01HG005816-01
– fundername: NIH HHS
  grantid: R21 DE018026-01A1
GroupedDBID ---
0R~
123
29M
39C
3TQ
3V.
4.4
53G
5BI
5M7
70F
7X7
7XC
88E
8FE
8FH
8FI
8FJ
AAEEF
AARCD
AAWYQ
AAYZH
AAZLF
ABAWZ
ABJNI
ABLJU
ABUWG
ACGFO
ACGFS
ACMJI
ACPRK
ADBBV
ADFRT
AENEX
AEUYN
AFBBN
AFKRA
AFRAH
AFSHS
AGAYW
AHBCP
AHMBA
AHSBF
AIBTJ
ALFFA
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMTXH
ARMCB
ASPBG
ATCPS
ATWCN
AVWKF
AXYYD
AZFZN
BBNVY
BENPR
BHPHI
BKKNO
BPHCQ
BVXVI
CAG
CCPQU
COF
DB5
DU5
EBS
EE.
EJD
EMOBN
F5P
FEDTE
FSGXE
FYUFA
FZEXT
HCIFZ
HMCUK
HVGLF
HZ~
IAO
IGS
IHR
INH
INR
ISR
ITC
LGEZI
LK8
LOTEE
M1P
M7P
NADUK
NNMJJ
NXXTH
O9-
ODYON
P2P
PATMY
PQQKQ
PROAC
PSQYO
PYCSY
RNT
RNTTT
SHXYY
SIXXV
SNYQT
SOJ
SV3
TAOOD
TBHMF
TDRGL
TSG
UKHRP
AAYXX
AFANA
AFFHD
AGSTI
AIEIU
ATHPR
CITATION
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
CGR
CUY
CVF
ECM
EIF
NFIDA
NPM
PUEGO
7QG
7T5
7T7
7TM
7XB
8FD
8FK
AZQEC
C1K
DWQXO
FR3
GNUQQ
H94
K9.
M7N
P64
PKEHL
PQEST
PQUKI
PRINS
RC3
7X8
AADEA
AADWK
AAPBV
AAYJO
ABEEJ
ABGIJ
ABVXF
ACBMV
ACBRV
ACBYP
ACIGE
ACTTH
ACVWB
ADMDM
ADQMX
ADZGE
AEDAW
AEFTE
AGEZK
AGGBP
AHGBK
AJDOV
NYICJ
OTOTI
ZA5
ID FETCH-LOGICAL-c585t-1fca05a4bd8762a209ab02dc74cbfdb6e4ad36ee324ff7c5d34634d49601d53e3
IEDL.DBID M7P
ISICitedReferencesCount 171
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000411998900005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1754-2189
1750-2799
IngestDate Fri May 19 02:13:44 EDT 2023
Thu Oct 02 07:03:38 EDT 2025
Sat Nov 29 14:23:13 EST 2025
Sat Nov 29 14:38:05 EST 2025
Sat Nov 29 13:37:46 EST 2025
Sun Nov 23 08:53:38 EST 2025
Wed Nov 26 10:14:24 EST 2025
Sat Sep 20 02:12:09 EDT 2025
Sat Nov 29 01:32:43 EST 2025
Tue Nov 18 19:49:02 EST 2025
Fri Feb 21 02:37:35 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 10
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c585t-1fca05a4bd8762a209ab02dc74cbfdb6e4ad36ee324ff7c5d34634d49601d53e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
FG02-04ER63782; FG02-07ER64507
USDOE Office of Science (SC)
PMID 29532802
PQID 1947111175
PQPubID 536306
PageCount 11
ParticipantIDs osti_scitechconnect_1539795
proquest_miscellaneous_2013514961
proquest_journals_2566145630
proquest_journals_1947111175
gale_infotracmisc_A507853787
gale_infotracacademiconefile_A507853787
gale_incontextgauss_ISR_A507853787
pubmed_primary_29532802
crossref_citationtrail_10_1038_nprot_2017_074
crossref_primary_10_1038_nprot_2017_074
springer_journals_10_1038_nprot_2017_074
PublicationCentury 2000
PublicationDate 2017-10-01
PublicationDateYYYYMMDD 2017-10-01
PublicationDate_xml – month: 10
  year: 2017
  text: 2017-10-01
  day: 01
PublicationDecade 2010
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
– name: United States
PublicationSubtitle Recipes for Researchers
PublicationTitle Nature protocols
