A single‐cell RNA expression atlas of normal, preneoplastic and tumorigenic states in the human breast
To examine global changes in breast heterogeneity across different states, we determined the single‐cell transcriptomes of > 340,000 cells encompassing normal breast, preneoplastic BRCA1 +/– tissue, the major breast cancer subtypes, and pairs of tumors and involved lymph nodes. Elucidation of the...
Gespeichert in:
| Veröffentlicht in: | The EMBO journal Jg. 40; H. 11; S. e107333 - n/a |
|---|---|
| Hauptverfasser: | , , , , , , , , , , , , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
London
Nature Publishing Group UK
01.06.2021
Springer Nature B.V John Wiley and Sons Inc |
| Schlagworte: | |
| ISSN: | 0261-4189, 1460-2075, 1460-2075 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | To examine global changes in breast heterogeneity across different states, we determined the single‐cell transcriptomes of > 340,000 cells encompassing normal breast, preneoplastic
BRCA1
+/–
tissue, the major breast cancer subtypes, and pairs of tumors and involved lymph nodes. Elucidation of the normal breast microenvironment revealed striking changes in the stroma of post‐menopausal women. Single‐cell profiling of 34 treatment‐naive primary tumors, including estrogen receptor (ER)
+
, HER2
+
, and triple‐negative breast cancers, revealed comparable diversity among cancer cells and a discrete subset of cycling cells. The transcriptomes of preneoplastic
BRCA1
+/–
tissue versus tumors highlighted global changes in the immune microenvironment. Within the tumor immune landscape, proliferative CD8
+
T cells characterized triple‐negative and HER2
+
cancers but not ER
+
tumors, while all subtypes comprised cycling tumor‐associated macrophages, thus invoking potentially different immunotherapy targets. Copy number analysis of paired ER
+
tumors and lymph nodes indicated seeding by genetically distinct clones or mass migration of primary tumor cells into axillary lymph nodes. This large‐scale integration of patient samples provides a high‐resolution map of cell diversity in normal and cancerous human breast.
Synopsis
To examine global changes in breast heterogeneity across different states, this gene expression resource integrates large‐scale patient samples from diverse tissue states and breast cancer subtypes, offering a refined high‐resolution map of cell diversity in the normal and cancerous human mammary gland.
Single‐cell transcriptome analyses profile > 340,000 cells encompassing normal breast, preneoplastic BRCA1
+/–
tissue, the major breast cancer subtypes, and metastatic lymph nodes.
Pre‐ to post‐menopause transition is associated with marked stromal changes, with decreased PDGFRb and matrix‐associated genes in fibroblasts.
Progression from preneoplasia to tumors correlates with increased immune infiltration in
BRCA1
mutation carriers.
Tumor epithelial compartments show comparable diversity in different breast cancer subtypes.
Cycling CD8
+
T‐cells are reduced in estrogen receptor (ER)
+
tumors, suggesting different immunoregulatory patterns.
Both clonal selection and mass migration contribute to lymph node metastases in patients with ER
+
cancer.
Graphical Abstract
A large‐scale gene expression resource integrates diverse tissue samples and reveals unexpected heterogeneity of breast cancer subtypes. |
|---|---|
| AbstractList | To examine global changes in breast heterogeneity across different states, we determined the single-cell transcriptomes of > 340,000 cells encompassing normal breast, preneoplastic BRCA1+/- tissue, the major breast cancer subtypes, and pairs of tumors and involved lymph nodes. Elucidation of the normal breast microenvironment revealed striking changes in the stroma of post-menopausal women. Single-cell profiling of 34 treatment-naive primary tumors, including estrogen receptor (ER)+ , HER2+ , and triple-negative breast cancers, revealed comparable diversity among cancer cells and a discrete subset of cycling cells. The transcriptomes of preneoplastic BRCA1+/- tissue versus tumors highlighted global changes in the immune microenvironment. Within the tumor immune landscape, proliferative CD8+ T cells characterized triple-negative and HER2+ cancers but not ER+ tumors, while all subtypes comprised cycling tumor-associated macrophages, thus invoking potentially different immunotherapy targets. Copy number analysis of paired ER+ tumors and lymph nodes indicated seeding by genetically distinct clones or mass migration of primary tumor cells into axillary lymph nodes. This large-scale integration of patient samples provides a high-resolution map of cell diversity in normal and cancerous human breast.To examine global changes in breast heterogeneity across different states, we determined the single-cell transcriptomes of > 340,000 cells encompassing normal breast, preneoplastic BRCA1+/- tissue, the major breast cancer subtypes, and pairs of tumors and involved lymph nodes. Elucidation of the normal breast microenvironment revealed striking changes in the stroma of post-menopausal women. Single-cell profiling of 34 treatment-naive primary tumors, including estrogen receptor (ER)+ , HER2+ , and triple-negative breast cancers, revealed comparable diversity among cancer cells and a discrete subset of cycling cells. The transcriptomes of preneoplastic BRCA1+/- tissue versus tumors highlighted global changes in the immune microenvironment. Within the tumor immune landscape, proliferative CD8+ T cells characterized triple-negative and HER2+ cancers but not ER+ tumors, while all subtypes comprised cycling tumor-associated macrophages, thus invoking potentially different immunotherapy targets. Copy number analysis of paired ER+ tumors and lymph nodes indicated seeding by genetically distinct clones or mass migration of primary tumor cells into axillary lymph nodes. This large-scale integration of patient samples provides a high-resolution map of cell diversity in normal and cancerous human breast. To examine global changes in breast heterogeneity across different states, we determined the single‐cell transcriptomes of > 340,000 cells encompassing normal breast, preneoplastic BRCA1+/– tissue, the major breast cancer subtypes, and pairs of tumors and involved lymph nodes. Elucidation of the normal breast microenvironment revealed striking changes in the stroma of post‐menopausal women. Single‐cell profiling of 34 treatment‐naive primary tumors, including estrogen receptor (ER)+, HER2+, and triple‐negative breast cancers, revealed comparable diversity among cancer cells and a discrete subset of cycling cells. The transcriptomes of preneoplastic BRCA1+/– tissue versus tumors highlighted global changes in the immune microenvironment. Within the tumor immune landscape, proliferative CD8+ T cells characterized triple‐negative and HER2+ cancers but not ER+ tumors, while all subtypes comprised cycling tumor‐associated macrophages, thus invoking potentially different immunotherapy targets. Copy number analysis of paired ER+ tumors and lymph nodes indicated seeding by genetically distinct clones or mass migration of primary tumor cells into axillary lymph nodes. This large‐scale integration of patient samples provides a high‐resolution map of cell diversity in normal and cancerous human breast. To examine global changes in breast heterogeneity across different states, we determined the single‐cell transcriptomes of > 340,000 cells encompassing normal breast, preneoplastic BRCA1 +/– tissue, the major breast cancer subtypes, and pairs of tumors and involved lymph nodes. Elucidation of the normal breast microenvironment revealed striking changes in the stroma of post‐menopausal women. Single‐cell profiling of 34 treatment‐naive primary tumors, including estrogen receptor (ER) + , HER2 + , and triple‐negative breast cancers, revealed comparable diversity among cancer cells and a discrete subset of cycling cells. The transcriptomes of preneoplastic BRCA1 +/– tissue versus tumors highlighted global changes in the immune microenvironment. Within the tumor immune landscape, proliferative CD8 + T cells characterized triple‐negative and HER2 + cancers but not ER + tumors, while all subtypes comprised cycling tumor‐associated macrophages, thus invoking potentially different immunotherapy targets. Copy number analysis of paired ER + tumors and lymph nodes indicated seeding by genetically distinct clones or mass migration of primary tumor cells into axillary lymph nodes. This large‐scale integration of patient samples provides a high‐resolution map of cell diversity in normal and cancerous human breast. Synopsis To examine global changes in breast heterogeneity across different states, this gene expression resource integrates large‐scale patient samples from diverse tissue states and breast cancer subtypes, offering a refined high‐resolution map of cell diversity in the normal and cancerous human mammary gland. Single‐cell transcriptome analyses profile > 340,000 cells encompassing normal breast, preneoplastic BRCA1 +/– tissue, the major breast cancer subtypes, and metastatic lymph nodes. Pre‐ to post‐menopause transition is associated with marked stromal changes, with decreased PDGFRb and matrix‐associated genes in fibroblasts. Progression from preneoplasia to tumors correlates with increased immune infiltration in BRCA1 mutation carriers. Tumor epithelial compartments show comparable diversity in different breast cancer subtypes. Cycling CD8 + T‐cells are reduced in estrogen receptor (ER) + tumors, suggesting different immunoregulatory patterns. Both clonal selection and mass migration contribute to lymph node metastases in patients with ER + cancer. Graphical Abstract A large‐scale gene expression resource integrates diverse tissue samples and reveals unexpected heterogeneity of breast cancer subtypes. To examine global changes in breast heterogeneity across different states, we determined the single-cell transcriptomes of > 340,000 cells encompassing normal breast, preneoplastic BRCA1 tissue, the major breast cancer subtypes, and pairs of tumors and involved lymph nodes. Elucidation of the normal breast microenvironment revealed striking changes in the