Bayesian Neural Networks for Selection of Drug Sensitive Genes
Recent advances in high-throughput biotechnologies have provided an unprecedented opportunity for biomarker discovery, which, from a statistical point of view, can be cast as a variable selection problem. This problem is challenging due to the high-dimensional and nonlinear nature of omics data and,...
Uloženo v:
| Vydáno v: | Journal of the American Statistical Association Ročník 113; číslo 523; s. 955 - 972 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
United States
Taylor & Francis
03.07.2018
Taylor & Francis Group,LLC Taylor & Francis Ltd |
| Témata: | |
| ISSN: | 0162-1459, 1537-274X, 1537-274X |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Recent advances in high-throughput biotechnologies have provided an unprecedented opportunity for biomarker discovery, which, from a statistical point of view, can be cast as a variable selection problem. This problem is challenging due to the high-dimensional and nonlinear nature of omics data and, in general, it suffers three difficulties: (i) an unknown functional form of the nonlinear system, (ii) variable selection consistency, and (iii) high-demanding computation. To circumvent the first difficulty, we employ a feed-forward neural network to approximate the unknown nonlinear function motivated by its universal approximation ability. To circumvent the second difficulty, we conduct structure selection for the neural network, which induces variable selection, by choosing appropriate prior distributions that lead to the consistency of variable selection. To circumvent the third difficulty, we implement the population stochastic approximation Monte Carlo algorithm, a parallel adaptive Markov Chain Monte Carlo algorithm, on the OpenMP platform that provides a linear speedup for the simulation with the number of cores of the computer. The numerical results indicate that the proposed method can work very well for identification of relevant variables for high-dimensional nonlinear systems. The proposed method is successfully applied to identification of the genes that are associated with anticancer drug sensitivities based on the data collected in the cancer cell line encyclopedia study. Supplementary materials for this article are available online. |
|---|---|
| AbstractList | Recent advances in high-throughput biotechnologies have provided an unprecedented opportunity for biomarker discovery, which, from a statistical point of view, can be cast as a variable selection problem. This problem is challenging due to the high-dimensional and non-linear nature of omics data and, in general, it suffers three difficulties: (i) an unknown functional form of the nonlinear system, (ii) variable selection consistency, and (iii) high-demanding computation. To circumvent the first difficulty, we employ a feed-forward neural network to approximate the unknown nonlinear function motivated by its universal approximation ability. To circumvent the second difficulty, we conduct structure selection for the neural network, which induces variable selection, by choosing appropriate prior distributions that lead to the consistency of variable selection. To circumvent the third difficulty, we implement the population stochastic approximation Monte Carlo algorithm, a parallel adaptive Markov Chain Monte Carlo (MCMC) algorithm, on the OpenMP platform which provides a linear speedup for the simulation with the number of cores of the computer. The numerical results indicate that the proposed method can work very well for identification of relevant variables for high-dimensional nonlinear systems. The proposed method is successfully