PublicationTitleAbbrev Nat Protoc
PublicationTitleAlternate Nat Protoc
PublicationYear 2017
Publisher Nature Publishing Group UK
Nature Publishing Group
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
References Bollmann, Lewis, Epstein (CR9) 2007; 73
Kaeberlein, Lewis, Epstein (CR8) 2002; 296
Porter, Feig (CR20) 1980; 25
Epstein (CR3) 2013; 16
Nichols (CR18) 2008; 74
Epstein (CR19) 2009
Staley, Konopka (CR1) 1985; 39
Bollmann, Palumbo, Lewis, Epstein (CR10) 2010; 76
Sizova (CR15) 2012; 78
Lewis, Epstein, D'Onofrio, Ling (CR7) 2010; 63
Nichols (CR14) 2010; 76
Epstein (CR17) 1997; 151
Lagier (CR5) 2016; 1
Ben-Dov, Kramarsky-Winter, Kushmaro (CR11) 2009; 68
CR21
Ling (CR13) 2015; 517
Aoi (CR12) 2009; 75
Rappe, Giovannoni (CR2) 2003; 57
Brown (CR4) 2016; 533
Hurst (CR6) 2005; 71
Epstein, Rossel (CR16) 1995; 117
LL Ling (BFnprot2017074_CR13) 2015; 517
E Ben-Dov (BFnprot2017074_CR11) 2009; 68
MV Sizova (BFnprot2017074_CR15) 2012; 78
D Nichols (BFnprot2017074_CR14) 2010; 76
T Kaeberlein (BFnprot2017074_CR8) 2002; 296
HP Brown (BFnprot2017074_CR4) 2016; 533
D Nichols (BFnprot2017074_CR18) 2008; 74
BFnprot2017074_CR21
SS Epstein (BFnprot2017074_CR16) 1995; 117
CJ Hurst (BFnprot2017074_CR6) 2005; 71
JT Staley (BFnprot2017074_CR1) 1985; 39
SS Epstein (BFnprot2017074_CR19) 2009
C Aoi (BFnprot2017074_CR12) 2009; 75
K Lewis (BFnprot2017074_CR7) 2010; 63
SS Epstein (BFnprot2017074_CR17) 1997; 151
MS Rappe (BFnprot2017074_CR2) 2003; 57
KG Porter (BFnprot2017074_CR20) 1980; 25
J-C Lagier (BFnprot2017074_CR5) 2016; 1
A Bollmann (BFnprot2017074_CR10) 2010; 76
SS Epstein (BFnprot2017074_CR3) 2013; 16
A Bollmann (BFnprot2017074_CR9) 2007; 73
References_xml – start-page: 131
  year: 2009
  end-page: 150
  ident: CR19
  article-title: General model of microbial uncultivability
  publication-title: Uncultivated Microorganisms
  doi: 10.1007/978-3-540-85465-4_2
– ident: CR21
– volume: 68
  start-page: 363
  year: 2009
  end-page: 371
  ident: CR11
  article-title: An method for cultivating microorganisms using a double encapsulation technique
  publication-title: FEMS Microbiol. Ecol.
  doi: 10.1111/j.1574-6941.2009.00682.x
– volume: 57
  start-page: 369
  year: 2003
  end-page: 394
  ident: CR2
  article-title: The uncultured microbial majority
  publication-title: Annu. Rev. Microbiol.
  doi: 10.1146/annurev.micro.57.030502.090759
– volume: 63
  start-page: 468
  year: 2010
  end-page: 476
  ident: CR7
  article-title: Uncultured microorganisms as a source of secondary metabolites
  publication-title: J. Antibiot.
  doi: 10.1038/ja.2010.87
– volume: 78
  start-page: 194
  year: 2012
  end-page: 203
  ident: CR15
  article-title: New approaches for isolation of previously uncultivated oral bacteria
  publication-title: Appl. Environ. Microbiol.