stroma of post-menopausal women. Single-cell profiling of 34 treatment-naive primary tumors, including estrogen receptor (ER) , HER2 , and triple-negative breast cancers, revealed comparable diversity among cancer cells and a discrete subset of cycling cells. The transcriptomes of preneoplastic BRCA1 tissue versus tumors highlighted global changes in the immune microenvironment. Within the tumor immune landscape, proliferative CD8 T cells characterized triple-negative and HER2 cancers but not ER tumors, while all subtypes comprised cycling tumor-associated macrophages, thus invoking potentially different immunotherapy targets. Copy number analysis of paired ER tumors and lymph nodes indicated seeding by genetically distinct clones or mass migration of primary tumor cells into axillary lymph nodes. This large-scale integration of patient samples provides a high-resolution map of cell diversity in normal and cancerous human breast. To examine global changes in breast heterogeneity across different states, we determined the single‐cell transcriptomes of > 340,000 cells encompassing normal breast, preneoplastic BRCA1+/– tissue, the major breast cancer subtypes, and pairs of tumors and involved lymph nodes. Elucidation of the normal breast microenvironment revealed striking changes in the stroma of post‐menopausal women. Single‐cell profiling of 34 treatment‐naive primary tumors, including estrogen receptor (ER)+, HER2+, and triple‐negative breast cancers, revealed comparable diversity among cancer cells and a discrete subset of cycling cells. The transcriptomes of preneoplastic BRCA1+/– tissue versus tumors highlighted global changes in the immune microenvironment. Within the tumor immune landscape, proliferative CD8+ T cells characterized triple‐negative and HER2+ cancers but not ER+ tumors, while all subtypes comprised cycling tumor‐associated macrophages, thus invoking potentially different immunotherapy targets. Copy number analysis of paired ER+ tumors and lymph nodes indicated seeding by genetically distinct clones or mass migration of primary tumor cells into axillary lymph nodes. This large‐scale integration of patient samples provides a high‐resolution map of cell diversity in normal and cancerous human breast. Synopsis To examine global changes in breast heterogeneity across different states, this gene expression resource integrates large‐scale patient samples from diverse tissue states and breast cancer subtypes, offering a refined high‐resolution map of cell diversity in the normal and cancerous human mammary gland. Single‐cell transcriptome analyses profile > 340,000 cells encompassing normal breast, preneoplastic BRCA1+/– tissue, the major breast cancer subtypes, and metastatic lymph nodes. Pre‐ to post‐menopause transition is associated with marked stromal changes, with decreased PDGFRb and matrix‐associated genes in fibroblasts. Progression from preneoplasia to tumors correlates with increased immune infiltration in BRCA1 mutation carriers. Tumor epithelial compartments show comparable diversity in different breast cancer subtypes. Cycling CD8+ T‐cells are reduced in estrogen receptor (ER)+ tumors, suggesting different immunoregulatory patterns. Both clonal selection and mass migration contribute to lymph node metastases in patients with ER+ cancer. A large‐scale gene expression resource integrates diverse tissue samples and reveals unexpected heterogeneity of breast cancer subtypes. To examine global changes in breast heterogeneity across different states, we determined the single‐cell transcriptomes of > 340,000 cells encompassing normal breast, preneoplastic BRCA1 +/– tissue, the major breast cancer subtypes, and pairs of tumors and involved lymph nodes. Elucidation of the normal breast microenvironment revealed striking changes in the stroma of post‐menopausal women. Single‐cell profiling of 34 treatment‐naive primary tumors, including estrogen receptor (ER)+, HER2+, and triple‐negative breast cancers, revealed comparable diversity among cancer cells and a discrete subset of cycling cells. The transcriptomes of preneoplastic BRCA1 +/– tissue versus tumors highlighted global changes in the immune microenvironment. Within the tumor immune landscape, proliferative CD8+ T cells characterized triple‐negative and HER2+ cancers but not ER+ tumors, while all subtypes comprised cycling tumor‐associated macrophages, thus invoking potentially different immunotherapy targets. Copy number analysis of paired ER+ tumors and lymph nodes indicated seeding by genetically distinct clones or mass migration of primary tumor cells into axillary lymph nodes. This large‐scale integration of patient samples provides a high‐resolution map of cell diversity in normal and cancerous human breast. A large‐scale gene expression resource integrates diverse tissue samples and reveals unexpected heterogeneity of breast cancer subtypes. |
| Author | Chen, Yunshun Wilcox, Stephen Visvader, Jane E Pal, Bhupinder Capaldo, Bianca D Song, Xiaoyu Papenfuss, Anthony T Mann, Gregory B Smyth, Gordon K Joyce, Rachel Penington, Jocelyn S Di Stefano, Leon Vaillant, François Lindeman, Geoffrey J Bryant, Vanessa L Tubau Ribera, Nina |
| AuthorAffiliation | The Peter MacCallum Cancer Centre, Melbourne, Vic, Australia |
| AuthorAffiliation_xml | – name: The Peter MacCallum Cancer Centre, Melbourne, Vic, Australia – name: 2 Department of Medical Biology The University of Melbourne Parkville Vic Australia – name: 14 School of Mathematics and Statistics The University of Melbourne Parkville Vic Australia – name: 3 School of Cancer Medicine La Trobe University Bundoora Vic Australia – name: 7 Centre for Dynamic Imaging Parkville Vic Australia – name: 9 The Royal Melbourne Hospital Parkville Vic Australia – name: 6 Immunology Division The Walter and Eliza Hall Institute of Medical Research Parkville Vic Australia – name: 11 The Royal Women’s Hospital Parkville Vic Australia – name: 1 ACRF Cancer Biology and Stem Cells Division The Walter and Eliza Hall Institute of Medical Research Parkville Vic Australia – name: 5 Bioinformatics Division The Walter and Eliza Hall Institute of Medical Research Parkville Vic Australia – name: 10 The Peter MacCallum Cancer Centre Melbourne Vic Australia – name: 8 Advanced Technology and Biology Division The Walter and Eliza Hall Institute of Medical Research Parkville Vic Australia – name: 13 Department of Medicine The University of Melbourne Parkville Vic Australia – name: 4 Olivia Newton‐John Cancer Research Institute Heidelberg Vic Australia – name: 12 The Department of Surgery The University of Melbourne Parkville Vic Australia |
| Author_xml | – sequence: 1 givenname: Bhupinder orcidid: 0000-0002-3684-4331 surname: Pal fullname: Pal, Bhupinder organization: ACRF Cancer Biology and Stem Cells Division, The Walter and Eliza Hall Institute of Medical Research, Department of Medical Biology, The University of Melbourne, School of Cancer Medicine, La Trobe University, Olivia Newton‐John Cancer Research Institute – sequence: 2 givenname: Yunshun orcidid: 0000-0003-4911-5653 surname: Chen fullname: Chen, Yunshun organization: Department of Medical Biology, The University of Melbourne, Bioinformatics Division, The Walter and Eliza Hall Institute of Medical Research – sequence: 3 givenname: François orcidid: 0000-0003-3229-3760 surname: Vaillant fullname: Vaillant, François organization: ACRF Cancer Biology and Stem Cells Division, The Walter and Eliza Hall Institute of Medical Research, Department of Medical Biology, The University of Melbourne – sequence: 4 givenname: Bianca D surname: Capaldo fullname: Capaldo, Bianca D organization: ACRF Cancer Biology and Stem Cells Division, The Walter and Eliza Hall Institute of Medical Research, Department of Medical Biology, The University of Melbourne – sequence: 5 givenname: Rachel surname: Joyce fullname: Joyce, Rachel organization: ACRF Cancer Biology and Stem Cells Division, The Walter and Eliza Hall Institute of Medical Research, Department of Medical Biology, The University of Melbourne – sequence: 6 givenname: Xiaoyu surname: Song fullname: Song, Xiaoyu organization: ACRF Cancer Biology and Stem Cells Division, The Walter and Eliza Hall Institute of Medical Research, Department of Medical Biology, The University of Melbourne – sequence: 7 givenname: Vanessa L surname: Bryant fullname: Bryant, Vanessa L organization: Department of Medical Biology, The University of Melbourne, Immunology Division, The Walter and Eliza Hall Institute of Medical Research – sequence: 8 givenname: Jocelyn S surname: Penington fullname: Penington, Jocelyn S organization: Department of Medical Biology, The University of Melbourne, Bioinformatics Division, The Walter and Eliza Hall Institute of Medical Research – sequence: 9 givenname: Leon surname: Di Stefano fullname: Di Stefano, Leon organization: Department of Medical Biology, The University of Melbourne, Bioinformatics Division, The Walter and Eliza Hall Institute of Medical Research – sequence: 10 givenname: Nina surname: Tubau Ribera fullname: Tubau Ribera, Nina organization: Centre for Dynamic Imaging, Advanced Technology and Biology Division, The Walter and Eliza Hall Institute of Medical Research – sequence: 11 givenname: Stephen surname: Wilcox fullname: Wilcox, Stephen organization: Advanced Technology and Biology Division, The Walter and Eliza Hall Institute of Medical Research – sequence: 12 givenname: Gregory B surname: Mann fullname: Mann, Gregory B organization: The Royal Melbourne Hospital, The Peter MacCallum Cancer Centre, The Royal Women’s Hospital, The Department of Surgery, The University of Melbourne – sequence: 14 givenname: Anthony T surname: Papenfuss fullname: Papenfuss, Anthony T organization: Department of Medical Biology, The University of Melbourne, Bioinformatics Division, The Walter and Eliza Hall Institute of Medical Research – sequence: 15 givenname: Geoffrey J orcidid: 0000-0001-9386-2416 surname: Lindeman fullname: Lindeman, Geoffrey J organization: ACRF Cancer Biology and Stem Cells Division, The Walter and Eliza Hall Institute of Medical Research, The Royal Melbourne Hospital, The Peter MacCallum Cancer Centre, Department of Medicine, The University of Melbourne – sequence: 16 givenname: Gordon K orcidid: 0000-0001-9221-2892 surname: Smyth fullname: Smyth, Gordon K email: smyth@wehi.edu.au organization: Bioinformatics Division, The Walter and Eliza Hall Institute of Medical Research, School of Mathematics and Statistics, The University of Melbourne – sequence: 17 givenname: Jane E orcidid: 0000-0001-9173-6977 surname: Visvader fullname: Visvader, Jane E email: visvader@wehi.edu.au organization: ACRF Cancer Biology and Stem Cells Division, The Walter and Eliza Hall Institute of Medical Research, Department of Medical Biology, The University of Melbourne |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33950524$$D View this record in MEDLINE/PubMed |