applied to identification of the genes that are associated with anticancerdrug sensitivities based on the data collected in the cancer cell line encyclopedia (CCLE) study.Recent advances in high-throughput biotechnologies have provided an unprecedented opportunity for biomarker discovery, which, from a statistical point of view, can be cast as a variable selection problem. This problem is challenging due to the high-dimensional and non-linear nature of omics data and, in general, it suffers three difficulties: (i) an unknown functional form of the nonlinear system, (ii) variable selection consistency, and (iii) high-demanding computation. To circumvent the first difficulty, we employ a feed-forward neural network to approximate the unknown nonlinear function motivated by its universal approximation ability. To circumvent the second difficulty, we conduct structure selection for the neural network, which induces variable selection, by choosing appropriate prior distributions that lead to the consistency of variable selection. To circumvent the third difficulty, we implement the population stochastic approximation Monte Carlo algorithm, a parallel adaptive Markov Chain Monte Carlo (MCMC) algorithm, on the OpenMP platform which provides a linear speedup for the simulation with the number of cores of the computer. The numerical results indicate that the proposed method can work very well for identification of relevant variables for high-dimensional nonlinear systems. The proposed method is successfully applied to identification of the genes that are associated with anticancerdrug sensitivities based on the data collected in the cancer cell line encyclopedia (CCLE) study. Recent advances in high-throughput biotechnologies have provided an unprecedented opportunity for biomarker discovery, which, from a statistical point of view, can be cast as a variable selection problem. This problem is challenging due to the high-dimensional and nonlinear nature of omics data and, in general, it suffers three difficulties: (i) an unknown functional form of the nonlinear system, (ii) variable selection consistency, and (iii) high-demanding computation. To circumvent the first difficulty, we employ a feed-forward neural network to approximate the unknown nonlinear function motivated by its universal approximation ability. To circumvent the second difficulty, we conduct structure selection for the neural network, which induces variable selection, by choosing appropriate prior distributions that lead to the consistency of variable selection. To circumvent the third difficulty, we implement the population stochastic approximation Monte Carlo algorithm, a parallel adaptive Markov Chain Monte Carlo algorithm, on the OpenMP platform that provides a linear speedup for the simulation with the number of cores of the computer. The numerical results indicate that the proposed method can work very well for identification of relevant variables for high-dimensional nonlinear systems. The proposed method is successfully applied to identification of the genes that are associated with anticancer drug sensitivities based on the data collected in the cancer cell line encyclopedia study. Supplementary materials for this article are available online. Recent advances in high-throughput biotechnologies have provided an unprecedented opportunity for biomarker discovery, which, from a statistical point of view, can be cast as a variable selection problem. This problem is challenging due to the high-dimensional and nonlinear nature of omics data and, in general, it suffers three difficulties: (i) an unknown functional form of the nonlinear system, (ii) variable selection