  doi: 10.1128/AEM.06813-11
– volume: 296
  start-page: 1127
  year: 2002
  end-page: 1129
  ident: CR8
  article-title: Isolating 'uncultivable' microorganisms in pure culture in a simulated natural environment
  publication-title: Science
  doi: 10.1126/science.1070633
– volume: 117
  start-page: 289
  year: 1995
  end-page: 298
  ident: CR16
  article-title: Enumeration of sandy sediment bacteria: search for optimal protocol
  publication-title: Mar. Ecol. Prog. Ser.
  doi: 10.3354/meps117289
– volume: 151
  start-page: 11
  year: 1997
  end-page: 16
  ident: CR17
  article-title: Enumeration of sandy sediment bacteria: are the counts quantitative or relative?
  publication-title: Mar. Ecol. Prog. Ser.
  doi: 10.3354/meps151011
– volume: 533
  start-page: 543
  year: 2016
  end-page: 546
  ident: CR4
  article-title: Culturing of 'unculturable' human microbiota reveals novel taxa and extensive sporulation
  publication-title: Nature
  doi: 10.1038/nature17645
– volume: 39
  start-page: 321
  year: 1985
  end-page: 346
  ident: CR1
  article-title: Measurement of activities of nonphotosynthetic microorganisms in aquatic and terrestrial habitats
  publication-title: Annu. Rev. Microbiol.
  doi: 10.1146/annurev.mi.39.100185.001541
– volume: 517
  start-page: 455
  year: 2015
  end-page: 459
  ident: CR13
  article-title: A new antibiotic kills pathogens without detectable resistance
  publication-title: Nature
  doi: 10.1038/nature14098
– volume: 71
  start-page: 262
  year: 2005
  end-page: 263
  ident: CR6
  article-title: Divining the future of microbiology
  publication-title: ASM News
– volume: 76
  start-page: 2445
  year: 2010
  end-page: 2450
  ident: CR14
  article-title: Use of Ichip for high-throughput cultivation of 'uncultivable' microbial species
  publication-title: Appl. Environ. Microbiol.
  doi: 10.1128/AEM.01754-09
– volume: 1
  start-page: 16203
  year: 2016
  ident: CR5
  article-title: Culture of previously uncultured members of the human gut microbiota by culturomics
  publication-title: Nat. Microbiol.
  doi: 10.1038/nmicrobiol.2016.203
– volume: 25
  start-page: 943
  year: 1980
  end-page: 948
  ident: CR20
  article-title: The use of DAPI for identifying and counting aquatic microflora
  publication-title: Limnol. Oceanogr.
  doi: 10.4319/lo.1980.25.5.0943
– volume: 16
  start-page: 636
  year: 2013
  end-page: 642
  ident: CR3
  article-title: The phenomenon of microbial uncultivability
  publication-title: Curr. Opin. Microbiol.
  doi: 10.1016/j.mib.2013.08.003
– volume: 76
  start-page: 7413
  year: 2010
  end-page: 7419
  ident: CR10
  article-title: Isolation and physiology of bacteria from contaminated subsurface sediments
  publication-title: Appl. Eviron. Microbiol.
  doi: 10.1128/AEM.00376-10
– volume: 74
  start-page: 4889
  year: 2008
  end-page: 4897
  ident: CR18
  article-title: Short peptide induces an 'uncultivable' microorganism to grow
  publication-title: Appl. Environ. Microbiol.
  doi: 10.1128/AEM.00393-08
– volume: 75
  start-page: 3826
  year: 2009
  end-page: 3833
  ident: CR12
  article-title: Hollow-fiber membrane chamber as a device for environmental cultivation
  publication-title: Appl. Environ. Microbiol.
  doi: 10.1128/AEM.02542-08
– volume: 73
  start-page: 6386
  year: 2007
  end-page: 6390
  ident: CR9
  article-title: Incubation of environmental samples in a diffusion chamber increases the diversity of recovered isolates
  publication-title: Appl. Environ. Microbiol.
  doi: 10.1128/AEM.01309-07
– volume: 517
  start-page: 455
  year: 2015
  ident: BFnprot2017074_CR13
  publication-title: Nature
  doi: 10.1038/nature14098
– start-page: 131
  volume-title: Uncultivated Microorganisms
  year: 2009
  ident: BFnprot2017074_CR19
  doi: 10.1007/978-3-540-85465-4_2
– volume: 75
  start-page: 3826
  year: 2009
  ident: BFnprot2017074_CR12
  publication-title: Appl. Environ. Microbiol.
