Glutamine deprivation alters the origin and function of cancer cell exosomes
Exosomes are secreted extracellular vesicles carrying diverse molecular cargos, which can modulate recipient cell behaviour. They are thought to derive from intraluminal vesicles formed in late endosomal multivesicular bodies (MVBs). An alternate exosome formation mechanism, which is conserved from...
Uloženo v:
| Vydáno v: | The EMBO journal Ročník 39; číslo 16; s. e103009 - n/a |
|---|---|
| Hlavní autoři: | , , , , , , , , , , , , , , , , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
London
Nature Publishing Group UK
17.08.2020
Springer Nature B.V John Wiley and Sons Inc |
| Témata: | |
| ISSN: | 0261-4189, 1460-2075, 1460-2075 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Exosomes are secreted extracellular vesicles carrying diverse molecular cargos, which can modulate recipient cell behaviour. They are thought to derive from intraluminal vesicles formed in late endosomal multivesicular bodies (MVBs). An alternate exosome formation mechanism, which is conserved from fly to human, is described here, with exosomes carrying unique cargos, including the GTPase Rab11, generated in Rab11‐positive recycling endosomal MVBs. Release of Rab11‐positive exosomes from cancer cells is increased relative to late endosomal exosomes by reducing growth regulatory Akt/mechanistic Target of Rapamycin Complex 1 (mTORC1) signalling or depleting the key metabolic substrate glutamine, which diverts membrane flux through recycling endosomes. Vesicles produced under these conditions promote tumour cell proliferation and turnover and modulate blood vessel networks in xenograft mouse models
in vivo
. Their growth‐promoting activity, which is also observed
in vitro
, is Rab11a‐dependent, involves ERK‐MAPK‐signalling and is inhibited by antibodies against amphiregulin, an EGFR ligand concentrated on these vesicles. Therefore, glutamine depletion or mTORC1 inhibition stimulates release from Rab11a compartments of exosomes with pro‐tumorigenic functions, which we propose promote stress‐induced tumour adaptation.
Synopsis
Heterogeneity of extracellular vesicles and their behaviour under metabolic stress conditions remain poorly understood. Here, reduction in glutamine levels or Akt/mTORC1 signalling are shown to induce cancer cell exosomes with altered cargos and increased pro‐tumorigenic functions, which are secreted from previously undescribed Rab11a‐dependent endosomes.
Rab11a‐positive endosomal multivesicular bodies give rise to exosomes with distinct functions.
Depletion of glutamine or Akt/mTORC1 induces Rab11a‐exosome release from cancer cells.
Rab11a‐positive stress‐induced vesicles promote cancer cell and vessel growth
in vitro
and
in vivo
.
An antibody against EGFR ligand, AREG, blocks Rab11a‐exosome‐induced tumour growth.
Graphical Abstract
Release of Rab11a‐positive exosomes with distinct cargos and increased pro‐tumorigenic functions is dependent on glutamine levels and Akt/mTORC1 signalling. |
|---|---|
| AbstractList | Exosomes are secreted extracellular vesicles carrying diverse molecular cargos, which can modulate recipient cell behaviour. They are thought to derive from intraluminal vesicles formed in late endosomal multivesicular bodies (MVBs). An alternate exosome formation mechanism, which is conserved from fly to human, is described here, with exosomes carrying unique cargos, including the GTPase Rab11, generated in Rab11-positive recycling endosomal MVBs. Release of Rab11-positive exosomes from cancer cells is increased relative to late endosomal exosomes by reducing growth regulatory Akt/mechanistic Target of Rapamycin Complex 1 (mTORC1) signalling or depleting the key metabolic substrate glutamine, which diverts membrane flux through recycling endosomes. Vesicles produced under these conditions promote tumour cell proliferation and turnover and modulate blood vessel networks in xenograft mouse models in vivo. Their growth-promoting activity, which is also observed in vitro, is Rab11a-dependent, involves ERK-MAPK-signalling and is inhibited by antibodies against amphiregulin, an EGFR ligand concentrated on these vesicles. Therefore, glutamine depletion or mTORC1 inhibition stimulates release from Rab11a compartments of exosomes with pro-tumorigenic functions, which we propose promote stress-induced tumour adaptation.Exosomes are secreted extracellular vesicles carrying diverse molecular cargos, which can modulate recipient cell behaviour. They are thought to derive from intraluminal vesicles formed in late endosomal multivesicular bodies (MVBs). An alternate exosome formation mechanism, which is conserved from fly to human, is described here, with exosomes carrying unique cargos, including the GTPase Rab11, generated in Rab11-positive recycling endosomal MVBs. Release of Rab11-positive exosomes from cancer cells is increased relative to late endosomal exosomes by reducing growth regulatory Akt/mechanistic Target of Rapamycin Complex 1 (mTORC1) signalling or depleting the key metabolic substrate glutamine, which diverts membrane flux through recycling endosomes. Vesicles produced under these conditions promote tumour cell proliferation and turnover and modulate blood vessel networks in xenograft mouse models in vivo. Their growth-promoting activity, which is also observed in vitro, is Rab11a-dependent, involves ERK-MAPK-signalling and is inhibited by antibodies against amphiregulin, an EGFR ligand concentrated on these vesicles. Therefore, glutamine depletion or mTORC1 inhibition stimulates release from Rab11a compartments of exosomes with pro-tumorigenic functions, which we propose promote stress-induced tumour adaptation. Exosomes are secreted extracellular vesicles carrying diverse molecular cargos, which can modulate recipient cell behaviour. They are thought to derive from intraluminal vesicles formed in late endosomal multivesicular bodies (MVBs). An alternate exosome formation mechanism, which is conserved from fly to human, is described here, with exosomes carrying unique cargos, including the GTPase Rab11, generated in Rab11‐positive recycling endosomal MVBs. Release of Rab11‐positive exosomes from cancer cells is increased relative to late endosomal exosomes by reducing growth regulatory Akt/mechanistic Target of Rapamycin Complex 1 (mTORC1) signalling or depleting the key metabolic substrate glutamine, which diverts membrane flux through recycling endosomes. Vesicles produced under these conditions promote tumour cell proliferation and turnover and modulate blood vessel networks in xenograft mouse models in vivo. Their growth‐promoting activity, which is also observed in vitro, is Rab11a‐dependent, involves ERK‐MAPK‐signalling and is inhibited by antibodies against amphiregulin, an EGFR ligand concentrated on these vesicles. Therefore, glutamine depletion or mTORC1 inhibition stimulates release from Rab11a compartments of exosomes with pro‐tumorigenic functions, which we propose promote stress‐induced tumour adaptation. Release of Rab11a‐positive exosomes with distinct cargos and increased pro‐tumorigenic functions is dependent on glutamine levels and Akt/mTORC1 signalling. Exosomes are secreted extracellular vesicles carrying diverse molecular cargos, which can modulate recipient cell behaviour. They are thought to derive from intraluminal vesicles formed in late endosomal multivesicular bodies (MVBs). An alternate exosome formation mechanism, which is conserved from fly to human, is described here, with exosomes carrying unique cargos, including the GTPase Rab11, generated in Rab11‐positive recycling endosomal MVBs. Release of Rab11‐positive exosomes from cancer cells is increased relative to late endosomal exosomes by reducing growth regulatory Akt/mechanistic Target of Rapamycin Complex 1 (mTORC1) signalling or depleting the key metabolic substrate glutamine, which diverts membrane flux through recycling endosomes. Vesicles produced under these conditions promote tumour cell proliferation and turnover and modulate blood vessel networks in xenograft mouse models in vivo. Their growth‐promoting activity, which is also observed in vitro, is Rab11a‐dependent, involves ERK‐MAPK‐signalling and is inhibited by antibodies against amphiregulin, an EGFR ligand concentrated on these vesicles. Therefore, glutamine depletion or mTORC1 inhibition stimulates release from Rab11a compartments of exosomes with pro‐tumorigenic functions, which we propose promote stress‐induced tumour adaptation. Synopsis Heterogeneity of extracellular vesicles and their behaviour under metabolic stress conditions remain poorly understood. Here, reduction in glutamine levels or Akt/mTORC1 signalling are shown to induce cancer cell exosomes with altered cargos and increased pro‐tumorigenic functions, which are secreted from previously undescribed Rab11a‐dependent endosomes. Rab11a‐positive endosomal multivesicular bodies give rise to exosomes with distinct functions. Depletion of glutamine or Akt/mTORC1 induces Rab11a‐exosome release from cancer cells. Rab11a‐positive stress‐induced vesicles promote cancer cell and vessel growth in vitro and in vivo. An antibody against EGFR ligand, AREG, blocks Rab11a‐exosome‐induced tumour growth. Release of Rab11a‐positive exosomes with distinct cargos and increased pro‐tumorigenic functions is dependent on glutamine levels and Akt/mTORC1 signalling. Exosomes are secreted extracellular vesicles carrying diverse molecular cargos, which can modulate recipient cell behaviour. They are thought to derive from intraluminal vesicles formed in late endosomal multivesicular bodies (MVBs). An alternate exosome formation mechanism, which is conserved from fly to human, is described