Bayesian Neural Networks for Selection of Drug Sensitive Genes

Recent advances in high-throughput biotechnologies have provided an unprecedented opportunity for biomarker discovery, which, from a statistical point of view, can be cast as a variable selection problem. This problem is challenging due to the high-dimensional and nonlinear nature of omics data and,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the American Statistical Association Jg. 113; H. 523; S. 955 - 972
Hauptverfasser: Liang, Faming, Li, Qizhai, Zhou, Lei
Format: Journal Article
Sprache:Englisch
Veröffentlicht: United States Taylor & Francis 03.07.2018
Taylor & Francis Group,LLC
Taylor & Francis Ltd
Schlagworte:
ISSN:0162-1459, 1537-274X, 1537-274X
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Recent advances in high-throughput biotechnologies have provided an unprecedented opportunity for biomarker discovery, which, from a statistical point of view, can be cast as a variable selection problem. This problem is challenging due to the high-dimensional and nonlinear nature of omics data and, in general, it suffers three difficulties: (i) an unknown functional form of the nonlinear system, (ii) variable selection consistency, and (iii) high-demanding computation. To circumvent the first difficulty, we employ a feed-forward neural network to approximate the unknown nonlinear function motivated by its universal approximation ability. To circumvent the second difficulty, we conduct structure selection for the neural network, which induces variable selection, by choosing appropriate prior distributions that lead to the consistency of variable selection. To circumvent the third difficulty, we implement the population stochastic approximation Monte Carlo algorithm, a parallel adaptive Markov Chain Monte Carlo algorithm, on the OpenMP platform that provides a linear speedup for the simulation with the number of cores of the computer. The numerical results indicate that the proposed method can work very well for identification of relevant variables for high-dimensional nonlinear systems. The proposed method is successfully applied to identification of the genes that are associated with anticancer drug sensitivities based on the data collected in the cancer cell line encyclopedia study. Supplementary materials for this article are available online.
AbstractList Recent advances in high-throughput biotechnologies have provided an unprecedented opportunity for biomarker discovery, which, from a statistical point of view, can be cast as a variable selection problem. This problem is challenging due to the high-dimensional and non-linear nature of omics data and, in general, it suffers three difficulties: (i) an unknown functional form of the nonlinear system, (ii) variable selection consistency, and (iii) high-demanding computation. To circumvent the first difficulty, we employ a feed-forward neural network to approximate the unknown nonlinear function motivated by its universal approximation ability. To circumvent the second difficulty, we conduct structure selection for the neural network, which induces variable selection, by choosing appropriate prior distributions that lead to the consistency of variable selection. To circumvent the third difficulty, we implement the population stochastic approximation Monte Carlo algorithm, a parallel adaptive Markov Chain Monte Carlo (MCMC) algorithm, on the OpenMP platform which provides a linear speedup for the simulation with the number of cores of the computer. The numerical results indicate that the proposed method can work very well for identification of relevant variables for high-dimensional nonlinear systems. The proposed method is successfully applied to identification of the genes that are associated with anticancerdrug sensitivities based on the data collected in the cancer cell line encyclopedia (CCLE) study.Recent advances in high-throughput biotechnologies have provided an unprecedented opportunity for biomarker discovery, which, from a statistical point of view, can be cast as a variable selection problem. This problem is challenging due to the high-dimensional and non-linear nature of omics data and, in general, it suffers three difficulties: (i) an unknown functional form of the nonlinear system, (ii) variable selection consistency, and (iii) high-demanding computation. To circumvent the first difficulty, we employ a feed-forward neural network to approximate the unknown nonlinear function motivated by its universal approximation ability. To circumvent the second difficulty, we conduct structure selection for the neural network, which induces variable selection, by choosing appropriate prior distributions that lead to the consistency of variable selection. To circumvent the third difficulty, we implement the population stochastic approximation Monte Carlo algorithm, a parallel adaptive Markov Chain Monte Carlo (MCMC) algorithm, on the OpenMP platform which provides a linear speedup for the simulation with the number of cores of the computer. The numerical results indicate that the proposed method can work very well for identification of relevant variables for high-dimensional nonlinear systems. The proposed method is successfully applied to identification of the genes that are associated with anticancerdrug sensitivities based on the data collected in the cancer cell line encyclopedia (CCLE) study.