  doi: 10.1128/AEM.02542-08
– volume: 25
  start-page: 943
  year: 1980
  ident: BFnprot2017074_CR20
  publication-title: Limnol. Oceanogr.
  doi: 10.4319/lo.1980.25.5.0943
– volume: 1
  start-page: 16203
  year: 2016
  ident: BFnprot2017074_CR5
  publication-title: Nat. Microbiol.
  doi: 10.1038/nmicrobiol.2016.203
– volume: 63
  start-page: 468
  year: 2010
  ident: BFnprot2017074_CR7
  publication-title: J. Antibiot.
  doi: 10.1038/ja.2010.87
– volume: 16
  start-page: 636
  year: 2013
  ident: BFnprot2017074_CR3
  publication-title: Curr. Opin. Microbiol.
  doi: 10.1016/j.mib.2013.08.003
– volume: 68
  start-page: 363
  year: 2009
  ident: BFnprot2017074_CR11
  publication-title: FEMS Microbiol. Ecol.
  doi: 10.1111/j.1574-6941.2009.00682.x
– volume: 151
  start-page: 11
  year: 1997
  ident: BFnprot2017074_CR17
  publication-title: Mar. Ecol. Prog. Ser.
  doi: 10.3354/meps151011
– volume: 533
  start-page: 543
  year: 2016
  ident: BFnprot2017074_CR4
  publication-title: Nature
  doi: 10.1038/nature17645
– ident: BFnprot2017074_CR21
  doi: 10.1128/9781555816827.ch1
– volume: 73
  start-page: 6386
  year: 2007
  ident: BFnprot2017074_CR9
  publication-title: Appl. Environ. Microbiol.
  doi: 10.1128/AEM.01309-07
– volume: 71
  start-page: 262
  year: 2005
  ident: BFnprot2017074_CR6
  publication-title: ASM News
– volume: 57
  start-page: 369
  year: 2003
  ident: BFnprot2017074_CR2
  publication-title: Annu. Rev. Microbiol.
  doi: 10.1146/annurev.micro.57.030502.090759
– volume: 76
  start-page: 7413
  year: 2010
  ident: BFnprot2017074_CR10
  publication-title: Appl. Eviron. Microbiol.
  doi: 10.1128/AEM.00376-10
– volume: 74
  start-page: 4889
  year: 2008
  ident: BFnprot2017074_CR18
  publication-title: Appl. Environ. Microbiol.
  doi: 10.1128/AEM.00393-08
– volume: 296
  start-page: 1127
  year: 2002
  ident: BFnprot2017074_CR8
  publication-title: Science
  doi: 10.1126/science.1070633
– volume: 78
  start-page: 194
  year: 2012
  ident: BFnprot2017074_CR15
  publication-title: Appl. Environ. Microbiol.
  doi: 10.1128/AEM.06813-11
– volume: 39
  start-page: 321
  year: 1985
  ident: BFnprot2017074_CR1
  publication-title: Annu. Rev. Microbiol.
  doi: 10.1146/annurev.mi.39.100185.001541
– volume: 117
  start-page: 289
  year: 1995
  ident: BFnprot2017074_CR16
  publication-title: Mar. Ecol. Prog. Ser.
  doi: 10.3354/meps117289
– volume: 76
  start-page: 2445
  year: 2010
  ident: BFnprot2017074_CR14
  publication-title: Appl. Environ. Microbiol.
  doi: 10.1128/AEM.01754-09
SSID ssj0047367
Score 2.5993533
Snippet This protocol details the construction and use of the ichip, a platform developed to isolate previously uncultivable microorganisms from a range of...
Most microbial species remain uncultivated, and modifying artificial nutrient media brings only an incremental increase in cultivability. We reasoned that an...
Not provided.