here, with exosomes carrying unique cargos, including the GTPase Rab11, generated in Rab11‐positive recycling endosomal MVBs. Release of Rab11‐positive exosomes from cancer cells is increased relative to late endosomal exosomes by reducing growth regulatory Akt/mechanistic Target of Rapamycin Complex 1 (mTORC1) signalling or depleting the key metabolic substrate glutamine, which diverts membrane flux through recycling endosomes. Vesicles produced under these conditions promote tumour cell proliferation and turnover and modulate blood vessel networks in xenograft mouse models in vivo . Their growth‐promoting activity, which is also observed in vitro , is Rab11a‐dependent, involves ERK‐MAPK‐signalling and is inhibited by antibodies against amphiregulin, an EGFR ligand concentrated on these vesicles. Therefore, glutamine depletion or mTORC1 inhibition stimulates release from Rab11a compartments of exosomes with pro‐tumorigenic functions, which we propose promote stress‐induced tumour adaptation. Synopsis Heterogeneity of extracellular vesicles and their behaviour under metabolic stress conditions remain poorly understood. Here, reduction in glutamine levels or Akt/mTORC1 signalling are shown to induce cancer cell exosomes with altered cargos and increased pro‐tumorigenic functions, which are secreted from previously undescribed Rab11a‐dependent endosomes. Rab11a‐positive endosomal multivesicular bodies give rise to exosomes with distinct functions. Depletion of glutamine or Akt/mTORC1 induces Rab11a‐exosome release from cancer cells. Rab11a‐positive stress‐induced vesicles promote cancer cell and vessel growth in vitro and in vivo . An antibody against EGFR ligand, AREG, blocks Rab11a‐exosome‐induced tumour growth. Graphical Abstract Release of Rab11a‐positive exosomes with distinct cargos and increased pro‐tumorigenic functions is dependent on glutamine levels and Akt/mTORC1 signalling. Exosomes are secreted extracellular vesicles carrying diverse molecular cargos, which can modulate recipient cell behaviour. They are thought to derive from intraluminal vesicles formed in late endosomal multivesicular bodies (MVBs). An alternate exosome formation mechanism, which is conserved from fly to human, is described here, with exosomes carrying unique cargos, including the GTPase Rab11, generated in Rab11‐positive recycling endosomal MVBs. Release of Rab11‐positive exosomes from cancer cells is increased relative to late endosomal exosomes by reducing growth regulatory Akt/mechanistic Target of Rapamycin Complex 1 (mTORC1) signalling or depleting the key metabolic substrate glutamine, which diverts membrane flux through recycling endosomes. Vesicles produced under these conditions promote tumour cell proliferation and turnover and modulate blood vessel networks in xenograft mouse models in vivo. Their growth‐promoting activity, which is also observed in vitro, is Rab11a‐dependent, involves ERK‐MAPK‐signalling and is inhibited by antibodies against amphiregulin, an EGFR ligand concentrated on these vesicles. Therefore, glutamine depletion or mTORC1 inhibition stimulates release from Rab11a compartments of exosomes with pro‐tumorigenic functions, which we propose promote stress‐induced tumour adaptation. |
| Author | Mason, John D McCormick, Kristie Goberdhan, Deborah CI Bridges, Esther M Harris, Adrian L Kroeger, Benjamin Marie, Pauline P Ellis, Matthew Zois, Christos E Khalid Alham, Nasullah Morris, John F Cunningham, Christopher Mendes, Cláudia C Sheldon, Helen Hamdy, Freddie C Johnson, Errin Wilson, Clive Fan, Shih‐Jung Wainwright, Stephen Mark Stefana, Maria Irina |
| AuthorAffiliation | 1 Department of Physiology, Anatomy and Genetics University of Oxford Oxford UK 4 Nuffield Department of Surgical Sciences Oxford NIHR Biomedical Research Centre (BRC) John Radcliffe Hospital University of Oxford Oxford UK 6 Nuffield Department of Surgical Sciences John Radcliffe Hospital University of Oxford Oxford UK 2 Department of Oncology Weatherall Institute of Molecular Medicine University of Oxford Oxford UK 5 Sir William Dunn School of Pathology University of Oxford Oxford UK 3 Institute of Biomedical Engineering Department of Engineering Science University of Oxford Oxford UK |
| AuthorAffiliation_xml | – name: 3 Institute of Biomedical Engineering Department of Engineering Science University of Oxford Oxford UK – name: 4 Nuffield Department of Surgical Sciences Oxford NIHR Biomedical Research Centre (BRC) John Radcliffe Hospital University of Oxford Oxford UK – name: 5 Sir William Dunn School of Pathology University of Oxford Oxford UK – name: 1 Department of Physiology, Anatomy and Genetics University of Oxford Oxford UK – name: 6 Nuffield Department of Surgical Sciences John Radcliffe Hospital University of Oxford Oxford UK – name: 2 Department of Oncology Weatherall Institute of Molecular Medicine University of Oxford Oxford UK |
| Author_xml | – sequence: 1 givenname: Shih‐Jung surname: Fan fullname: Fan, Shih‐Jung organization: Department of Physiology, Anatomy and Genetics, University of Oxford – sequence: 2 givenname: Benjamin orcidid: 0000-0003-1479-3841 surname: Kroeger fullname: Kroeger, Benjamin organization: Department of Physiology, Anatomy and Genetics, University of Oxford – sequence: 3 givenname: Pauline P surname: Marie fullname: Marie, Pauline P organization: Department of Physiology, Anatomy and Genetics, University of Oxford – sequence: 4 givenname: Esther M surname: Bridges fullname: Bridges, Esther M organization: Department of Oncology, Weatherall Institute of Molecular Medicine, University of Oxford – sequence: 5 givenname: John D surname: Mason fullname: Mason, John D organization: Department of Physiology, Anatomy and Genetics, University of Oxford – sequence: 6 givenname: Kristie surname: McCormick fullname: McCormick, Kristie organization: Department of Physiology, Anatomy and Genetics, University of Oxford – sequence: 7 givenname: Christos E surname: Zois fullname: Zois, Christos E organization: Department of Oncology, Weatherall Institute of Molecular Medicine, University of Oxford – sequence: 8 givenname: Helen surname: Sheldon fullname: Sheldon, Helen organization: Department of Oncology, Weatherall Institute of Molecular Medicine, University of Oxford – sequence: 9 givenname: Nasullah surname: Khalid Alham fullname: Khalid Alham, Nasullah organization: Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Nuffield Department of Surgical Sciences, Oxford NIHR Biomedical Research Centre (BRC), John Radcliffe Hospital, University of Oxford – sequence: 10 givenname: Errin surname: Johnson fullname: Johnson, Errin organization: Sir William Dunn School of Pathology, University of Oxford – sequence: 11 givenname: Matthew surname: Ellis fullname: Ellis, Matthew organization: Department of Physiology, Anatomy and Genetics, University of Oxford – sequence: 12 givenname: Maria Irina surname: Stefana fullname: Stefana, Maria Irina organization: Department of Physiology, Anatomy and Genetics, University of Oxford – sequence: 13 givenname: Cláudia C surname: Mendes fullname: Mendes, Cláudia C organization: Department of Physiology, Anatomy and Genetics, University of Oxford – sequence: 14 givenname: Stephen Mark surname: Wainwright fullname: Wainwright, Stephen Mark organization: Department of Physiology, Anatomy and Genetics, University of Oxford – sequence: 15 givenname: Christopher surname: Cunningham fullname: Cunningham, Christopher organization: Nuffield Department of Surgical Sciences, John Radcliffe Hospital, University of Oxford – sequence: 16 givenname: Freddie C surname: Hamdy fullname: Hamdy, Freddie C organization: Nuffield Department of Surgical Sciences, John Radcliffe Hospital, University of Oxford – sequence: 17 givenname: John F surname: Morris fullname: Morris, John F organization: Department of Physiology, Anatomy and Genetics, University of Oxford – sequence: 18 givenname: Adrian L surname: Harris fullname: Harris, Adrian L organization: Department of Oncology, Weatherall Institute of Molecular Medicine, University of Oxford – sequence: 19 givenname: Clive orcidid: 0000-0003-0040-0728 surname: Wilson fullname: Wilson, Clive organization: Department of Physiology, Anatomy and Genetics, University of Oxford – sequence: 20 givenname: Deborah CI orcidid: 0000-0003-0645-6714 surname: Goberdhan fullname: Goberdhan, Deborah CI email: deborah.goberdhan@dpag.ox.ac.uk organization: Department of Physiology, Anatomy and Genetics, University of Oxford |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32720716$$D View this record in MEDLINE/PubMed |
| BookMark | eNqFkd9PFDEQxxuDkQN998ls4osvC9Mf220TY4IEEXPGF3huer3Zo5fdFttdlP_ecgciJOpTk5nP99vvzOyRnRADEvKawgFtWMMOcVisDxhQTYED6GdkRoWEmkHb7JAZMElrQZXeJXs5rwGgUS19QXY5awtC5YzMT_tptIMPWC3xKvlrO_oYKtuPmHI1XmIVk1_5UgnLqpuC27RjVzkbHKbKYd9X-DPmOGB-SZ53ts_46u7dJxefTs6PP9fzb6dnx0fz2jWq0bVSnFGluhIauJPtQgsKKFBJpQVTYiGdQsU4Y9gIDcuWC6uVZag7bBkyvk8-bH2vpsWAS4dhTLY3Jf5g042J1pvHneAvzSpem1YwLTQtBu_uDFL8PmEezeDz7Sg2YJyyYSVG2ZXkUNC3T9B1nFIo4xWKC95qCapQb_5M9DvK_aILILeASzHnhJ1xftzsugT0vaFgNhc1txc1DxctQngivPf-h-T9VvLD93jzX96cfP345ZGcbuW5KMMK08PEf_3yF15iw3g |