consistency, and (iii) high-demanding computation. To circumvent the first difficulty, we employ a feed-forward neural network to approximate the unknown nonlinear function motivated by its universal approximation ability. To circumvent the second difficulty, we conduct structure selection for the neural network, which induces variable selection, by choosing appropriate prior distributions that lead to the consistency of variable selection. To circumvent the third difficulty, we implement the population stochastic approximation Monte Carlo algorithm, a parallel adaptive Markov Chain Monte Carlo algorithm, on the OpenMP platform that provides a linear speedup for the simulation with the number of cores of the computer. The numerical results indicate that the proposed method can work very well for identification of relevant variables for high-dimensional nonlinear systems. The proposed method is successfully applied to identification of the genes that are associated with anticancer drug sensitivities based on the data collected in the cancer cell line encyclopedia study. Recent advances in high-throughput biotechnologies have provided an unprecedented opportunity for biomarker discovery, which, from a statistical point of view, can be cast as a variable selection problem. This problem is challenging due to the high-dimensional and non-linear nature of omics data and, in general, it suffers three difficulties: (i) an unknown functional form of the nonlinear system, (ii) variable selection consistency, and (iii) high-demanding computation. To circumvent the first difficulty, we employ a feed-forward neural network to approximate the unknown nonlinear function motivated by its universal approximation ability. To circumvent the second difficulty, we conduct structure selection for the neural network, which induces variable selection, by choosing appropriate prior distributions that lead to the consistency of variable selection. To circumvent the third difficulty, we implement the population stochastic approximation Monte Carlo algorithm, a parallel adaptive Markov Chain Monte Carlo (MCMC) algorithm, on the OpenMP platform which provides a linear speedup for the simulation with the number of cores of the computer. The numerical results indicate that the proposed method can work very well for identification of relevant variables for high-dimensional nonlinear systems. The proposed method is successfully applied to identification of the genes that are associated with anticancerdrug sensitivities based on the data collected in the cancer cell line encyclopedia (CCLE) study. |
| Author | Li, Qizhai Zhou, Lei Liang, Faming |
| Author_xml | – sequence: 1 givenname: Faming surname: Liang fullname: Liang, Faming email: fmliang@purdue.edu organization: Department of Statistics, Purdue University – sequence: 2 givenname: Qizhai surname: Li fullname: Li, Qizhai organization: Academy of Mathematics and Systems Science, Chinese Academy of Sciences – sequence: 3 givenname: Lei surname: Zhou fullname: Zhou, Lei organization: Department of Molecular Genetics & Microbiology, University of Florida |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31354179$$D View this record in MEDLINE/PubMed |
| BookMark | eNqNkk1vEzEQhi1URNPCTyhaiQuXDfb4c4VUFQoUpAoOgMTNchy7OGzsYu8W5d_jJWkEPQC-jDTzzIfnnSN0EFN0CJ0QPCdY4WeYCCCMd3PARM4Jwx0BuIdmhFPZgmRfDtBsYtoJOkRHpaxwfVKpB-iQEsoZkd0Mnb40G1eCic17N2bTVzP8SPlbaXzKzUfXOzuEFJvkm1d5vKqeWMIQblxz4aIrD9F9b_riHu3sMfr85vWn87ft5YeLd-cvLlvLFRtaLxbUGcOFsJIvpFUOABzFAGTJmPEgwFPASpGOkiV4AZhJD2TBqw8zT4_R6bbu9bhYu6V1cajD6usc1iZvdDJB_xmJ4au-SjdaCIEB41rg6a5ATt9HVwa9DsW6vjfRpbFoACEoFVLx_0CB1JqSqIo-uYOu0phj3YQGKbGqCIVKPf59-P3UtypUgG8Bm1Mp2fk9QrCe1Na3autJbb1Tu-Y9v5Nnw2AmveoOQv_P7JNt9qoMKe9bMo6hk7_iZ9t4iPUW1qaeRb_Ug9n0Kftsog2lfuGvLX4CwLHJPw |