SourceID osti
proquest
gale
pubmed
crossref
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2232
SubjectTerms 631/154
631/1647/2234
631/326/171
631/326/41
631/326/41/2537
Analytical Chemistry
Bacteria
Bacteria - cytology
Bacteria - metabolism
Bacteriological Techniques - instrumentation
Biochemistry & Molecular Biology
Biological Techniques
Cell culture
Cell Culture Techniques - instrumentation
Cell Culture Techniques - methods
Chambers
Colonies
Computational Biology/Bioinformatics
Construction
Cultivation
Culture media
Culture techniques
Diffusion chambers
Dilution
Domestication
Environmental Microbiology
Equipment Design
Germfree
Growth factors
Harvesting
Humans
Innovations
Life Sciences
Microarray Analysis - instrumentation
Microarrays
Microorganisms
Miniaturization
Mouth - microbiology
Organic Chemistry
protocol
Pure culture
Soil bacteria
Soil microorganisms
Title In situ cultivation of previously uncultivable microorganisms using the ichip
URI https://link.springer.com/article/10.1038/nprot.2017.074
https://www.ncbi.nlm.nih.gov/pubmed/29532802
https://www.proquest.com/docview/1947111175
https://www.proquest.com/docview/2566145630
https://www.proquest.com/docview/2013514961
https://www.osti.gov/biblio/1539795
Volume 12
WOSCitedRecordID wos000411998900005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: Biological Science Database
  customDbUrl:
  eissn: 1750-2799
  dateEnd: 20171231
  omitProxy: false
  ssIdentifier: ssj0047367
  issn: 1754-2189
  databaseCode: M7P
  dateStart: 20060601
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Environmental Science Database
  customDbUrl:
  eissn: 1750-2799
  dateEnd: 20171231
  omitProxy: false
  ssIdentifier: ssj0047367
  issn: 1754-2189
  databaseCode: PATMY
  dateStart: 20060601
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/environmentalscience
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1750-2799
  dateEnd: 20171231
  omitProxy: false
  ssIdentifier: ssj0047367
  issn: 1754-2189
  databaseCode: 7X7
  dateStart: 20060601
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1750-2799
  dateEnd: 20171231
  omitProxy: false
  ssIdentifier: ssj0047367
  issn: 1754-2189
  databaseCode: BENPR
  dateStart: 20060601
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwELdYBxIvfMPCRmUQErxkS2znw0-ooE3sYVU1hlSerMQfo1KXdEuLtP-eu8QpVBReeIkU-RInvvPdOf7ld4S8jYw2RkgeJql0oeCMh4VjsFgRCZfWipJx0xabyMbjfDqVE__BrfGwyt4nto7a1Bq_kR9BaIZIgmxWHxbXIVaNwt1VX0Jjh-wiSwJvoXuT3hOLjLcVZCFCihBCmexJG3l-VCENAiK7ssMoExtBybvmQQ1zbFve-ceeaRuKTh7-70s8Ig98EkpHndU8Jnds9YTc68pS3j4lZ6cVhStWFGk5fPUzWju6QEhwvWrmtxSiYddWzi29QlBfVx6quWooQukvKSSWdKa_zxbPyNeT44tPn0NfdiHUsHZYhrHTRZQUojToKQsWyaKMmNGZ0KUzZWpFYXhqLaRizmU6MVykXIDCYW1nEm75czKo6sruESpza9LExdwksGyRDm4oi8jKiDlY5zEbkLAfd6U9JzmWxpirdm-c56rVk0I9KdBTQN6t5RcdG8dfJd-gGhVSXFSIobksVk2jTr-cqxGkwJCkgKeC23khV0O3uvC_JMDDIyvWhuTBhiTMQb3RvI_WoiBrQepdjRglvVRgkTKTCVzcW4PyHqJRsYS0IEai1K3NvywlIK_XzdgtguIqC8rGd8X_MGQaB-RFZ5vrUWEy4SyPWEDe98b6W99bh-zlv59jn9xHyQ7IeEAGy5uVfUXu6h_LWXMzJDvZNGuP-ZDsfjweT86H7WSEs8no4uzbTx6jOZ4