| BookMark | eNqFkctu1DAUhi1URKeFPStkiQ0LUnyJnVhCSEPVQlEBCXVvOcnxjEeJPbUToDsegWfkSepheqGVgJXlc77_3P49tOODB4SeUnJABRPsFQzN6oARRiipOOcP0IyWkhSMVGIHzQiTtChprXbRXkorQoioK_oI7XKuBBGsnKHlHCfnFz38-vGzhb7HXz7NMXxfR0jJBY_N2JuEg8U-xMH0L3HOeAjrHB1di43v8DgNIboF-PxPoxkhYefxuAS8nAbjcRMhw4_RQ2v6BE-u3n10dnx0dvi-OP387uRwflq0oha8sKWsrWkItB0tCZfUqqq2CoRqBKuFEp2yHZRCSCY3QaWsrTtuK04ZlZLvozfbsuupGaBrwY_R9Hod3WDihQ7G6bsZ75Z6Eb7qmsqKS54LvLgqEMP5BGnUg0uby5i89pR0vjorCeFsgz6_h67CFH3eLlO8rJWglcrUsz8nuhnl2oMMkC3QxpBSBHuDUKJ_26w3Nutbm7NE3pO0Ll8-G5Z3cv2_hK-3wm-uh4v_NtJHH99-uCOnW3nKSr-AeLvxX1teAkZ8zvQ |
| CitedBy_id | crossref_primary_10_1158_0008_5472_CAN_23_2640 crossref_primary_10_1016_j_jpha_2024_100975 crossref_primary_10_2147_IJN_S492713 crossref_primary_10_1158_0008_5472_CAN_23_4022 crossref_primary_10_1093_bib_bbac466 crossref_primary_10_1038_s42003_024_07286_z crossref_primary_10_1186_s13058_023_01760_y crossref_primary_10_1186_s12864_025_11747_y crossref_primary_10_1186_s12967_023_04438_3 crossref_primary_10_3390_cells10102673 crossref_primary_10_1016_j_cmet_2023_12_003 crossref_primary_10_1016_j_ccell_2025_06_019 crossref_primary_10_1007_s10911_023_09530_4 crossref_primary_10_3168_jds_2025_26480 crossref_primary_10_1038_s41540_024_00359_z crossref_primary_10_1007_s00262_024_03795_2 crossref_primary_10_1038_s41419_025_07547_7 crossref_primary_10_1172_JCI164227 crossref_primary_10_1016_j_cellsig_2025_111608 crossref_primary_10_1111_cpr_13697 crossref_primary_10_1038_s41467_023_43458_x crossref_primary_10_1186_s12967_024_05268_7 crossref_primary_10_1038_s41467_024_50150_1 crossref_primary_10_1186_s13058_022_01523_1 crossref_primary_10_1007_s10911_025_09586_4 crossref_primary_10_1007_s13577_024_01137_z crossref_primary_10_1016_j_gpb_2023_06_003 crossref_primary_10_1186_s13046_025_03454_z crossref_primary_10_1016_j_ijbiomac_2025_143669 crossref_primary_10_3389_fgene_2022_979829 crossref_primary_10_3389_fimmu_2023_1264774 crossref_primary_10_1186_s12916_023_02960_1 crossref_primary_10_1093_bib_bbae422 crossref_primary_10_1038_s41598_025_91318_z crossref_primary_10_1016_j_tcb_2023_03_010 crossref_primary_10_1111_pin_13198 crossref_primary_10_1186_s13045_021_01105_2 crossref_primary_10_1289_EHP12886 crossref_primary_10_1002_advs_202307452 crossref_primary_10_1186_s13058_024_01939_x crossref_primary_10_1038_s41467_023_41518_w crossref_primary_10_1016_j_phrs_2025_107788 crossref_primary_10_3390_cells14030197 crossref_primary_10_1016_j_heliyon_2023_e19798 crossref_primary_10_1038_s41597_024_03127_0 crossref_primary_10_1038_s43018_023_00595_y crossref_primary_10_1172_JCI166666 crossref_primary_10_15252_embr_202356850 crossref_primary_10_3389_fimmu_2025_1557906 crossref_primary_10_1007_s12282_022_01385_7 crossref_primary_10_1093_bib_bbae655 crossref_primary_10_1038_s41523_022_00438_6 crossref_primary_10_1002_advs_202500722 crossref_primary_10_3389_fimmu_2023_1140995 crossref_primary_10_1177_11769351251360675 crossref_primary_10_1007_s12672_022_00500_6 crossref_primary_10_1038_s41523_023_00590_7 crossref_primary_10_3390_microorganisms9081591 crossref_primary_10_3390_ijms241713053 crossref_primary_10_1038_s41588_024_01958_6 crossref_primary_10_3390_cancers13194798 crossref_primary_10_1186_s12943_025_02331_9 crossref_primary_10_1038_s41467_022_29885_2 crossref_primary_10_1038_d41586_025_01455_8 crossref_primary_10_1038_s43856_024_00671_z crossref_primary_10_1093_jleuko_qiae190 crossref_primary_10_1038_s41467_023_41385_5 crossref_primary_10_1186_s12935_025_03942_4 crossref_primary_10_3390_cancers16061173 crossref_primary_10_1016_j_celrep_2025_115699 crossref_primary_10_1158_0008_5472_CAN_24_0707 crossref_primary_10_3389_fimmu_2024_1414450 crossref_primary_10_1186_s12935_025_03648_7 crossref_primary_10_3389_fcell_2022_825014 crossref_primary_10_1038_s41467_022_35043_5 crossref_primary_10_3389_fimmu_2024_1431681 crossref_primary_10_7554_eLife_95720 crossref_primary_10_1016_j_trac_2025_118412 crossref_primary_10_1038_s41598_024_53999_w crossref_primary_10_1007_s10565_025_09996_4 crossref_primary_10_3389_fimmu_2024_1359204 crossref_primary_10_3389_fimmu_2025_1539074 crossref_primary_10_1002_imt2_231 crossref_primary_10_1038_s41467_023_44206_x crossref_primary_10_1002_ctm2_1356 crossref_primary_10_1186_s13058_024_01763_3 crossref_primary_10_1038_s41467_023_35793_w crossref_primary_10_3389_fimmu_2024_1510829 crossref_primary_10_3390_ijms252413706 crossref_primary_10_1038_s41598_024_77389_4 crossref_primary_10_1007_s10495_024_01952_7 crossref_primary_10_15252_embj_2021109221 crossref_primary_10_3389_fimmu_2025_1559200 crossref_primary_10_1016_j_ccell_2023_06_005 crossref_primary_10_1158_0008_5472_CAN_22_0090 crossref_primary_10_1186_s12859_024_05676_y crossref_primary_10_1186_s13058_023_01621_8 crossref_primary_10_3389_fmicb_2025_1591745 crossref_primary_10_1038_s43587_024_00751_8 crossref_primary_10_3389_fimmu_2024_1485123 crossref_primary_10_1038_s41467_024_49916_4 crossref_primary_10_1038_s41556_023_01315_5 crossref_primary_10_1016_j_yexcr_2024_114032 crossref_primary_10_2147_JIR_S523147 crossref_primary_10_32604_or_2024_047257 crossref_primary_10_1038_s43018_024_00773_6 crossref_primary_10_1186_s13073_024_01283_x crossref_primary_10_1038_s41598_025_01705_9 crossref_primary_10_3389_fimmu_2024_1466762 crossref_primary_10_1002_mco2_70053 crossref_primary_10_1038_s41467_024_51424_4 crossref_primary_10_3390_ijms241713209 crossref_primary_10_1038_s41467_023_37353_8 crossref_primary_10_1016_j_cell_2025_08_012 crossref_primary_10_1038_s41523_022_00444_8 crossref_primary_10_1186_s12935_024_03534_8 crossref_primary_10_3389_fimmu_2024_1462953 crossref_primary_10_3390_cancers15235605 crossref_primary_10_1016_j_ebiom_2024_105389 crossref_primary_10_1080_14728222_2022_2170779 crossref_primary_10_1155_2022_5412007 crossref_primary_10_3390_cancers16234043 crossref_primary_10_1038_s41698_024_00723_6 crossref_primary_10_1007_s10549_024_07428_1 crossref_primary_10_1016_j_cell_2024_02_009 crossref_primary_10_1097_SLA_0000000000006428 crossref_primary_10_1038_s41540_023_00290_9 crossref_primary_10_1016_j_ebiom_2024_105035 crossref_primary_10_1016_j_heliyon_2024_e31342 crossref_primary_10_1186_s40364_024_00654_1 crossref_primary_10_3390_cancers15051517 crossref_primary_10_3389_fimmu_2022_868813 crossref_primary_10_1186_s12864_024_10174_9 crossref_primary_10_1038_s41588_024_01688_9 crossref_primary_10_3389_fimmu_2023_1285540 crossref_primary_10_1038_s43018_023_00527_w crossref_primary_10_1186_s12859_025_06044_0 crossref_primary_10_1038_s41598_025_88666_1 crossref_primary_10_3389_fimmu_2024_1369289 crossref_primary_10_3389_fmed_2024_1482726 crossref_primary_10_1038_s41418_025_01447_1 crossref_primary_10_1242_jcs_261145 crossref_primary_10_1002_cam4_7053 crossref_primary_10_3389_fimmu_2025_1540018 crossref_primary_10_1016_j_compbiomed_2023_107222 crossref_primary_10_1111_jcmm_70709 crossref_primary_10_1038_s41416_023_02178_1 crossref_primary_10_1038_s41467_023_36637_3 crossref_primary_10_1111_odi_14761 crossref_primary_10_1016_j_cell_2023_01_040 crossref_primary_10_1038_s41523_025_00808_w crossref_primary_10_3389_fimmu_2025_1583103 crossref_primary_10_1016_j_isci_2024_109037 crossref_primary_10_1016_j_isci_2024_111478 crossref_primary_10_3390_cancers16071350 crossref_primary_10_1038_s41588_023_01298_x crossref_primary_10_1242_dmm_049538 crossref_primary_10_1007_s12672_025_01929_1 crossref_primary_10_1002_1878_0261_13365 crossref_primary_10_3390_cancers14225506 crossref_primary_10_1093_nargab_lqad024 crossref_primary_10_1016_j_cell_2024_06_012 crossref_primary_10_3389_fimmu_2024_1497251 crossref_primary_10_1093_nar_gkaf018 crossref_primary_10_3389_fimmu_2025_1534928 crossref_primary_10_3390_cancers14194800 crossref_primary_10_1158_2159_8290_CD_24_1326 crossref_primary_10_1002_jcp_31278 crossref_primary_10_3389_fmolb_2024_1420308 crossref_primary_10_1073_pnas_2203828120 crossref_primary_10_1038_s41556_025_01689_8 crossref_primary_10_1038_s43018_025_00924_3 crossref_primary_10_1093_nar_gkac908 crossref_primary_10_1186_s13059_023_02949_2 crossref_primary_10_1038_s41419_024_06637_2 crossref_primary_10_3389_fimmu_2024_1332942 crossref_primary_10_3390_cells12182286 crossref_primary_10_1016_j_compbiomed_2023_106836 crossref_primary_10_3389_fgene_2024_1304853 crossref_primary_10_1158_0008_5472_CAN_22_2682 crossref_primary_10_1016_j_ijbiomac_2025_144308 crossref_primary_10_1038_s41598_023_50062_y crossref_primary_10_1038_s41597_022_01236_2 crossref_primary_10_3390_cancers13153725 crossref_primary_10_1038_s41420_023_01768_5 crossref_primary_10_1172_JCI183086 crossref_primary_10_1016_j_csbj_2025_06_031 crossref_primary_10_1186_s13058_022_01593_1 crossref_primary_10_1016_j_cell_2024_04_032 crossref_primary_10_1038_s44321_025_00289_1 crossref_primary_10_1002_cam4_70240 crossref_primary_10_1002_VIW_20220034 crossref_primary_10_1038_s41586_023_06252_9 crossref_primary_10_3390_ncrna9050052 crossref_primary_10_1186_s13058_025_01982_2 crossref_primary_10_1016_j_xgen_2025_100765 crossref_primary_10_1002_advs_202400888 crossref_primary_10_1016_j_phrs_2023_106901 crossref_primary_10_1007_s10911_023_09544_y crossref_primary_10_3390_bioengineering12060586 crossref_primary_10_1016_j_isci_2024_109882 crossref_primary_10_1002_ctm2_1516 crossref_primary_10_1038_s41467_022_29335_z crossref_primary_10_3233_JAD_230109 crossref_primary_10_1158_2159_8290_CD_24_0131 crossref_primary_10_1038_s44318_025_00422_3 crossref_primary_10_3389_fimmu_2024_1375528 crossref_primary_10_1186_s12864_023_09722_6 crossref_primary_10_3389_fimmu_2021_816658 crossref_primary_10_1038_s41568_024_00714_6 crossref_primary_10_3389_fgene_2022_994069 crossref_primary_10_1186_s12859_024_05825_3 crossref_primary_10_1016_j_devcel_2025_06_032 crossref_primary_10_1038_s44319_025_00370_3 crossref_primary_10_3389_fimmu_2024_1491508 crossref_primary_10_3389_fimmu_2023_1297180 crossref_primary_10_1038_s41591_024_03011_9 crossref_primary_10_1016_j_omtn_2024_102309 crossref_primary_10_3390_cancers15072014 crossref_primary_10_1016_j_compbiomed_2024_108537 crossref_primary_10_1016_j_devcel_2022_05_003 crossref_primary_10_1038_s41467_024_47068_z crossref_primary_10_1038_s43018_025_00957_8 crossref_primary_10_1158_2326_6066_CIR_24_0235 crossref_primary_10_1186_s13073_024_01327_2 crossref_primary_10_3389_fimmu_2022_838040 crossref_primary_10_1007_s10565_025_10001_1 crossref_primary_10_1016_j_celrep_2024_114236 crossref_primary_10_1158_1078_0432_CCR_23_3110 |