| CitedBy_id | crossref_primary_10_3390_environments11050094 crossref_primary_10_1038_s41598_023_48903_x crossref_primary_10_1007_s11263_021_01543_y crossref_primary_10_1016_j_gene_2019_04_060 crossref_primary_10_1002_sam_11579 crossref_primary_10_1093_jrsssc_qlad033 crossref_primary_10_1080_01621459_2021_1928514 crossref_primary_10_1371_journal_pgen_1009754 crossref_primary_10_1109_TNNLS_2022_3172276 crossref_primary_10_1002_sim_9564 crossref_primary_10_1016_j_csda_2023_107911 crossref_primary_10_3390_genes11010041 crossref_primary_10_1002_cjs_11666 crossref_primary_10_1109_TCAD_2022_3160948 crossref_primary_10_1186_s13018_022_03465_y crossref_primary_10_1016_j_compbiolchem_2023_107868 crossref_primary_10_1080_01621459_2019_1691563 crossref_primary_10_1016_j_neunet_2024_106512 crossref_primary_10_1080_01621459_2021_1895175 crossref_primary_10_1111_rssb_12423 crossref_primary_10_1007_s10462_023_10562_9 crossref_primary_10_1016_j_chemolab_2022_104562 crossref_primary_10_1016_j_neunet_2021_01_027 crossref_primary_10_1146_annurev_statistics_030718_105251 crossref_primary_10_1007_s11222_023_10338_9 crossref_primary_10_1016_j_jhydrol_2022_127445 crossref_primary_10_1007_s10114_024_3328_2 crossref_primary_10_1016_j_spl_2021_109246 crossref_primary_10_1093_jrsssb_qkae082 crossref_primary_10_1080_10618600_2020_1814305 crossref_primary_10_1016_j_csda_2023_107826 crossref_primary_10_1002_sam_11540 crossref_primary_10_3390_ddc4030028 crossref_primary_10_1002_sam_11664 crossref_primary_10_1002_sim_8347 crossref_primary_10_1002_sim_8743 crossref_primary_10_6339_24_JDS1156 crossref_primary_10_1007_s00180_024_01561_7 crossref_primary_10_1016_j_drudis_2020_12_003 |
| Cites_doi | 10.1371/journal.pone.0009024 10.1198/jasa.2011.tm10563 10.1080/10618600.2015.1089775 10.1007/BF00993164 10.1080/01621459.2014.984812 10.1016/j.csda.2013.03.027 10.1007/BF00116037 10.1038/nature11003 10.1111/j.1467-9868.2005.00503.x 10.1007/BF02551274 10.1186/bcr2596 10.1111/1467-9868.00346 10.1016/j.ygyno.2007.08.009 10.1186/bcr2635 10.1080/10618600.2017.1328364 10.1002/prot.22718 10.1111/rssb.12095 10.1093/biomet/asn036 10.1214/15-AOS1334 10.1093/biomet/asq017 10.1109/TPAMI.1984.4767596 10.1080/01621459.2012.695654 10.4161/cam.4.1.10973 10.1214/10-AOS792 10.1111/j.2517-6161.1996.tb02080.x 10.1007/s11222-005-4786-8 10.1186/1471-2407-14-334 10.1198/016214501753382273 10.1214/13-AOS1087 10.1080/01621459.2014.920256 10.1093/neuonc/now037 10.1093/biomet/82.4.711 10.1214/09-AOAS285 10.1214/12-AOAS590 10.1200/JCO.2010.28.9199 10.1063/1.1699114 10.1111/j.1467-9868.2008.00674.x 10.1017/S0016672310000662 10.1080/01621459.2012.761942 10.1198/016214508000000337 10.1214/009053604000000238 10.1016/0893-6080(89)90020-8 10.1080/01621459.2012.682536 10.1111/j.1467-9868.2009.00718.x 10.1093/biomet/asn034 10.1038/nature10983 10.1023/A:1010933404324 10.1016/j.econlet.2005.12.017 10.1016/0893-6080(89)90003-8 10.1186/1471-2156-12-87 10.1080/03610929008830400 10.1158/0008-5472.CAN-11-1780 10.1093/biomet/66.2.237 10.1016/j.molonc.2015.07.006 10.1073/pnas.1205943109 10.1093/jnci/95.12.851 10.1111/1467-9868.00353 10.1198/jasa.2011.ap09769 10.1080/01621459.1995.10476572 10.1093/biomet/57.1.97 10.1214/14-AOAS755 10.1239/aap/1418396243 10.1214/14-AOS1289 10.1214/009053607000000019 10.1198/jasa.2008.tm08516 10.1093/annonc/mdn739 10.1214/009053606000000722 10.1198/jcgs.2010.10039 10.1080/01621459.2014.960967 |
| ContentType | Journal Article |
| Copyright | 2018 American Statistical Association 2018 Copyright © 2018 American Statistical Association 2018 American Statistical Association |