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1JbxMxFLZKCoIL-xJawCC2y9CJ7Vl84BABVaM2UQVFKicz46VESmdCJwHlT_EbeW_GE4gI3Hrg7Odl7LeOn79HyNPQaGOE5EEUSxcIzniQOQbBioi4tFbkjJu62EQyGqXHx_Jwg_xo38JgWmWrE2tFbUqN_8h3wDSDJUE0K59BuW8X3yE-q14P3sJhPmNs993Rm73AlxAINPjBs6DndBZGmcgNSn3GQpnlITM6ETp3Jo-tyAyPrQW3wrlER4aLmAtYPMQpJuKWw7jPp18DrFKFt7m-ZMcFspnGMmYdsnnYPxp-anW_SHhdsxZssgjAeMoWJpKnOwUCL2AuWfIqTMSKGfTGoFOCVK_zdP-4pa2N3-61_23brpOr3s2m_UYubpANW9wkl5rCm4tbZDgoKPSYUwQe8fXdaOnoFJOey3k1WVCw901bPrH0FNMWmwJY1WlF8bHACQXXmY71l_H0Nvl4Lp93h3SKsrD3CJWpNXHketxEEJhJBwPKLLQyZA4iWWa7JGjPWWmPuo7FPyaqvv3nqar5QiFfKOCLLnmxpJ82eCN_pXyCbKMQxKPALKGTbF5VavDhveqDkw9uGOhiGM4TuRKm1Zl_dAGLR9yvFcrtFUrQMnqleQu5U4FfhuDCGrOw9EyBvZSJjKBzy33K68BK9SQ4Pj2Egl3b_Iszu-TxshmnxbS_wsJh47fiSxMZ97rkbiMLy11hMuIsDVmXvGyF47e5127Z_X-v4xG5vHc0PFAHg9H-FrmCvZq0zW3SmZ3N7QNyUX-bjauzh17sKfl83lL0EzwylL4
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1JbxMxFLZKCogL-zK0gEEguAyZ2J7FB4QiSkRUGkXQSuVkZryUSOlM6CSg_DV-He_NEogI3Hrg7Dde3zp-_h4hTwOjjRGS-2EknS84437qGAQrIuTSWpExbqpiE_FolBwfy_EW-dG-hcG0ylYnVoraFBr_kXfBNIMlQTSrrmvSIsZ7g9ezrz5WkMKb1racRs0i-3b5HcK38tVwD876GWODt4dv3vlNhQFfg5s893tOp0GYisygUkhZINMsYEbHQmfOZJEVqeGRteB1OBfr0HARcQFrgzDGhNxy6PcC2UaMOFAK2-P-4cGn1g6ImFf1a8E-Cx8MqWwhI3nSzRGEAfPK4pdBLNZMYmMYOgVI-Cav948b28oQDq79z1t4nVxt3G_ar-XlBtmy-U1yqS7IubxFDoY5hRkuKAKSNHXfaOHoDJOhi0U5XVLwA-q2bGrpKaYz1oWxytOS4iOCEwouNZ3oL5PZbXJ0Lmu5Qzp5kdt7hMrEmih0PW5CCNikgw5lGlgZMAcRLrMe8dszV7pBY8eiIFNVZQXwRFU8opBHFPCIR56v6Gc1DslfKZ8gCykE98jxjE_SRVmq4ccPqg_OP7hnoKOhu4bIFTCsTpvHGDB5xANbo9xdowTto9ead5BTFfhrCDqsMTtLzxXYURnLED5uOVE1urFUPQkOUQ8hYjc2_-JSjzxeNeOwmA6YWzhsXCu-QJFRzyN3a7lY7QqTIWdJwDzyohWU38beuGX3_z2PR-QyyIl6Pxzt75Ar-FGdzblLOvOzhX1ALupv80l59rDRAJR8Pm-J-QmOfp10
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=In+situ+cultivation+of+previously+uncultivable+microorganisms+using+the+ichip&rft.jtitle=Nature+protocols&rft.au=Berdy+Brittany&rft.au=Spoering%2C+Amy+L&rft.au=Ling%2C+Losee+L&rft.au=Epstein%2C+Slava+S&rft.date=2017-10-01&rft.pub=Nature+Publishing+Group&rft.issn=1754-2189&rft.eissn=1750-2799&rft.volume=12&rft.issue=10&rft.spage=2232&rft.epage=2242&rft_id=info:doi/10.1038%2Fnprot.2017.074&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1754-2189&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1754-2189&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1754-2189&client=summon