Recent advances in high-throughput biotechnologies have provided an unprecedented opportunity for biomarker discovery, which, from a statistical point of view, can be cast as a variable selection problem. This problem is challenging due to the high-dimensional and nonlinear nature of omics data and, in general, it suffers three difficulties: (i) an unknown functional form of the nonlinear system, (ii) variable selection consistency, and (iii) high-demanding computation. To circumvent the first difficulty, we employ a feed-forward neural network to approximate the unknown nonlinear function motivated by its universal approximation ability. To circumvent the second difficulty, we conduct structure selection for the neural network, which induces variable selection, by choosing appropriate prior distributions that lead to the consistency of variable selection. To circumvent the third difficulty, we implement the population stochastic approximation Monte Carlo algorithm, a parallel adaptive Markov Chain Monte Carlo algorithm, on the OpenMP platform that provides a linear speedup for the simulation with the number of cores of the computer. The numerical results indicate that the proposed method can work very well for identification of relevant variables for high-dimensional nonlinear systems. The proposed method is successfully applied to identification of the genes that are associated with anticancer drug sensitivities based on the data collected in the cancer cell line encyclopedia study. Supplementary materials for this article are available online.
Recent advances in high-throughput biotechnologies have provided an unprecedented opportunity for biomarker discovery, which, from a statistical point of view, can be cast as a variable selection problem. This problem is challenging due to the high-dimensional and nonlinear nature of omics data and, in general, it suffers three difficulties: (i) an unknown functional form of the nonlinear system, (ii) variable selection consistency, and (iii) high-demanding computation. To circumvent the first difficulty, we employ a feed-forward neural network to approximate the unknown nonlinear function motivated by its universal approximation ability. To circumvent the second difficulty, we conduct structure selection for the neural network, which induces variable selection, by choosing appropriate prior distributions that lead to the consistency of variable selection. To circumvent the third difficulty, we implement the population stochastic approximation Monte Carlo algorithm, a parallel adaptive Markov Chain Monte Carlo algorithm, on the OpenMP platform that provides a linear speedup for the simulation with the number of cores of the computer. The numerical results indicate that the proposed method can work very well for identification of relevant variables for high-dimensional nonlinear systems. The proposed method is successfully applied to identification of the genes that are associated with anticancer drug sensitivities based on the data collected in the cancer cell line encyclopedia study.
Recent advances in high-throughput biotechnologies have provided an unprecedented opportunity for biomarker discovery, which, from a statistical point of view, can be cast as a variable selection problem. This problem is challenging due to the high-dimensional and non-linear nature of omics data and, in general, it suffers three difficulties: (i) an unknown functional form of the nonlinear system, (ii) variable selection consistency, and (iii) high-demanding computation. To circumvent the first difficulty, we employ a feed-forward neural network to approximate the unknown nonlinear function motivated by its universal approximation ability. To circumvent the second difficulty, we conduct structure selection for the neural network, which induces variable selection, by choosing appropriate prior distributions that lead to the consistency of variable selection. To circumvent the third difficulty, we implement the population stochastic approximation Monte Carlo algorithm, a parallel adaptive Markov Chain Monte Carlo (MCMC) algorithm, on the OpenMP platform which provides a linear speedup for the simulation with the number of cores of the computer. The numerical results indicate that the proposed method can work very well for identification of relevant variables for high-dimensional nonlinear systems. The proposed method is successfully applied to identification of the genes that are associated with anticancerdrug sensitivities based on the data collected in the cancer cell line encyclopedia (CCLE) study.