| Copyright_xml | – notice: 2018 American Statistical Association 2018 – notice: Copyright © 2018 American Statistical Association – notice: 2018 American Statistical Association |
| DBID | AAYXX CITATION NPM 8BJ FQK JBE K9. 7S9 L.6 7X8 5PM |
| DOI | 10.1080/01621459.2017.1409122 |
| DatabaseName | CrossRef PubMed International Bibliography of the Social Sciences (IBSS) International Bibliography of the Social Sciences International Bibliography of the Social Sciences ProQuest Health & Medical Complete (Alumni) AGRICOLA AGRICOLA - Academic MEDLINE - Academic PubMed Central (Full Participant titles) |
| DatabaseTitle | CrossRef PubMed International Bibliography of the Social Sciences (IBSS) ProQuest Health & Medical Complete (Alumni) AGRICOLA AGRICOLA - Academic MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic International Bibliography of the Social Sciences (IBSS) PubMed AGRICOLA |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Statistics |
| EISSN | 1537-274X |
| EndPage | 972 |
| ExternalDocumentID | PMC6660200 31354179 10_1080_01621459_2017_1409122 45029722 1409122 |
| Genre | Article Journal Article |
| GrantInformation_xml | – fundername: Division of Mathematical Sciences grantid: 1545202,1612924 funderid: 10.13039/100000121 – fundername: National Institute of General Medical Sciences grantid: R01-GM117597 funderid: 10.13039/100000057 |
| GroupedDBID | -DZ -~X ..I .7F .QJ 0BK 0R~ 29L 2AX 30N 4.4 5GY 5RE 692 7WY 85S 8FL AAAVZ AABCJ AAENE AAGDL AAHBH AAHIA AAJMT AALDU AAMIU AAPUL AAQRR ABBHK ABCCY ABEHJ ABFAN ABFIM ABJNI ABLIJ ABLJU ABPAQ ABPEM ABPFR ABPPZ ABRLO ABTAI ABUFD ABXSQ ABXUL ABXYU ABYWD ACGFO ACGFS ACGOD ACIWK ACMTB ACNCT ACTIO ACTMH ACUBG ADCVX ADGTB ADLSF ADMHG ADODI ADXHL AEISY AENEX AEOZL AEPSL AEUPB AEYOC AFFNX AFRVT AFVYC AFXHP AGDLA AGMYJ AHDZW AIJEM AIYEW AKBVH AKOOK ALMA_UNASSIGNED_HOLDINGS ALQZU ALRMG AMVHM AQRUH AQTUD AVBZW AWYRJ BLEHA CCCUG CJ0 CS3 D0L DGEBU DKSSO DQDLB DSRWC DU5 EBS ECEWR EJD E~A E~B F5P FJW GTTXZ H13 HF~ HQ6 HZ~ H~9 H~P IPNFZ IPSME J.P JAAYA JAS JBMMH JBZCM JENOY JHFFW JKQEH JLEZI JLXEF JMS JPL JST K60 K6~ KYCEM LU7 M4Z MS~ MW2 NA5 NY~ O9- OFU OK1 P2P RIG RNANH ROSJB RTWRZ RWL RXW S-T SA0 SNACF TAE TASJS TBQAZ TDBHL TEJ TFL TFT TFW TN5 TOXWX TTHFI TUROJ U5U UPT UT5 UU3 WH7 WZA YQT YYM ZGOLN ZUP ~S~ ADYSH AFSUE ALIPV AMPGV AAYXX CITATION .-4 .GJ 07G 1OL 3R3 7X7 88E 88I 8AF 8C1 8FE 8FG 8FI 8FJ 8G5 8R4 8R5 AAFWJ AAIKQ AAKBW AAWIL ABAWQ ABEFU ABJCF ABPQH ABUWG ACAGQ ACGEE ACHJO ADBBV ADULT AEUMN AFKRA AFQQW AGCQS AGLEN AGLNM AGROQ AHMOU AI. AIHAF ALCKM AMATQ AMEWO AMXXU AQUVI AZQEC BCCOT BENPR BEZIV BGLVJ BKNYI BKOMP BPHCQ BPLKW BVXVI C06 CCPQU CRFIH DMQIW DWIFK DWQXO E.L FEDTE FRNLG FVMVE FYUFA GNUQQ GROUPED_ABI_INFORM_RESEARCH GUQSH HCIFZ HGD HMCUK HVGLF IVXBP K9- KQ8 L6V LJTGL M0C M0R M0T M1P M2O M2P M7S MVM NHB NPM NUSFT P-O PADUT PHGZM PHGZT PJZUB PPXIY PQBIZ PQBZA PQGLB PQQKQ PRG PROAC PSQYO PTHSS Q2X QCRFL RNS S0X SJN TAQ TFMCV UB9 UKHRP UQL VH1 VOH WHG YXB YYP ZCG ZGI ZXP 8BJ FQK JBE K9. 7S9 L.6 7X8 5PM |
| ID | FETCH-LOGICAL-c584t-f6b3eaa566c75b7c8e222e30221d44af262f320881931d2f62047f21b508804f3 |
| IEDL.DBID | TFW |
| ISICitedReferencesCount | 53 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000446710500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0162-1459 1537-274X |
| IngestDate | Tue Nov 04 01:50:54 EST 2025 Wed Oct 01 14:58:52 EDT 2025 Fri Oct 03 00:08:54 EDT 2025 Thu Nov 13 04:19:07 EST 2025 Mon Jul 21 05:59:41 EDT 2025 Sat Nov 29 03:56:43 EST 2025 Tue Nov 18 21:24:03 EST 2025 Thu May 29 09:01:31 EDT 2025 Mon Oct 20 23:50:43 EDT 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 523 |
