Mechanism and inhibition of the papain‐like protease, PLpro, of SARS‐CoV‐2

The SARS‐CoV‐2 coronavirus encodes an essential papain‐like protease domain as part of its non‐structural protein (nsp)‐3, namely SARS2 PLpro, that cleaves the viral polyprotein, but also removes ubiquitin‐like ISG15 protein modifications as well as, with lower activity, Lys48‐linked polyubiquitin....

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:The EMBO journal Ročník 39; číslo 18; s. e106275 - n/a
Hlavní autoři: Klemm, Theresa, Ebert, Gregor, Calleja, Dale J, Allison, Cody C, Richardson, Lachlan W, Bernardini, Jonathan P, Lu, Bernadine GC, Kuchel, Nathan W, Grohmann, Christoph, Shibata, Yuri, Gan, Zhong Yan, Cooney, James P, Doerflinger, Marcel, Au, Amanda E, Blackmore, Timothy R, van der Heden van Noort, Gerbrand J, Geurink, Paul P, Ovaa, Huib, Newman, Janet, Riboldi‐Tunnicliffe, Alan, Czabotar, Peter E, Mitchell, Jeffrey P, Feltham, Rebecca, Lechtenberg, Bernhard C, Lowes, Kym N, Dewson, Grant, Pellegrini, Marc, Lessene, Guillaume, Komander, David
Médium: Journal Article
Jazyk:angličtina
Vydáno: London Nature Publishing Group UK 15.09.2020
Springer Nature B.V
John Wiley and Sons Inc
Témata:
ISSN:0261-4189, 1460-2075, 1460-2075
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract The SARS‐CoV‐2 coronavirus encodes an essential papain‐like protease domain as part of its non‐structural protein (nsp)‐3, namely SARS2 PLpro, that cleaves the viral polyprotein, but also removes ubiquitin‐like ISG15 protein modifications as well as, with lower activity, Lys48‐linked polyubiquitin. Structures of PLpro bound to ubiquitin and ISG15 reveal that the S1 ubiquitin‐binding site is responsible for high ISG15 activity, while the S2 binding site provides Lys48 chain specificity and cleavage efficiency. To identify PLpro inhibitors in a repurposing approach, screening of 3,727 unique approved drugs and clinical compounds against SARS2 PLpro identified no compounds that inhibited PLpro consistently or that could be validated in counterscreens. More promisingly, non‐covalent small molecule SARS PLpro inhibitors also target SARS2 PLpro, prevent self‐processing of nsp3 in cells and display high potency and excellent antiviral activity in a SARS‐CoV‐2 infection model. Synopsis Crystal structures explain the specificity of SARS‐CoV‐2 papain‐like protease, PLpro, for ISG15 and Lys48‐linked diubiquitin, and specific inhibition of PLpro by small molecules, shows strong antiviral effects. SARS‐CoV-2 PLpro preferentially cleaves ISG15 and also targets longer Lys48‐linked ubiquitin chains. Preference for ISG15 is provided by the S1 ubiquitin binding site in PLpro, while Lys48‐polyubiquitin specificity is provided by the S2 ubiquitin binding site. In a high‐throughput screen, FDA approved drugs and late stage clinical compounds are unable to inhibit PLpro in vitro . Known SARS PLpro inhibitors also target SARS2 PLpro and show anti‐viral efficacy. Graphical Abstract Crystal structure and biochemical analysis explains the specificity of SARS‐CoV‐2 PLpro for ISG15 and longer Lys48‐linked ubiquitin chains leading to the identification of inhibitors that show promising antiviral activity in a SARS‐CoV‐2 infection model.
AbstractList The SARS‐CoV‐2 coronavirus encodes an essential papain‐like protease domain as part of its non‐structural protein (nsp)‐3, namely SARS2 PLpro, that cleaves the viral polyprotein, but also removes ubiquitin‐like ISG15 protein modifications as well as, with lower activity, Lys48‐linked polyubiquitin. Structures of PLpro bound to ubiquitin and ISG15 reveal that the S1 ubiquitin‐binding site is responsible for high ISG15 activity, while the S2 binding site provides Lys48 chain specificity and cleavage efficiency. To identify PLpro inhibitors in a repurposing approach, screening of 3,727 unique approved drugs and clinical compounds against SARS2 PLpro identified no compounds that inhibited PLpro consistently or that could be validated in counterscreens. More promisingly, non‐covalent small molecule SARS PLpro inhibitors also target SARS2 PLpro, prevent self‐processing of nsp3 in cells and display high potency and excellent antiviral activity in a SARS‐CoV‐2 infection model.
The SARS‐CoV‐2 coronavirus encodes an essential papain‐like protease domain as part of its non‐structural protein (nsp)‐3, namely SARS2 PLpro, that cleaves the viral polyprotein, but also removes ubiquitin‐like ISG15 protein modifications as well as, with lower activity, Lys48‐linked polyubiquitin. Structures of PLpro bound to ubiquitin and ISG15 reveal that the S1 ubiquitin‐binding site is responsible for high ISG15 activity, while the S2 binding site provides Lys48 chain specificity and cleavage efficiency. To identify PLpro inhibitors in a repurposing approach, screening of 3,727 unique approved drugs and clinical compounds against SARS2 PLpro identified no compounds that inhibited PLpro consistently or that could be validated in counterscreens. More promisingly, non‐covalent small molecule SARS PLpro inhibitors also target SARS2 PLpro, prevent self‐processing of nsp3 in cells and display high potency and excellent antiviral activity in a SARS‐CoV‐2 infection model. Crystal structure and biochemical analysis explains the specificity of SARS‐CoV‐2 PLpro for ISG15 and longer Lys48‐linked ubiquitin chains leading to the identification of inhibitors that show promising antiviral activity in a SARS‐CoV‐2 infection model.
The SARS‐CoV‐2 coronavirus encodes an essential papain‐like protease domain as part of its non‐structural protein (nsp)‐3, namely SARS2 PLpro, that cleaves the viral polyprotein, but also removes ubiquitin‐like ISG15 protein modifications as well as, with lower activity, Lys48‐linked polyubiquitin. Structures of PLpro bound to ubiquitin and ISG15 reveal that the S1 ubiquitin‐binding site is responsible for high ISG15 activity, while the S2 binding site provides Lys48 chain specificity and cleavage efficiency. To identify PLpro inhibitors in a repurposing approach, screening of 3,727 unique approved drugs and clinical compounds against SARS2 PLpro identified no compounds that inhibited PLpro consistently or that could be validated in counterscreens. More promisingly, non‐covalent small molecule SARS PLpro inhibitors also target SARS2 PLpro, prevent self‐processing of nsp3 in cells and display high potency and excellent antiviral activity in a SARS‐CoV‐2 infection model. Synopsis Crystal structures explain the specificity of SARS‐CoV‐2 papain‐like protease, PLpro, for ISG15 and Lys48‐linked diubiquitin, and specific inhibition of PLpro by small molecules, shows strong antiviral effects. SARS‐CoV-2 PLpro preferentially cleaves ISG15 and also targets longer Lys48‐linked ubiquitin chains. Preference for ISG15 is provided by the S1 ubiquitin binding site in PLpro, while Lys48‐polyubiquitin specificity is provided by the S2 ubiquitin binding site. In a high‐throughput screen, FDA approved drugs and late stage clinical compounds are unable to inhibit PLpro in vitro . Known SARS PLpro inhibitors also target SARS2 PLpro and show anti‐viral efficacy. Graphical Abstract Crystal structure and biochemical analysis explains the specificity of SARS‐CoV‐2 PLpro for ISG15 and longer Lys48‐linked ubiquitin chains leading to the identification of inhibitors that show promising antiviral activity in a SARS‐CoV‐2 infection model.
The SARS-CoV-2 coronavirus encodes an essential papain-like protease domain as part of its non-structural protein (nsp)-3, namely SARS2 PLpro, that cleaves the viral polyprotein, but also removes ubiquitin-like ISG15 protein modifications as well as, with lower activity, Lys48-linked polyubiquitin. Structures of PLpro bound to ubiquitin and ISG15 reveal that the S1 ubiquitin-binding site is responsible for high ISG15 activity, while the S2 binding site provides Lys48 chain specificity and cleavage efficiency. To identify PLpro inhibitors in a repurposing approach, screening of 3,727 unique approved drugs and clinical compounds against SARS2 PLpro identified no compounds that inhibited PLpro consistently or that could be validated in counterscreens. More promisingly, non-covalent small molecule SARS PLpro inhibitors also target SARS2 PLpro, prevent self-processing of nsp3 in cells and display high potency and excellent antiviral activity in a SARS-CoV-2 infection model.The SARS-CoV-2 coronavirus encodes an essential papain-like protease domain as part of its non-structural protein (nsp)-3, namely SARS2 PLpro, that cleaves the viral polyprotein, but also removes ubiquitin-like ISG15 protein modifications as well as, with lower activity, Lys48-linked polyubiquitin. Structures of PLpro bound to ubiquitin and ISG15 reveal that the S1 ubiquitin-binding site is responsible for high ISG15 activity, while the S2 binding site provides Lys48 chain specificity and cleavage efficiency. To identify PLpro inhibitors in a repurposing approach, screening of 3,727 unique approved drugs and clinical compounds against SARS2 PLpro identified no compounds that inhibited PLpro consistently or that could be validated in counterscreens. More promisingly, non-covalent small molecule SARS PLpro inhibitors also target SARS2 PLpro, prevent self-processing of nsp3 in cells and display high potency and excellent antiviral activity in a SARS-CoV-2 infection model.