| CitedBy_id | crossref_primary_10_1016_j_bbadis_2022_166484 crossref_primary_10_1083_jcb_202006049 crossref_primary_10_1016_j_bbcan_2023_188966 crossref_primary_10_3389_fcell_2020_614178 crossref_primary_10_1080_14796694_2025_2520150 crossref_primary_10_1038_s41416_022_02055_3 crossref_primary_10_1038_s41467_021_27056_3 crossref_primary_10_1038_s41698_024_00627_5 crossref_primary_10_1073_pnas_2019622118 crossref_primary_10_1002_smll_202105385 crossref_primary_10_3389_fphar_2021_791648 crossref_primary_10_1016_j_tcb_2023_06_006 crossref_primary_10_1038_s41467_023_42661_0 crossref_primary_10_1242_jcs_259590 crossref_primary_10_1186_s12964_022_00909_0 crossref_primary_10_59717_j_xinn_life_2025_100132 crossref_primary_10_1111_febs_16418 crossref_primary_10_2174_0109298673273299231121044055 crossref_primary_10_1038_s41592_021_01206_3 crossref_primary_10_1242_jcs_259037 crossref_primary_10_1038_s41551_025_01446_0 crossref_primary_10_1016_j_neo_2020_11_011 crossref_primary_10_1002_jev2_12465 crossref_primary_10_1016_j_bbadis_2022_166458 crossref_primary_10_1038_s44318_025_00497_y crossref_primary_10_1186_s12943_021_01316_8 crossref_primary_10_1016_j_vesic_2025_100073 crossref_primary_10_1038_s12276_024_01209_y crossref_primary_10_1007_s12032_022_01837_2 crossref_primary_10_20517_evcna_2025_21 crossref_primary_10_1186_s13046_023_02634_z crossref_primary_10_1186_s12964_024_01507_y crossref_primary_10_1002_jev2_12263 crossref_primary_10_1083_jcb_202112032 crossref_primary_10_2147_IJN_S310357 crossref_primary_10_1002_jev2_12311 crossref_primary_10_1007_s11010_024_05121_x crossref_primary_10_1158_2326_6066_CIR_24_0039 crossref_primary_10_1002_advs_202407971 crossref_primary_10_1186_s40659_022_00405_2 crossref_primary_10_15252_embj_2020105119 crossref_primary_10_3389_fcell_2021_734720 crossref_primary_10_1002_jev2_70000 crossref_primary_10_1016_j_arr_2025_102712 crossref_primary_10_1242_bio_058722 crossref_primary_10_1186_s12943_022_01671_0 crossref_primary_10_3390_cancers13184640 crossref_primary_10_1016_j_cub_2023_10_058 crossref_primary_10_1186_s12929_025_01182_2 crossref_primary_10_1002_jev2_12430 crossref_primary_10_1038_s41580_023_00576_0 crossref_primary_10_3389_fbioe_2022_1074536 crossref_primary_10_3390_cancers14081865 crossref_primary_10_1186_s12943_025_02282_1 crossref_primary_10_1002_jex2_115 crossref_primary_10_1002_adhm_202101658 crossref_primary_10_1016_j_isci_2025_111973 crossref_primary_10_1002_jev2_12404 crossref_primary_10_1016_j_isci_2025_112587 crossref_primary_10_3389_fonc_2025_1553284 crossref_primary_10_1186_s13024_025_00859_4 crossref_primary_10_3389_fcell_2024_1451988 crossref_primary_10_1083_jcb_202012034 crossref_primary_10_1016_j_devcel_2023_01_006 crossref_primary_10_1038_s41368_022_00187_z crossref_primary_10_1016_j_prp_2024_155388 crossref_primary_10_1038_s41556_023_01088_x crossref_primary_10_1371_journal_pgen_1010979 crossref_primary_10_1016_j_heliyon_2024_e24163 crossref_primary_10_3389_fmolb_2023_1242059 crossref_primary_10_1093_nutrit_nuab106 crossref_primary_10_1002_biot_202300474 crossref_primary_10_1002_jex2_150 crossref_primary_10_1186_s12951_021_01171_1 crossref_primary_10_1186_s13287_023_03401_9 crossref_primary_10_1002_jev2_70156 crossref_primary_10_1017_erm_2022_34 |
| Cites_doi | 10.1016/j.molmed.2019.02.003 10.1016/j.imlet.2015.06.007 10.1038/ncb2502 10.1016/j.tcb.2015.06.002 10.1016/j.tcb.2014.02.004 10.1016/j.cell.2018.09.005 10.1038/onc.2015.363 10.1182/blood-2009-08-239228 10.1038/ncb3272 10.1083/jcb.201401072 10.1074/jbc.M900301200 10.1074/mcp.M112.022806 10.1038/ncomms11371 10.1126/science.1106148 10.1073/pnas.1904529116 10.1146/annurev-biochem-072909-101058 10.1242/jcs.128868 10.1038/nature05954 10.1073/pnas.1521230113 10.1016/bs.ctdb.2016.06.001 10.1073/pnas.1220998110 10.1038/s41556-018-0040-4 10.1038/nn.2515 10.1158/0008-5472.CAN-15-1862 10.1038/nm.4407 10.1038/srep15915 10.1016/j.ccell.2018.04.009 10.1002/mrd.22489 10.1242/jcs.115.12.2505 10.1016/j.tem.2016.10.003 10.1016/j.cub.2006.03.067 10.1074/jbc.M112.342667 10.1111/dgd.12193 10.1038/nmeth.1592 10.1534/genetics.106.066761 10.1016/j.cmet.2016.03.013 10.1074/jbc.273.27.17258 10.1038/nrm.2017.125 10.1038/onc.2016.253 10.1038/oncsis.2013.35 10.1016/j.cell.2019.02.029 10.1101/pdb.top75 10.1016/j.conb.2016.04.016 10.1016/S1534-5807(02)00202-2 10.1056/NEJMra1704286 10.1038/nature21365 10.1038/ncb2000 10.1074/mcp.M112.021303 10.1016/0734-189X(85)90125-2 10.1083/jcb.201710132 10.1111/j.1365-2443.2009.01285.x 10.1080/20013078.2018.1535750 10.1016/j.bbagen.2011.09.009 10.1158/0008-5472.CAN-13-2329 10.1371/journal.pgen.1006366 10.1038/nature13847 10.1111/tra.12622 10.1016/j.nano.2011.04.003 10.1038/nature03504 10.1038/nature11776 10.1016/j.tcb.2016.11.003 10.1242/dev.118.2.401 10.1002/gene.10137 10.1073/pnas.1214517109 10.1016/j.cub.2011.03.043 10.1016/j.jmb.2015.09.019 10.15252/embj.201696151 10.1111/j.1600-0854.2004.00257.x 10.1080/20013078.2017.1286095 10.1016/j.pharmthera.2017.02.020 10.1016/j.cell.2016.01.043 10.1126/science.1153124 10.1111/tra.12016 10.1083/jcb.200911018 10.1016/j.celrep.2019.01.009 10.1002/advs.201801313 10.1016/j.ccell.2016.10.009 10.1016/j.devcel.2015.03.022 10.1186/s13045-018-0689-y |
| ContentType | Journal Article |
| Copyright | The Author(s) 2020 2020 The Authors. Published under the terms of the CC BY 4.0 license 2020 The Authors. Published under the terms of the CC BY 4.0 license. 2020. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: The Author(s) 2020 – notice: 2020 The Authors. Published under the terms of the CC BY 4.0 license – notice: 2020 The Authors. Published under the terms of the CC BY 4.0 license. – notice: 2020. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | C6C 24P AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QG 7QL 7QP 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 K9. M7N P64 RC3 7X8 5PM |
| DOI | 10.15252/embj.2019103009 |
| DatabaseName | Springer Nature OA Free Journals Wiley Online Library Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Immunology Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Virology and AIDS Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database AIDS and Cancer Research Abstracts ProQuest Health & Medical Complete (Alumni) Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Virology and AIDS Abstracts Oncogenes and Growth Factors Abstracts Technology Research Database Nucleic Acids Abstracts ProQuest Health & Medical Complete (Alumni) Neurosciences Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Genetics Abstracts Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Immunology Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic Virology and AIDS Abstracts MEDLINE |
| Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Chemistry Biology |
| DocumentTitleAlternate | Shih‐Jung Fan et al |
| EISSN | 1460-2075 |
| EndPage | n/a |
| ExternalDocumentID | PMC7429491 32720716 10_15252_embj_2019103009 EMBJ2019103009 |
| Genre | article Video-Audio Media Research Support, Non-U.S. Gov't Journal Article |
| GrantInformation_xml | – fundername: UK Research and Innovation | Biotechnology and Biological Sciences Research Council (BBSRC) grantid: BB/K017462/1; BB/L007096/1; BB/N016300/1; BB/R004862/1 – fundername: Wellcome Trust (WT) grantid: 091911; 107457; 102347/Z/13/Z – fundername: National Institute for Health Research (NIHR) – fundername: Oxford University | John Fell Fund, University of Oxford (John Fell OUP Research Fund) grantid: 141/063 – fundername: Breast Cancer Research Foundation (BCRF) grantid: ANR 00162 – fundername: Cancer Research UK (CRUK) grantid: C19591/A19076; C38302/A12278; C602/A18974 – fundername: UK Research and Innovation | Biotechnology and Biological Sciences Research Council (BBSRC) funderid: BB/K017462/1; BB/L007096/1; BB/N016300/1; BB/R004862/1 – fundername: Breast Cancer Research Foundation (BCRF) funderid: ANR 00162 – fundername: Cancer Research UK (CRUK) funderid: C19591/A19076; C38302/A12278; C602/A18974 – fundername: Wellcome Trust (WT) funderid: 091911; 107457; 102347/Z/13/Z – fundername: Oxford University | John Fell Fund, University of Oxford (John Fell OUP Research Fund) funderid: 141/063 – fundername: Biotechnology and Biological Sciences Research Council grantid: BB/K017462/1 – fundername: Biotechnology and Biological Sciences Research Council grantid: BB/L007096/1 – fundername: Wellcome Trust grantid: 107457 – fundername: Wellcome Trust grantid: 091911 – fundername: Cancer Research UK grantid: 19076 |
| GroupedDBID | --- -DZ -~X 0R~ 123 1OC 24P 29G 2WC 33P 36B 39C 53G 5VS 70F 8R4 8R5 A8Z AAESR AAEVG AAHBH AAHHS AAIHA AAJSJ AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCUV ABLJU ACAHQ ACCFJ ACCZN ACGFO ACGFS ACNCT ACPOU ACPRK ACXBN ACXQS ADBBV ADEOM ADKYN ADMGS ADOZA ADXAS ADZMN AEEZP AEGXH AEIGN AENEX AEQDE AEUYR AFBPY AFFNX AFGKR AFPWT AFRAH AFWVQ AFZJQ AHMBA AIAGR AIURR AIWBW AJBDE ALAGY ALIPV ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB AOIJS AUFTA AZBYB AZFZN AZVAB BAWUL BDRZF BENPR BFHJK BMNLL BMXJE BRXPI BTFSW C6C CS3 DCZOG DIK DPXWK DRFUL DRSTM DU5 E3Z EBD EBLON EBS EMB EMOBN F5P G-S GROUPED_DOAJ GX1 HH5 HK~ HYE KQ8 LATKE LEEKS LITHE LOXES LUTES LYRES MEWTI MRFUL MRSTM MSFUL MSSTM MVM MXFUL MXSTM MY~ O9- OK1 P2P P2W Q2X R.K RHF RHI RNS ROL RPM SV3 TN5 TR2 WBKPD WH7 WIH WIK WIN WOHZO WXSBR WYJ YSK ZCA ZZTAW ~KM ABJNI -Q- AAMMB AASML AAYXX ABZEH AEFGJ AGXDD AIDQK AIDYY AJAOE CITATION NAO O8X CGR CUY CVF ECM EIF NPM 7QG 7QL 7QP 7T5 7TK 7TM 7TO 7U9 8FD C1K ESTFP FR3 H94 K9. M7N P64 RC3 7X8 5PM |
| ID | FETCH-LOGICAL-c5859-8832188f91003c67b9410e4e86894284b6c8e82322e5490d734a98a2e9fe72e23 |
| IEDL.DBID | 24P |
| ISICitedReferencesCount | 89 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000552735700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0261-4189 1460-2075 |
| IngestDate | Tue Sep 30 16:50:47 EDT 2025 Sun Sep 28 02:25:30 EDT 2025 Mon Oct 06 17:31:00 EDT 2025 Mon Jul 21 06:06:39 EDT 2025 Sat Nov 29 03:03:08 EST 2025 Tue Nov 18 20:49:54 EST 2025 Wed Jan 22 16:32:26 EST 2025 Fri Feb 21 02:37:33 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 16 |
| Keywords | mechanistic Target of Rapamycin Rab11(a) exosome extracellular vesicle multivesicular body |
| Language | English |