| Keywords | Cancer Cell Line Encyclopedia Nonlinear Variable Selection OpenMP Omics Data Parallel Markov Chain Monte Carlo |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c584t-f6b3eaa566c75b7c8e222e30221d44af262f320881931d2f62047f21b508804f3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| OpenAccessLink | https://figshare.com/articles/journal_contribution/Bayesian_Neural_Networks_for_Selection_of_Drug_Sensitive_Genes/5787477 |
| PMID | 31354179 |
| PQID | 2770818332 |
| PQPubID | 41715 |
| PageCount | 18 |
| ParticipantIDs | proquest_miscellaneous_2266336785 proquest_miscellaneous_2221020718 proquest_journals_2770818332 pubmed_primary_31354179 informaworld_taylorfrancis_310_1080_01621459_2017_1409122 crossref_primary_10_1080_01621459_2017_1409122 crossref_citationtrail_10_1080_01621459_2017_1409122 pubmedcentral_primary_oai_pubmedcentral_nih_gov_6660200 jstor_primary_45029722 |
| PublicationCentury | 2000 |
| PublicationDate | 2018-07-03 |
| PublicationDateYYYYMMDD | 2018-07-03 |
| PublicationDate_xml | – month: 07 year: 2018 text: 2018-07-03 day: 03 |
| PublicationDecade | 2010 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States – name: Alexandria |
| PublicationTitle | Journal of the American Statistical Association |
| PublicationTitleAlternate | J Am Stat Assoc |
| PublicationYear | 2018 |
| Publisher | Taylor & Francis Taylor & Francis Group,LLC Taylor & Francis Ltd |
| Publisher_xml | – name: Taylor & Francis – name: Taylor & Francis Group,LLC – name: Taylor & Francis Ltd |
| References | cit0033 cit0077 cit0034 cit0078 cit0031 cit0075 cit0032 cit0076 cit0073 cit0030 cit0074 cit0071 cit0039 cit0037 cit0038 cit0035 cit0079 cit0036 cit0022 cit0066 cit0023 cit0067 cit0020 cit0064 cit0021 cit0065 cit0062 Liu G. (cit0050) 2010; 78 cit0063 cit0060 cit0061 Sun S. (cit0070) 2016 Raghu M. (cit0059) 2017; 70 cit0028 cit0029 cit0026 cit0027 cit0068 cit0025 cit0055 cit0012 cit0056 cit0053 cit0010 cit0054 cit0052 Liu H. (cit0051) 2009; 10 cit0019 cit0017 cit0018 cit0015 cit0016 cit0013 cit0057 Tibshirani R. (cit0072) 1996; 58 cit0014 cit0058 cit0044 cit0001 cit0045 cit0042 Carlin B. (cit0011) 1996 cit0043 cit0040 cit0041 Fan J. (cit0024) 2009; 10 Stouffer S. (cit0069) 1949 cit0008 cit0009 cit0006 cit0007 cit0004 cit0048 cit0005 cit0049 cit0002 cit0046 cit0047 cit0003 |
| References_xml | – volume-title: Bayes and Empirical Bayes Methods for Data Analysis year: 1996 ident: cit0011 – ident: cit0055 doi: 10.1371/journal.pone.0009024 – ident: cit0077 doi: 10.1198/jasa.2011.tm10563 – ident: cit0052 doi: 10.1080/10618600.2015.1089775 – ident: cit0006 doi: 10.1007/BF00993164 – ident: cit0064 doi: 10.1080/01621459.2014.984812 – volume-title: The American Soldier, Vol. 1: Adjustment During Army Life year: 1949 ident: cit0069 – ident: cit0074 doi: 10.1016/j.csda.2013.03.027 – ident: cit0062 doi: 10.1007/BF00116037 – ident: cit0005 doi: 10.1038/nature11003 – ident: cit0079 doi: 10.1111/j.1467-9868.2005.00503.x – ident: cit0019 doi: 10.1007/BF02551274 – ident: cit0054 – ident: cit0039 doi: 10.1186/bcr2596 – volume: 10 year: 2009 ident: cit0051 publication-title: Journal of Machine Learning Research – ident: cit0068 doi: 10.1111/1467-9868.00346 – ident: cit0076 doi: 10.1016/j.ygyno.2007.08.009 – ident: cit0058 doi: 10.1186/bcr2635 – ident: cit0003 doi: 10.1080/10618600.2017.1328364 – volume: 78 start-page: 2170 year: 2010 ident: cit0050 publication-title: Protein doi: 10.1002/prot.22718 – ident: cit0065 doi: 10.1111/rssb.12095 – ident: cit0048 doi: 10.1093/biomet/asn036 – ident: cit0013 doi: 10.1214/15-AOS1334 – ident: cit0012 doi: 10.1093/biomet/asq017 – ident: cit0026 doi: 10.1109/TPAMI.1984.4767596 – ident: cit0045 doi: 10.1080/01621459.2012.695654 – ident: cit0042 doi: 