The SARS‐CoV‐2 coronavirus encodes an essential papain‐like protease domain as part of its non‐structural protein (nsp)‐3, namely SARS2 PLpro, that cleaves the viral polyprotein, but also removes ubiquitin‐like ISG15 protein modifications as well as, with lower activity, Lys48‐linked polyubiquitin. Structures of PLpro bound to ubiquitin and ISG15 reveal that the S1 ubiquitin‐binding site is responsible for high ISG15 activity, while the S2 binding site provides Lys48 chain specificity and cleavage efficiency. To identify PLpro inhibitors in a repurposing approach, screening of 3,727 unique approved drugs and clinical compounds against SARS2 PLpro identified no compounds that inhibited PLpro consistently or that could be validated in counterscreens. More promisingly, non‐covalent small molecule SARS PLpro inhibitors also target SARS2 PLpro, prevent self‐processing of nsp3 in cells and display high potency and excellent antiviral activity in a SARS‐CoV‐2 infection model. Synopsis Crystal structures explain the specificity of SARS‐CoV‐2 papain‐like protease, PLpro, for ISG15 and Lys48‐linked diubiquitin, and specific inhibition of PLpro by small molecules, shows strong antiviral effects. SARS‐CoV-2 PLpro preferentially cleaves ISG15 and also targets longer Lys48‐linked ubiquitin chains. Preference for ISG15 is provided by the S1 ubiquitin binding site in PLpro, while Lys48‐polyubiquitin specificity is provided by the S2 ubiquitin binding site. In a high‐throughput screen, FDA approved drugs and late stage clinical compounds are unable to inhibit PLpro in vitro. Known SARS PLpro inhibitors also target SARS2 PLpro and show anti‐viral efficacy. Crystal structure and biochemical analysis explains the specificity of SARS‐CoV‐2 PLpro for ISG15 and longer Lys48‐linked ubiquitin chains leading to the identification of inhibitors that show promising antiviral activity in a SARS‐CoV‐2 infection model.
Author Lowes, Kym N
Doerflinger, Marcel
Allison, Cody C
Dewson, Grant
Kuchel, Nathan W
van der Heden van Noort, Gerbrand J
Pellegrini, Marc
Bernardini, Jonathan P
Mitchell, Jeffrey P
Ebert, Gregor
Klemm, Theresa
Lu, Bernadine GC
Blackmore, Timothy R
Lessene, Guillaume
Feltham, Rebecca
Calleja, Dale J
Gan, Zhong Yan
Ovaa, Huib
Shibata, Yuri
Komander, David
Au, Amanda E
Grohmann, Christoph
Newman, Janet
Geurink, Paul P
Richardson, Lachlan W
Lechtenberg, Bernhard C
Cooney, James P
Czabotar, Peter E
Riboldi‐Tunnicliffe, Alan
AuthorAffiliation 5 Australian Synchrotron ANSTO Clayton Vic. Australia
2 Department of Biochemistry and Molecular Biology Michael Smith Laboratories University of British Columbia Vancouver BC Canada
6 Pharmacology and Therapeutics Department University of Melbourne Melbourne Vic. Australia
3 Oncode Institute and Department of Cell and Chemical Biology Leiden University Medical Centre Leiden The Netherlands
1 The Walter and Eliza Hall Institute of Medical Research and Department of Medical Biology University of Melbourne Melbourne Vic. Australia
4 Commonwealth Scientific and Industrial Research Organisation (CSIRO) Biomedical Program Parkville Vic. Australia
AuthorAffiliation_xml – name: 5 Australian Synchrotron ANSTO Clayton Vic. Australia
– name: 4 Commonwealth Scientific and Industrial Research Organisation (CSIRO) Biomedical Program Parkville Vic. Australia
– name: 3 Oncode Institute and Department of Cell and Chemical Biology Leiden University Medical Centre Leiden The Netherlands
– name: 1 The Walter and Eliza Hall Institute of Medical Research and Department of Medical Biology University of Melbourne Melbourne Vic. Australia
– name: 2 Department of Biochemistry and Molecular Biology Michael Smith Laboratories University of British Columbia Vancouver BC Canada
– name: 6 Pharmacology and Therapeutics Department University of Melbourne Melbourne Vic. Australia
Author_xml – sequence: 1
  givenname: Theresa
  orcidid: 0000-0002-2847-3550
  surname: Klemm
  fullname: Klemm, Theresa
  organization: The Walter and Eliza Hall Institute of Medical Research and Department of Medical Biology, University of Melbourne
– sequence: 2
  givenname: Gregor
  surname: Ebert
  fullname: Ebert, Gregor
  organization: The Walter and Eliza Hall Institute of Medical Research and Department of Medical Biology, University of Melbourne
– sequence: 3
  givenname: Dale J
  orcidid: 0000-0002-8306-0900
  surname: Calleja
  fullname: Calleja, Dale J
  organization: The Walter and Eliza Hall Institute of Medical Research and Department of Medical Biology, University of Melbourne
– sequence: 4
  givenname: Cody C
  surname: Allison
  fullname: Allison, Cody C
  organization: The Walter and Eliza Hall Institute of Medical Research and Department of Medical Biology, University of Melbourne
– sequence: 5
  givenname: Lachlan W
  orcidid: 0000-0001-8877-1376
  surname: Richardson
  fullname: Richardson, Lachlan W
  organization: The Walter and Eliza Hall Institute of Medical Research and Department of Medical Biology, University of Melbourne
– sequence: 6
  givenname: Jonathan P
  orcidid: 0000-0002-5767-7624
  surname: Bernardini
  fullname: Bernardini, Jonathan P
  organization: The Walter and Eliza Hall Institute of Medical Research and Department of Medical Biology, University of Melbourne, Department of Biochemistry and Molecular Biology, Michael Smith Laboratories University of British Columbia
– sequence: 7
  givenname: Bernadine GC
  orcidid: 0000-0001-8044-9710
  surname: Lu
  fullname: Lu, Bernadine GC
  organization: The Walter and Eliza Hall Institute of Medical Research and Department of Medical Biology, University of Melbourne
– sequence: 8
  givenname: Nathan W
  surname: Kuchel
  fullname: Kuchel, Nathan W
  organization: The Walter and Eliza Hall Institute of Medical Research and Department of Medical Biology, University of Melbourne
– sequence: 9
  givenname: Christoph
  surname: Grohmann
  fullname: Grohmann, Christoph
  organization: The Walter and Eliza Hall Institute of Medical Research and Department of Medical Biology, University of Melbourne
– sequence: 10
  givenname: Yuri
  surname: Shibata
  fullname: Shibata, Yuri
  organization: The Walter and Eliza Hall Institute of Medical Research and Department of Medical Biology, University of Melbourne
– sequence: 11
  givenname: Zhong Yan
  orcidid: 0000-0001-5755-7780
  surname: Gan
  fullname: Gan, Zhong Yan
  organization: The Walter and Eliza Hall Institute of Medical Research and Department of Medical Biology, University of Melbourne
– sequence: 12
  givenname: James P
  orcidid: 0000-0003-3680-4644
  surname: Cooney
  fullname: Cooney, James P
  organization: The Walter and Eliza Hall Institute of Medical Research and Department of Medical Biology, University of Melbourne
– sequence: 13
  givenname: Marcel
  orcidid: 0000-0001-9159-3021
  surname: Doerflinger
  fullname: Doerflinger, Marcel
  organization: The Walter and Eliza Hall Institute of Medical Research and Department of Medical Biology, University of Melbourne
– sequence: 14
  givenname: Amanda E
  orcidid: 0000-0003-3656-2673
  surname: Au
  fullname: Au, Amanda E
  organization: The Walter and Eliza Hall Institute of Medical Research and Department of Medical Biology, University of Melbourne
– sequence: 15
  givenname: Timothy R
  orcidid: 0000-0001-7079-676X
  surname: Blackmore
  fullname: Blackmore, Timothy R
  organization: The Walter and Eliza Hall Institute of Medical Research and Department of Medical Biology, University of Melbourne
– sequence: 16
  givenname: Gerbrand J
  orcidid: 0000-0001-5955-6431
  surname: van der Heden van Noort
  fullname: van der Heden van Noort, Gerbrand J
  organization: Oncode Institute and Department of Cell and Chemical Biology, Leiden University Medical Centre
– sequence: 17
  givenname: Paul P
  surname: Geurink
  fullname: Geurink, Paul P
  organization: Oncode Institute and Department of Cell and Chemical Biology, Leiden University Medical Centre
– sequence: 18
  givenname: Huib
  surname: Ovaa
  fullname: Ovaa, Huib
  organization: Oncode Institute and Department of Cell and Chemical Biology, Leiden University Medical Centre
– sequence: 19
  givenname: Janet
  orcidid: 0000-0003-2666-3219
  surname: Newman
  fullname: Newman, Janet
  organization: Commonwealth Scientific and Industrial Research Organisation (CSIRO), Biomedical Program
– sequence: 20
  givenname: Alan
  orcidid: 0000-0003-2244-2486
  surname: Riboldi‐Tunnicliffe
  fullname: Riboldi‐Tunnicliffe, Alan
  organization: Australian Synchrotron, ANSTO
– sequence: 21
  givenname: Peter E
  surname: Czabotar
  fullname: Czabotar, Peter E
  organization: The Walter and Eliza Hall Institute of Medical Research and Department of Medical Biology, University of Melbourne
– sequence: 22
  givenname: Jeffrey P
  surname: Mitchell
  fullname: Mitchell, Jeffrey P
  organization: The Walter and Eliza Hall Institute of Medical Research and Department of Medical Biology, University of Melbourne