| Cites_doi | 10.1016/j.ccell.2019.02.009 10.1038/s41577-019-0127-6 10.1016/j.cell.2010.03.014 10.1186/bcr2560 10.1038/35021093 10.1093/nar/gkz114 10.1038/ni1310 10.1126/science.1254257 10.15252/embj.2019104063 10.1016/j.cell.2014.07.013 10.1016/j.ccell.2019.02.010 10.1038/ncomms15221 10.1016/j.cell.2018.03.041 10.1126/sciimmunol.aam6346 10.1038/nature17676 10.1186/s13058-020-01344-0 10.1038/s41556-020-0505-0 10.1038/s41586-019-1876-x 10.1016/j.ccr.2014.04.005 10.1101/gr.209973.116 10.1007/978-3-030-00934-2_30 10.1016/j.ccell.2018.01.011 10.1158/1078-0432.CCR-15-2851 10.1172/JCI96153 10.1016/j.cell.2011.01.004 10.1038/s41467-018-05220-6 10.1038/s41467-017-01560-x 10.1093/bioinformatics/btp053 10.1038/nature12477 10.1002/path.4989 10.1038/ni.3775 10.1016/j.cell.2019.05.031 10.1016/j.cell.2018.05.060 10.1101/cshperspect.a003178 10.1146/annurev.immunol.25.022106.141623 10.1038/nm.1791 10.1073/pnas.191367098 10.1016/j.ccell.2014.09.007 10.1038/s41467-018-04334-1 10.1038/s43018-020-0026-6 10.1038/s41467-018-06052-0 10.1016/S1470-2045(17)30904-X 10.1093/nar/gks042 10.1038/nature09807 10.1016/j.immuni.2014.12.007 10.1038/nrclinonc.2015.215 10.1038/nm.2000 10.1038/nbt.4096 10.1038/s41591-018-0078-7 10.1200/JCO.2008.18.1370 10.1097/AOG.0b013e3181a11c64 10.1038/s41598-017-17204-5 10.1186/gb-2014-15-2-r29 10.1038/ncomms15081 10.1038/s41598-019-45934-1 10.1186/bcr921 10.1038/nature11412 10.1016/j.cell.2019.03.005 10.1016/j.cell.2017.12.007 10.1152/physrev.00040.2018 10.1126/science.1203486 10.1093/bioinformatics/btt656 10.1016/j.ccell.2020.03.008 10.1056/NEJM200101253440407 10.1038/s41422-020-0355-0 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2021 2021 The Authors. Published under the terms of the CC BY NC ND 4.0 license 2021 The Authors. Published under the terms of the CC BY NC ND 4.0 license. 2021. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: The Author(s) 2021 – notice: 2021 The Authors. Published under the terms of the CC BY NC ND 4.0 license – notice: 2021 The Authors. Published under the terms of the CC BY NC ND 4.0 license. – notice: 2021. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| CorporateAuthor | kConFab |
| CorporateAuthor_xml | – name: kConFab |
| DBID | C6C 24P AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QG 7QL 7QP 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 K9. M7N P64 RC3 7X8 5PM |
| DOI | 10.15252/embj.2020107333 |
| DatabaseName | Springer Nature OA Free Journals Wiley Online Library Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Immunology Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Virology and AIDS Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database AIDS and Cancer Research Abstracts ProQuest Health & Medical Complete (Alumni) Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Virology and AIDS Abstracts Oncogenes and Growth Factors Abstracts Technology Research Database Nucleic Acids Abstracts ProQuest Health & Medical Complete (Alumni) Neurosciences Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Genetics Abstracts Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Immunology Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic Virology and AIDS Abstracts MEDLINE |
| Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Chemistry Biology |
| DocumentTitleAlternate | Bhupinder Pal et al |
| EISSN | 1460-2075 |
| EndPage | n/a |
| ExternalDocumentID | PMC8167363 33950524 10_15252_embj_2020107333 EMBJ2020107333 |
| Genre | article Research Support, Non-U.S. Gov't Journal Article |
| GrantInformation_xml | – fundername: Ian Potter Foundation (IPF) – fundername: Australian Cancer Research Foundation (ACRF) – fundername: Department of Health, Australian Government | National Health and Medical Research Council (NHMRC) grantid: 1054618; 1100807; 1113133; 1153049; 1078730; 1175960; 1058892; 1037230; 1102742 – fundername: National Breast Cancer Foundation (NBCF) grantid: IIRS‐20‐022 – fundername: Department of Health, Australian Government | National Health and Medical Research Council (NHMRC) funderid: 1054618; 1100807; 1113133; 1153049; 1078730; 1175960; 1058892; 1037230; 1102742 – fundername: National Breast Cancer Foundation (NBCF) funderid: IIRS‐20‐022 |
| GroupedDBID | --- -DZ -~X 0R~ 123 1OC 24P 29G 2WC 33P 36B 39C 53G 5VS 70F 8R4 8R5 A8Z AAESR AAEVG AAHBH AAHHS AAIHA AAJSJ AANLZ AAONW AAXRX AAYCA AAZKR ABCUV ABLJU ACAHQ ACCFJ ACCZN ACGFO ACGFS ACNCT ACPOU ACPRK ACXBN ACXQS ADBBV ADEOM ADKYN ADMGS ADOZA ADXAS ADZMN AEEZP AEGXH AEIGN AENEX AEQDE AEUYR AFBPY AFFNX AFGKR AFPWT AFRAH AFWVQ AFZJQ AHMBA AIAGR AIURR AIWBW AJBDE ALAGY ALIPV ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB AOIJS AUFTA AZBYB AZFZN AZVAB BAWUL BDRZF BENPR BFHJK BMNLL BMXJE BRXPI BTFSW C6C CS3 DCZOG DIK DPXWK DRFUL DRSTM DU5 E3Z EBD EBLON EBS EMB EMOBN F5P G-S GROUPED_DOAJ GX1 HH5 HK~ HYE KQ8 LATKE LEEKS LITHE LOXES LUTES LYRES MEWTI MRFUL MRSTM MSFUL MSSTM MVM MXFUL MXSTM MY~ O9- OK1 P2P P2W Q2X R.K RHF RHI RNS ROL RPM SV3 TN5 TR2 WBKPD WH7 WIH WIK WIN WOHZO WXSBR WYJ YSK ZCA ZZTAW ~KM ABJNI -Q- .55 3O- 4.4 7X7 88E 8AO 8C1 8CJ 8FE 8FH 8FI 8FJ 8G5 AAMMB AANHP AASGY AASML AAYXX ABUWG ABZEH ACBWZ ACKIV ACRPL ACYXJ ADNMO AEFGJ AEUYN AFFHD AFKRA AGQPQ AGXDD AI. AIDQK AIDYY AJAOE ASPBG AVWKF AZQEC BBNVY BHPHI BKSAR BPHCQ BVXVI C1A CAG CCPQU CITATION COF D1J DWQXO EJD FA8 FEDTE FYUFA GNUQQ GODZA GUQSH H13 HCIFZ HMCUK HVGLF H~9 LH4 LK8 LW6 M1P M2O M7P NAO O8X PCBAR PHGZM PHGZT PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO RNI RZO UKHRP VH1 WOQ X7M XSW Y6R YYP ZGI ZXP CGR CUY CVF ECM EIF NPM 7QG 7QL 7QP 7T5 7TK 7TM 7TO 7U9 8FD C1K ESTFP FR3 H94 K9. M7N P64 RC3 7X8 5PM |
| ID | FETCH-LOGICAL-c5853-f468fab0ecd140361f978f9e59b528595d9fde455626e59b99ff8d3f73121663 |
| IEDL.DBID | 24P |
| ISICitedReferencesCount | 269 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000647156800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0261-4189 1460-2075 |
| IngestDate | Tue Sep 30 16:36:54 EDT 2025 Mon Sep 29 05:38:35 EDT 2025 Fri Oct 03 11:11:24 EDT 2025 Mon Jul 21 05:55:42 EDT 2025 Sat Nov 29 03:03:09 EST 2025 Tue Nov 18 22:08:23 EST 2025 Wed Jan 22 16:30:24 EST 2025 Fri Feb 21 02:37:30 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 11 |
| Keywords | microenvironment single‐cell RNA‐seq breast cancer carriers LN metastasis single-cell RNA-seq BRCA1 carriers |
| Language | English |
| License | Attribution-NonCommercial-NoDerivs 2021 The Authors. Published under the terms of the CC BY NC ND 4.0 license. This is an open access article under the terms of the http://creativecommons.org/licenses/by-nc-nd/4.0/ License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non‐commercial and no modifications or adaptations are made. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c5853-f468fab0ecd140361f978f9e59b528595d9fde455626e59b99ff8d3f73121663 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 These authors contributed equally to this work These authors jointly supervised this work |
| ORCID | 0000-0002-3684-4331 0000-0001-9173-6977 0000-0003-4911-5653 0000-0001-9221-2892 0000-0001-9386-2416 0000-0003-3229-3760 |
| OpenAccessLink | https://onlinelibrary.wiley.com/doi/abs/10.15252%2Fembj.2020107333 |
| PMID | 33950524 |
| PQID | 2534895179 |
| PQPubID | 35985 |
| PageCount | 23 |
| ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_8167363 proquest_miscellaneous_2522400323 proquest_journals_2534895179 pubmed_primary_33950524 crossref_primary_10_15252_embj_2020107333 crossref_citationtrail_10_15252_embj_2020107333 wiley_primary_10_15252_embj_2020107333_EMBJ2020107333 springer_journals_10_15252_embj_2020107333 |
| PublicationCentury | 2000 |
| PublicationDate | 01 June 2021 |
| PublicationDateYYYYMMDD | 2021-06-01 |
| PublicationDate_xml | – month: 06 year: 2021 text: 01 June 2021 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | London |
| PublicationPlace_xml | – name: London – name: England – name: New York – name: Hoboken |
| PublicationTitle | The EMBO journal |
| PublicationTitleAbbrev | EMBO J |
| PublicationTitleAlternate | EMBO J |
| PublicationYear | 2021 |
| Publisher | Nature Publishing Group UK Springer Nature B.V John Wiley and Sons Inc |
| Publisher_xml | – name: Nature Publishing Group UK – name: Springer Nature B.V – name: John Wiley and Sons Inc |