10.4161/cam.4.1.10973 – ident: cit0063 doi: 10.1214/10-AOS792 – volume: 58 start-page: 267 year: 1996 ident: cit0072 publication-title: Journal of the Royal Statistical Society doi: 10.1111/j.2517-6161.1996.tb02080.x – ident: cit0046 doi: 10.1007/s11222-005-4786-8 – start-page: 2066 year: 2016 ident: cit0070 publication-title: Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence – ident: cit0031 doi: 10.1186/1471-2407-14-334 – ident: cit0021 doi: 10.1198/016214501753382273 – ident: cit0033 doi: 10.1214/13-AOS1087 – ident: cit0017 doi: 10.1080/01621459.2014.920256 – ident: cit0044 doi: 10.1093/neuonc/now037 – ident: cit0029 doi: 10.1093/biomet/82.4.711 – ident: cit0015 doi: 10.1214/09-AOAS285 – ident: cit0028 doi: 10.1214/12-AOAS590 – ident: cit0002 doi: 10.1200/JCO.2010.28.9199 – ident: cit0053 doi: 10.1063/1.1699114 – ident: cit0023 doi: 10.1111/j.1467-9868.2008.00674.x – ident: cit0022 doi: 10.1111/j.1467-9868.2008.00674.x – ident: cit0061 – ident: cit0056 doi: 10.1017/S0016672310000662 – ident: cit0047 doi: 10.1080/01621459.2012.761942 – ident: cit0057 doi: 10.1198/016214508000000337 – ident: cit0004 doi: 10.1214/009053604000000238 – ident: cit0036 doi: 10.1016/0893-6080(89)90020-8 – ident: cit0038 doi: 10.1080/01621459.2012.682536 – volume: 70 start-page: 2847 year: 2017 ident: cit0059 publication-title: Proceedings of the 34th International Conference on Machine Learning – ident: cit0060 doi: 10.1111/j.1467-9868.2009.00718.x – ident: cit0014 doi: 10.1093/biomet/asn034 – ident: cit0018 doi: 10.1038/nature10983 – ident: cit0009 doi: 10.1023/A:1010933404324 – ident: cit0040 doi: 10.1016/j.econlet.2005.12.017 – ident: cit0025 doi: 10.1016/0893-6080(89)90003-8 – ident: cit0027 doi: 10.1186/1471-2156-12-87 – ident: cit0034 doi: 10.1080/03610929008830400 – ident: cit0035 doi: 10.1158/0008-5472.CAN-11-1780 – ident: cit0001 doi: 10.1093/biomet/66.2.237 – ident: cit0020 doi: 10.1016/j.molonc.2015.07.006 – ident: cit0078 doi: 10.1073/pnas.1205943109 – ident: cit0030 doi: 10.1093/jnci/95.12.851 – ident: cit0067 doi: 10.1111/1467-9868.00353 – ident: cit0071 doi: 10.1198/jasa.2011.ap09769 – ident: cit0016 – volume: 10 start-page: 1829 year: 2009 ident: cit0024 publication-title: Journal of Machine Learning Research – ident: cit0041 doi: 10.1080/01621459.1995.10476572 – ident: cit0032 doi: 10.1093/biomet/57.1.97 – ident: cit0008 doi: 10.1214/14-AOAS755 – ident: cit0066 doi: 10.1239/aap/1418396243 – ident: cit0075 doi: 10.1214/14-AOS1289 – ident: cit0037 doi: 10.1214/009053607000000019 – ident: cit0073 doi: 10.1198/jasa.2008.tm08516 – ident: cit0010 doi: 10.1093/annonc/mdn739 – ident: cit0049 doi: 10.1214/009053606000000722 – ident: cit0043 doi: 10.1198/jcgs.2010.10039 – ident: cit0007 doi: 10.1080/01621459.2014.960967 |
| SSID | ssj0000788 |
| Score | 2.533369 |
| Snippet | Recent advances in high-throughput biotechnologies have provided an unprecedented opportunity for biomarker discovery, which, from a statistical point of view,... |
| SourceID | pubmedcentral proquest pubmed crossref jstor informaworld |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 955 |
| SubjectTerms | Adaptive algorithms Algorithms antineoplastic agents Applications and Case Studies Approximation Bayesian analysis Bayesian theory Biological markers Biomarkers Biotechnology Cancer Cancer cell line encyclopedia cell lines Computation computers Consistency data collection Drugs Encyclopedias equations Feature selection Genes Identification Markov analysis Markov chain Markov chains Monte Carlo simulation neoplasm cells Networks Neural networks Nonlinear systems Nonlinear variable selection Omics data OpenMP Parallel Markov chain Monte Carlo Regression analysis Simulation Statistical methods Statistics |