– sequence: 23
  givenname: Rebecca
  surname: Feltham
  fullname: Feltham, Rebecca
  organization: The Walter and Eliza Hall Institute of Medical Research and Department of Medical Biology, University of Melbourne
– sequence: 24
  givenname: Bernhard C
  orcidid: 0000-0002-5674-6894
  surname: Lechtenberg
  fullname: Lechtenberg, Bernhard C
  organization: The Walter and Eliza Hall Institute of Medical Research and Department of Medical Biology, University of Melbourne
– sequence: 25
  givenname: Kym N
  surname: Lowes
  fullname: Lowes, Kym N
  organization: The Walter and Eliza Hall Institute of Medical Research and Department of Medical Biology, University of Melbourne
– sequence: 26
  givenname: Grant
  orcidid: 0000-0003-4251-8898
  surname: Dewson
  fullname: Dewson, Grant
  organization: The Walter and Eliza Hall Institute of Medical Research and Department of Medical Biology, University of Melbourne
– sequence: 27
  givenname: Marc
  orcidid: 0000-0003-3627-3126
  surname: Pellegrini
  fullname: Pellegrini, Marc
  email: pellegrini@wehi.edu.au
  organization: The Walter and Eliza Hall Institute of Medical Research and Department of Medical Biology, University of Melbourne
– sequence: 28
  givenname: Guillaume
  orcidid: 0000-0002-1193-8147
  surname: Lessene
  fullname: Lessene, Guillaume
  email: glessene@wehi.edu.au
  organization: The Walter and Eliza Hall Institute of Medical Research and Department of Medical Biology, University of Melbourne, Pharmacology and Therapeutics Department, University of Melbourne
– sequence: 29
  givenname: David
  orcidid: 0000-0002-8092-4320
  surname: Komander
  fullname: Komander, David
  email: dk@wehi.edu.au
  organization: The Walter and Eliza Hall Institute of Medical Research and Department of Medical Biology, University of Melbourne
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32845033$$D View this record in MEDLINE/PubMed
BookMark eNqFkctu1DAUhi1URKeFPSsUiQ2LpvhuR0KVyqjloqmoKLC1HOek4yGxhzhD1R2PwDPyJHiY0tJKwMYXne8_t38HbYUYAKHHBO8TQQV9Dn292KeYYoIlVeIemhAucUmxEltogqkkJSe62kY7KS0wxkIr8gBtM6q5wIxN0OkJuLkNPvWFDU3hw9zXfvQxFLEtxjkUS7u0Pvz49r3zn_NviCPYBHvF6Sy_99bU2eH7sxyfxk_5pA_R_dZ2CR5d3bvo4_HRh-nrcvbu1Zvp4ax0QgtRVm0ldaMqYNgSyWurGnBaMGfbuq25wphqV7cSlMhhrbGDmjXS5jeVgli2iw42eZeruofGQRgH25nl4Hs7XJpovbkdCX5uzuNXo7gkeWE5wbOrBEP8soI0mt4nB11nA8RVMpQzxSrFOMno0zvoIq6GkMfLFKeCaKZlpp782dF1K7-XnQG8AdwQUxqgvUYINr_8NGs_zY2fWSLvSJwf7dqfPJPv_iV8sRFe-A4u_1vIHJ28fHtLTjbylJXhHIabif9a8ic1VsdI
CitedBy_id crossref_primary_10_1038_s12276_021_00602_1
crossref_primary_10_1002_advs_202206095
crossref_primary_10_1016_j_jmb_2023_168316
crossref_primary_10_1016_j_antiviral_2023_105758
crossref_primary_10_3390_ijms22083957
crossref_primary_10_1002_jmv_28618
crossref_primary_10_3390_biom11060802
crossref_primary_10_1186_s13578_021_00568_7
crossref_primary_10_3390_ph15080986
crossref_primary_10_3390_biochem4030014
crossref_primary_10_1016_j_jbc_2021_101362
crossref_primary_10_1080_13880209_2023_2241518
crossref_primary_10_1124_jpet_121_000688
crossref_primary_10_3390_ijms22115762
crossref_primary_10_1016_j_ejphar_2020_173705
crossref_primary_10_3389_fbioe_2023_1124100
crossref_primary_10_1007_s12275_022_1502_8
crossref_primary_10_1016_j_virs_2022_04_006
crossref_primary_10_3390_ijms26020633
crossref_primary_10_1007_s11033_025_10843_2
crossref_primary_10_1016_j_ijbiomac_2022_09_204
crossref_primary_10_1002_cbdv_202200600
crossref_primary_10_1186_s12917_023_03839_2
crossref_primary_10_1007_s12275_022_1525_1
crossref_primary_10_1128_CMR_00109_21
crossref_primary_10_3390_ijms231911265
crossref_primary_10_1002_cmdc_202100079
crossref_primary_10_1016_j_hermed_2023_100730
crossref_primary_10_1002_cbic_202200327
crossref_primary_10_1016_j_bmcl_2023_129489
crossref_primary_10_1002_slct_202203865
crossref_primary_10_3389_fchem_2021_819165
crossref_primary_10_1038_s42003_022_03737_7
crossref_primary_10_1128_msphere_00355_25
crossref_primary_10_1080_07391102_2021_2000500
crossref_primary_10_1016_j_semcdb_2021_11_025
crossref_primary_10_3390_ijms222111953
crossref_primary_10_3390_toxins14050330
crossref_primary_10_3390_microorganisms12091863
crossref_primary_10_1016_j_ymeth_2021_04_026
crossref_primary_10_1128_jvi_01437_23
crossref_primary_10_1038_s41392_021_00733_x
crossref_primary_10_1089_jir_2021_0060
crossref_primary_10_1371_journal_pone_0309305
crossref_primary_10_1007_s12275_022_1499_z
crossref_primary_10_1016_j_biopha_2023_114247
crossref_primary_10_1016_j_heliyon_2025_e43578
crossref_primary_10_1039_D3RA00426K
crossref_primary_10_1016_j_drudis_2023_103832
crossref_primary_10_1016_j_tcb_2023_03_014
crossref_primary_10_2147_DDDT_S370574
crossref_primary_10_1007_s13659_024_00486_4
crossref_primary_10_1016_j_jaim_2024_101076
crossref_primary_10_1016_j_csbj_2021_07_023
crossref_primary_10_1038_s41579_024_01036_y
crossref_primary_10_1038_s41589_023_01388_1
crossref_primary_10_1002_ange_202212378
crossref_primary_10_1007_s11030_021_10220_8
crossref_primary_10_3390_v16081239
crossref_primary_10_1371_journal_pone_0316321
crossref_primary_10_1007_s42995_023_00215_9
crossref_primary_10_3389_fchem_2022_832431
crossref_primary_10_3390_pathogens13100825
crossref_primary_10_3390_ijms24108633
crossref_primary_10_1016_j_ejmech_2025_117509
crossref_primary_10_1016_j_coviro_2021_11_011
crossref_primary_10_1042_BST20200396
crossref_primary_10_3389_fchem_2022_876212
crossref_primary_10_3390_cryst12111671
crossref_primary_10_3390_molecules26040986
crossref_primary_10_1134_S0003683824700285
crossref_primary_10_3390_v15020352
crossref_primary_10_1016_j_biopha_2021_111313
crossref_primary_10_2217_fvl_2020_0392
crossref_primary_10_1080_22221751_2020_1865840
crossref_primary_10_1016_j_bmc_2023_117498
crossref_primary_10_1042_BCJ20210244
crossref_primary_10_1126_science_adm9724
crossref_primary_10_1371_journal_pcbi_1010667
crossref_primary_10_3389_fmolb_2023_1060076
crossref_primary_10_1002_cbic_202300036
crossref_primary_10_1016_j_ejmech_2024_116629
crossref_primary_10_3390_j7030023
crossref_primary_10_1016_j_cplett_2020_138068
crossref_primary_10_1016_j_cplett_2021_138468
crossref_primary_10_1177_03000605231153764
crossref_primary_10_3389_fchem_2020_623971
crossref_primary_10_1038_s41591_021_01282_0
crossref_primary_10_1038_s41579_021_00630_8
crossref_primary_10_3389_fmicb_2022_877813
crossref_primary_10_1002_anie_202206205
crossref_primary_10_1007_s11030_021_10325_0
crossref_primary_10_1080_07391102_2024_2333456
crossref_primary_10_3390_molecules26051200
crossref_primary_10_1155_2023_6698069
crossref_primary_10_1016_j_molstruc_2025_141730
crossref_primary_10_1080_14756366_2024_2301772
crossref_primary_10_1002_wrna_70000
crossref_primary_10_3390_molecules29050998
crossref_primary_10_3390_molecules30142985
crossref_primary_10_1186_s12951_024_02573_7
crossref_primary_10_1042_BCJ20200514
crossref_primary_10_1080_00325481_2020_1855921
crossref_primary_10_1042_BCJ20220380
crossref_primary_10_1371_journal_ppat_1011065
crossref_primary_10_3390_ijms23031716
crossref_primary_10_1016_j_rechem_2025_102565
crossref_primary_10_1142_S0192415X22500380
crossref_primary_10_1016_j_ijbiomac_2024_134850
crossref_primary_10_3390_vaccines11091472
crossref_primary_10_4103_japtr_JAPTR_222_21
crossref_primary_10_1016_j_compbiomed_2021_104383
crossref_primary_10_1016_j_bbadis_2023_166836
crossref_primary_10_3390_ijms25020739
crossref_primary_10_1080_0889311X_2022_2098281
crossref_primary_10_3389_fcell_2021_788410
crossref_primary_10_1002_cmdc_202200016
crossref_primary_10_1007_s11030_022_10441_5
crossref_primary_10_3389_fmicb_2024_1433664
crossref_primary_10_1093_pcmedi_pbac024
crossref_primary_10_1002_mco2_254
crossref_primary_10_1080_07391102_2022_2071340
crossref_primary_10_3390_biom12020300
crossref_primary_10_1016_j_apsb_2021_06_016
crossref_primary_10_1038_s41467_023_38031_5
crossref_primary_10_1016_j_biopha_2022_113432
crossref_primary_10_1038_s41467_023_39780_z
crossref_primary_10_1371_journal_pone_0251910
crossref_primary_10_1038_s41598_022_18676_w
crossref_primary_10_3390_medicina58010121
crossref_primary_10_1039_D3RA01915B
crossref_primary_10_1021_jacs_3c04062
crossref_primary_10_3389_fcimb_2023_1217383
crossref_primary_10_3390_v13030369
crossref_primary_10_1128_jvi_00855_24
crossref_primary_10_1016_j_virol_2025_110394
crossref_primary_10_1007_s12539_025_00713_7
crossref_primary_10_3390_molecules26092619
crossref_primary_10_1016_j_jddst_2021_102512
crossref_primary_10_1002_ange_202206205
crossref_primary_10_1371_journal_ppat_1013468
crossref_primary_10_1038_s41467_020_20718_8
crossref_primary_10_1038_s41579_022_00839_1
crossref_primary_10_15252_msb_202010079
crossref_primary_10_1007_s00109_025_02533_0
crossref_primary_10_1016_j_antiviral_2024_105944
crossref_primary_10_1016_j_bmc_2024_117909
crossref_primary_10_1111_cbdd_14115
crossref_primary_10_1016_j_jmgm_2021_108113
crossref_primary_10_1038_s41586_022_04414_9
crossref_primary_10_1007_s00706_024_03271_8