| References | Josefowicz, Lu, Rudensky (CR29) 2012; 30 Sorlie, Perou, Tibshirani, Aas, Geisler, Johnsen, Hastie, Eisen, van de Rijn, Jeffrey (CR64) 2001; 98 Ali, Jackson, Zanotelli, Danenberg, Fischer, Bardwell, Provenzano, Rueda, Chin (CR3) 2020; 1 Azizi, Carr, Plitas, Cornish, Konopacki, Prabhakaran, Nainys, Wu, Kiseliovas, Setty (CR4) 2018; 174 Cancer Genome Atlas (CR10) 2012; 490 Denkert, von Minckwitz, Darb‐Esfahani, Lederer, Heppner, Weber, Budczies, Huober, Klauschen, Furlanetto (CR21) 2018; 19 Schreiber, Old, Smyth (CR62) 2011; 331 Karaayvaz, Cristea, Gillespie, Patel, Mylvaganam, Luo, Specht, Bernstein, Michor, Ellisen (CR30) 2018; 9 Novershtern, Subramanian, Lawton, Mak, Haining, McConkey, Habib, Yosef, Chang, Shay (CR48) 2011; 144 Law, Chen, Shi, Smyth (CR32) 2014; 15 Parker, Mullins, Cheang, Leung, Voduc, Vickery, Davies, Fauron, He, Hu (CR51) 2009; 27 McCarthy, Chen, Smyth (CR40) 2012; 40 Costa, Kieffer, Scholer‐Dahirel, Pelon, Bourachot, Cardon, Sirven, Magagna, Fuhrmann, Bernard (CR18) 2018; 33 Cereser, Jansen, Austin, Elia, McFarlane, van Deurzen, Sieuwerts, Daidone, Tadrous, Wright (CR14) 2018; 244 Nguyen, Pervolarakis, Blake, Ma, Davis, James, Phung, Willey, Kumar, Jabart (CR45) 2018; 9 Chung, Eum, Lee, Lee, Lee, Kim, Ryu, Kim, Lee, Park (CR16) 2017; 8 Jackson, Fischer, Zanotelli, Ali, Mechera, Soysal, Moch, Muenst, Varga, Weber (CR27) 2020; 578 Schmidt, Weigert, Broaddus, Myers (CR61) 2018 Eirew, Stingl, Raouf, Turashvili, Aparicio, Emerman, Eaves (CR22) 2008; 14 Cazet, Hui, Elsworth, Wu, Roden, Chan, Skhinas, Collot, Yang, Harvey (CR13) 2018; 9 Liao, Smyth, Shi (CR35) 2019; 47 Broz, Binnewies, Boldajipour, Nelson, Pollack, Erle, Barczak, Rosenblum, Daud, Barber (CR8) 2014; 26 Malik, Byrne, Vella, Zhang, Shabaneh, Steinberg, Molodtsov, Bowers, Angeles, Paulos (CR39) 2017; 2 Nizard, Roussel, Diniz, Karaki, Tran, Voron, Dransart, Sandoval, Riquet, Rance (CR47) 2017; 8 Brisken, O'Malley (CR7) 2010; 2 Fu, Nolan, Lindeman, Visvader (CR24) 2020; 100 Cassetta, Fragkogianni, Sims, Swierczak, Forrester, Zhang, Soong, Cotechini, Anur, Lin (CR12) 2019; 35 Bankhead, Loughrey, Fernandez, Dombrowski, McArt, Dunne, McQuaid, Gray, Murray, Coleman (CR5) 2017; 7 Savas, Salgado, Denkert, Sotiriou, Darcy, Smyth, Loi (CR58) 2016; 13 Schenkel, Masopust (CR60) 2014; 41 Navin, Kendall, Troge, Andrews, Rodgers, McIndoo, Cook, Stepansky, Levy, Esposito (CR44) 2011; 472 Hankinson, Colditz, Willett (CR26) 2004; 6 Alexandrov, Nik‐Zainal, Wedge, Aparicio, Behjati, Biankin, Bignell, Bolli, Borg, Børresen‐Dale (CR2) 2013; 500 Brechbuhl, Finlay‐Schultz, Yamamoto, Gillen, Cittelly, Tan, Sams, Pillai, Elias, Robinson (CR6) 2017; 23 Özdemir, Pentcheva‐Hoang, Carstens, Zheng, Wu, Simpson, Laklai, Sugimoto, Kahlert, Novitskiy (CR49) 2014; 25 Pal, Chen, Vaillant, Jamieson, Gordon, Rios, Wilcox, Fu, Liu, Jackling (CR50) 2017; 8 Perou, Sorlie, Eisen, van de Rijn, Jeffrey, Rees, Pollack, Ross, Johnsen, Akslen (CR54) 2000; 406 Parker, Broder, Chang, Feskanich, Farquhar, Liu, Shoupe, Berek, Hankinson, Manson (CR52) 2009; 113 McCarthy, Smyth (CR41) 2009; 25 Kim, Gao, Sei, Brandt, Hartman, Hatschek, Crosetto, Foukakis, Navin (CR31) 2018; 173 Chen, Lun, Smyth (CR15) 2016; 5 Stuart, Butler, Hoffman, Hafemeister, Papalexi, Mauck, Hao, Stoeckius, Smibert, Satija (CR65) 2019; 177 Siegel, He, Hoadley, Hoyle, Pearce, Garrett, Kumar, Moylan, Brady, Van Swearingen (CR63) 2018; 128 Aceto, Bardia, Miyamoto, Donaldson, Wittner, Spencer, Yu, Pely, Engstrom, Zhu (CR1) 2014; 158 Fasterius, Uhlen, Al‐Khalili Szigyarto (CR23) 2019; 9 Lim, Wu, Pal, Bouras, Asselin‐Labat, Vaillant, Yagita, Lindeman, Smyth, Visvader (CR38) 2010; 12 Savas, Virassamy, Ye, Salim, Mintoff, Caramia, Salgado, Byrne, Teo, Dushyanthen (CR59) 2018; 24 Leung, Davis, Gao, Casasent, Wang, Sei, Vilar, Maru, Kopetz, Navin (CR33) 2017; 27 Moffat, Harris, Lippman, Morrow, Osborne (CR42) 2014 Nik‐Zainal, Davies, Staaf, Ramakrishna, Glodzik, Zou, Martincorena, Alexandrov, Martin, Wedge (CR46) 2016; 534 Rios, Capaldo, Vaillant, Pal, Ineveld, Dawson, Chen, Nolan, Fu (CR57) 2019; 35 Qian, Olbrecht, Boeckx, Vos, Laoui, Etlioglu, Wauters, Pomella, Verbandt, Busschaert (CR56) 2020; 30 Liao, Smyth, Shi (CR34) 2014; 30 Butler, Hoffman, Smibert, Papalexi, Satija (CR9) 2018; 36 Qian, Pollard (CR55) 2010; 141 Lim, Lin, Navin (CR36) 2020; 37 DeNardo, Ruffell (CR20) 2019; 19 Wu, Roden, Wang, Holliday, Harvey, Cazet, Murphy, Pereira, Al‐Eryani, Bartonicek (CR68) 2020; 39 Dawson, Pal, Vaillant, Gandolfo, Liu, Bleriot, Ginhoux, Smyth, Lindeman, Mueller (CR19) 2020; 22 Jeffrey, Brummer, Rolph, Liu, Callejas, Grumont, Gillieron, Mackay, Grey, Camps (CR28) 2006; 7 Morsing, Kim, Villadsen, Goldhammer, Jafari, Kassem, Petersen, Ronnov‐Jessen (CR43) 2020; 22 Casasent, Schalck, Gao, Sei, Long, Pangburn, Casasent, Meric‐Bernstam, Edgerton, Navin (CR11) 2018; 172 Clemons, Goss (CR17) 2001; 344 Lim, Vaillant, Wu, Forrest, Pal, Hart, Asselin‐Labat, Gyorki, Ward, Partanen (CR37) 2009; 15 Patel, Tirosh, Trombetta, Shalek, Gillespie, Wakimoto, Cahill, Nahed, Curry, Martuza (CR53) 2014; 344 Wagner, Rapsomaniki, Chevrier, Anzeneder, Langwieder, Dykgers, Rees, Ramaswamy, Muenst, Soysal (CR67) 2019; 177 Tsai, Lu, Nichols, Zlotnikov, Jones, Smith (CR66) 1996; 56 Ganesan, Clarke, Wood, Garrido‐Martin, Chee, Mellows, Samaniego‐Castruita, Singh, Seumois, Alzetani (CR25) 2017; 18 2010; 12 2017; 7 2001; 344 2017; 8 2017; 2 2018; 128 2018; 244 2014; 26 2019; 19 2004; 6 2014; 25 2010; 141 2009; 113 2011; 472 2018; 174 2018; 9 2018; 173 2020; 1 2018; 172 2012; 490 2000; 406 2020; 578 2014; 15 2010; 2 2018; 33 2009; 15 2018; 36 2001; 98 2009; 25 2019; 9 2017; 27 2019; 35 2013; 500 2017; 23 2008; 14 2006; 7 2020; 39 2020; 37 2020; 100 2014; 41 2014; 158 2009; 27 2016; 13 2011; 331 2012; 30 1996; 56 2018; 24 2016; 5 2018; 19 2020; 30 2019; 47 2018 2017; 18 2016; 534 2020; 22 2014 2014; 30 2019; 177 2011; 144 2012; 40 2014; 344 e_1_2_9_31_1 e_1_2_9_52_1 e_1_2_9_50_1 e_1_2_9_10_1 e_1_2_9_35_1 e_1_2_9_56_1 e_1_2_9_12_1 e_1_2_9_33_1 e_1_2_9_54_1 e_1_2_9_14_1 e_1_2_9_39_1 e_1_2_9_37_1 e_1_2_9_58_1 e_1_2_9_18_1 e_1_2_9_41_1 e_1_2_9_64_1 e_1_2_9_20_1 e_1_2_9_62_1 e_1_2_9_22_1 e_1_2_9_45_1 e_1_2_9_68_1 e_1_2_9_24_1 e_1_2_9_66_1 e_1_2_9_8_1 Chen Y (e_1_2_9_16_1) 2016; 5 e_1_2_9_6_1 e_1_2_9_4_1 e_1_2_9_60_1 e_1_2_9_2_1 e_1_2_9_26_1 e_1_2_9_49_1 e_1_2_9_28_1 e_1_2_9_47_1 Moffat FL (e_1_2_9_43_1) 2014 e_1_2_9_30_1 e_1_2_9_53_1 e_1_2_9_51_1 e_1_2_9_11_1 e_1_2_9_34_1 e_1_2_9_57_1 e_1_2_9_13_1 e_1_2_9_32_1 e_1_2_9_55_1 Tsai YC (e_1_2_9_67_1) 1996; 56 e_1_2_9_15_1 e_1_2_9_38_1 e_1_2_9_17_1 e_1_2_9_36_1 e_1_2_9_59_1 e_1_2_9_19_1 e_1_2_9_42_1 e_1_2_9_63_1 e_1_2_9_40_1 e_1_2_9_61_1 e_1_2_9_21_1 e_1_2_9_46_1 e_1_2_9_23_1 e_1_2_9_44_1 e_1_2_9_65_1 e_1_2_9_7_1 e_1_2_9_5_1 e_1_2_9_3_1 e_1_2_9_9_1 e_1_2_9_25_1 e_1_2_9_27_1 e_1_2_9_48_1 e_1_2_9_69_1 e_1_2_9_29_1 |
| References_xml | – volume: 578 start-page: 615 year: 2020 end-page: 620 ident: CR27 article-title: The single‐cell pathology landscape of breast cancer publication-title: Nature – volume: 9 start-page: 9524 year: 2019 ident: CR23 article-title: Single‐cell RNA‐seq variant analysis for exploration of genetic heterogeneity in cancer publication-title: Sci Rep – volume: 113 start-page: 1027 year: 2009 end-page: 1037 ident: CR52 article-title: Ovarian conservation at the time of hysterectomy and long‐term health outcomes in the nurses' health study publication-title: Obstet Gynecol – volume: 19 start-page: 40 year: 2018 end-page: 50 ident: CR21 article-title: Tumour‐infiltrating lymphocytes and prognosis in different subtypes of breast cancer: a pooled analysis of 3771 patients treated with neoadjuvant therapy publication-title: Lancet Oncol – volume: 25 start-page: 719 year: 2014 end-page: 734 ident: CR49 article-title: Depletion of carcinoma‐associated fibroblasts and fibrosis induces immunosuppression and accelerates pancreas cancer with reduced survival publication-title: Cancer Cell – start-page: 265 year: 2018 end-page: 273 ident: CR61 article-title: Cell detection with star‐convex polygons publication-title: International Conference on Medical Image Computing and Computer‐Assisted Intervention (MICCAI) – volume: 158 start-page: 1110 year: 2014 end-page: 1122 ident: CR1 article-title: Circulating tumor cell clusters are oligoclonal precursors of breast cancer metastasis publication-title: Cell – volume: 26 start-page: 638 year: 2014 end-page: 652 ident: CR8 article-title: Dissecting the tumor myeloid compartment reveals rare activating antigen‐presenting cells critical for T cell immunity publication-title: Cancer Cell – volume: 41 start-page: 886 year: 2014 end-page: 897 ident: CR60 article-title: Tissue‐resident memory T cells publication-title: Immunity – volume: 22 start-page: 102 year: 2020 ident: CR43 article-title: Fibroblasts direct differentiation of human breast epithelial progenitors publication-title: Breast Cancer Res – volume: 6 start-page: 213 year: 2004 end-page: 218 ident: CR26 article-title: Towards an integrated model for breast cancer etiology: the lifelong interplay of genes, lifestyle, and hormones publication-title: Breast Cancer Res – volume: 33 start-page: 463 year: 2018 end-page: 479 ident: CR18 article-title: Fibroblast heterogeneity and immunosuppressive environment in human breast cancer publication-title: Cancer Cell – volume: 19 start-page: 369 year: 2019 end-page: 382 ident: CR20 article-title: Macrophages as regulators of tumour immunity and immunotherapy publication-title: Nat Rev Immunol – volume: 30 start-page: 531 year: 2012 end-page: 564 ident: CR29 article-title: Regulatory T cells: mechanisms of differentiation and function publication-title: Annu Rev Immunol – volume: 9 start-page: 2897 year: 2018 ident: CR13 article-title: Targeting stromal remodeling and cancer stem cell plasticity overcomes chemoresistance in triple negative breast cancer publication-title: Nat Commun – volume: 1 start-page: 163 year: 2020 end-page: 175 ident: CR3 article-title: Imaging mass cytometry and multiplatform genomics define the phenogenomic landscape of breast cancer publication-title: Nature Cancer – volume: 2 year: 2010 ident: CR7 article-title: Hormone action in the mammary gland publication-title: Cold Spring Harb Perspect Biol – volume: 24 start-page: 986 year: 2018 end-page: 993 ident: CR59 article-title: Single‐cell profiling of breast cancer T cells reveals a tissue‐resident memory subset associated with improved prognosis publication-title: Nat Med – volume: 12 start-page: R21 year: 2010 ident: CR38 article-title: Transcriptome analyses of mouse and human mammary cell subpopulations reveal multiple conserved genes and pathways publication-title: Breast Cancer Res – volume: 98 start-page: 10869 year: 2001 end-page: 10874 ident: CR64 article-title: Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications publication-title: Proc Natl Acad Sci USA – volume: 39 year: 2020 ident: CR68 article-title: Stromal cell diversity associated with immune evasion in human triple‐negative breast cancer publication-title: EMBO J – volume: 15 start-page: 907 year: 2009 end-page: 913 ident: CR37 article-title: Aberrant luminal progenitors as the candidate target population for basal tumor