Author Li, Qizhai
Zhou, Lei
Liang, Faming
Author_xml – sequence: 1
  givenname: Faming
  surname: Liang
  fullname: Liang, Faming
  email: fmliang@purdue.edu
  organization: Department of Statistics, Purdue University
– sequence: 2
  givenname: Qizhai
  surname: Li
  fullname: Li, Qizhai
  organization: Academy of Mathematics and Systems Science, Chinese Academy of Sciences
– sequence: 3
  givenname: Lei
  surname: Zhou
  fullname: Zhou, Lei
  organization: Department of Molecular Genetics & Microbiology, University of Florida
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31354179$$D View this record in MEDLINE/PubMed
BookMark eNqNkk1vEzEQhi1URNPCTyhaiQuXDfb4c4VUFQoUpAoOgMTNchy7OGzsYu8W5d_jJWkEPQC-jDTzzIfnnSN0EFN0CJ0QPCdY4WeYCCCMd3PARM4Jwx0BuIdmhFPZgmRfDtBsYtoJOkRHpaxwfVKpB-iQEsoZkd0Mnb40G1eCic17N2bTVzP8SPlbaXzKzUfXOzuEFJvkm1d5vKqeWMIQblxz4aIrD9F9b_riHu3sMfr85vWn87ft5YeLd-cvLlvLFRtaLxbUGcOFsJIvpFUOABzFAGTJmPEgwFPASpGOkiV4AZhJD2TBqw8zT4_R6bbu9bhYu6V1cajD6usc1iZvdDJB_xmJ4au-SjdaCIEB41rg6a5ATt9HVwa9DsW6vjfRpbFoACEoFVLx_0CB1JqSqIo-uYOu0phj3YQGKbGqCIVKPf59-P3UtypUgG8Bm1Mp2fk9QrCe1Na3autJbb1Tu-Y9v5Nnw2AmveoOQv_P7JNt9qoMKe9bMo6hk7_iZ9t4iPUW1qaeRb_Ug9n0Kftsog2lfuGvLX4CwLHJPw
CitedBy_id crossref_primary_10_3390_environments11050094
crossref_primary_10_1038_s41598_023_48903_x
crossref_primary_10_1007_s11263_021_01543_y
crossref_primary_10_1016_j_gene_2019_04_060
crossref_primary_10_1002_sam_11579
crossref_primary_10_1093_jrsssc_qlad033
crossref_primary_10_1080_01621459_2021_1928514
crossref_primary_10_1371_journal_pgen_1009754
crossref_primary_10_1109_TNNLS_2022_3172276
crossref_primary_10_1002_sim_9564
crossref_primary_10_1016_j_csda_2023_107911
crossref_primary_10_3390_genes11010041
crossref_primary_10_1002_cjs_11666
crossref_primary_10_1109_TCAD_2022_3160948
crossref_primary_10_1186_s13018_022_03465_y
crossref_primary_10_1016_j_compbiolchem_2023_107868
crossref_primary_10_1080_01621459_2019_1691563
crossref_primary_10_1016_j_neunet_2024_106512
crossref_primary_10_1080_01621459_2021_1895175
crossref_primary_10_1111_rssb_12423
crossref_primary_10_1007_s10462_023_10562_9
crossref_primary_10_1016_j_chemolab_2022_104562
crossref_primary_10_1016_j_neunet_2021_01_027
crossref_primary_10_1146_annurev_statistics_030718_105251
crossref_primary_10_1007_s11222_023_10338_9
crossref_primary_10_1016_j_jhydrol_2022_127445
crossref_primary_10_1007_s10114_024_3328_2
crossref_primary_10_1016_j_spl_2021_109246
crossref_primary_10_1093_jrsssb_qkae082