crossref_primary_10_1016_j_semcdb_2022_02_006
crossref_primary_10_3389_frma_2021_683212
crossref_primary_10_3390_ijms24044237
crossref_primary_10_1016_j_ejmech_2024_116963
crossref_primary_10_1016_j_ijbiomac_2021_07_184
crossref_primary_10_3390_ani14030448
crossref_primary_10_1128_jvi_01189_25
crossref_primary_10_1016_j_ejmech_2023_115978
crossref_primary_10_1016_j_phymed_2022_154324
crossref_primary_10_1038_s41467_021_26061_w
crossref_primary_10_1038_s41598_025_00280_3
crossref_primary_10_1016_j_bbrc_2022_08_003
crossref_primary_10_1002_ardp_202400714
crossref_primary_10_1007_s00018_023_04985_4
crossref_primary_10_1186_s12929_022_00847_6
crossref_primary_10_1016_j_jmb_2020_11_024
crossref_primary_10_3390_v13101981
crossref_primary_10_1016_j_jmb_2025_169370
crossref_primary_10_1038_s41598_022_10763_2
crossref_primary_10_3389_fimmu_2022_947272
crossref_primary_10_1186_s12859_023_05389_8
crossref_primary_10_1080_07391102_2024_2327537
crossref_primary_10_1111_jfbc_14219
crossref_primary_10_1002_jmv_70448
crossref_primary_10_1186_s12985_024_02342_w
crossref_primary_10_3390_ijms25105499
crossref_primary_10_1007_s13238_021_00836_9
crossref_primary_10_3390_ddc4020027
crossref_primary_10_3389_fphar_2022_835136
crossref_primary_10_1016_j_jaim_2025_101161
crossref_primary_10_1002_anie_202212378
crossref_primary_10_1016_j_virol_2024_110149
crossref_primary_10_1016_j_csbj_2021_08_029
crossref_primary_10_1134_S0006350922060082
crossref_primary_10_1016_j_mam_2022_101159
crossref_primary_10_1016_j_semcdb_2022_06_005
crossref_primary_10_3390_toxins12120746
crossref_primary_10_3390_ijms25105126
crossref_primary_10_1007_s00018_021_04008_0
crossref_primary_10_1002_advs_202303807
crossref_primary_10_1371_journal_ppat_1012100
crossref_primary_10_52586_4988
crossref_primary_10_1038_s41580_022_00543_1
crossref_primary_10_3389_fchem_2020_624163
crossref_primary_10_3390_v15102005
crossref_primary_10_1016_j_molstruc_2024_140460
crossref_primary_10_1016_j_fbio_2024_105095
crossref_primary_10_1007_s13238_022_00909_3
crossref_primary_10_3390_ijms231911692
crossref_primary_10_3390_microorganisms9071389
crossref_primary_10_3389_fmolb_2021_661424
crossref_primary_10_1016_j_heliyon_2024_e33179
crossref_primary_10_1016_j_jbc_2023_105346
crossref_primary_10_1016_j_scr_2021_102219
crossref_primary_10_1016_j_mam_2022_101144
crossref_primary_10_1002_iub_2793
crossref_primary_10_1080_15548627_2024_2442849
crossref_primary_10_3389_fmicb_2021_790714
crossref_primary_10_1128_JVI_01372_21
crossref_primary_10_1016_j_bmc_2021_116356
crossref_primary_10_1038_s41598_025_01425_0
crossref_primary_10_3389_fmolb_2021_732256
crossref_primary_10_1016_j_compbiolchem_2022_107721
crossref_primary_10_1128_MCB_00185_21
crossref_primary_10_1016_j_ijbiomac_2024_134476
crossref_primary_10_1016_j_cej_2025_159386
crossref_primary_10_1016_j_jmgm_2021_107851
crossref_primary_10_1039_D1RA07845C
crossref_primary_10_1016_j_bpc_2022_106824
crossref_primary_10_1016_j_phytochem_2021_112984
crossref_primary_10_1016_j_jmgm_2024_108803
crossref_primary_10_1007_s10534_024_00590_5
crossref_primary_10_1016_j_virol_2024_110042
crossref_primary_10_3389_fimmu_2023_1266776
crossref_primary_10_1038_s41598_023_35907_w
crossref_primary_10_1016_j_chembiol_2021_04_020
crossref_primary_10_3389_fpubh_2022_901602
crossref_primary_10_3389_fcimb_2024_1407261
crossref_primary_10_3390_biom11010060
crossref_primary_10_1111_tbed_14732
crossref_primary_10_1016_j_xpro_2025_103952
crossref_primary_10_3390_pathogens13121117
crossref_primary_10_1038_s41564_021_00884_1
crossref_primary_10_1177_17475198241298547
crossref_primary_10_1016_j_cmpb_2023_107584
crossref_primary_10_3389_fimmu_2021_629185
crossref_primary_10_1038_s41467_024_50566_9
crossref_primary_10_1016_j_tips_2022_08_008
crossref_primary_10_1016_j_ejmech_2025_117603
crossref_primary_10_1038_s41467_023_43711_3
crossref_primary_10_1016_j_jbc_2024_107821
crossref_primary_10_1038_s41467_025_57905_4
crossref_primary_10_3390_molecules26041134
crossref_primary_10_1002_slct_202405868
crossref_primary_10_3389_fimmu_2024_1340332
crossref_primary_10_3390_ijms24054401
crossref_primary_10_1016_j_ejmech_2022_114572
crossref_primary_10_1016_j_ymthe_2022_02_014
crossref_primary_10_1038_s42003_022_03090_9
crossref_primary_10_1016_j_bbagen_2024_130582
crossref_primary_10_1039_D3SC00166K
crossref_primary_10_1039_D3RA06479D
crossref_primary_10_1080_17512433_2021_1874348
crossref_primary_10_1038_s41589_024_01777_0
crossref_primary_10_3389_fchem_2022_822785
crossref_primary_10_1016_j_ejmech_2023_115272
crossref_primary_10_7717_peerj_19462
crossref_primary_10_3390_computation10070109
crossref_primary_10_1016_j_cplett_2021_139294
crossref_primary_10_1007_s00894_023_05534_3
crossref_primary_10_1016_j_csbj_2021_09_022
crossref_primary_10_1038_s41467_023_37254_w
crossref_primary_10_3390_molecules27030683
crossref_primary_10_1016_j_mehy_2021_110676
crossref_primary_10_3390_molecules26164896
crossref_primary_10_1016_j_virusres_2024_199368
crossref_primary_10_1111_cbdd_14187
crossref_primary_10_1016_j_str_2024_08_005
crossref_primary_10_1080_14756366_2024_2387417
crossref_primary_10_2174_0929867328666210526111318
crossref_primary_10_1080_07391102_2020_1869096
crossref_primary_10_1099_jgv_0_001918
crossref_primary_10_3389_fchem_2022_861209
crossref_primary_10_3390_biom12081067
crossref_primary_10_1038_s41418_020_00708_5
crossref_primary_10_3390_ph13100277
crossref_primary_10_1016_j_jmb_2023_168337
crossref_primary_10_1016_j_cej_2022_139646
crossref_primary_10_1016_j_ejmech_2023_116011
crossref_primary_10_1080_22221751_2020_1870414
crossref_primary_10_3389_fmicb_2021_805223
crossref_primary_10_1080_07391102_2023_2245474
crossref_primary_10_1093_nar_gkad1119
crossref_primary_10_1246_bcsj_20210030
crossref_primary_10_1002_cmdc_202100455
crossref_primary_10_1016_j_cellsig_2022_110559
crossref_primary_10_1016_j_chembiol_2021_11_006
crossref_primary_10_1111_sji_13044
crossref_primary_10_1007_s12033_021_00383_y
crossref_primary_10_1016_j_ijbiomac_2023_128812
crossref_primary_10_1246_bcsj_20220179
crossref_primary_10_1186_s13578_021_00644_y
crossref_primary_10_32604_biocell_2023_029272
crossref_primary_10_3389_fmolb_2024_1349509
crossref_primary_10_15212_ZOONOSES_2024_0028
crossref_primary_10_1042_BSR20231395
crossref_primary_10_3390_molecules30030491
crossref_primary_10_1016_j_chmed_2022_06_014
crossref_primary_10_1128_jvi_00869_24
crossref_primary_10_1016_j_biopha_2021_111599
crossref_primary_10_3390_microorganisms11112799
crossref_primary_10_1016_j_jmgm_2023_108666
crossref_primary_10_1016_j_compbiomed_2022_105474
crossref_primary_10_1038_s41392_022_01249_8
crossref_primary_10_1007_s12033_024_01296_2
crossref_primary_10_1016_j_gpb_2021_09_007
crossref_primary_10_3390_ijms23105855
crossref_primary_10_3390_microorganisms9122481
crossref_primary_10_1007_s11030_021_10233_3
crossref_primary_10_1007_s12016_024_09008_z
crossref_primary_10_1073_pnas_2107108118
crossref_primary_10_1016_j_virol_2025_110420
crossref_primary_10_3390_biomedicines13061417
crossref_primary_10_3390_v13020182
Cites_doi 10.1016/j.chom.2007.09.014
10.1107/S0907444909047337
10.1006/viro.1995.1123
10.1128/JVI.78.24.13600-13612.2004
10.1107/S0907444910007493
10.1016/j.chom.2009.05.012
10.1107/S1600577518003120
10.1093/nar/gkg556
10.1107/S1399004713031040
10.1128/JVI.02406-09
10.1021/ja309802n
10.1038/nm.3048
10.1016/j.antiviral.2020.104786
10.1093/nar/gkm047
10.1002/cbic.201100706
10.1107/S0907444913000061
10.5694/mja2.50569
10.1016/S0076-6879(05)99003-4
10.1021/acsinfecdis.0c00168
10.1016/j.molcel.2016.04.016
10.1016/j.celrep.2020.107940
10.1016/j.jmb.2017.06.010
10.1038/cr.2016.39
10.1107/S0907444910045749
10.1038/s41564-020-0695-z
10.1002/pro.3330
10.1016/j.cell.2013.05.046
10.1021/jm401712t
10.1002/cmdc.202000223
10.1128/JVI.79.24.15189-15198.2005
10.1038/nri3581
10.1084/jem.20151531
10.1038/s41586-020-2601-5
10.1016/j.antiviral.2019.104661
10.1073/pnas.1013388108
10.1021/cb500917m
10.1128/JVI.79.24.15199-15208.2005
10.1007/978-1-4939-8706-1_6
10.1007/978-1-62703-646-7_7
10.1073/pnas.1710617115
10.1016/S1473-3099(20)30120-1
10.1016/j.antiviral.2014.12.015
10.1016/j.chembiol.2016.03.009
10.1042/BJ20141170
10.1016/j.jmb.2019.03.013
10.1016/j.ymeth.2011.07.005
10.1038/nature24451
10.1038/s41422-020-0282-0
10.1073/pnas.0510851103
10.1016/j.molcel.2017.01.004
10.1016/j.abb.2007.07.006
10.1016/S2666-5247(20)30004-5
10.1038/nature19830
10.1073/pnas.0805240105
10.1128/JVI.01067-17
10.1146/annurev-biochem-061516-044916
10.1056/NEJMcp2009575
10.1016/j.jmb.2017.04.011
10.1038/embor.2011.17
10.1074/jbc.M114.609644
10.1093/cid/ciaa237
10.1371/journal.ppat.1004113
10.1016/bs.mie.2018.12.037
10.1080/10409238.2017.1325829
10.1107/S0021889807021206
10.1073/pnas.1015287108
10.1038/ncb3358
10.1038/s41579-018-0020-5
ContentType Journal Article
Copyright The Author(s) 2020
2020 The Authors
2020 The Authors.
2020 EMBO
Copyright_xml – notice: The Author(s) 2020
– notice: 2020 The Authors
– notice: 2020 The Authors.