development in BRCA1 mutation carriers publication-title: Nat Med – volume: 25 start-page: 765 year: 2009 end-page: 771 ident: CR41 article-title: Testing significance relative to a fold‐change threshold is a TREAT publication-title: Bioinformatics – volume: 37 start-page: 456 year: 2020 end-page: 470 ident: CR36 article-title: Advancing cancer research and medicine with single‐cell genomics publication-title: Cancer Cell – volume: 18 start-page: 940 year: 2017 end-page: 950 ident: CR25 article-title: Tissue‐resident memory features are linked to the magnitude of cytotoxic T cell responses in human lung cancer publication-title: Nat Immunol – volume: 144 start-page: 296 year: 2011 end-page: 309 ident: CR48 article-title: Densely interconnected transcriptional circuits control cell states in human hematopoiesis publication-title: Cell – volume: 35 start-page: 618 year: 2019 end-page: 632 ident: CR57 article-title: Intraclonal plasticity in mammary tumors revealed through large‐scale single‐cell resolution 3D imaging publication-title: Cancer Cell – volume: 100 start-page: 489 year: 2020 end-page: 523 ident: CR24 article-title: Stem cells and the differentiation hierarchy in mammary gland development publication-title: Physiol Rev – volume: 128 start-page: 1371 year: 2018 end-page: 1383 ident: CR63 article-title: Integrated RNA and DNA sequencing reveals early drivers of metastatic breast cancer publication-title: J Clin Invest – volume: 8 year: 2017 ident: CR47 article-title: Induction of resident memory T cells enhances the efficacy of cancer vaccine publication-title: Nat Commun – volume: 47 year: 2019 ident: CR35 article-title: The R package Rsubread is easier, faster, cheaper and better for alignment and quantification of RNA sequencing reads publication-title: Nucleic Acids Res – volume: 472 start-page: 90 year: 2011 end-page: 94 ident: CR44 article-title: Tumour evolution inferred by single‐cell sequencing publication-title: Nature – volume: 22 start-page: 546 year: 2020 end-page: 558 ident: CR19 article-title: Tissue‐resident ductal macrophages survey the mammary epithelium and facilitate tissue remodelling publication-title: Nat Cell Biol – volume: 2 year: 2017 ident: CR39 article-title: Resident memory T cells in the skin mediate durable immunity to melanoma publication-title: Sci Immunol – volume: 344 start-page: 1396 year: 2014 end-page: 1401 ident: CR53 article-title: Single‐cell RNA‐seq highlights intratumoral heterogeneity in primary glioblastoma publication-title: Science – volume: 9 start-page: 3588 year: 2018 ident: CR30 article-title: Unravelling subclonal heterogeneity and aggressive disease states in TNBC through single‐cell RNA‐seq publication-title: Nat Commun – volume: 7 year: 2017 ident: CR5 article-title: QuPath: Open source software for digital pathology image analysis publication-title: Sci Rep – volume: 40 start-page: 4288 year: 2012 end-page: 4297 ident: CR40 article-title: Differential expression analysis of multifactor RNA‐Seq experiments with respect to biological variation publication-title: Nucleic Acids Res – volume: 172 start-page: 205 year: 2018 end-page: 217 ident: CR11 article-title: Multiclonal invasion in breast tumors identified by topographic single cell sequencing publication-title: Cell – volume: 35 start-page: 588 year: 2019 end-page: 602 ident: CR12 article-title: Human tumor‐associated macrophage and monocyte transcriptional landscapes reveal cancer‐specific reprogramming, biomarkers, and therapeutic targets publication-title: Cancer Cell – volume: 15 start-page: R29 year: 2014 ident: CR32 article-title: voom: Precision weights unlock linear model analysis tools for RNA‐seq read counts publication-title: Genome Biol – volume: 14 start-page: 1384 year: 2008 end-page: 1389 ident: CR22 article-title: A method for quantifying normal human mammary epithelial stem cells with in vivo regenerative ability publication-title: Nat Med – volume: 174 start-page: 1293 year: 2018 end-page: 1308 ident: CR4 article-title: Single‐cell map of diverse immune phenotypes in the breast tumor microenvironment publication-title: Cell – volume: 7 start-page: 274 year: 2006 end-page: 283 ident: CR28 article-title: Positive regulation of immune cell function and inflammatory responses by phosphatase PAC‐1 publication-title: Nat Immunol – volume: 534 start-page: 47 year: 2016 end-page: 54 ident: CR46 article-title: Landscape of somatic mutations in 560 breast cancer whole‐genome sequences publication-title: Nature – volume: 8 year: 2017 ident: CR16 article-title: Single‐cell RNA‐seq enables comprehensive tumour and immune cell profiling in primary breast cancer publication-title: Nat Commun – volume: 344 start-page: 276 year: 2001 end-page: 285 ident: CR17 article-title: Estrogen and the risk of breast cancer publication-title: N Engl J Med – volume: 177 start-page: 1888 year: 2019 end-page: 1902 ident: CR65 article-title: Comprehensive integration of single‐cell data publication-title: Cell – volume: 177 start-page: 1330 year: 2019 end-page: 1345 ident: CR67 article-title: A single‐cell atlas of the tumor and immune ecosystem of human breast cancer publication-title: Cell – volume: 8 start-page: 1627 year: 2017 ident: CR50 article-title: Construction of developmental lineage relationships in the mouse mammary gland by single‐cell RNA profiling publication-title: Nat Commun – volume: 331 start-page: 1565 year: 2011 end-page: 1570 ident: CR62 article-title: Cancer immunoediting: integrating immunity's roles in cancer suppression and promotion publication-title: Science – volume: 30 start-page: 745 year: 2020 end-page: 762 ident: CR56 article-title: A pan‐cancer blueprint of the heterogeneous tumor microenvironment revealed by single‐cell profiling publication-title: Cell Res – volume: 36 start-page: 411 year: 2018 end-page: 420 ident: CR9 article-title: Integrating single‐cell transcriptomic data across different conditions, technologies, and species publication-title: Nat Biotechnol – volume: 173 start-page: 879 year: 2018 end-page: 893 ident: CR31 article-title: Chemoresistance evolution in triple‐negative breast cancer delineated by single‐cell sequencing publication-title: Cell – volume: 141 start-page: 39 year: 2010 end-page: 51 ident: CR55 article-title: Macrophage diversity enhances tumor progression and metastasis publication-title: Cell – start-page: 439 year: 2014 end-page: 451 ident: CR42 article-title: Clinical and pathologic prognostic and predictive factors publication-title: Diseases of the Breast: Fifth Edition – volume: 244 start-page: 61 year: 2018 end-page: 70 ident: CR14 article-title: Analysis of clonal expansions through the normal and premalignant human breast epithelium reveals the presence of luminal stem cells publication-title: J Pathol – volume: 9 start-page: 2028 year: 2018 ident: CR45 article-title: Profiling human breast epithelial cells using single cell RNA sequencing identifies cell diversity publication-title: Nat Commun – volume: 500 start-page: 415 year: 2013 end-page: 421 ident: CR2 article-title: Signatures of mutational processes in human cancer publication-title: Nature – volume: 406 start-page: 747 year: 2000 end-page: 752 ident: CR54 article-title: Molecular portraits of human breast tumours publication-title: Nature – volume: 30 start-page: 923 year: 2014 end-page: 930 ident: CR34 article-title: featureCounts: an efficient general purpose program for assigning sequence reads to genomic features publication-title: Bioinformatics – volume: 27 start-page: 1160 year: 2009 end-page: 1167 ident: CR51 article-title: Supervised risk predictor of breast cancer based on intrinsic subtypes publication-title: J Clin Oncol – volume: 5 start-page: 1438 year: 2016 ident: CR15 article-title: From reads to genes to pathways: differential expression analysis of RNA‐Seq experiments using Rsubread and the edgeR quasi‐likelihood pipeline publication-title: F1000Res – volume: 13 start-page: 228 year: 2016 end-page: 241 ident: CR58 article-title: Clinical relevance of host immunity in breast cancer: from TILs to the clinic publication-title: Nat Rev Clin Oncol – volume: 27 start-page: 1287 year: 2017 end-page: 1299 ident: CR33 article-title: Single‐cell DNA sequencing reveals a late‐dissemination model in metastatic colorectal cancer publication-title: Genome Res – volume: 56 start-page: 402 year: 1996 end-page: 404 ident: CR66 article-title: Contiguous patches of normal human mammary epithelium derived from a single stem cell: implications for breast carcinogenesis publication-title: Cancer Res – volume: 490 start-page: 61 year: 2012 end-page: 70 ident: CR10 article-title: Comprehensive molecular portraits of human breast tumours publication-title: Nature – volume: 23 start-page: 1710 year: 2017 end-page: 1721 ident: CR6 article-title: Fibroblast subtypes regulate responsiveness of luminal breast cancer to estrogen publication-title: Clin Cancer Res – volume: 9 start-page: 2897 year: 2018 article-title: Targeting stromal remodeling and cancer stem cell plasticity overcomes chemoresistance in triple negative breast cancer publication-title: Nat Commun – volume: 19 start-page: 40 year: 2018 end-page: 50 article-title: Tumour‐infiltrating lymphocytes and prognosis in different subtypes of breast cancer: a pooled analysis of 3771 patients treated with neoadjuvant therapy publication-title: Lancet Oncol – volume: 37 start-page: 456 year: 2020 end-page: 470 article-title: Advancing cancer research and medicine with single‐cell genomics publication-title: Cancer Cell – volume: 12 start-page: R21 year: 2010 article-title: Transcriptome analyses of mouse and human mammary cell subpopulations reveal multiple conserved genes and pathways publication-title: Breast Cancer Res – volume: 56 start-page: 402 year: 1996 end-page: 404 article-title: Contiguous patches of normal human mammary epithelium derived from a single stem cell: implications for breast carcinogenesis publication-title: Cancer Res – volume: 7 start-page: 274 year: 2006 end-page: 283 article-title: Positive regulation of immune cell function and inflammatory responses by phosphatase PAC‐1 publication-title: Nat Immunol – volume: 14 start-page: 