| Title | Bayesian Neural Networks for Selection of Drug Sensitive Genes |
| URI | https://www.tandfonline.com/doi/abs/10.1080/01621459.2017.1409122 https://www.jstor.org/stable/45029722 https://www.ncbi.nlm.nih.gov/pubmed/31354179 https://www.proquest.com/docview/2770818332 https://www.proquest.com/docview/2221020718 https://www.proquest.com/docview/2266336785 https://pubmed.ncbi.nlm.nih.gov/PMC6660200 |
| Volume | 113 |
| WOSCitedRecordID | wos000446710500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAWR databaseName: Taylor & Francis Journals Complete customDbUrl: eissn: 1537-274X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000788 issn: 0162-1459 databaseCode: TFW dateStart: 19220301 isFulltext: true titleUrlDefault: https://www.tandfonline.com providerName: Taylor & Francis |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9tAEB4B4sCFV4GmBGSkXg3eh732BQnaRhxQhEQqcrPWm90WqXJQnFTqv-_M-gGpeBzK0ZkZO56dnf02mf0G4HNUsNQqloUTnZhQpoUJM2nT0CWTTEdForXyB4Wv1XCYjsfZTVNNWDVllbSHdjVRhM_VNLl1UbUVcWeIUohfm46ZMHVKjE2MUxbGpZ-m5mhw95iLle88SRYhmbRneF66y9LqtMRd2tYrPodE_y2ofLJCDbbe4d22YbOBp8FFHU87sGLLXdggRFoTOn-A80v9x9LJy4B4PVB3WBeSVwG-RXDr2-rgWAdTF3ydLX7gJ2Xl65MCYriu9uD74Nvoy1XYNGEIDWKTOQ5aIazWiPqMigtlUouIwgpc-tlESu14wp3gmKsQCbIJd8RvrxxnBSG_SDqxD2vltLQfIVBGMsdQN0EByjMVcyMdU5GLlTBFD2Tr_Nw0DOXUKONXzloi08Y7OXknb7zTg9PO7KGm6HjLIHs6svnc_zbi6kYmuXjDdt-HQfckGVP7LxL027jImzRQ5VwpogwUAsUnnRgnMP0ro0s7XaAOp103Ir30NR0EhgJxRdyDgzrUui8gmIipjVwP1FIQdgpEIL4sKe9_eiJx3Lrik6NP_-GPQ9jAy9QXMIs-rM1nC3sE6-Y3huXsGFbVOD32U_IvhhQs2Q |
| linkProvider | Taylor & Francis |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB6hFqm9UKAtbB80SL2mjR-Jk0slaLtqxbIXFtGb5XhtQEJZtI9K_fedcR7sImgPcM3MbBJ7PP6cnfkG4DgpWe4UK-KxyWws89LGhXR57LNxYZIyM0aFQuGBGg7zm5tiuRaG0irpDO1roogQq2lx08foNiXuFGEKEWxTnQlTJ0TZxDiG4fUU91rizx_1v_yKxir0niSTmGzaKp6__czK_rTCXtpmLP4Ji_6eUrm0R_W3_sfbPYdnDUKN3tUu9QKeuOolbBIorTmdt-HsvblzVHwZEbUH6g7rXPJZhK8RfQqddXC6o4mPLqaLr3ilmoUUpYhIrmc78Ll_OTq_ips-DLFFeDLHeSuFMwaBn1VpqWzuEFQ4gbs_G0tpPM-4FxzDFYJBNuaeKO6V56wk8JdIL3ZhrZpU7jVEykrmGepmKEB5oVJupWcq8akStuyBbEdf24aknHpl_NCs5TJtRkfT6OhmdHpw0pn9rFk6HjMolqdWz8PnEV_3MtHiEdvd4AfdnWRKHcBIcNA6hm4iwUxzpYg1UAgUv-3EuIbpjxlTuckCdTgdvBHs5Q_pIDYUCC3SHryqfa17AMFESp3keqBWvLBTIA7xVUn1_VvgEsfTK9452fuH8TiCjavRx4EeXA8_7MMmivKQzywOYG0-XbhDeGpv0UWnb8LKvAd0vDAb |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3dT9RAEJ8QJIYXFBU5RaiJr4XuR7vti4kKFwjkQiJG3jbb7a6akB653pH43zuz_ZAzKg_w2pnpx-zs7K_t7G8A3iUly51iRVyZzMYyL21cSJfHPqsKk5SZMSpsFD5Tk0l-eVmcd9WETVdWSe_QviWKCLmaJvd15fuKuANEKcSvTdtMmNonxibGMQs_QuicUZBfjL_-TsYqtJ4kk5hs-k08_zrN0vK0RF7aFyz-DYr-WVF5a4kaP3mAh3sKGx0-jT60AbUJK65-BusESVtG5-fw_qP56WjrZUTEHqg7aSvJmwifIvoc-urgYEdTHx3OFt_wSN2EAqWIKK6bF_BlfHTx6TjuujDEFsHJHEetFM4YhH1WpaWyuUNI4QSu_ayS0niecS84JiuEgqzingjuleesJOiXSC-2YLWe1m4bImUl8wx1MxSgvFApt9IzlfhUCVuOQPbO17ajKKdOGVea9UymnXc0eUd33hnB_mB23XJ03GVQ3B5ZPQ8fR3zbyUSLO2y3QhgMV5Ip9f8iwU4fF7rLA43mShFnoBAofjuIcQbTbxlTu-kCdTi9diPUy_-ng8hQILBIR_CyDbXhBgQTKfWRG4FaCsJBgRjElyX1j--BSRznC145eXUPf-zB4_PDsT47mZy-hnWU5KGYWezA6ny2cG9gzd5ghM52w7z8BarULs0 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Bayesian+Neural+Networks+for+Selection+of+Drug+Sensitive+Genes&rft.jtitle=Journal+of+the+American+Statistical+Association&rft.au=Liang%2C+Faming&rft.au=Li%2C+Qizhai&rft.au=Zhou%2C+Lei&rft.date=2018-07-03&rft.issn=1537-274X&rft.volume=113&rft.issue=523+p.955-972&rft.spage=955&rft.epage=972&rft_id=info:doi/10.1080%2F01621459.2017.1409122&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0162-1459&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0162-1459&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0162-1459&client=summon |