– notice: 2020 EMBO
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QG
7QL
7QP
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
K9.
M7N
P64
RC3
7X8
5PM
DOI 10.15252/embj.2020106275
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Immunology Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
ProQuest Health & Medical Complete (Alumni)
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Virology and AIDS Abstracts
Oncogenes and Growth Factors Abstracts
Technology Research Database
Nucleic Acids Abstracts
ProQuest Health & Medical Complete (Alumni)
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Genetics Abstracts
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Immunology Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
MEDLINE - Academic
DatabaseTitleList Virology and AIDS Abstracts


MEDLINE - Academic
MEDLINE

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
Biology
DocumentTitleAlternate Theresa Klemm et al
EISSN 1460-2075
EndPage n/a
ExternalDocumentID PMC7461020
32845033
10_15252_embj_2020106275
EMBJ2020106275
Genre article
Journal Article
GrantInformation_xml – fundername: Victorian State Government
– fundername: Department of Health | National Health and Medical Research Council (NHMRC)
  grantid: MRF2002119; GNT1178122; GNT0637350; GNT1117089; IRIISS grant 361646
  funderid: 10.13039/501100000925
– fundername: Nederlandse Organisatie voor Wetenschappelijk Onderzoek (NWO)
  grantid: VIDI; Off‐Road
  funderid: 10.13039/501100003246
– fundername: Nederlandse Organisatie voor Wetenschappelijk Onderzoek (NWO)
  funderid: VIDI; Off‐Road
– fundername: Department of Health | National Health and Medical Research Council (NHMRC)
  funderid: MRF2002119; GNT1178122; GNT0637350; GNT1117089; IRIISS grant 361646
– fundername: Department of Health | National Health and Medical Research Council (NHMRC)
  grantid: IRIISS grant 361646
– fundername: Nederlandse Organisatie voor Wetenschappelijk Onderzoek (NWO)
  grantid: Off-Road
– fundername: Department of Health | National Health and Medical Research Council (NHMRC)
  grantid: GNT0637350
– fundername: Department of Health | National Health and Medical Research Council (NHMRC)
  grantid: GNT1117089
– fundername: Nederlandse Organisatie voor Wetenschappelijk Onderzoek (NWO)
  grantid: VIDI
– fundername: Department of Health | National Health and Medical Research Council (NHMRC)
  grantid: GNT1178122
– fundername: Department of Health | National Health and Medical Research Council (NHMRC)
  grantid: MRF2002119
– fundername: ;
  grantid: MRF2002119; GNT1178122; GNT0637350; GNT1117089; IRIISS grant 361646
– fundername: ;
  grantid: VIDI; Off‐Road
GroupedDBID ---
-DZ
-Q-
-~X
0R~
123
1OC
29G
2WC
33P
36B
39C
53G
5VS
70F
8R4
8R5
A8Z
AAESR
AAEVG
AAHBH
AAIHA
AAJSJ
AAMMB
AANLZ
AAONW
AASGY
AASML
AAXRX
AAYCA
AAZKR
ABCUV
ABLJU
ABZEH
ACAHQ
ACCZN
ACGFO
ACGFS
ACNCT
ACPOU
ACPRK
ACXBN
ACXQS
ADBBV
ADEOM
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEFGJ
AEGXH
AEIGN
AENEX
AEUYR
AFBPY
AFFNX
AFGKR
AFRAH
AFWVQ
AFZJQ
AGXDD
AHMBA
AIAGR
AIDQK
AIDYY
AIURR
AJAOE
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
AOIJS
AUFTA
AZBYB
AZFZN
AZVAB
BAWUL
BDRZF
BENPR
BFHJK
BMNLL
BMXJE
BRXPI
BTFSW
C6C
CS3
DCZOG
DIK
DPXWK
DRFUL
DRSTM
DU5
E3Z
EBD
EBLON
EBS
EMB
EMOBN
F5P
G-S
GROUPED_DOAJ
GX1
HH5
HK~
HYE
KQ8
LATKE
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
MRFUL
MRSTM
MSFUL
MSSTM
MVM
MXFUL
MXSTM
MY~
NAO
O8X
O9-
OK1
P2P
P2W
Q2X
R.K
RHI
RNS
ROL
RPM
SV3
TN5
TR2
WBKPD
WH7
WIH
WIK
WIN
WOHZO
WXSBR
YSK
ZCA
ZZTAW
~KM
24P
AAHHS
ABJNI
ACCFJ
AEEZP
AEQDE
AFPWT
AIWBW
AJBDE
ALIPV
RHF
WYJ
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QG
7QL
7QP
7T5
7TK
7TM
7TO
7U9
8FD
C1K
ESTFP
FR3
H94
K9.
M7N
P64
RC3
7X8
5PM
ID FETCH-LOGICAL-c5855-9f968d79e30a164ba7dec853cafbfb470028cbf6e75164880ceb3d6a6482651a3
IEDL.DBID WIN
ISICitedReferencesCount 368
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000562465900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0261-4189
1460-2075
IngestDate Tue Sep 30 15:38:51 EDT 2025
Sun Nov 09 12:58:03 EST 2025
Mon Oct 06 17:56:43 EDT 2025
Mon Jul 21 05:56:40 EDT 2025
Sat Nov 29 03:03:08 EST 2025
Tue Nov 18 22:00:01 EST 2025
Wed Jan 22 16:33:52 EST 2025
Sat Nov 29 01:25:00 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 18
Keywords ISG15
COVID‐19
papain‐like protease
ubiquitin
small molecule inhibitor
COVID-19
papain-like protease
Language English
License 2020 The Authors.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5855-9f968d79e30a164ba7dec853cafbfb470028cbf6e75164880ceb3d6a6482651a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Deceased
ORCID 0000-0001-8877-1376
0000-0001-5755-7780
0000-0002-8092-4320
0000-0001-8044-9710
0000-0003-3680-4644
0000-0002-5674-6894
0000-0003-3627-3126
0000-0002-1193-8147
0000-0002-8306-0900
0000-0001-5955-6431
0000-0003-2666-3219
0000-0003-4251-8898
0000-0002-2847-3550
0000-0003-2244-2486
0000-0001-9159-3021
0000-0001-7079-676X
0000-0002-5767-7624
0000-0003-3656-2673
OpenAccessLink https://pubmed.ncbi.nlm.nih.gov/PMC7461020
PMID 32845033
PQID 2442518386
PQPubID 35985
PageCount 17
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_7461020
proquest_miscellaneous_2437397341
proquest_journals_2442518386
pubmed_primary_32845033
crossref_primary_10_15252_embj_2020106275
crossref_citationtrail_10_15252_embj_2020106275
wiley_primary_10_15252_embj_2020106275_EMBJ2020106275
springer_journals_10_15252_embj_2020106275
PublicationCentury 2000
PublicationDate 15 September 2020
PublicationDateYYYYMMDD 2020-09-15
PublicationDate_xml – month: 09
  year: 2020
  text: 15 September 2020
  day: 15
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
– name: New York
– name: Hoboken
PublicationTitle The EMBO journal
PublicationTitleAbbrev EMBO J
PublicationTitleAlternate EMBO J
PublicationYear 2020
Publisher Nature Publishing Group UK
Springer Nature B.V
John Wiley and Sons Inc
Publisher_xml – name: Nature Publishing Group UK
– name: Springer Nature B.V
– name: John Wiley and Sons Inc
References 2007; 466
2017; 86
2014; 70
2013; 69
2015; 468
2020; 20
2011; 55
2020; 15
2008; 105
2011; 12
2017; 550
2017b; 91
2012; 13
2017; 510
2007; 35
2013; 19
2010; 66
2020; 6
2020; 5
2020; 1
2020; 174
2017a; 429
2004; 78
1995; 208
2014; 14
2014; 57
2020; 178
2014; 1079
2011; 67
2007; 2
2013; 154
2020; 212
2019; 431
2005; 79
2014; 10
2014; 289
2005; 399
2017; 65
2015; 10
2020; 32
2016; 18
2003; 31
2018; 27
2010; 84
2018; 25
2017; 429
2017; 52
2011; 108
2015; 115
2019; 618
2016; 538
2020; 30
2020
2020; 71
2018; 115
2016; 62
2013; 135
2009; 5
2007; 40
2016; 213
2018; 1844
2016; 26
2018; 16
2016; 23
2006; 103
e_1_2_9_31_1
e_1_2_9_52_1
e_1_2_9_50_1
e_1_2_9_10_1
e_1_2_9_35_1
e_1_2_9_56_1
e_1_2_9_12_1
e_1_2_9_33_1
e_1_2_9_54_1
e_1_2_9_71_1
e_1_2_9_14_1
e_1_2_9_39_1
e_1_2_9_16_1
e_1_2_9_37_1
e_1_2_9_18_1
e_1_2_9_41_1
e_1_2_9_64_1
e_1_2_9_20_1
e_1_2_9_62_1
e_1_2_9_22_1
e_1_2_9_45_1
e_1_2_9_68_1
e_1_2_9_24_1
e_1_2_9_43_1
e_1_2_9_66_1
e_1_2_9_8_1
e_1_2_9_6_1
e_1_2_9_4_1
e_1_2_9_60_1
e_1_2_9_2_1
Gersch M (e_1_2_9_32_1) 2017; 510
e_1_2_9_26_1
e_1_2_9_49_1
e_1_2_9_28_1
e_1_2_9_47_1
e_1_2_9_30_1
e_1_2_9_53_1
e_1_2_9_51_1
e_1_2_9_11_1
e_1_2_9_34_1
e_1_2_9_57_1
e_1_2_9_13_1
e_1_2_9_55_1
e_1_2_9_70_1
Rut W (e_1_2_9_58_1) 2020
e_1_2_9_15_1
e_1_2_9_38_1
e_1_2_9_17_1
e_1_2_9_36_1
e_1_2_9_59_1
e_1_2_9_19_1
e_1_2_9_42_1
e_1_2_9_63_1
e_1_2_9_40_1
e_1_2_9_61_1
e_1_2_9_21_1
e_1_2_9_46_1
e_1_2_9_67_1
e_1_2_9_23_1
e_1_2_9_44_1
e_1_2_9_65_1
e_1_2_9_7_1
e_1_2_9_5_1
e_1_2_9_3_1
e_1_2_9_9_1
e_1_2_9_25_1
e_1_2_9_27_1
e_1_2_9_48_1
e_1_2_9_69_1
e_1_2_9_29_1
References_xml – volume: 154
  start-page: 169
  year: 2013
  end-page: 184
  article-title: OTU deubiquitinases reveal mechanisms of linkage specificity and enable ubiquitin chain restriction analysis
  publication-title: Cell
– volume: 16
  start-page: 423
  year: 2018
  end-page: 439
  article-title: ISG15 in antiviral immunity and beyond
  publication-title: Nat Rev Microbiol
– volume: 212
  start-page: 459
  year: 2020
  end-page: 462
  article-title: Isolation and rapid sharing of the 2019 novel coronavirus (SARS‐CoV‐2) from the first patient diagnosed with COVID‐19 in Australia
  publication-title: Med J Aust
– year: 2020
  article-title: Severe Covid‐19
  publication-title: N Engl J Med
– volume: 79
  start-page: 15199
  year: 2005
  end-page: 15208
  article-title: The papain‐like protease from the severe acute respiratory syndrome coronavirus is a deubiquitinating enzyme
  publication-title: J Virol
– volume: 26
  start-page: 399
  year: 2016
  end-page: 422
  article-title: Ubiquitin modifications
  publication-title: Cell Res
– volume: 57
  start-page: 2393
  year: 2014
  end-page: 2412