crossref_primary_10_1080_10618600_2020_1814305
crossref_primary_10_1016_j_csda_2023_107826
crossref_primary_10_1002_sam_11540
crossref_primary_10_3390_ddc4030028
crossref_primary_10_1002_sam_11664
crossref_primary_10_1002_sim_8347
crossref_primary_10_1002_sim_8743
crossref_primary_10_6339_24_JDS1156
crossref_primary_10_1007_s00180_024_01561_7
crossref_primary_10_1016_j_drudis_2020_12_003
Cites_doi 10.1371/journal.pone.0009024
10.1198/jasa.2011.tm10563
10.1080/10618600.2015.1089775
10.1007/BF00993164
10.1080/01621459.2014.984812
10.1016/j.csda.2013.03.027
10.1007/BF00116037
10.1038/nature11003
10.1111/j.1467-9868.2005.00503.x
10.1007/BF02551274
10.1186/bcr2596
10.1111/1467-9868.00346
10.1016/j.ygyno.2007.08.009
10.1186/bcr2635
10.1080/10618600.2017.1328364
10.1002/prot.22718
10.1111/rssb.12095
10.1093/biomet/asn036
10.1214/15-AOS1334
10.1093/biomet/asq017
10.1109/TPAMI.1984.4767596
10.1080/01621459.2012.695654
10.4161/cam.4.1.10973
10.1214/10-AOS792
10.1111/j.2517-6161.1996.tb02080.x
10.1007/s11222-005-4786-8
10.1186/1471-2407-14-334
10.1198/016214501753382273
10.1214/13-AOS1087
10.1080/01621459.2014.920256
10.1093/neuonc/now037
10.1093/biomet/82.4.711
10.1214/09-AOAS285
10.1214/12-AOAS590
10.1200/JCO.2010.28.9199
10.1063/1.1699114
10.1111/j.1467-9868.2008.00674.x
10.1017/S0016672310000662
10.1080/01621459.2012.761942
10.1198/016214508000000337
10.1214/009053604000000238
10.1016/0893-6080(89)90020-8
10.1080/01621459.2012.682536
10.1111/j.1467-9868.2009.00718.x
10.1093/biomet/asn034
10.1038/nature10983
10.1023/A:1010933404324
10.1016/j.econlet.2005.12.017
10.1016/0893-6080(89)90003-8
10.1186/1471-2156-12-87
10.1080/03610929008830400
10.1158/0008-5472.CAN-11-1780
10.1093/biomet/66.2.237
10.1016/j.molonc.2015.07.006
10.1073/pnas.1205943109
10.1093/jnci/95.12.851
10.1111/1467-9868.00353
10.1198/jasa.2011.ap09769
10.1080/01621459.1995.10476572
10.1093/biomet/57.1.97
10.1214/14-AOAS755
10.1239/aap/1418396243
10.1214/14-AOS1289
10.1214/009053607000000019
10.1198/jasa.2008.tm08516
10.1093/annonc/mdn739
10.1214/009053606000000722
10.1198/jcgs.2010.10039
10.1080/01621459.2014.960967
ContentType Journal Article
Copyright 2018 American Statistical Association 2018
Copyright © 2018 American Statistical Association
2018 American Statistical Association
Copyright_xml – notice: 2018 American Statistical Association 2018
– notice: Copyright © 2018 American Statistical Association
– notice: 2018 American Statistical Association
DBID AAYXX
CITATION
NPM
8BJ
FQK
JBE
K9.