| License | Attribution 2020 The Authors. Published under the terms of the CC BY 4.0 license. This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c5859-8832188f91003c67b9410e4e86894284b6c8e82322e5490d734a98a2e9fe72e23 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 ObjectType-Undefined-3 See also: G van Niel & C Théry (August 2020) These authors contributed equally to this work |
| ORCID | 0000-0003-0040-0728 0000-0003-0645-6714 0000-0003-1479-3841 |
| OpenAccessLink | https://onlinelibrary.wiley.com/doi/abs/10.15252%2Fembj.2019103009 |
| PMID | 32720716 |
| PQID | 2434379608 |
| PQPubID | 35985 |
| PageCount | 27 |
| ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_7429491 proquest_miscellaneous_2428058630 proquest_journals_2434379608 pubmed_primary_32720716 crossref_citationtrail_10_15252_embj_2019103009 crossref_primary_10_15252_embj_2019103009 wiley_primary_10_15252_embj_2019103009_EMBJ2019103009 springer_journals_10_15252_embj_2019103009 |
| PublicationCentury | 2000 |
| PublicationDate | 17 August 2020 |
| PublicationDateYYYYMMDD | 2020-08-17 |
| PublicationDate_xml | – month: 08 year: 2020 text: 17 August 2020 day: 17 |
| PublicationDecade | 2020 |
| PublicationPlace | London |
| PublicationPlace_xml | – name: London – name: England – name: New York – name: Hoboken |
| PublicationTitle | The EMBO journal |
| PublicationTitleAbbrev | EMBO J |
| PublicationTitleAlternate | EMBO J |
| PublicationYear | 2020 |
| Publisher | Nature Publishing Group UK Springer Nature B.V John Wiley and Sons Inc |
| Publisher_xml | – name: Nature Publishing Group UK – name: Springer Nature B.V – name: John Wiley and Sons Inc |
| References | Koles, Nunnari, Korkut, Barria, Brewer, Li, Leszyk, Zhang, Budnik (CR31) 2012; 287 Zou, Lai, Zhang, Zheng, Xing, Li, Zou, Song, Zhao, Xia (CR79) 2018; 6 Zhang, Pavlova, Thompson (CR76) 2017; 36 Ball, Demmerle, Kaufmann, Davis, Dobbie, Schermelleh (CR3) 2015; 5 Trajkovic, Hsu, Chiantia, Rajendran, Wenzel, Wieland, Schwille, Brügger, Simons (CR70) 2008; 319 Crewe, Joffin, Rutkowski, Kim, Zhang, Towler, Gordillo, Scherer (CR13) 2018; 175 Hayashi, Ito, Sado, Taniguchi, Akimoto, Takeuchi, Aigaki, Matsuzaki, Nakagoshi, Tanimura (CR22) 2002; 34 Rideout, Dornan, Neville, Eadie, Goodwin (CR53) 2010; 13 Fan, Snell, Turley, Li, McCormick, Perera, Heublein, Kazi, Azad, Wilson (CR19) 2016; 35 Sheldon, Heikamp, Turley, Dragovic, Thomas, Oon, Leek, Edelmann, Kessler, Sainson (CR61) 2010; 116 Sweeney, Brenman, Jan, Gao (CR63) 2006; 16 Zhang, Schulze, Hiesinger, Suyama, Wang, Fish, Acar, Hoskins, Bellen, Scott (CR75) 2007; 176 Sarbassov, Guertin, Ali, Sabatini (CR55) 2005; 307 Leiblich, Marsden, Gandy, Corrigan, Jenkins, Hamdy, Wilson (CR500) 2012; 109 Brand, Perrimon (CR8) 1993; 118 Maas, Breakefield, Weaver (CR37) 2017; 27 Prince, Kroeger, Gligorov, Wilson, Eaton, Karch, Brankatschk, Maeda (CR50) 2019; 20 Mayle, Le, Kamei (CR40) 2012; 1820 Savina, Fader, Damiani, Colombo (CR58) 2005; 6 Bourseau‐Guilmain, Menard, Lindqvist, Indira Chandran, Christianson, Cerezo Magaña, Lidfeldt, Marko‐Varga, Welinder, Belting (CR7) 2016; 7 Higginbotham, Demory Beckler, Gephart, Franklin, Bogatcheva, Kremers, Piston, Ayers, McConnell, Tyska (CR23) 2011; 21 Dunst, Kazimiers, von Zadow, Jambor, Sagner, Brankatschk, Mahmoud, Spannl, Tomancak, Eaton (CR18) 2015; 33 Nagathihall, Beesetty, Lee, Washington, Chen, Lockhart, Merchant (CR44) 2014; 74 Becker, Thakur, Weiss, Kim, Peinado, Lyden (CR5) 2016; 30 Sugawara, Shibasaki, Mizoguchi, Saito, Seino (CR62) 2009; 14 Farkaš, Beňová‐Liszeková, Mentelová, Mahmood, Ďatková, Beňo, Pečeňová, Raška, Šmigová, Chase (CR20) 2015; 57 Panáková, Sprong, Marois, Thiele, Eaton (CR48) 2005; 435 Raimondo, Saieva, Vicario, Pucci, Toscani, Manno, Raccosta, Giuliani, Alessandro (CR51) 2019; 12 Wendler, Favicchio, Simon, Alifrangis, Stebbing, Giamas (CR73) 2017; 36 Keerthikumar, Chisanga, Ariyaratne, Al Saffar, Anand, Zhao, Samuel, Pathan, Jois, Chilamkurti (CR29) 2016; 428 van Niel, D'Angelo, Raposo (CR46) 2018; 19 Redhai, Hellberg, Wainwright, Perera, Castellanos, Kroeger, Gandy, Leiblich, Corrigan, Hilton (CR52) 2016; 12 Ni, Zhou, Czech, Liu, Holderbaum, Yang‐Zhou, Shim, Tao, Handler, Karpowicz (CR45) 2011; 8 Colombo, Moita, van Niel, Kowal, Vigneron, Benaroch, Manel, Moita, Théry, Raposo (CR11) 2013; 126 Tardito, Oudin, Ahmed, Fack, Keunen, Zheng, Miletic, Sakariassen, Weinstock, Wagner (CR64) 2015; 17 Matusek, Wendler, Polès, Pizette, D'Angelo, Fürthauer, Thérond (CR39) 2014; 516 Parton, Vallés, Dobbie, Davis (CR49) 2010; 2010 Huang‐Doran, Zhang, Vidal‐Puig (CR25) 2017; 28 Zhang, Higginbotham, Jeppesen, Yang, Li, McKinley, Graves‐Deal, Ping, Britain, Dorsett (CR78) 2019; 27 Mateescu, Kowal, van Balkom, Bartel, Bhattacharyya, Buzás, Buck, de Candia, Chow, Das (CR38) 2017; 6 Lukey, Katt, Cerione (CR36) 2018; 33 McIntyre, Hulikova, Ledaki, Snell, Singleton, Steers, Seden, Jones, Bridges, Wigfield (CR42) 2016; 76 Dibble, Cantley (CR15) 2015; 25 Goberdhan, Wilson, Harris (CR21) 2016; 23 Corrigan, Redhai, Leiblich, Fan, Perera, Patel, Gandy, Wainwright, Morris, Hamdy (CR12) 2014; 206 Brown, Meise, Plowman, Coffey, Dempsey (CR9) 1998; 273 Dietzl, Chen, Schnorrer, Su, Barinova, Fellner, Gasser, Kinsey, Oppel, Scheiblauer (CR16) 2007; 448 Baietti, Zhang, Mortier, Melchior, Degeest, Geeraerts, Ivarsson, Depoortere, Coomans, Vermeiren (CR2) 2012; 14 Bruno, Deregibus, Camussi (CR10) 2015; 168 Théry, Witwer, Aikawa, Alcaraz, Anderson, Andriantsitohaina, Antoniou, Arab, Archer, Atkin‐Smith (CR66) 2018; 7 Shah, Patel, Freedman (CR60) 2018; 379 Jiang, Du, Mancuso, Wellen, Yang (CR27) 2013; 493 Kowal, Arras, Colombo, Jouve, Morath, Primdal‐Bengtson, Dingli, Loew, Tkach, Théry (CR32) 2016; 113 Romero, Sayin, Davidson, Bauer, Singh, LeBoeuf, Karakousi, Ellis, Bhutkar, Sánchez‐Rivera (CR54) 2017; 23 Demory Beckler, Higginbotham, Franklin, Ham, Halvey, Imasuen, Whitwell, Li, Liebler, Coffey (CR14) 2013; 12 Messenger, Woo, Sun, Martin (CR43) 2018; 217 Tkach, Théry (CR69) 2016; 164 Thomou, Mori, Dreyfuss, Konishi, Sakaguchi, Wolfrum, Rao, Winnay, Garcia‐Martin, Grinspoon (CR67) 2017; 542 Jeppesen, Fenix, Franklin, Higginbotham, Zhang, Zimmerman, Liebler, Ping, Liu, Evans (CR26) 2019; 177 Wilson, Leiblich, Goberdhan, Hamdy (CR74) 2017; 121 Kapur, Sahoo, Wong (CR28) 1985; 29 Schindelin, Rueden, Hiner, Eliceiri (CR59) 2015; 82 Tauro, Greening, Mathias, Mathivanan, Ji, Simpson (CR65) 2013; 12 Welz, Wellbourne‐Wood, Kerkhoff (CR72) 2014; 24 Ahmed, Eide, Eilertsen, Danielsen, Eknæs, Hektoen, Lind, Lothe (CR1) 2013; 2 McCullough, Colf, Sundquist (CR41) 2013; 82 Veerman, Güçlüler Akpinar, Eldh, Gabrielsson (CR71) 2019; 25 Dragovic, Gardiner, Brooks, Tannetta, Ferguson, Hole, Carr, Redman, Harris, Dobson (CR17) 2011; 7 Savina, Vidal, Colombo (CR57) 2002; 115 Beckett, Monier, Palmer, Alexandre, Green, Bonneil, Raposo, Thibault, Le Borgne, Vincent (CR6) 2013; 14 Kucharzewska, Christianson, Welch, Svensson, Fredlund, Ringnér, Mörgelin, Bourseau‐Guilmain, Bengzon, Belting (CR34) 2013; 110 Sato, Kornberg (CR56) 2002; 3 Hsu, Morohashi, Yoshimura, Manrique‐Hoyos, Jung, Lauterbach, Bakhti, Grønborg, Möbius, Rhee (CR24) 2010; 189 Krämer‐Albers, Hill (CR33) 2016; 39 Ostrowski, Carmo, Krumeich, Fanget, Raposo, Savina, Moita, Schauer, Hume, Freitas (CR47) 2010; 12 Zhang, Freitas, Kim, Fabijanic, Li, Chen, Mark, Molina, Martin, Bojmar (CR77) 2018; 20 Kessler, Gmachl, Mantoulidis, Martin, Zoephel, Mayer, Gollner, Covini, Fischer, Gerstberger (CR30) 2019; 116 Thoreen, Kang, Chang, Liu, Zhang, Gao, Reichling, Sim, Sabatini, Gray (CR68) 2009; 284 Barile, Vassalli (CR4) 2017; 174 2010; 12 2017; 6 1985; 29 2012; 287 2013; 2 2010; 13 2016; 428 2013; 126 2019; 12 2015; 33 2010; 189 2016; 76 2016; 30 2002; 115 2014; 24 2012; 14 2016; 39 2016; 35 1998; 273 2014; 206 2018; 175 2018; 7 2018; 6 2009; 14 2013; 14 2019; 20 2015; 82 2017; 36 2010; 116 2013; 12 2018; 217 2007; 176 2018; 379 2008; 319 2019; 25 2016; 113 2019; 116 2019; 27 2005; 307 2011; 21 2013; 110 2009; 284 2017; 121 2018; 33 2015; 57 2007; 448 2015; 17 2015; 5 2014; 516 2010; 2010 2015; 168 2017; 28 2017; 27 2002; 34 2006; 16 2005; 435 2012; 1820 2017; 23 2002; 3 2017; 174 2018; 20 2011; 8 2016; 164 2011; 7 2012; 109 2016; 12 2018; 19 2016; 7 2015; 25 1993; 118 2013; 82 2005; 6 2013; 493 2014; 74 2017; 542 2019; 177 2016; 23 e_1_2_8_28_1 e_1_2_8_24_1 e_1_2_8_47_1 e_1_2_8_26_1 e_1_2_8_49_1 e_1_2_8_68_1 e_1_2_8_3_1 e_1_2_8_5_1 e_1_2_8_7_1 e_1_2_8_9_1 e_1_2_8_20_1 e_1_2_8_43_1 e_1_2_8_66_1 e_1_2_8_22_1 e_1_2_8_45_1 e_1_2_8_64_1 e_1_2_8_62_1 e_1_2_8_41_1 e_1_2_8_60_1 e_1_2_8_17_1 e_1_2_8_19_1 e_1_2_8_13_1 e_1_2_8_36_1 e_1_2_8_59_1 e_1_2_8_15_1 e_1_2_8_38_1 e_1_2_8_57_1 e_1_2_8_70_1 e_1_2_8_32_1 e_1_2_8_55_1 e_1_2_8_78_1 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_53_1 e_1_2_8_76_1 e_1_2_8_51_1 e_1_2_8_74_1 e_1_2_8_30_1 e_1_2_8_72_1 e_1_2_8_29_1 e_1_2_8_25_1 e_1_2_8_46_1 e_1_2_8_27_1 e_1_2_8_48_1 e_1_2_8_69_1 e_1_2_8_2_1 e_1_2_8_80_1 e_1_2_8_4_1 e_1_2_8_6_1 e_1_2_8_8_1 e_1_2_8_21_1 e_1_2_8_42_1 e_1_2_8_67_1 e_1_2_8_23_1 e_1_2_8_44_1 e_1_2_8_65_1 e_1_2_8_63_1 e_1_2_8_40_1 e_1_2_8_61_1 e_1_2_8_18_1 e_1_2_8_39_1 e_1_2_8_14_1 e_1_2_8_35_1 e_1_2_8_16_1 e_1_2_8_37_1 e_1_2_8_58_1 e_1_2_8_79_1 e_1_2_8_10_1 e_1_2_8_31_1 e_1_2_8_56_1 e_1_2_8_77_1 e_1_2_8_12_1 e_1_2_8_33_1 e_1_2_8_54_1 e_1_2_8_75_1 e_1_2_8_52_1 e_1_2_8_73_1 e_1_2_8_50_1 e_1_2_8_71_1 32809264 - EMBO J. 2020 Aug 17;39(16):e105119. doi: 10.15252/embj.2020105119. |