  article-title: X‐ray structural and biological evaluation of a series of potent and highly selective inhibitors of human coronavirus papain‐like proteases
  publication-title: J Med Chem
– volume: 1844
  start-page: 73
  year: 2018
  end-page: 84
  article-title: Enzymatic assembly of ubiquitin chains
  publication-title: Methods Mol Biol
– volume: 13
  start-page: 293
  year: 2012
  end-page: 297
  article-title: A general chemical ligation approach towards isopeptide‐linked ubiquitin and ubiquitin‐like assay reagents
  publication-title: ChemBioChem
– volume: 91
  start-page: 1814
  year: 2017b
  article-title: Structurally guided removal of DeISGylase biochemical activity from papain‐like protease originating from middle east respiratory syndrome coronavirus
  publication-title: J Virol
– volume: 538
  start-page: 477
  year: 2016
  end-page: 482
  article-title: The MCL1 inhibitor S63845 is tolerable and effective in diverse cancer models
  publication-title: Nature
– volume: 19
  start-page: 202
  year: 2013
  end-page: 208
  article-title: ABT‐199, a potent and selective BCL‐2 inhibitor, achieves antitumor activity while sparing platelets
  publication-title: Nat Med
– volume: 2
  start-page: 404
  year: 2007
  end-page: 416
  article-title: Ovarian tumor domain‐containing viral proteases evade ubiquitin‐ and ISG15‐dependent innate immune responses
  publication-title: Cell Host Microbe
– volume: 105
  start-page: 16119
  year: 2008
  end-page: 16124
  article-title: A noncovalent class of papain‐like protease/deubiquitinase inhibitors blocks SARS virus replication
  publication-title: Proc Natl Acad Sci USA
– volume: 468
  start-page: 215
  year: 2015
  end-page: 226
  article-title: SARS hCoV papain‐like protease is a unique Lys48 linkage‐specific di‐distributive deubiquitinating enzyme
  publication-title: Biochem J
– volume: 178
  start-page: 104786
  year: 2020
  article-title: Remdesivir, lopinavir, emetine, and homoharringtonine inhibit SARS‐CoV‐2 replication
  publication-title: Antiviral Res
– volume: 429
  start-page: 1661
  year: 2017a
  end-page: 1683
  article-title: Structural insights into the interaction of coronavirus papain‐like proteases and interferon‐stimulated gene product 15 from different species
  publication-title: J Mol Biol
– volume: 115
  start-page: 2371
  year: 2018
  end-page: 2376
  article-title: Irreversible inactivation of ISG15 by a viral leader protease enables alternative infection detection strategies
  publication-title: Proc Natl Acad Sci USA
– volume: 67
  start-page: 235
  year: 2011
  end-page: 242
  article-title: Overview of the CCP4 suite and current developments
  publication-title: Acta Crystallogr D Biol Crystallogr
– volume: 550
  start-page: 481
  year: 2017
  end-page: 486
  article-title: Molecular basis of USP7 inhibition by selective small‐molecule inhibitors
  publication-title: Nature
– volume: 30
  start-page: 269
  year: 2020
  end-page: 271
  article-title: Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019‐nCoV)
  publication-title: Cell Res
– volume: 20
  start-page: 533
  year: 2020
  end-page: 534
  article-title: An interactive web‐based dashboard to track COVID‐19 in real time
  publication-title: Lancet Infect Dis
– volume: 429
  start-page: 3441
  year: 2017
  end-page: 3470
  article-title: Structure and function of viral deubiquitinating enzymes
  publication-title: J Mol Biol
– volume: 66
  start-page: 486
  year: 2010
  end-page: 501
  article-title: Features and development of Coot
  publication-title: Acta Crystallogr D Biol Crystallogr
– volume: 84
  start-page: 4619
  year: 2010
  end-page: 4629
  article-title: Deubiquitinating and interferon antagonism activities of coronavirus papain‐like proteases
  publication-title: J Virol
– volume: 32
  year: 2020
  article-title: Remdesivir inhibits SARS‐CoV‐2 in human lung cells and chimeric SARS‐CoV expressing the SARS‐CoV‐2 RNA polymerase in mice
  publication-title: Cell Rep
– volume: 69
  start-page: 1204
  year: 2013
  end-page: 1214
  article-title: How good are my data and what is the resolution?
  publication-title: Acta Crystallogr D Biol Crystallogr
– volume: 208
  start-page: 1
  year: 1995
  end-page: 8
  article-title: Coronavirus protein processing and RNA synthesis is inhibited by the cysteine proteinase inhibitor E64d
  publication-title: Virology
– volume: 62
  start-page: 572
  year: 2016
  end-page: 585
  article-title: Recognition of Lys48‐linked Di‐ubiquitin and deubiquitinating activities of the SARS coronavirus papain‐like protease
  publication-title: Mol Cell
– volume: 66
  start-page: 125
  year: 2010
  end-page: 132
  article-title: XDS
  publication-title: Acta Crystallogr D Biol Crystallogr
– volume: 174
  start-page: 104661
  year: 2020
  article-title: Decoupling deISGylating and deubiquitinating activities of the MERS virus papain‐like protease
  publication-title: Antiviral Res
– volume: 14
  start-page: 36
  year: 2014
  end-page: 49
  article-title: Regulation of type I interferon responses
  publication-title: Nat Rev Immunol
– volume: 466
  start-page: 8
  year: 2007
  end-page: 14
  article-title: Selectivity in ISG15 and ubiquitin recognition by the SARS coronavirus papain‐like protease
  publication-title: Arch Biochem Biophys
– volume: 12
  start-page: 350
  year: 2011
  end-page: 357
  article-title: Polyubiquitin binding and cross‐reactivity in the USP domain deubiquitinase USP21
  publication-title: EMBO Rep
– volume: 78
  start-page: 13600
  year: 2004
  end-page: 13612
  article-title: Identification of severe acute respiratory syndrome coronavirus replicase products and characterization of papain‐like protease activity
  publication-title: J Virol
– volume: 10
  start-page: 1456
  year: 2015
  end-page: 1465
  article-title: Inhibitor recognition specificity of MERS‐CoV papain‐like protease may differ from that of SARS‐CoV
  publication-title: ACS Chem Biol
– volume: 289
  start-page: 34667
  year: 2014
  end-page: 34682
  article-title: Crystal structure of the Middle East respiratory syndrome coronavirus (MERS‐CoV) papain‐like protease bound to ubiquitin facilitates targeted disruption of deubiquitinating activity to demonstrate its role in innate immune suppression
  publication-title: J Biol Chem
– volume: 1
  start-page: e14
  year: 2020
  end-page: e23
  article-title: Comparative tropism, replication kinetics, and cell damage profiling of SARS‐CoV‐2 and SARS‐CoV with implications for clinical manifestations, transmissibility, and laboratory studies of COVID‐19: an observational study
  publication-title: Lancet Microbe
– volume: 510
  start-page: 370
  year: 2017
  end-page: 930
  article-title: Mechanism and regulation of the Lys6‐selective deubiquitinase USP30
  publication-title: Nat Struct Mol Biol
– volume: 31
  start-page: 3320
  year: 2003
  end-page: 3323
  article-title: ESPript/ENDscript: extracting and rendering sequence and 3D information from atomic structures of proteins
  publication-title: Nucleic Acids Res
– volume: 213
  start-page: 1
  year: 2016
  end-page: 13
  article-title: Ubiquitin in the activation and attenuation of innate antiviral immunity
  publication-title: J Exp Med
– volume: 25
  start-page: 885
  year: 2018
  end-page: 891
  article-title: MX2: a high‐flux undulator microfocus beamline serving both the chemical and macromolecular crystallography communities at the Australian Synchrotron
  publication-title: J Synchrotron Radiat
– volume: 27
  start-page: 293
  year: 2018
  end-page: 315
  article-title: MolProbity: more and better reference data for improved all‐atom structure validation
  publication-title: Protein Sci
– volume: 10
  start-page: e1004113
  year: 2014
  article-title: Structural basis for the ubiquitin‐linkage specificity and deISGylating activity of SARS‐CoV papain‐like protease
  publication-title: PLoS Pathog
– volume: 15
  start-page: 907
  year: 2020
  end-page: 932
  article-title: Drug development and medicinal chemistry efforts toward SARS‐coronavirus and Covid‐19 therapeutics
  publication-title: ChemMedChem
– volume: 618
  start-page: 357
  year: 2019
  end-page: 387
  article-title: Profiling DUBs and Ubl‐specific proteases with activity‐based probes
  publication-title: Meth Enzymol
– volume: 55
  start-page: 94
  year: 2011
  end-page: 106
  article-title: The Phenix software for automated determination of macromolecular structures
  publication-title: Methods
– volume: 135
  start-page: 2867
  year: 2013
  end-page: 2870
  article-title: On terminal alkynes that can react with active‐site cysteine nucleophiles in proteases
  publication-title: J Am Chem Soc
– volume: 65
  start-page: 1
  year: 2017
  end-page: 39