7S9
L.6
7X8
5PM
DOI 10.1080/01621459.2017.1409122
DatabaseName CrossRef
PubMed
International Bibliography of the Social Sciences (IBSS)
International Bibliography of the Social Sciences
International Bibliography of the Social Sciences
ProQuest Health & Medical Complete (Alumni)
AGRICOLA
AGRICOLA - Academic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
International Bibliography of the Social Sciences (IBSS)
ProQuest Health & Medical Complete (Alumni)
AGRICOLA
AGRICOLA - Academic
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
International Bibliography of the Social Sciences (IBSS)


PubMed

AGRICOLA
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Statistics
EISSN 1537-274X
EndPage 972
ExternalDocumentID PMC6660200
31354179
10_1080_01621459_2017_1409122
45029722
1409122
Genre Article
Journal Article
GrantInformation_xml – fundername: Division of Mathematical Sciences
  grantid: 1545202,1612924
  funderid: 10.13039/100000121
– fundername: National Institute of General Medical Sciences
  grantid: R01-GM117597
  funderid: 10.13039/100000057
GroupedDBID -DZ
-~X
..I
.7F
.QJ
0BK
0R~
29L
2AX
30N
4.4
5GY
5RE
692
7WY
85S
8FL
AAAVZ
AABCJ
AAENE
AAGDL
AAHBH
AAHIA
AAJMT
AALDU
AAMIU
AAPUL
AAQRR
ABBHK
ABCCY
ABEHJ
ABFAN
ABFIM
ABJNI
ABLIJ
ABLJU
ABPAQ
ABPEM
ABPFR
ABPPZ
ABRLO
ABTAI
ABUFD
ABXSQ
ABXUL
ABXYU
ABYWD
ACGFO
ACGFS
ACGOD
ACIWK
ACMTB
ACNCT
ACTIO
ACTMH
ACUBG
ADCVX
ADGTB
ADLSF
ADMHG
ADODI
ADXHL
AEISY
AENEX
AEOZL
AEPSL
AEUPB
AEYOC
AFFNX
AFRVT
AFVYC
AFXHP
AGDLA
AGMYJ
AHDZW
AIJEM
AIYEW
AKBVH
AKOOK
ALMA_UNASSIGNED_HOLDINGS
ALQZU
ALRMG
AMVHM
AQRUH
AQTUD
AVBZW
AWYRJ
BLEHA
CCCUG
CJ0
CS3
D0L
DGEBU
DKSSO
DQDLB
DSRWC
DU5
EBS
ECEWR
EJD
E~A
E~B
F5P
FJW
GTTXZ
H13
HF~
HQ6
HZ~
H~9
H~P
IPNFZ
IPSME
J.P
JAAYA
JAS
JBMMH
JBZCM
JENOY
JHFFW
JKQEH
JLEZI
JLXEF
JMS
JPL
JST
K60
K6~
KYCEM
LU7
M4Z
MS~
MW2
NA5
NY~
O9-
OFU
OK1
P2P
RIG
RNANH
ROSJB
RTWRZ
RWL
RXW
S-T
SA0
SNACF
TAE
TASJS
TBQAZ
TDBHL
TEJ
TFL
TFT
TFW
TN5
TOXWX
TTHFI
TUROJ
U5U
UPT
UT5
UU3
WH7
WZA
YQT
YYM
ZGOLN
ZUP
~S~
ADYSH
AFSUE
ALIPV
AMPGV
AAYXX
CITATION
.-4
.GJ
07G
1OL
3R3
7X7
88E
88I
8AF
8C1
8FE
8FG
8FI
8FJ
8G5
8R4
8R5
AAFWJ
AAIKQ
AAKBW
AAWIL
ABAWQ
ABEFU
ABJCF
ABPQH
ABUWG
ACAGQ
ACGEE
ACHJO
ADBBV
ADULT
AEUMN
AFKRA
AFQQW
AGCQS
AGLEN
AGLNM
AGROQ
AHMOU
AI.
AIHAF
ALCKM
AMATQ
AMEWO
AMXXU
AQUVI
AZQEC
BCCOT
BENPR
BEZIV
BGLVJ
BKNYI
BKOMP
BPHCQ
BPLKW
BVXVI
C06
CCPQU
CRFIH
DMQIW
DWIFK
DWQXO
E.L
FEDTE
FRNLG
FVMVE
FYUFA
GNUQQ
GROUPED_ABI_INFORM_RESEARCH
GUQSH
HCIFZ
HGD
HMCUK
HVGLF
IVXBP
K9-
KQ8
L6V
LJTGL
M0C
M0R
M0T
M1P
M2O
M2P
M7S
MVM
NHB
NPM
NUSFT
P-O
PADUT
PHGZM
PHGZT
PJZUB
PPXIY
PQBIZ
PQBZA
PQGLB
PQQKQ
PRG
PROAC
PSQYO
PTHSS
Q2X
QCRFL
RNS
S0X
SJN
TAQ
TFMCV
UB9
UKHRP
UQL
VH1
VOH
WHG
YXB
YYP
ZCG
ZGI
ZXP
8BJ
FQK
JBE
K9.