| References_xml | – volume: 12 start-page: 19 year: 2010 end-page: 30 ident: CR47 article-title: Rab27a and Rab27b control different steps of the exosome secretion pathway publication-title: Nat Cell Biol – volume: 74 start-page: 2062 year: 2014 end-page: 2072 ident: CR44 article-title: Novel mechanistic insights into ectodomain shedding of EGFR Ligands Amphiregulin and TGF‐α: impact on gastrointestinal cancers driven by secondary bile acids publication-title: Cancer Res – volume: 82 start-page: 518 year: 2015 end-page: 529 ident: CR59 article-title: The ImageJ ecosystem: an open platform for biomedical image analysis publication-title: Mol Reprod Dev – volume: 175 start-page: 695 year: 2018 end-page: 708 ident: CR13 article-title: An endothelial‐to‐adipocyte extracellular vesicle axis governed by metabolic state publication-title: Cell – volume: 19 start-page: 213 year: 2018 end-page: 228 ident: CR46 article-title: Shedding light on the cell biology of extracellular vesicles publication-title: Nat Rev Mol Cell Biol – volume: 121 start-page: 339 year: 2017 end-page: 375 ident: CR74 article-title: The accessory gland as a model for prostate cancer and other pathologies publication-title: Curr Top Dev Biol – volume: 23 start-page: 580 year: 2016 end-page: 589 ident: CR21 article-title: Amino acid sensing by mTORC1: intracellular transporters mark the spot publication-title: Cell Metab – volume: 20 start-page: 137 year: 2019 end-page: 151 ident: CR50 article-title: Rab‐mediated trafficking in the secondary cells of male accessory glands and its role in fecundity publication-title: Traffic – volume: 319 start-page: 1244 year: 2008 end-page: 1247 ident: CR70 article-title: Ceramide triggers budding of exosome vesicles into multivesicular endosomes publication-title: Science – volume: 6 start-page: 1801313 year: 2018 ident: CR79 article-title: Exosome release is regulated by mTORC1 publication-title: Adv Sci (Weinh) – volume: 7 start-page: 780 year: 2011 end-page: 788 ident: CR17 article-title: Sizing and phenotyping of cellular vesicles using nanoparticle tracking analysis publication-title: Nanomedicine – volume: 12 start-page: 343 year: 2013 end-page: 355 ident: CR14 article-title: Proteomic analysis of exosomes from mutant KRAS colon cancer cells identifies intercellular transfer of mutant KRAS publication-title: Mol Cell Proteomics – volume: 287 start-page: 16820 year: 2012 end-page: 16834 ident: CR31 article-title: Mechanism of evenness interrupted (Evi)‐exosome release at synaptic boutons publication-title: J Biol Chem – volume: 28 start-page: 3 year: 2017 end-page: 18 ident: CR25 article-title: Extracellular vesicles: novel mediators of cell communication in metabolic disease publication-title: Trends Endocrinol Metab – volume: 27 start-page: 172 year: 2017 end-page: 188 ident: CR37 article-title: Extracellular vesicles: unique intercellular delivery vehicles publication-title: Trends Cell Biol – volume: 379 start-page: 958 year: 2018 end-page: 966 ident: CR60 article-title: Circulating extracellular vesicles in human disease publication-title: N Engl J Med – volume: 6 start-page: 131 year: 2005 end-page: 143 ident: CR58 article-title: Rab11 promotes docking and fusion of multivesicular bodies in a calcium‐dependent manner publication-title: Traffic – volume: 8 start-page: 405 year: 2011 end-page: 407 ident: CR45 article-title: A genome‐scale shRNA resource for transgenic RNAi in publication-title: Nat Methods – volume: 5 start-page: 15915 year: 2015 ident: CR3 article-title: SIMcheck: a toolbox for successful super‐resolution structured illumination microscopy publication-title: Sci Rep – volume: 23 start-page: 1362 year: 2017 end-page: 1368 ident: CR54 article-title: Keap1 loss promotes Kras‐driven lung cancer and results in dependence on glutaminolysis publication-title: Nat Med – volume: 7 start-page: 1535750 year: 2018 ident: CR66 article-title: Minimal information for studies of extracellular vesicles 2018 (MISEV2018): a position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines publication-title: J Extracell Vesicles – volume: 273 start-page: 17258 year: 1998 end-page: 17268 ident: CR9 article-title: Cell surface ectodomain cleavage of human amphiregulin precursor is sensitive to a metalloprotease inhibitor. Release of a predominant N‐glycosylated 43‐kDa soluble form publication-title: J Biol Chem – volume: 14 start-page: 445 year: 2009 end-page: 456 ident: CR62 article-title: Rab11 and its effector Rip11 participate in regulation of insulin granule exocytosis publication-title: Genes Cells – volume: 493 start-page: 689 year: 2013 end-page: 693 ident: CR27 article-title: Reciprocal regulation of p53 and malic enzymes modulates metabolism and senescence publication-title: Nature – volume: 27 start-page: 940 year: 2019 end-page: 954 ident: CR78 article-title: Transfer of functional cargo in exomeres publication-title: Cell Rep – volume: 189 start-page: 223 year: 2010 end-page: 232 ident: CR24 article-title: Regulation of exosome secretion by Rab35 and its GTPase‐activating proteins TBC1D10A‐C publication-title: J Cell Biol – volume: 110 start-page: 7312 year: 2013 end-page: 7317 ident: CR34 article-title: Exosomes reflect the hypoxic status of glioma cells and mediate hypoxia‐dependent activation of vascular cells during tumor development publication-title: Proc Natl Acad Sci USA – volume: 176 start-page: 1307 year: 2007 end-page: 1322 ident: CR75 article-title: Thirty‐one flavors of Rab proteins publication-title: Genetics – volume: 206 start-page: 671 year: 2014 end-page: 688 ident: CR12 article-title: BMP‐regulated exosomes from male reproductive glands reprogram female behavior publication-title: J Cell Biol – volume: 177 start-page: 428 year: 2019 end-page: 445 ident: CR26 article-title: Reassessment of exosome composition publication-title: Cell – volume: 3 start-page: 195 year: 2002 end-page: 207 ident: CR56 article-title: FGF is an essential mitogen and chemoattractant for the air sacs of the tracheal system publication-title: Dev Cell – volume: 36 start-page: 1302 year: 2017 end-page: 1315 ident: CR76 article-title: Cancer cell metabolism: the essential role of the nonessential amino acid, glutamine publication-title: EMBO J – volume: 12 start-page: 587 year: 2013 end-page: 598 ident: CR65 article-title: Two distinct populations of exosomes are released from LIM1863 colon carcinoma cell‐derived organoids publication-title: Mol Cell Proteomics – volume: 29 start-page: 273 year: 1985 end-page: 285 ident: CR28 article-title: A new method for gray‐level picture thresholding using the entropy of the histogram publication-title: Comput Vis Graph Image Process – volume: 82 start-page: 663 year: 2013 end-page: 692 ident: CR41 article-title: Membrane fission reactions of the mammalian ESCRT pathway publication-title: Annu Rev Biochem – volume: 33 start-page: 795 year: 2018 end-page: 797 ident: CR36 article-title: Targeting therapy resistance: when glutamine catabolism becomes essential publication-title: Cancer Cell – volume: 115 start-page: 2505 year: 2002 end-page: 2515 ident: CR57 article-title: The exosome pathway in K562 cells is regulated by Rab11 publication-title: J Cell Sci – volume: 34 start-page: 58 year: 2002 end-page: 61 ident: CR22 article-title: GETDB, a database compiling expression patterns and molecular locations of a collection of Gal4 enhancer traps publication-title: Genesis – volume: 113 start-page: E968 year: 2016 end-page: E977 ident: CR32 article-title: Proteomic comparison defines novel markers to characterize heterogeneous populations of extracellular vesicle subtypes publication-title: Proc Natl Acad Sci USA – volume: 164 start-page: 1226 year: 2016 end-page: 1232 ident: CR69 article-title: Communication by extracellular vesicles: where we are and where we need to go publication-title: Cell – volume: 14 start-page: 82 year: 2013 end-page: 96 ident: CR6 article-title: S2 cells secrete wingless on exosome‐like vesicles but the wingless gradient forms independently of exosomes publication-title: Traffic – volume: 13 start-page: 458 year: 2010 end-page: 466 ident: CR53 article-title: Control of sexual differentiation and behavior by the doublesex gene in publication-title: Nat Neurosci – volume: 7 start-page: 11371 year: 2016 ident: CR7 article-title: Hypoxia regulates global membrane protein endocytosis through caveolin‐1 in cancer cells publication-title: Nat Commun – volume: 116 start-page: 15823 year: 2019 end-page: 15829 ident: CR30 article-title: Drugging an undruggable pocket on KRAS publication-title: Proc Natl Acad Sci USA – volume: 109 start-page: 19292 year: 2012 end-page: 19297 ident: CR500 article-title: Bone morphogenetic protein‐ and mating‐dependent secretory cell growth and migration in the Drosophila accessory gland publication-title: Proc Natl Acad Sci USA – volume: 21 start-page: 779 year: 2011 end-page: 786 ident: CR23 article-title: Amphiregulin exosomes increase cancer cell invasion publication-title: Curr Biol – volume: 116 start-page: 2385 year: 2010 end-page: 2394 ident: CR61 article-title: New mechanism for Notch signaling to endothelium at a distance by Delta‐like 4 incorporation into exosomes publication-title: Blood – volume: 435 start-page: 58 year: 2005 end-page: 65 ident: CR48 article-title: Lipoprotein particles are required for hedgehog and wingless signalling publication-title: Nature – volume: 516 start-page: 99 year: 2014 end-page: 103 ident: CR39 article-title: The ESCRT machinery regulates the secretion and long‐range activity of Hedgehog publication-title: Nature – volume: 126 start-page: 5553 year: 2013 end-page: 5565 ident: CR11 article-title: Analysis of ESCRT functions in exosome biogenesis, composition and secretion highlights the heterogeneity of extracellular vesicles publication-title: J Cell Sci – volume: 35 start-page: 3004 year: 2016 end-page: 3015 ident: CR19 article-title: PAT4 levels control amino‐acid sensitivity of rapamycin‐resistant mTORC1 from the Golgi and affect clinical outcome in colorectal cancer publication-title: Oncogene – volume: 30 start-page: 836 