  article-title: An interaction landscape of ubiquitin signaling
  publication-title: Mol Cell
– volume: 23
  start-page: 472
  year: 2016
  end-page: 482
  article-title: Non‐hydrolyzable diubiquitin probes reveal linkage‐specific reactivity of deubiquitylating enzymes mediated by S2 pockets
  publication-title: Cell Chem Biol
– volume: 71
  start-page: 732
  year: 2020
  end-page: 739
  article-title: antiviral activity and projection of optimized dosing design of hydroxychloroquine for the treatment of severe acute respiratory syndrome coronavirus 2 (SARS‐CoV‐2)
  publication-title: Clin Infect Dis
– volume: 115
  start-page: 21
  year: 2015
  end-page: 38
  article-title: The SARS‐coronavirus papain‐like protease: structure, function and inhibition by designed antiviral compounds
  publication-title: Antiviral Res
– year: 2020
  article-title: Papain‐like protease regulates SARS‐CoV‐2 viral spread and innate immunity
  publication-title: Nature
– volume: 6
  start-page: 2099
  year: 2020
  end-page: 2109
  article-title: Characterization and noncovalent inhibition of the deubiquitinase and deISGylase activity of SARS‐CoV‐2 papain‐like protease
  publication-title: ACS Infect Dis
– volume: 5
  start-page: 559
  year: 2009
  end-page: 570
  article-title: Ubiquitination, ubiquitin‐like modifiers, and deubiquitination in viral infection
  publication-title: Cell Host Microbe
– volume: 70
  start-page: 572
  year: 2014
  end-page: 581
  article-title: Structural basis for catalysis and ubiquitin recognition by the severe acute respiratory syndrome coronavirus papain‐like protease
  publication-title: Acta Crystallogr D Biol Crystallogr
– volume: 18
  start-page: 579
  year: 2016
  end-page: 586
  article-title: The increasing complexity of the ubiquitin code
  publication-title: Nat Cell Biol
– volume: 103
  start-page: 5717
  year: 2006
  end-page: 5722
  article-title: Severe acute respiratory syndrome coronavirus papain‐like protease: structure of a viral deubiquitinating enzyme
  publication-title: Proc Natl Acad Sci USA
– volume: 1079
  start-page: 117
  year: 2014
  end-page: 129
  article-title: T‐Coffee: tree‐based consistency objective function for alignment evaluation
  publication-title: Methods Mol Biol
– volume: 399
  start-page: 37
  year: 2005
  end-page: 51
  article-title: Derivitization of the C‐terminus of ubiquitin and ubiquitin‐like proteins using intein chemistry: methods and uses
  publication-title: Meth Enzymol
– volume: 52
  start-page: 425
  year: 2017
  end-page: 460
  article-title: Ubiquitin enzymes in the regulation of immune responses
  publication-title: Crit Rev Biochem Mol Biol
– volume: 431
  start-page: 4203
  year: 2019
  end-page: 4216
  article-title: ISG15: it's complicated
  publication-title: J Mol Biol
– volume: 108
  start-page: 2228
  year: 2011
  end-page: 2233
  article-title: Molecular basis for ubiquitin and ISG15 cross‐reactivity in viral ovarian tumor domains
  publication-title: Proc Natl Acad Sci USA
– volume: 5
  start-page: 536
  year: 2020
  end-page: 544
  article-title: The species severe acute respiratory syndrome‐related coronavirus: classifying 2019‐nCoV and naming it SARS‐CoV‐2
  publication-title: Nat Microbiol
– volume: 40
  start-page: 658
  year: 2007
  end-page: 674
  article-title: Phaser crystallographic software
  publication-title: J Appl Crystallogr
– volume: 86
  start-page: 159
  year: 2017
  end-page: 192
  article-title: Mechanisms of deubiquitinase specificity and regulation
  publication-title: Annu Rev Biochem
– year: 2020
  article-title: Activity profiling and structures of inhibitor‐bound SARS‐CoV‐2‐PLpro protease provides a framework for anti‐COVID‐19 drug design
  publication-title: bioRxiv
– volume: 35
  start-page: e45
  year: 2007
  article-title: A versatile ligation‐independent cloning method suitable for high‐throughput expression screening applications
  publication-title: Nucleic Acids Res
– volume: 108
  start-page: 2222
  year: 2011
  end-page: 2227
  article-title: Structural basis for the removal of ubiquitin and interferon‐stimulated gene 15 by a viral ovarian tumor domain‐containing protease
  publication-title: Proc Natl Acad Sci USA
– volume: 79
  start-page: 15189
  year: 2005
  end-page: 15198
  article-title: The papain‐like protease of severe acute respiratory syndrome coronavirus has deubiquitinating activity
  publication-title: J Virol
– ident: e_1_2_9_31_1
  doi: 10.1016/j.chom.2007.09.014
– ident: e_1_2_9_42_1
  doi: 10.1107/S0907444909047337
– ident: e_1_2_9_43_1
  doi: 10.1006/viro.1995.1123
– ident: e_1_2_9_37_1
  doi: 10.1128/JVI.78.24.13600-13612.2004
– ident: e_1_2_9_27_1
  doi: 10.1107/S0907444910007493
– ident: e_1_2_9_39_1
  doi: 10.1016/j.chom.2009.05.012
– ident: e_1_2_9_4_1
  doi: 10.1107/S1600577518003120
– ident: e_1_2_9_36_1
  doi: 10.1093/nar/gkg556
– ident: e_1_2_9_15_1
  doi: 10.1107/S1399004713031040
– ident: e_1_2_9_19_1
  doi: 10.1128/JVI.02406-09
– ident: e_1_2_9_26_1
  doi: 10.1021/ja309802n
– ident: e_1_2_9_60_1
  doi: 10.1038/nm.3048
– ident: e_1_2_9_16_1
  doi: 10.1016/j.antiviral.2020.104786
– ident: e_1_2_9_13_1
  doi: 10.1093/nar/gkm047
– ident: e_1_2_9_33_1
  doi: 10.1002/cbic.201100706
– ident: e_1_2_9_28_1
  doi: 10.1107/S0907444913000061
– ident: e_1_2_9_14_1
  doi: 10.5694/mja2.50569
– ident: e_1_2_9_65_1
  doi: 10.1016/S0076-6879(05)99003-4
– ident: e_1_2_9_30_1
  doi: 10.1021/acsinfecdis.0c00168
– ident: e_1_2_9_11_1
  doi: 10.1016/j.molcel.2016.04.016
– ident: e_1_2_9_54_1
  doi: 10.1016/j.celrep.2020.107940
– ident: e_1_2_9_8_1
  doi: 10.1016/j.jmb.2017.06.010
– ident: e_1_2_9_61_1
  doi: 10.1038/cr.2016.39
– ident: e_1_2_9_67_1
  doi: 10.1107/S0907444910045749
– ident: e_1_2_9_20_1
  doi: 10.1038/s41564-020-0695-z
– ident: e_1_2_9_66_1
  doi: 10.1002/pro.3330
– ident: e_1_2_9_50_1
  doi: 10.1016/j.cell.2013.05.046
– ident: e_1_2_9_5_1
  doi: 10.1021/jm401712t
– volume: 510
  start-page: 370
  year: 2017
  ident: e_1_2_9_32_1
  article-title: Mechanism and regulation of the Lys6‐selective deubiquitinase USP30
  publication-title: Nat Struct Mol Biol
– ident: e_1_2_9_35_1
  doi: 10.1002/cmdc.202000223
– ident: e_1_2_9_9_1
  doi: 10.1128/JVI.79.24.15189-15198.2005
– ident: e_1_2_9_40_1
  doi: 10.1038/nri3581
– ident: e_1_2_9_38_1
  doi: 10.1084/jem.20151531
– ident: e_1_2_9_59_1
  doi: 10.1038/s41586-020-2601-5
– ident: e_1_2_9_18_1
  doi: 10.1016/j.antiviral.2019.104661
– ident: e_1_2_9_41_1
  doi: 10.1073/pnas.1013388108
– ident: e_1_2_9_45_1
  doi: 10.1021/cb500917m
– ident: e_1_2_9_46_1
  doi: 10.1128/JVI.79.24.15199-15208.2005
– ident: e_1_2_9_52_1
  doi: 10.1007/978-1-4939-8706-1_6
– ident: e_1_2_9_48_1
  doi: 10.1007/978-1-62703-646-7_7
– ident: e_1_2_9_62_1
  doi: 10.1073/pnas.1710617115
– ident: e_1_2_9_23_1
  doi: 10.1016/S1473-3099(20)30120-1
– ident: e_1_2_9_6_1
  doi: 10.1016/j.antiviral.2014.12.015
– ident: e_1_2_9_29_1
  doi: 10.1016/j.chembiol.2016.03.009
– ident: e_1_2_9_10_1
  doi: 10.1042/BJ20141170
– ident: e_1_2_9_24_1
  doi: 10.1016/j.jmb.2019.03.013
– ident: e_1_2_9_2_1
  doi: 10.1016/j.ymeth.2011.07.005
– ident: e_1_2_9_63_1
  doi: 10.1038/nature24451
– ident: e_1_2_9_64_1
  doi: 10.1038/s41422-020-0282-0
– ident: e_1_2_9_55_1
  doi: 10.1073/pnas.0510851103
– ident: e_1_2_9_71_1
  doi: 10.1016/j.molcel.2017.01.004
– ident: e_1_2_9_47_1
  doi: 10.1016/j.abb.2007.07.006
– ident: e_1_2_9_17_1
  doi: 10.1016/S2666-5247(20)30004-5
– ident: e_1_2_9_44_1
  doi: 10.1038/nature19830
– ident: e_1_2_9_56_1
  doi: 10.1073/pnas.0805240105
– ident: e_1_2_9_22_1
  doi: 10.1128/JVI.01067-17
– ident: e_1_2_9_51_1
  doi: 10.1146/annurev-biochem-061516-044916
– ident: e_1_2_9_12_1
  doi: 10.1056/NEJMcp2009575
– ident: e_1_2_9_21_1
  doi: 10.1016/j.jmb.2017.04.011
– ident: e_1_2_9_70_1
  doi: 10.1038/embor.2011.17
– ident: e_1_2_9_7_1
  doi: 10.1074/jbc.M114.609644
– year: 2020
  ident: e_1_2_9_58_1
  article-title: Activity profiling and structures of inhibitor‐bound SARS‐CoV‐2‐PLpro protease provides a framework for anti‐COVID‐19 drug design
  publication-title: bioRxiv
– ident: e_1_2_9_68_1
  doi: 10.1093/cid/ciaa237
– ident: e_1_2_9_57_1
  doi: 10.1371/journal.ppat.1004113
– ident: e_1_2_9_34_1
  doi: 10.1016/bs.mie.2018.12.037
– ident: e_1_2_9_25_1
  doi: 10.1080/10409238.2017.1325829
– ident: e_1_2_9_49_1
  doi: 10.1107/S0021889807021206
– ident: e_1_2_9_3_1
  doi: 10.1073/pnas.1015287108
– ident: e_1_2_9_69_1
  doi: 10.1038/ncb3358
– ident: e_1_2_9_53_1
  doi: 10.1038/s41579-018-0020-5
SSID ssj0005871
Score 2.7097511
Snippet The SARS‐CoV‐2 coronavirus encodes an essential papain‐like protease domain as part of its non‐structural protein (nsp)‐3, namely SARS2 PLpro, that cleaves the...