1384 year: 2008 end-page: 1389 article-title: A method for quantifying normal human mammary epithelial stem cells with in vivo regenerative ability publication-title: Nat Med – volume: 27 start-page: 1287 year: 2017 end-page: 1299 article-title: Single‐cell DNA sequencing reveals a late‐dissemination model in metastatic colorectal cancer publication-title: Genome Res – volume: 244 start-page: 61 year: 2018 end-page: 70 article-title: Analysis of clonal expansions through the normal and premalignant human breast epithelium reveals the presence of luminal stem cells publication-title: J Pathol – volume: 144 start-page: 296 year: 2011 end-page: 309 article-title: Densely interconnected transcriptional circuits control cell states in human hematopoiesis publication-title: Cell – volume: 578 start-page: 615 year: 2020 end-page: 620 article-title: The single‐cell pathology landscape of breast cancer publication-title: Nature – volume: 18 start-page: 940 year: 2017 end-page: 950 article-title: Tissue‐resident memory features are linked to the magnitude of cytotoxic T cell responses in human lung cancer publication-title: Nat Immunol – volume: 158 start-page: 1110 year: 2014 end-page: 1122 article-title: Circulating tumor cell clusters are oligoclonal precursors of breast cancer metastasis publication-title: Cell – volume: 406 start-page: 747 year: 2000 end-page: 752 article-title: Molecular portraits of human breast tumours publication-title: Nature – volume: 30 start-page: 745 year: 2020 end-page: 762 article-title: A pan‐cancer blueprint of the heterogeneous tumor microenvironment revealed by single‐cell profiling publication-title: Cell Res – volume: 30 start-page: 531 year: 2012 end-page: 564 article-title: Regulatory T cells: mechanisms of differentiation and function publication-title: Annu Rev Immunol – volume: 25 start-page: 765 year: 2009 end-page: 771 article-title: Testing significance relative to a fold‐change threshold is a TREAT publication-title: Bioinformatics – volume: 177 start-page: 1888 year: 2019 end-page: 1902 article-title: Comprehensive integration of single‐cell data publication-title: Cell – volume: 2 year: 2017 article-title: Resident memory T cells in the skin mediate durable immunity to melanoma publication-title: Sci Immunol – volume: 30 start-page: 923 year: 2014 end-page: 930 article-title: featureCounts: an efficient general purpose program for assigning sequence reads to genomic features publication-title: Bioinformatics – volume: 174 start-page: 1293 year: 2018 end-page: 1308 article-title: Single‐cell map of diverse immune phenotypes in the breast tumor microenvironment publication-title: Cell – volume: 25 start-page: 719 year: 2014 end-page: 734 article-title: Depletion of carcinoma‐associated fibroblasts and fibrosis induces immunosuppression and accelerates pancreas cancer with reduced survival publication-title: Cancer Cell – volume: 13 start-page: 228 year: 2016 end-page: 241 article-title: Clinical relevance of host immunity in breast cancer: from TILs to the clinic publication-title: Nat Rev Clin Oncol – volume: 19 start-page: 369 year: 2019 end-page: 382 article-title: Macrophages as regulators of tumour immunity and immunotherapy publication-title: Nat Rev Immunol – volume: 98 start-page: 10869 year: 2001 end-page: 10874 article-title: Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications publication-title: Proc Natl Acad Sci USA – volume: 22 start-page: 546 year: 2020 end-page: 558 article-title: Tissue‐resident ductal macrophages survey the mammary epithelium and facilitate tissue remodelling publication-title: Nat Cell Biol – volume: 36 start-page: 411 year: 2018 end-page: 420 article-title: Integrating single‐cell transcriptomic data across different conditions, technologies, and species publication-title: Nat Biotechnol – volume: 35 start-page: 588 year: 2019 end-page: 602 article-title: Human tumor‐associated macrophage and monocyte transcriptional landscapes reveal cancer‐specific reprogramming, biomarkers, and therapeutic targets publication-title: Cancer Cell – volume: 500 start-page: 415 year: 2013 end-page: 421 article-title: Signatures of mutational processes in human cancer publication-title: Nature – volume: 6 start-page: 213 year: 2004 end-page: 218 article-title: Towards an integrated model for breast cancer etiology: the lifelong interplay of genes, lifestyle, and hormones publication-title: Breast Cancer Res – volume: 27 start-page: 1160 year: 2009 end-page: 1167 article-title: Supervised risk predictor of breast cancer based on intrinsic subtypes publication-title: J Clin Oncol – volume: 41 start-page: 886 year: 2014 end-page: 897 article-title: Tissue‐resident memory T cells publication-title: Immunity – volume: 35 start-page: 618 year: 2019 end-page: 632 article-title: Intraclonal plasticity in mammary tumors revealed through large‐scale single‐cell resolution 3D imaging publication-title: Cancer Cell – start-page: 265 year: 2018 end-page: 273 – volume: 5 start-page: 1438 year: 2016 article-title: From reads to genes to pathways: differential expression analysis of RNA‐Seq experiments using Rsubread and the edgeR quasi‐likelihood pipeline publication-title: F1000Res – volume: 24 start-page: 986 year: 2018 end-page: 993 article-title: Single‐cell profiling of breast cancer T cells reveals a tissue‐resident memory subset associated with improved prognosis publication-title: Nat Med – volume: 8 start-page: 1627 year: 2017 article-title: Construction of developmental lineage relationships in the mouse mammary gland by single‐cell RNA profiling publication-title: Nat Commun – volume: 40 start-page: 4288 year: 2012 end-page: 4297 article-title: Differential expression analysis of multifactor RNA‐Seq experiments with respect to biological variation publication-title: Nucleic Acids Res – volume: 331 start-page: 1565 year: 2011 end-page: 1570 article-title: Cancer immunoediting: integrating immunity's roles in cancer suppression and promotion publication-title: Science – volume: 8 year: 2017 article-title: Single‐cell RNA‐seq enables comprehensive tumour and immune cell profiling in primary breast cancer publication-title: Nat Commun – volume: 100 start-page: 489 year: 2020 end-page: 523 article-title: Stem cells and the differentiation hierarchy in mammary gland development publication-title: Physiol Rev – volume: 23 start-page: 1710 year: 2017 end-page: 1721 article-title: Fibroblast subtypes regulate responsiveness of luminal breast cancer to estrogen publication-title: Clin Cancer Res – volume: 128 start-page: 1371 year: 2018 end-page: 1383 article-title: Integrated RNA and DNA sequencing reveals early drivers of metastatic breast cancer publication-title: J Clin Invest – volume: 344 start-page: 1396 year: 2014 end-page: 1401 article-title: Single‐cell RNA‐seq highlights intratumoral heterogeneity in primary glioblastoma publication-title: Science – volume: 39 year: 2020 article-title: Stromal cell diversity associated with immune evasion in human triple‐negative breast cancer publication-title: EMBO J – volume: 33 start-page: 463 year: 2018 end-page: 479 article-title: Fibroblast heterogeneity and immunosuppressive environment in human breast cancer publication-title: Cancer Cell – volume: 1 start-page: 163 year: 2020 end-page: 175 article-title: Imaging mass cytometry and multiplatform genomics define the phenogenomic landscape of breast cancer publication-title: Nature Cancer – volume: 22 start-page: 102 year: 2020 article-title: Fibroblasts direct differentiation of human breast epithelial progenitors publication-title: Breast Cancer Res – volume: 8 year: 2017 article-title: Induction of resident memory T cells enhances the efficacy of cancer vaccine publication-title: Nat Commun – volume: 141 start-page: 39 year: 2010 end-page: 51 article-title: Macrophage diversity enhances tumor progression and metastasis publication-title: Cell – volume: 490 start-page: 61 year: 2012 end-page: 70 article-title: Comprehensive molecular portraits of human breast tumours publication-title: Nature – volume: 15 start-page: R29 year: 2014 article-title: voom: Precision weights unlock linear model analysis tools for RNA‐seq read counts publication-title: Genome Biol – start-page: 439 year: 2014 end-page: 451 – volume: 26 start-page: 638 year: 2014 end-page: 652 article-title: Dissecting the tumor myeloid compartment reveals rare activating antigen‐presenting cells critical for T cell immunity publication-title: Cancer Cell – volume: 47 year: 2019 article-title: The R package Rsubread is easier, faster, cheaper and better for alignment and quantification of RNA sequencing reads publication-title: Nucleic Acids Res – volume: 344 start-page: 276 year: 2001 end-page: 285 article-title: Estrogen and the risk of breast cancer publication-title: N Engl J Med – volume: 173 start-page: 879 year: 2018 end-page: 893 article-title: Chemoresistance evolution in triple‐negative breast cancer delineated by single‐cell sequencing publication-title: Cell – volume: 15 start-page: 907 year: 2009 end-page: 913 article-title: Aberrant luminal progenitors as the candidate target population for basal tumor development in BRCA1 mutation carriers publication-title: Nat Med – volume: 172 start-page: 205 year: 2018 end-page: 217 article-title: Multiclonal invasion in breast tumors identified by topographic single cell sequencing publication-title: Cell – volume: 9 start-page: 9524 year: 2019 article-title: Single‐cell RNA‐seq variant analysis for exploration of genetic heterogeneity in cancer publication-title: Sci Rep – volume: 9 start-page: 2028 year: 2018 article-title: Profiling human breast epithelial cells using single cell RNA sequencing identifies cell diversity publication-title: Nat Commun – volume: 472 start-page: 90 year: 2011 end-page: 94 article-title: Tumour evolution inferred by single‐cell sequencing publication-title: Nature – volume: 534 start-page: 47 year: 2016 end-page: 54 article-title: Landscape of somatic mutations in 560 breast cancer whole‐genome sequences publication-title: Nature – volume: 7 year: 2017 article-title: QuPath: Open source software for digital pathology image analysis