year: 2016 end-page: 848 ident: CR5 article-title: Extracellular vesicles in cancer: cell‐to‐cell mediators of metastasis publication-title: Cancer Cell – volume: 36 start-page: 877 year: 2017 end-page: 884 ident: CR73 article-title: Extracellular vesicles swarm the cancer microenvironment: from tumor‐stroma communication to drug intervention publication-title: Oncogene – volume: 39 start-page: 101 year: 2016 end-page: 107 ident: CR33 article-title: Extracellular vesicles: interneural shuttles of complex messages publication-title: Curr Opin Neurobiol – volume: 6 start-page: 1286095 year: 2017 ident: CR38 article-title: Obstacles and opportunities in the functional analysis of extracellular vesicle RNA ‐ an ISEV position paper publication-title: J Extracell Vesicles – volume: 14 start-page: 677 year: 2012 end-page: 685 ident: CR2 article-title: Syndecan‐syntenin‐ALIX regulates the biogenesis of exosomes publication-title: Nat Cell Biol – volume: 217 start-page: 2877 year: 2018 end-page: 2890 ident: CR43 article-title: A Ca ‐stimulated exosome release pathway in cancer cells is regulated by Munc13‐4 publication-title: J Cell Biol – volume: 24 start-page: 407 year: 2014 end-page: 415 ident: CR72 article-title: Orchestration of cell surface proteins by Rab11 publication-title: Trends Cell Biol – volume: 17 start-page: 1556 year: 2015 end-page: 1568 ident: CR64 article-title: Glutamine synthetase activity fuels nucleotide biosynthesis and supports growth of glutamine‐restricted glioblastoma publication-title: Nat Cell Biol – volume: 76 start-page: 3744 year: 2016 end-page: 3755 ident: CR42 article-title: Disrupting hypoxia‐induced bicarbonate transport acidifies tumor cells and suppresses tumor growth publication-title: Cancer Res – volume: 20 start-page: 332 year: 2018 end-page: 343 ident: CR77 article-title: Identification of distinct nanoparticles and subsets of extracellular vesicles by asymmetric flow field‐flow fractionation publication-title: Nat Cell Biol – volume: 168 start-page: 154 year: 2015 end-page: 158 ident: CR10 article-title: The secretome of mesenchymal stromal cells: role of extracellular vesicles in immunomodulation publication-title: Immunol Lett – volume: 2 start-page: e71 year: 2013 ident: CR1 article-title: Epigenetic and genetic features of 24 colon cancer cell lines publication-title: Oncogenesis – volume: 542 start-page: 450 year: 2017 end-page: 455 ident: CR67 article-title: Adipose‐derived circulating miRNAs regulate gene expression in other tissues publication-title: Nature – volume: 25 start-page: 382 year: 2019 end-page: 394 ident: CR71 article-title: Immune cell‐derived extracellular vesicles ‐ functions and therapeutic applications publication-title: Trends Mol Med – volume: 25 start-page: 545 year: 2015 end-page: 555 ident: CR15 article-title: Regulation of mTORC1 by PI3K signaling publication-title: Trends Cell Biol – volume: 16 start-page: 1006 year: 2006 end-page: 1011 ident: CR63 article-title: The coiled‐coil protein shrub controls neuronal morphogenesis in publication-title: Curr Biol – volume: 57 start-page: 74 year: 2015 end-page: 96 ident: CR20 article-title: Vacuole dynamics in the salivary glands of during prepupal development publication-title: Dev Growth Differ – volume: 12 start-page: e1006366 year: 2016 ident: CR52 article-title: Regulation of dense‐core granule replenishment by autocrine BMP signalling in secondary cells publication-title: PLoS Genet – volume: 174 start-page: 63 year: 2017 end-page: 78 ident: CR4 article-title: Exosomes: therapy delivery tools and biomarkers of diseases publication-title: Pharmacol Ther – volume: 307 start-page: 1098 year: 2005 end-page: 1101 ident: CR55 article-title: Phosphorylation and regulation of Akt/PKB by the rictor‐mTOR complex publication-title: Science – volume: 118 start-page: 401 year: 1993 end-page: 415 ident: CR8 article-title: Targeted gene expression as a means of altering cell fates and generating dominant phenotypes publication-title: Development – volume: 1820 start-page: 264 year: 2012 end-page: 281 ident: CR40 article-title: The intracellular trafficking pathway of transferrin publication-title: Biochim Biophys Acta – volume: 284 start-page: 8023 year: 2009 end-page: 8032 ident: CR68 article-title: An ATP‐competitive mammalian target of rapamycin inhibitor reveals rapamycin‐resistant functions of mTORC1 publication-title: J Biol Chem – volume: 33 start-page: 3513 year: 2015 end-page: 3565 ident: CR18 article-title: Endogenously tagged rab proteins: a resource to study membrane trafficking in publication-title: Dev Cell – volume: 428 start-page: 688 year: 2016 end-page: 692 ident: CR29 article-title: ExoCarta: a web‐based compendium of exosomal cargo publication-title: J Mol Biol – volume: 2010 start-page: pdb.top75 year: 2010 ident: CR49 article-title: Live cell imaging in publication-title: Cold Spring Harb Protoc – volume: 12 start-page: 2 year: 2019 ident: CR51 article-title: Multiple myeloma‐derived exosomes are enriched of amphiregulin (AREG) and activate the epidermal growth factor pathway in the bone microenvironment leading to osteoclastogenesis publication-title: J Hematol Oncol – volume: 448 start-page: 151 year: 2007 end-page: 156 ident: CR16 article-title: A genome‐wide transgenic RNAi library for conditional gene inactivation in publication-title: Nature – volume: 12 start-page: e1006366 year: 2016 article-title: Regulation of dense‐core granule replenishment by autocrine BMP signalling in secondary cells publication-title: PLoS Genet – volume: 82 start-page: 518 year: 2015 end-page: 529 article-title: The ImageJ ecosystem: an open platform for biomedical image analysis publication-title: Mol Reprod Dev – volume: 5 start-page: 15915 year: 2015 article-title: SIMcheck: a toolbox for successful super‐resolution structured illumination microscopy publication-title: Sci Rep – volume: 35 start-page: 3004 year: 2016 end-page: 3015 article-title: PAT4 levels control amino‐acid sensitivity of rapamycin‐resistant mTORC1 from the Golgi and affect clinical outcome in colorectal cancer publication-title: Oncogene – volume: 8 start-page: 405 year: 2011 end-page: 407 article-title: A genome‐scale shRNA resource for transgenic RNAi in publication-title: Nat Methods – volume: 6 start-page: 1286095 year: 2017 article-title: Obstacles and opportunities in the functional analysis of extracellular vesicle RNA ‐ an ISEV position paper publication-title: J Extracell Vesicles – volume: 121 start-page: 339 year: 2017 end-page: 375 article-title: The accessory gland as a model for prostate cancer and other pathologies publication-title: Curr Top Dev Biol – volume: 6 start-page: 131 year: 2005 end-page: 143 article-title: Rab11 promotes docking and fusion of multivesicular bodies in a calcium‐dependent manner publication-title: Traffic – volume: 379 start-page: 958 year: 2018 end-page: 966 article-title: Circulating extracellular vesicles in human disease publication-title: N Engl J Med – volume: 20 start-page: 137 year: 2019 end-page: 151 article-title: Rab‐mediated trafficking in the secondary cells of male accessory glands and its role in fecundity publication-title: Traffic – volume: 284 start-page: 8023 year: 2009 end-page: 8032 article-title: An ATP‐competitive mammalian target of rapamycin inhibitor reveals rapamycin‐resistant functions of mTORC1 publication-title: J Biol Chem – volume: 7 start-page: 1535750 year: 2018 article-title: Minimal information for studies of extracellular vesicles 2018 (MISEV2018): a position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines publication-title: J Extracell Vesicles – volume: 36 start-page: 877 year: 2017 end-page: 884 article-title: Extracellular vesicles swarm the cancer microenvironment: from tumor‐stroma communication to drug intervention publication-title: Oncogene – volume: 34 start-page: 58 year: 2002 end-page: 61 article-title: GETDB, a database compiling expression patterns and molecular locations of a collection of Gal4 enhancer traps publication-title: Genesis – volume: 36 start-page: 1302 year: 2017 end-page: 1315 article-title: Cancer cell metabolism: the essential role of the nonessential amino acid, glutamine publication-title: EMBO J – volume: 13 start-page: 458 year: 2010 end-page: 466 article-title: Control of sexual differentiation and behavior by the doublesex gene in publication-title: Nat Neurosci – volume: 177 start-page: 428 year: 2019 end-page: 445 article-title: Reassessment of exosome composition publication-title: Cell – volume: 1820 start-page: 264 year: 2012 end-page: 281 article-title: The intracellular trafficking pathway of transferrin publication-title: Biochim Biophys Acta – volume: 516 start-page: 99 year: 2014 end-page: 103 article-title: The ESCRT machinery regulates the secretion and long‐range activity of Hedgehog publication-title: Nature – volume: 7 start-page: 11371 year: 2016 article-title: Hypoxia regulates global membrane protein endocytosis through caveolin‐1 in cancer cells publication-title: Nat Commun – volume: 319 start-page: 1244 year: 2008 end-page: 1247 article-title: Ceramide triggers budding of exosome vesicles into multivesicular endosomes publication-title: Science – volume: 287 start-page: 16820 year: 2012 end-page: 16834 article-title: Mechanism of evenness interrupted (Evi)‐exosome release at synaptic boutons publication-title: J Biol Chem – volume: 164 start-page: 1226 year: 2016 end-page: 1232 article-title: Communication by extracellular vesicles: where we are and where we need to go publication-title: Cell – volume: 27 start-page: 940 year: 2019 end-page: 954 article-title: Transfer of functional cargo in exomeres publication-title: Cell Rep – volume: 23 start-page: 