The SARS-CoV-2 coronavirus encodes an essential papain-like protease domain as part of its non-structural protein (nsp)-3, namely SARS2 PLpro, that cleaves the...
SourceID pubmedcentral
proquest
pubmed
crossref
wiley
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e106275
SubjectTerms Animals
Antiviral activity
Antiviral agents
Antiviral Agents - pharmacology
Antiviral drugs
Binding Sites
Chains
Chlorocebus aethiops
Coronavirus 3C Proteases - antagonists & inhibitors
Coronavirus 3C Proteases - chemistry
Coronavirus 3C Proteases - genetics
Coronavirus 3C Proteases - metabolism
Coronaviruses
COVID-19
Crystal structure
Crystallography, X-Ray
Cytokines - genetics
Drug Evaluation, Preclinical - methods
Drug Repositioning
Drugs
EMBO23
EMBO31
EMBO40
Fluorescence Polarization
HEK293 Cells
Humans
Inhibitors
ISG15
Kinases
Kinetics
Models, Molecular
Papain
papain‐like protease
Protease
Protease Inhibitors - pharmacology
Protein Conformation
Proteinase
Proteins
SARS-CoV-2 - chemistry
SARS-CoV-2 - genetics
SARS-CoV-2 - metabolism
Severe acute respiratory syndrome
Severe acute respiratory syndrome coronavirus 2
small molecule inhibitor
Ubiquitin
Ubiquitin - metabolism
Ubiquitins - genetics
Vero Cells
Viral diseases
Title Mechanism and inhibition of the papain‐like protease, PLpro, of SARS‐CoV‐2
URI https://link.springer.com/article/10.15252/embj.2020106275
https://onlinelibrary.wiley.com/doi/abs/10.15252%2Fembj.2020106275
https://www.ncbi.nlm.nih.gov/pubmed/32845033
https://www.proquest.com/docview/2442518386
https://www.proquest.com/docview/2437397341
https://pubmed.ncbi.nlm.nih.gov/PMC7461020
Volume 39
WOSCitedRecordID wos000562465900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Free Content
  customDbUrl:
  eissn: 1460-2075
  dateEnd: 20231231
  omitProxy: false
  ssIdentifier: ssj0005871
  issn: 0261-4189
  databaseCode: WIN
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
– providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1460-2075
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0005871
  issn: 0261-4189
  databaseCode: DRFUL
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB5BAdELhfJooKyCxAXUqJvEiZNj2XYFqF1VLYW9RbYzUQNttuq2SNz6E_ob-0s64zyWpQIkxCWKZedhe-z5xmN_A_A6laovMZJerqK-JzAoPE04wssJzQlJvx6issEm5GiUjMfpz2dhan6IbsGNR4adr3mAKz1tI_Ywayge669k4LE7l6l2aRr2hc9BDL58GM12eSTW5rLLLMJP0sZTya9Y_-UF85rpBty8uWuyc53OA1urmYZL_6NOD-FBg0vdjVqQHsEtrJbhXh2p8scy3B-0geEew-4O8nHhcnrsqip3y-qw1HbjlzspXMKT7gkp4LK6urg8Kr9RipkgSFeuubvbdL_GpfY39vYpfzD5TNfgCRwMtz4N3ntNYAbPkHUReWmRxkkuUwz7iswtrWSOhvS-UYUutJBsyBldxCgjyqYZwpDJnseK7oM48lX4FBaqSYUr4Br0MQ78vFA0MUR-qIQoEIU0iUCd674D622nZKZhLefgGUcZWy_cahm3WTZrMwfedE-c1Iwdfyi72vZz1ozdaUaAh0BfEiaxA6-6bGpjdqWoCifnXCaUhOQIAjjwrBaL7mMhaXx2Djsg5wSmK8CM3vM5VXlomb0ls98HVOm3rWjNfuv3dYisSP21stnWzruPs-Tzf3zuBSxygvfM-NEqLJydnuNLuGu-n5XT0x7cluOkB3c294YH2z07Fq8BuZwxgQ
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB6VAioXHgXaQIEgcQE16iZx4uRYVq1a2F2taIHeItuZqOkjW3VbJG78hP7G_hJmnMdqqQAJcYkSjZPYztjzjcf5BuBNKlVPYiS9XEU9T2BQeJpwhJcTmhOSqh6isskm5GiUHByk4wXot__C1PwQ3YIbjww7X_MA5wXpNmUP04biqT4iD4_jucy1ewtuC8IbnL_h6-5ots8jsV6XXWgRfpI2sUp-xsYvT5i3TTcA5819k13wdB7aWtu0_eC_tOoh3G-gqbtZ69IjWMBqGe7WySq_L8NSv80N9xjGQ-Q_hsvpqauq3C2rw1LbvV_upHAJUrpnZIPL6vrH1Ul5TFdMBkHmct0dD-h8nUvtbX7aI3l_8oWOwRP4vL2139_xmtwMniEHI_LSIo2TXKYY9hR5XFrJHA2ZfqMKXWgh2ZczuohRRiSmScKQ157His6DOPJV-BQWq0mFq-Aa9DEO_LxQNDdEfqiEKBCFNIlAneueAxvtV8lMQ1zO-TNOMnZguNcy7rNs1mcOvO3uOKtJO_5Qdq390FkzfKcZYR7CfUmYxA687sTUxxxNURVOLrlMKAnMEQpwYKXWi-5lIRl9jg87IOc0pivApN7zkqo8tOTekgnwA2r0u1a3ZtX6fRsiq1N_bWy2NXz_YXb57B_vewVLO_vDQTbYHX18DvdYwFto_GgNFi_OL_EF3DHfLsrp-Us7FH8C_E4zFw
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Zb9QwEB6VLdcLR7kCBYLEC6hRN4kTJ49l2xXHdrVqadW3yMdEDbTZVbdF4o2fwG_klzCTa7VUgIR4iZLYcWxn7PkmY38D8DKVqi8xkp5VUd8TGOSeJhzhWUJzQlLVQ1RVsAk5HidHR-lkBQbtXpiaH6L74cYjo5qveYDjzOZtyB6mDcVT_YksPPbnMtfuFVgVHEumB6vbe8OD0WKlR1LZXdWvFuEnaeOt5FI2fyljWTtdgpyXV0527tNlcFtpp-Ht_9KuO3CrAafuVi1Nd2EFyzW4Voer_LoGNwZtdLh7MNlF3jNczE9dVVq3KI8LXa3-cqe5S6DSnZEWLsof376fFJ_piukgSGFuuJMRnW9wrv2tvX1KH0wP6Rjch4PhzsfBW6-JzuAZMjEiL83TOLEyxbCvyObSSlo0pPyNynWuhWRrzug8RhlRMk0Thux2Gys6D-LIV-ED6JXTEh-Ba9DHOPBtrmh2iPxQCZEjCmkSgdrqvgOb7VfJTENdzhE0TjI2YbjXMu6zbNFnDrzqnpjVtB1_yLvefuisGcDzjFAPIb8kTGIHXnTJ1MfsT1ElTi84TygJzhEOcOBhLRfdy0JS--whdkAuSUyXgWm9l1PK4rii95ZMgR9Qo1-3srWo1u_bEFUy9dfGZju7b94vLh__43PP4fpke5iN3o0_PIGbfJ_X0PjROvTOzy7wKVw1X86L-dmzZiz-BBm3M8A
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mechanism+and+inhibition+of+the+papain%E2%80%90like+protease%2C+PLpro%2C+of+SARS%E2%80%90CoV%E2%80%902&rft.jtitle=The+EMBO+journal&rft.au=Klemm%2C+Theresa&rft.au=Ebert%2C+Gregor&rft.au=Calleja%2C+Dale+J&rft.au=Allison%2C+Cody+C&rft.date=2020-09-15&rft.pub=Springer+Nature+B.V&rft.issn=0261-4189&rft.eissn=1460-2075&rft.volume=39&rft.issue=18&rft_id=info:doi/10.15252%2Fembj.2020106275&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0261-4189&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0261-4189&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0261-4189&client=summon