publication-title: Sci Rep – volume: 2 year: 2010 article-title: Hormone action in the mammary gland publication-title: Cold Spring Harb Perspect Biol – volume: 9 start-page: 3588 year: 2018 article-title: Unravelling subclonal heterogeneity and aggressive disease states in TNBC through single‐cell RNA‐seq publication-title: Nat Commun – volume: 113 start-page: 1027 year: 2009 end-page: 1037 article-title: Ovarian conservation at the time of hysterectomy and long‐term health outcomes in the nurses' health study publication-title: Obstet Gynecol – volume: 177 start-page: 1330 year: 2019 end-page: 1345 article-title: A single‐cell atlas of the tumor and immune ecosystem of human breast cancer publication-title: Cell – ident: e_1_2_9_13_1 doi: 10.1016/j.ccell.2019.02.009 – ident: e_1_2_9_21_1 doi: 10.1038/s41577-019-0127-6 – ident: e_1_2_9_56_1 doi: 10.1016/j.cell.2010.03.014 – ident: e_1_2_9_39_1 doi: 10.1186/bcr2560 – ident: e_1_2_9_55_1 doi: 10.1038/35021093 – ident: e_1_2_9_36_1 doi: 10.1093/nar/gkz114 – ident: e_1_2_9_29_1 doi: 10.1038/ni1310 – ident: e_1_2_9_54_1 doi: 10.1126/science.1254257 – ident: e_1_2_9_69_1 doi: 10.15252/embj.2019104063 – ident: e_1_2_9_2_1 doi: 10.1016/j.cell.2014.07.013 – ident: e_1_2_9_58_1 doi: 10.1016/j.ccell.2019.02.010 – ident: e_1_2_9_48_1 doi: 10.1038/ncomms15221 – ident: e_1_2_9_32_1 doi: 10.1016/j.cell.2018.03.041 – ident: e_1_2_9_40_1 doi: 10.1126/sciimmunol.aam6346 – ident: e_1_2_9_47_1 doi: 10.1038/nature17676 – ident: e_1_2_9_44_1 doi: 10.1186/s13058-020-01344-0 – ident: e_1_2_9_20_1 doi: 10.1038/s41556-020-0505-0 – ident: e_1_2_9_28_1 doi: 10.1038/s41586-019-1876-x – ident: e_1_2_9_50_1 doi: 10.1016/j.ccr.2014.04.005 – ident: e_1_2_9_34_1 doi: 10.1101/gr.209973.116 – ident: e_1_2_9_62_1 doi: 10.1007/978-3-030-00934-2_30 – ident: e_1_2_9_19_1 doi: 10.1016/j.ccell.2018.01.011 – volume: 56 start-page: 402 year: 1996 ident: e_1_2_9_67_1 article-title: Contiguous patches of normal human mammary epithelium derived from a single stem cell: implications for breast carcinogenesis publication-title: Cancer Res – ident: e_1_2_9_7_1 doi: 10.1158/1078-0432.CCR-15-2851 – ident: e_1_2_9_64_1 doi: 10.1172/JCI96153 – ident: e_1_2_9_49_1 doi: 10.1016/j.cell.2011.01.004 – ident: e_1_2_9_14_1 doi: 10.1038/s41467-018-05220-6 – ident: e_1_2_9_51_1 doi: 10.1038/s41467-017-01560-x – ident: e_1_2_9_42_1 doi: 10.1093/bioinformatics/btp053 – ident: e_1_2_9_3_1 doi: 10.1038/nature12477 – ident: e_1_2_9_15_1 doi: 10.1002/path.4989 – ident: e_1_2_9_26_1 doi: 10.1038/ni.3775 – ident: e_1_2_9_66_1 doi: 10.1016/j.cell.2019.05.031 – ident: e_1_2_9_5_1 doi: 10.1016/j.cell.2018.05.060 – ident: e_1_2_9_8_1 doi: 10.1101/cshperspect.a003178 – ident: e_1_2_9_30_1 doi: 10.1146/annurev.immunol.25.022106.141623 – start-page: 439 volume-title: Diseases of the Breast: Fifth Edition year: 2014 ident: e_1_2_9_43_1 – ident: e_1_2_9_23_1 doi: 10.1038/nm.1791 – ident: e_1_2_9_65_1 doi: 10.1073/pnas.191367098 – ident: e_1_2_9_9_1 doi: 10.1016/j.ccell.2014.09.007 – ident: e_1_2_9_46_1 doi: 10.1038/s41467-018-04334-1 – ident: e_1_2_9_4_1 doi: 10.1038/s43018-020-0026-6 – ident: e_1_2_9_31_1 doi: 10.1038/s41467-018-06052-0 – ident: e_1_2_9_22_1 doi: 10.1016/S1470-2045(17)30904-X – ident: e_1_2_9_41_1 doi: 10.1093/nar/gks042 – ident: e_1_2_9_45_1 doi: 10.1038/nature09807 – ident: e_1_2_9_61_1 doi: 10.1016/j.immuni.2014.12.007 – ident: e_1_2_9_59_1 doi: 10.1038/nrclinonc.2015.215 – ident: e_1_2_9_38_1 doi: 10.1038/nm.2000 – ident: e_1_2_9_10_1 doi: 10.1038/nbt.4096 – ident: e_1_2_9_60_1 doi: 10.1038/s41591-018-0078-7 – ident: e_1_2_9_52_1 doi: 10.1200/JCO.2008.18.1370 – ident: e_1_2_9_53_1 doi: 10.1097/AOG.0b013e3181a11c64 – ident: e_1_2_9_6_1 doi: 10.1038/s41598-017-17204-5 – volume: 5 start-page: 1438 year: 2016 ident: e_1_2_9_16_1 article-title: From reads to genes to pathways: differential expression analysis of RNA‐Seq experiments using Rsubread and the edgeR quasi‐likelihood pipeline publication-title: F1000Res – ident: e_1_2_9_33_1 doi: 10.1186/gb-2014-15-2-r29 – ident: e_1_2_9_17_1 doi: 10.1038/ncomms15081 – ident: e_1_2_9_24_1 doi: 10.1038/s41598-019-45934-1 – ident: e_1_2_9_27_1 doi: 10.1186/bcr921 – ident: e_1_2_9_11_1 doi: 10.1038/nature11412 – ident: e_1_2_9_68_1 doi: 10.1016/j.cell.2019.03.005 – ident: e_1_2_9_12_1 doi: 10.1016/j.cell.2017.12.007 – ident: e_1_2_9_25_1 doi: 10.1152/physrev.00040.2018 – ident: e_1_2_9_63_1 doi: 10.1126/science.1203486 – ident: e_1_2_9_35_1 doi: 10.1093/bioinformatics/btt656 – ident: e_1_2_9_37_1 doi: 10.1016/j.ccell.2020.03.008 – ident: e_1_2_9_18_1 doi: 10.1056/NEJM200101253440407 – ident: e_1_2_9_57_1 doi: 10.1038/s41422-020-0355-0 |
| SSID | ssj0005871 |
| Score | 2.7052393 |
| Snippet | To examine global changes in breast heterogeneity across different states, we determined the single‐cell transcriptomes of > 340,000 cells encompassing normal... To examine global changes in breast heterogeneity across different states, we determined the single-cell transcriptomes of > 340,000 cells encompassing normal... |
| SourceID | pubmedcentral proquest pubmed crossref wiley springer |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | e107333 |
| SubjectTerms | BRCA1 carriers BRCA1 protein Breast cancer Breast Neoplasms - classification Breast Neoplasms - genetics Breast Neoplasms - metabolism Breast Neoplasms - pathology Carcinogenesis - genetics Carcinogenesis - metabolism Carcinogenesis - pathology CD8 antigen CD8-Positive T-Lymphocytes - metabolism Clonal selection Copy number Cycles EMBO03 EMBO19 EMBO22 ErbB-2 protein Estrogen receptors Estrogens Female Fibroblasts Gene expression Gene Expression Profiling Gene Expression Regulation, Neoplastic Genetic Heterogeneity Heterogeneity Humans Immunoregulation Immunotherapy Leukocyte migration LN metastasis Lymph nodes Lymphatic system Lymphocytes Lymphocytes T Macrophages Mammary gland Mammary glands Mammary Glands, Human - cytology Mammary Glands, Human - metabolism Mammary Glands, Human - pathology Menopause Metastases microenvironment Microenvironments Mutation Preneoplasia Receptors Resource RNA-Seq Single-Cell Analysis single‐cell RNA‐seq Stroma Transcriptomes Tumor cells Tumor Microenvironment Tumors |
| Title | A single‐cell RNA expression atlas of normal, preneoplastic and tumorigenic states in the human breast |
| URI | https://link.springer.com/article/10.15252/embj.2020107333 https://onlinelibrary.wiley.com/doi/abs/10.15252%2Fembj.2020107333 https://www.ncbi.nlm.nih.gov/pubmed/33950524 https://www.proquest.com/docview/2534895179 https://www.proquest.com/docview/2522400323 https://pubmed.ncbi.nlm.nih.gov/PMC8167363 |
| Volume | 40 |
| WOSCitedRecordID | wos000647156800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library Full Collection 2020 customDbUrl: eissn: 1460-2075 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0005871 issn: 0261-4189 databaseCode: DRFUL dateStart: 19970101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell – providerCode: PRVWIB databaseName: Wiley Online Library Open Access customDbUrl: eissn: 1460-2075 dateEnd: 20231231 omitProxy: false ssIdentifier: ssj0005871 issn: 0261-4189 databaseCode: WIN dateStart: 19970101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9NAEB5BC4ILj_IKlGqRuICw2vX6sXsMpREgiFBVRG6W96UGpU7VOAhu_AR-I7-EmfUjhAqQEAdbWns9yY5n7ZnZ8fcBPLYCrSJN4kirJIkIUC7S3IlIZYZ7n0tuMh_IJvLxWE4m6udvYRp8iD7hRjMjPK9pgpd60TH2EGqoO9EfMcCj5dxcCHERNjkXkugb4uTdqsxDhqAr5FkSLlW7VEkydn-RsP5qOudvni-b7NdO1z3b8GoaXf8fg7oB11rHlA0bS7oJF1y1BZcbqsovW3Blv2OGuwXHQ0YZhpn7_vUbJf7Z4XjI3Oe2pLZiZY0uOZt7VpFDPHvGAm7m_BSPonBWVpbVyxOi5HIVtsM3TQs2rRg6oyyQBjJNtfL1bTgaHRztv4xaxobIYNghIp9k0pd6zxlLOIAZ9xikeuVSpVNCykut8tYlKTpdGR1Uyntphc8Fjzn6Pndgo5pX7h6wzFjNU1s63BJucuWslVobE3Pr-J4ZwG53rwrTopkTqcasoKiGlFmQKouVKgfwpL_itEHy-EPf7e72F-2cXhRxinatCNJsAI_606h60nSJalxSn1CUK2IUcbexlv7HhFDEGpgMIF-zo74DIX2vn6mmxwHxW3Iqv0OZTzuLW_2t348hDZb218EWB2-fv1417__jdQ_gakz1PiFDtQ0b9dnSPYRL5lM9XZzthEmJ-3wid2DzxeHo_RtsfXg1_gGUDTns |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB6VAioXHgXahQJG4gIiah07Dx-XVasW2gihlegtil_qoq236mYR3PgJ_EZ-CR7nsVoqQEIcckjiTOLJOJ4ZT74P4IVm3ioSHkdScB4hoFwkqWGRSBW1NsupSm0gm8iKIj89Fe_XYNT9C9PgQ_QJNxwZ4XuNAxwT0h1lD8KGmnP5yUd4uJ6bMcauwXXu_Q3kb_h4VCzrPPIQdYVEC6e5aNcqUcbuLxJW56YrDufVusl-8XTVtQ1z08Gd_9Kru3C7dU3JsLGle7Bm3CbcbMgqv27CxqjjhrsPZ0OCOYap-fHtO6b-yYdiSMyXtqjWkar2TjmZWeLQJZ6-JgE5c3bhj3rhpHKa1ItzJOUyzu-Hv5rmZOKId0dJoA0kEqvl6wcwPtgfjw6jlrMhUj7wYJHlaW4ruWeURiTAlFofplphEiETxMpLtLDa8MS7XSkeFMLaXDObMRpT7_08hHU3c2YbSKq0pImujN84VZkwWudSKhVTbeieGsBu97JK1eKZI63GtMS4BpVZoirLpSoH8LK_4qLB8vhD253u_ZftqJ6XceItWyCo2QCe96e96lHTlVfjAtuEslwWexFbjbn0N2NMIG8gH0C2Ykh9A8T6Xj3jJmcB8zunWIDnZb7qTG75WL_vQxJM7a-dLfdP3rxd7j76x-uewcbh-OS4PD4q3j2GWzFW_4R81Q6s15cL8wRuqM_1ZH75NIzQn3HjOq0 |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Zb9QwEB6VLdcLR7kWChiJFxBR69g5_Lhsu-Ioq6oqUt-i-FIXbb2rbhbBGz-B38gvweMcq6UCJMRDHpI4k3gyjmfGk-8DeK6Zt4qEx5EUnEcIKBdJalgkUkWtzXKqUhvIJrLxOD85EYcbMGz_hanxIbqEG46M8L3GAW7m2raUPQgbas7kJx_h4Xpuxhi7BJscuWR6sLl3NPp4sKr0yEPcFVItnOaiWa1EKTu_yFifnS64nBcrJ7vl03XnNsxOo5v_pV-34EbjnJJBbU23YcO4LbhS01V-3YJrw5Yd7g6cDghmGabmx7fvmPwnR-MBMV-aslpHysq75WRmiUOnePqKBOzM2dwf9cJJ6TSplmdIy2Wc3w__NS3IxBHvkJJAHEgk1stXd-F4tH88fBM1rA2R8qEHiyxPc1vKXaM0YgGm1PpA1QqTCJkgWl6ihdWGJ97xSvGgENbmmtmM0Zh6_-ce9NzMmQdAUqUlTXRp_MapyoTROpdSqZhqQ3dVH3bal1WoBtEciTWmBUY2qMwCVVmsVNmHF90V8xrN4w9tt9v3XzTjelHEibdtgbBmfXjWnfaqR02XXo1LbBMKc1nsRdyvzaW7GWMCmQN5H7I1Q-oaINr3-hk3OQ2o3znFEjwv82VrcqvH-n0fkmBqf-1ssf_h9bvV7sN_vO4pXD3cGxUHb8fvH8H1GMt_QsJqG3rV-dI8hsvqczVZnD9phuhPn9Y7Vg |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+single%E2%80%90cell+RNA+expression+atlas+of+normal%2C+preneoplastic+and+tumorigenic+states+in+the+human+breast&rft.jtitle=The+EMBO+journal&rft.au=Pal%2C+Bhupinder&rft.au=Chen%2C+Yunshun&rft.au=Vaillant%2C+Fran%C3%A7ois&rft.au=Capaldo%2C+Bianca+D&rft.date=2021-06-01&rft.pub=John+Wiley+and+Sons+Inc&rft.issn=0261-4189&rft.eissn=1460-2075&rft.volume=40&rft.issue=11&rft_id=info:doi/10.15252%2Fembj.2020107333&rft_id=info%3Apmid%2F33950524&rft.externalDocID=PMC8167363 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0261-4189&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0261-4189&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0261-4189&client=summon |