580 year: 2016 end-page: 589 article-title: Amino acid sensing by mTORC1: intracellular transporters mark the spot publication-title: Cell Metab – volume: 12 start-page: 587 year: 2013 end-page: 598 article-title: Two distinct populations of exosomes are released from LIM1863 colon carcinoma cell‐derived organoids publication-title: Mol Cell Proteomics – volume: 19 start-page: 213 year: 2018 end-page: 228 article-title: Shedding light on the cell biology of extracellular vesicles publication-title: Nat Rev Mol Cell Biol – volume: 2010 start-page: pdb.top75 year: 2010 article-title: Live cell imaging in publication-title: Cold Spring Harb Protoc – volume: 25 start-page: 382 year: 2019 end-page: 394 article-title: Immune cell‐derived extracellular vesicles ‐ functions and therapeutic applications publication-title: Trends Mol Med – volume: 2 start-page: e71 year: 2013 article-title: Epigenetic and genetic features of 24 colon cancer cell lines publication-title: Oncogenesis – volume: 217 start-page: 2877 year: 2018 end-page: 2890 article-title: A Ca ‐stimulated exosome release pathway in cancer cells is regulated by Munc13‐4 publication-title: J Cell Biol – volume: 175 start-page: 695 year: 2018 end-page: 708 article-title: An endothelial‐to‐adipocyte extracellular vesicle axis governed by metabolic state publication-title: Cell – volume: 29 start-page: 273 year: 1985 end-page: 285 article-title: A new method for gray‐level picture thresholding using the entropy of the histogram publication-title: Comput Vis Graph Image Process – volume: 435 start-page: 58 year: 2005 end-page: 65 article-title: Lipoprotein particles are required for hedgehog and wingless signalling publication-title: Nature – volume: 28 start-page: 3 year: 2017 end-page: 18 article-title: Extracellular vesicles: novel mediators of cell communication in metabolic disease publication-title: Trends Endocrinol Metab – volume: 115 start-page: 2505 year: 2002 end-page: 2515 article-title: The exosome pathway in K562 cells is regulated by Rab11 publication-title: J Cell Sci – volume: 7 start-page: 780 year: 2011 end-page: 788 article-title: Sizing and phenotyping of cellular vesicles using nanoparticle tracking analysis publication-title: Nanomedicine – volume: 113 start-page: E968 year: 2016 end-page: E977 article-title: Proteomic comparison defines novel markers to characterize heterogeneous populations of extracellular vesicle subtypes publication-title: Proc Natl Acad Sci USA – volume: 118 start-page: 401 year: 1993 end-page: 415 article-title: Targeted gene expression as a means of altering cell fates and generating dominant phenotypes publication-title: Development – volume: 27 start-page: 172 year: 2017 end-page: 188 article-title: Extracellular vesicles: unique intercellular delivery vehicles publication-title: Trends Cell Biol – volume: 20 start-page: 332 year: 2018 end-page: 343 article-title: Identification of distinct nanoparticles and subsets of extracellular vesicles by asymmetric flow field‐flow fractionation publication-title: Nat Cell Biol – volume: 189 start-page: 223 year: 2010 end-page: 232 article-title: Regulation of exosome secretion by Rab35 and its GTPase‐activating proteins TBC1D10A‐C publication-title: J Cell Biol – volume: 542 start-page: 450 year: 2017 end-page: 455 article-title: Adipose‐derived circulating miRNAs regulate gene expression in other tissues publication-title: Nature – volume: 126 start-page: 5553 year: 2013 end-page: 5565 article-title: Analysis of ESCRT functions in exosome biogenesis, composition and secretion highlights the heterogeneity of extracellular vesicles publication-title: J Cell Sci – volume: 25 start-page: 545 year: 2015 end-page: 555 article-title: Regulation of mTORC1 by PI3K signaling publication-title: Trends Cell Biol – volume: 14 start-page: 82 year: 2013 end-page: 96 article-title: S2 cells secrete wingless on exosome‐like vesicles but the wingless gradient forms independently of exosomes publication-title: Traffic – volume: 493 start-page: 689 year: 2013 end-page: 693 article-title: Reciprocal regulation of p53 and malic enzymes modulates metabolism and senescence publication-title: Nature – volume: 76 start-page: 3744 year: 2016 end-page: 3755 article-title: Disrupting hypoxia‐induced bicarbonate transport acidifies tumor cells and suppresses tumor growth publication-title: Cancer Res – volume: 23 start-page: 1362 year: 2017 end-page: 1368 article-title: Keap1 loss promotes Kras‐driven lung cancer and results in dependence on glutaminolysis publication-title: Nat Med – volume: 12 start-page: 2 year: 2019 article-title: Multiple myeloma‐derived exosomes are enriched of amphiregulin (AREG) and activate the epidermal growth factor pathway in the bone microenvironment leading to osteoclastogenesis publication-title: J Hematol Oncol – volume: 16 start-page: 1006 year: 2006 end-page: 1011 article-title: The coiled‐coil protein shrub controls neuronal morphogenesis in publication-title: Curr Biol – volume: 12 start-page: 343 year: 2013 end-page: 355 article-title: Proteomic analysis of exosomes from mutant KRAS colon cancer cells identifies intercellular transfer of mutant KRAS publication-title: Mol Cell Proteomics – volume: 21 start-page: 779 year: 2011 end-page: 786 article-title: Amphiregulin exosomes increase cancer cell invasion publication-title: Curr Biol – volume: 39 start-page: 101 year: 2016 end-page: 107 article-title: Extracellular vesicles: interneural shuttles of complex messages publication-title: Curr Opin Neurobiol – volume: 448 start-page: 151 year: 2007 end-page: 156 article-title: A genome‐wide transgenic RNAi library for conditional gene inactivation in publication-title: Nature – volume: 14 start-page: 677 year: 2012 end-page: 685 article-title: Syndecan‐syntenin‐ALIX regulates the biogenesis of exosomes publication-title: Nat Cell Biol – volume: 116 start-page: 15823 year: 2019 end-page: 15829 article-title: Drugging an undruggable pocket on KRAS publication-title: Proc Natl Acad Sci USA – volume: 273 start-page: 17258 year: 1998 end-page: 17268 article-title: Cell surface ectodomain cleavage of human amphiregulin precursor is sensitive to a metalloprotease inhibitor. Release of a predominant N‐glycosylated 43‐kDa soluble form publication-title: J Biol Chem – volume: 116 start-page: 2385 year: 2010 end-page: 2394 article-title: New mechanism for Notch signaling to endothelium at a distance by Delta‐like 4 incorporation into exosomes publication-title: Blood – volume: 168 start-page: 154 year: 2015 end-page: 158 article-title: The secretome of mesenchymal stromal cells: role of extracellular vesicles in immunomodulation publication-title: Immunol Lett – volume: 74 start-page: 2062 year: 2014 end-page: 2072 article-title: Novel mechanistic insights into ectodomain shedding of EGFR Ligands Amphiregulin and TGF‐α: impact on gastrointestinal cancers driven by secondary bile acids publication-title: Cancer Res – volume: 82 start-page: 663 year: 2013 end-page: 692 article-title: Membrane fission reactions of the mammalian ESCRT pathway publication-title: Annu Rev Biochem – volume: 174 start-page: 63 year: 2017 end-page: 78 article-title: Exosomes: therapy delivery tools and biomarkers of diseases publication-title: Pharmacol Ther – volume: 30 start-page: 836 year: 2016 end-page: 848 article-title: Extracellular vesicles in cancer: cell‐to‐cell mediators of metastasis publication-title: Cancer Cell – volume: 176 start-page: 1307 year: 2007 end-page: 1322 article-title: Thirty‐one flavors of Rab proteins publication-title: Genetics – volume: 3 start-page: 195 year: 2002 end-page: 207 article-title: FGF is an essential mitogen and chemoattractant for the air sacs of the tracheal system publication-title: Dev Cell – volume: 14 start-page: 445 year: 2009 end-page: 456 article-title: Rab11 and its effector Rip11 participate in regulation of insulin granule exocytosis publication-title: Genes Cells – volume: 33 start-page: 3513 year: 2015 end-page: 3565 article-title: Endogenously tagged rab proteins: a resource to study membrane trafficking in publication-title: Dev Cell – volume: 12 start-page: 19 year: 2010 end-page: 30 article-title: Rab27a and Rab27b control different steps of the exosome secretion pathway publication-title: Nat Cell Biol – volume: 307 start-page: 1098 year: 2005 end-page: 1101 article-title: Phosphorylation and regulation of Akt/PKB by the rictor‐mTOR complex publication-title: Science – volume: 206 start-page: 671 year: 2014 end-page: 688 article-title: BMP‐regulated exosomes from male reproductive glands reprogram female behavior publication-title: J Cell Biol – volume: 109 start-page: 19292 year: 2012 end-page: 19297 article-title: Bone morphogenetic protein‐ and mating‐dependent secretory cell growth and migration in the Drosophila accessory gland publication-title: Proc Natl Acad Sci USA – volume: 17 start-page: 1556 year: 2015 end-page: 1568 article-title: Glutamine synthetase activity fuels nucleotide biosynthesis and supports growth of glutamine‐restricted glioblastoma publication-title: Nat Cell Biol – volume: 33 start-page: 795 year: 2018 end-page: 797 article-title: Targeting therapy resistance: when glutamine catabolism becomes essential publication-title: Cancer Cell – volume: 110 start-page: 7312 year: 2013 end-page: 7317 article-title: Exosomes reflect the hypoxic status of glioma cells and mediate hypoxia‐dependent activation of vascular cells during tumor development publication-title: Proc Natl Acad Sci USA – volume: 57 start-page: 74 year: 2015 end-page: 96 article-title: Vacuole dynamics in the salivary glands of during prepupal development publication-title: Dev Growth Differ – volume: 24 start-page: 407 year: 2014 end-page: 415 article-title: Orchestration of cell surface proteins by Rab11 publication-title: Trends Cell Biol – volume: 428 start-page: 688 year: 2016 end-page: 692 article-title: ExoCarta: a web‐based compendium of exosomal cargo publication-title: J Mol Biol – volume: 6 start-page: 1801313 year: 2018 article-title: Exosome release is regulated by mTORC1 publication-title: Adv Sci (Weinh) – ident: e_1_2_8_72_1 doi: 10.1016/j.molmed.2019.02.003 – ident: e_1_2_8_11_1 doi: 10.1016/j.imlet.2015.06.007 – ident: e_1_2_8_3_1 doi: 10.1038/ncb2502 – ident: e_1_2_8_16_1 doi: 10.1016/j.tcb.2015.06.002 – ident: e_1_2_8_73_1 doi: 10.1016/j.tcb.2014.02.004 – ident: e_1_2_8_14_1 doi: 10.1016/j.cell.2018.09.005 – ident: e_1_2_8_20_1 doi: 10.1038/onc.2015.363 – ident: e_1_2_8_62_1 doi: 10.1182/blood-2009-08-239228 – ident: e_1_2_8_65_1 doi: 10.1038/ncb3272 – ident: e_1_2_8_13_1 doi: 10.1083/jcb.201401072 – ident: e_1_2_8_69_1 doi: 10.1074/jbc.M900301200 – ident: e_1_2_8_15_1 doi: 10.1074/mcp.M112.022806 – ident: e_1_2_8_8_1 doi: 10.1038/ncomms11371 – ident: e_1_2_8_56_1 doi: 10.1126/science.1106148 – ident: e_1_2_8_31_1 doi: 10.1073/pnas.1904529116 – ident: e_1_2_8_42_1 doi: 10.1146/annurev-biochem-072909-101058 – ident: e_1_2_8_12_1 doi: 10.1242/jcs.128868 – ident: e_1_2_8_17_1 doi: 10.1038/nature05954 – ident: e_1_2_8_33_1 doi: 10.1073/pnas.1521230113 – ident: e_1_2_8_75_1 doi: 10.1016/bs.ctdb.2016.06.001 – ident: e_1_2_8_35_1 doi: 10.1073/pnas.1220998110 – ident: e_1_2_8_78_1 doi: 10.1038/s41556-018-0040-4 – ident: e_1_2_8_54_1 doi: 10.1038/nn.2515 – ident: e_1_2_8_43_1 doi: 10.1158/0008-5472.CAN-15-1862 – ident: e_1_2_8_55_1 doi: 10.1038/nm.4407 – ident: e_1_2_8_4_1 doi: 10.1038/srep15915 – ident: e_1_2_8_37_1 doi: 10.1016/j.ccell.2018.04.009 – ident: e_1_2_8_60_1 doi: 10.1002/mrd.22489 – ident: e_1_2_8_58_1 doi: 10.1242/jcs.115.12.2505 – ident: e_1_2_8_26_1 doi: 10.1016/j.tem.2016.10.003 – ident: e_1_2_8_64_1 doi: 10.1016/j.cub.2006.03.067 – ident: e_1_2_8_32_1 doi: 10.1074/jbc.M112.342667 – ident: e_1_2_8_21_1 doi: 10.1111/dgd.12193 – ident: e_1_2_8_46_1 doi: 10.1038/nmeth.1592 – ident: e_1_2_8_76_1 doi: 10.1534/genetics.106.066761 – ident: e_1_2_8_22_1 doi: 10.1016/j.cmet.2016.03.013 – ident: e_1_2_8_10_1 doi: 10.1074/jbc.273.27.17258 – ident: e_1_2_8_47_1 doi: 10.1038/nrm.2017.125 – ident: e_1_2_8_74_1 doi: 10.1038/onc.2016.253 – ident: e_1_2_8_2_1 doi: 10.1038/oncsis.2013.35 – ident: e_1_2_8_27_1 doi: 10.1016/j.cell.2019.02.029 – ident: e_1_2_8_50_1 doi: 10.1101/pdb.top75 – ident: e_1_2_8_34_1 doi: 10.1016/j.conb.2016.04.016 – ident: e_1_2_8_57_1 doi: 10.1016/S1534-5807(02)00202-2 – ident: e_1_2_8_61_1 doi: 10.1056/NEJMra1704286 – ident: e_1_2_8_68_1 doi: 10.1038/nature21365 – ident: e_1_2_8_48_1 doi: 10.1038/ncb2000 – ident: e_1_2_8_66_1 doi: 10.1074/mcp.M112.021303 – ident: e_1_2_8_29_1 doi: 10.1016/0734-189X(85)90125-2 – ident: e_1_2_8_44_1 doi: 10.1083/jcb.201710132 – ident: e_1_2_8_63_1 doi: 10.1111/j.1365-2443.2009.01285.x – ident: e_1_2_8_67_1 doi: 10.1080/20013078.2018.1535750 – ident: e_1_2_8_41_1 doi: 10.1016/j.bbagen.2011.09.009 – ident: e_1_2_8_45_1 doi: 10.1158/0008-5472.CAN-13-2329 – ident: e_1_2_8_53_1 doi: 10.1371/journal.pgen.1006366 – ident: e_1_2_8_40_1 doi: 10.1038/nature13847 – ident: e_1_2_8_51_1 doi: 10.1111/tra.12622 – ident: e_1_2_8_18_1 doi: 10.1016/j.nano.2011.04.003 – ident: e_1_2_8_49_1 doi: 10.1038/nature03504 – ident: e_1_2_8_28_1 doi: 10.1038/nature11776 – ident: e_1_2_8_38_1 doi: 10.1016/j.tcb.2016.11.003 – ident: e_1_2_8_9_1 doi: 10.1242/dev.118.2.401 – ident: e_1_2_8_23_1 doi: 10.1002/gene.10137 – ident: e_1_2_8_36_1 doi: 10.1073/pnas.1214517109 – ident: e_1_2_8_24_1 doi: 10.1016/j.cub.2011.03.043 – ident: e_1_2_8_30_1 doi: 10.1016/j.jmb.2015.09.019 – ident: e_1_2_8_77_1 doi: 10.15252/embj.201696151 – ident: e_1_2_8_59_1 doi: 10.1111/j.1600-0854.2004.00257.x – ident: e_1_2_8_39_1 doi: 10.1080/20013078.2017.1286095 – ident: e_1_2_8_5_1 doi: 10.1016/j.pharmthera.2017.02.020 – ident: e_1_2_8_70_1 doi: 10.1016/j.cell.2016.01.043 – ident: e_1_2_8_71_1 doi: 10.1126/science.1153124 – ident: e_1_2_8_7_1 doi: 10.1111/tra.12016 – ident: e_1_2_8_25_1 doi: 10.1083/jcb.200911018 – ident: e_1_2_8_79_1 doi: 10.1016/j.celrep.2019.01.009 – ident: e_1_2_8_80_1 doi: 10.1002/advs.201801313 – ident: e_1_2_8_6_1 doi: 10.1016/j.ccell.2016.10.009 – ident: e_1_2_8_19_1 doi: 10.1016/j.devcel.2015.03.022 – ident: e_1_2_8_52_1 doi: 10.1186/s13045-018-0689-y – reference: 32809264 - EMBO J. 2020 Aug 17;39(16):e105119. doi: 10.15252/embj.2020105119. |
| SSID | ssj0005871 |
| Score | 2.5985322 |
| Snippet | Exosomes are secreted extracellular vesicles carrying diverse molecular cargos, which can modulate recipient cell behaviour. They are thought to derive from... |
| SourceID | pubmedcentral proquest pubmed crossref wiley springer |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | e103009 |
| SubjectTerms | AKT protein Amphiregulin Animal models Animals Antibodies Blood vessels Cancer Cell Proliferation Depletion Deprivation Drosophila melanogaster Drosophila Proteins - genetics Drosophila Proteins - metabolism EMBO03 EMBO20 EMBO21 Endosomes Epidermal growth factor receptors exosome Exosomes Exosomes - genetics Exosomes - metabolism Exosomes - pathology extracellular vesicle Extracellular vesicles Glutamine Glutamine - deficiency Guanosine triphosphatases Heterogeneity Ligands MAP kinase MAP Kinase Signaling System mechanistic Target of Rapamycin Mechanistic Target of Rapamycin Complex 1 - genetics Mechanistic Target of Rapamycin Complex 1 - metabolism Metabolism multivesicular body Neoplasms - genetics Neoplasms - metabolism Neoplasms - pathology Protein turnover rab GTP-Binding Proteins - genetics rab GTP-Binding Proteins - metabolism Rab11(a) Rapamycin Signaling Substrates TOR protein Tumors Vesicles Xenografts Xenotransplantation |
| Title | Glutamine deprivation alters the origin and function of cancer cell exosomes |
| URI | https://link.springer.com/article/10.15252/embj.2019103009 https://onlinelibrary.wiley.com/doi/abs/10.15252%2Fembj.2019103009 https://www.ncbi.nlm.nih.gov/pubmed/32720716 https://www.proquest.com/docview/2434379608 https://www.proquest.com/docview/2428058630 https://pubmed.ncbi.nlm.nih.gov/PMC7429491 |
| Volume | 39 |
| WOSCitedRecordID | wos000552735700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library Free Content customDbUrl: eissn: 1460-2075 dateEnd: 20231231 omitProxy: false ssIdentifier: ssj0005871 issn: 0261-4189 databaseCode: WIN dateStart: 19970101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell – providerCode: PRVWIB databaseName: Wiley Online Library Full Collection 2020 customDbUrl: eissn: 1460-2075 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0005871 issn: 0261-4189 databaseCode: DRFUL dateStart: 19970101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Zb9QwEB6hFgQvHOUKlMpIvIAUdWM7sf3Yli6HygohKvYtip2JaNVN0KZF8O_xOMeyVICEeIlk-YonM_GMZzwfwDONVtqkSmNbWRdL47zM2UzHQlRZWZRCqbQIYBNqNtPzufn5LkyXH2I8cCPJCP9rEvDCtgNiD2UNxYU9pdgsQ0hZdIdvM0mEJvgGLt-vwjx0MLrCOYtMtOldlTTG7i8jrG9Nl_TNy2GTo-90XbMNW9P01v9Y1G242SumbK_jpDtwBestuNZBVX7fgusHAzLcXTh65dm1WPjJGAXS9vhoLDjeW-Y1StbBbbGiLhltnKG6qZgjFlsychYw_Na0zQLbe3A8Pfx48DruURli500LE2vCNtK68m84ES5T1shkghJ1po23ZaTNnEbtFTWO3vaclErIwuiCo6lQceTiPmzUTY0PKawKbZZKWSK30pVcpylWmUsLq1ALW0awO3yQ3PUpywk54ywn04UolhO98hW9Ing-9vjSpev4Q9vt4RvnveC2OaebtsqbdTqCp2O1py-RpqixuaA2XHu-ysQkggcdS4yTCfJrexs0ArXGLGMDSue9XlOffA5pvZVXDaRJIngxsNXqtX6_hjSw018Xmx--23-7Kj76x36P4QanAwfKCay2YeN8eYFP4Kr7en7SLneC5Pmnmusd2Hz5YXp85Euf3sx-AN6sLuo |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB5VBdReeBRaAgWMxAWkaHdtJ7aPsGppYbviUERvUexM1CI2QZsWwb_H4zxWSwVIiGPk93gmnvGM5wN4odFKOymT2JbWxdI4L3M21bEQZVrkhVAqyQPYhJrP9dmZ-bAB0_4tTJsfYrhwI8kI_2sScLqQ7iF7KG0oLuxnCs4yBJVFj_huSK9vEH7Dp-P5Ks5DB6srXLTIiTadr5L6GP3Sw_rZdE3hvB43OThP11XbcDYd3vkvq7oLtzvVlL1ueekebGC1A7dasMofO7A17bHh7sPsrWfYfOFHYxRK2yGkseB6b5jXKVkLuMXyqmB0dIbiumSOmGzJyF3A8Hvd1AtsHsDHw4PT6VHc4TLEzhsXJtaEbqR16Wc4Fi5V1sjJGCXqVBtvzUibOo3aq2ocvfU5LpSQudE5R1Oi4sjFLmxWdYUPKbAKbZpIWSC30hVcJwmWqUtyq1ALW0Qw6nckc13ScsLO-JKR8UIUy4he2YpeEbwcWnxtE3b8oe5-v8lZJ7pNxumtrfKGnY7g-VDs6UukySusr6gO156xUjGOYK_liWEwQZ5tb4VGoNa4ZahACb3XS6qL85DYW3nlQJpJBK96vlpN6_drSAI__XWx2cHJm3erz0f_2O4ZbB2dnsyy2fH8_WPY5nT9QBmC1T5sXi6v8AncdN8uL5rl0yCGPwH1pi-r |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Zb9QwEB5VW64XjnIFChiJF5Ci7tpObD_Ctsu1rCpEpb5FsTMRRWxSbVoE_x6Pc6yWCpAQj5Hv8Uw84xnPB_BMo5V2UiaxLa2LpXFe5myqYyHKtMgLoVSSB7AJtVjo42NzuAXT_i1Mmx9iuHAjyQj_axJwPC3KHrKH0obi0n6h4CxDUFn0iG9bEpbMCLb3P86O5utIDx3srnDVIifadN5K6mXvlz42T6cLKufFyMnBfbqp3IbTaXbjv6zrJlzvlFP2suWmW7CF1Q5cbuEqf-zA1WmPDncb5q89y-ZLPxqjYNoOI40F53vDvFbJWsgtllcFo8MzFNclc8RmK0YOA4bf66ZeYnMHjmYHn6Zv4g6ZIXbevDCxJnwjrUs_w7FwqbJGTsYoUafaeHtG2tRp1F5Z4-jtz3GhhMyNzjmaEhVHLu7CqKorvE-hVWjTRMoCuZWu4DpJsExdkluFWtgigr1-RzLXpS0n9IyvGZkvRLGM6JWt6RXB86HFaZuy4w91d_tNzjrhbTJOr22VN-10BE-HYk9fIk1eYX1Odbj2jJWKcQT3Wp4YBhPk2_Z2aARqg1uGCpTSe7OkOvkcUnsrrx5IM4ngRc9X62n9fg1J4Ke_LjY7-PDq3frzwT-2ewJXDvdn2fzt4v1DuMbp_oFSBKtdGJ2tzvERXHLfzk6a1eNODn8CDpgwVA |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Glutamine+deprivation+alters+the+origin+and+function+of+cancer+cell+exosomes&rft.jtitle=The+EMBO+journal&rft.au=Fan%2C+Shih%E2%80%90Jung&rft.au=Kroeger%2C+Benjamin&rft.au=Marie%2C+Pauline+P&rft.au=Bridges%2C+Esther+M&rft.date=2020-08-17&rft.pub=John+Wiley+and+Sons+Inc&rft.issn=0261-4189&rft.eissn=1460-2075&rft.volume=39&rft.issue=16&rft_id=info:doi/10.15252%2Fembj.2019103009&rft_id=info%3Apmid%2F32720716&rft.externalDocID=PMC7429491 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0261-4189&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0261-4189&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0261-4189&client=summon |