7S9
L.6
7X8
5PM
ID FETCH-LOGICAL-c584t-f6b3eaa566c75b7c8e222e30221d44af262f320881931d2f62047f21b508804f3
IEDL.DBID TFW
ISICitedReferencesCount 53
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000446710500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0162-1459
1537-274X
IngestDate Tue Nov 04 01:50:54 EST 2025
Wed Oct 01 14:58:52 EDT 2025
Fri Oct 03 00:08:54 EDT 2025
Thu Nov 13 04:19:07 EST 2025
Mon Jul 21 05:59:41 EDT 2025
Sat Nov 29 03:56:43 EST 2025
Tue Nov 18 21:24:03 EST 2025
Thu May 29 09:01:31 EDT 2025
Mon Oct 20 23:50:43 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 523
Keywords Cancer Cell Line Encyclopedia
Nonlinear Variable Selection
OpenMP
Omics Data
Parallel Markov Chain Monte Carlo
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c584t-f6b3eaa566c75b7c8e222e30221d44af262f320881931d2f62047f21b508804f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://figshare.com/articles/journal_contribution/Bayesian_Neural_Networks_for_Selection_of_Drug_Sensitive_Genes/5787477
PMID 31354179
PQID 2770818332
PQPubID 41715
PageCount 18
ParticipantIDs proquest_miscellaneous_2266336785
proquest_miscellaneous_2221020718
proquest_journals_2770818332
pubmed_primary_31354179
informaworld_taylorfrancis_310_1080_01621459_2017_1409122
crossref_primary_10_1080_01621459_2017_1409122
crossref_citationtrail_10_1080_01621459_2017_1409122
pubmedcentral_primary_oai_pubmedcentral_nih_gov_6660200
jstor_primary_45029722
PublicationCentury 2000
PublicationDate 2018-07-03
PublicationDateYYYYMMDD 2018-07-03
PublicationDate_xml – month: 07
  year: 2018
  text: 2018-07-03
  day: 03
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Alexandria
PublicationTitle Journal of the American Statistical Association
PublicationTitleAlternate J Am Stat Assoc
PublicationYear 2018
Publisher Taylor & Francis
Taylor & Francis Group,LLC
Taylor & Francis Ltd
Publisher_xml – name: Taylor & Francis
– name: Taylor & Francis Group,LLC
– name: Taylor & Francis Ltd
References cit0033
cit0077
cit0034
cit0078
cit0031
cit0075
cit0032
cit0076
cit0073
cit0030
cit0074
cit0071
cit0039
cit0037
cit0038
cit0035
cit0079
cit0036
cit0022
cit0066
cit0023
cit0067
cit0020
cit0064
cit0021
cit0065
cit0062
Liu G. (cit0050) 2010; 78
cit0063
cit0060
cit0061
Sun S. (cit0070) 2016
Raghu M. (cit0059) 2017; 70
cit0028
cit0029
cit0026
cit0027
cit0068
cit0025
cit0055
cit0012
cit0056
cit0053
cit0010
cit0054
cit0052
Liu H. (cit0051) 2009; 10
cit0019
cit0017
cit0018
cit0015
cit0016
cit0013
cit0057
Tibshirani R. (cit0072) 1996; 58
cit0014
cit0058
cit0044
cit0001
cit0045
cit0042
Carlin B. (cit0011) 1996
cit0043
cit0040
cit0041
Fan J. (cit0024) 2009; 10
Stouffer S. (cit0069) 1949
cit0008
cit0009
cit0006
cit0007
cit0004
cit0048
cit0005
cit0049
cit0002
cit0046
cit0047
cit0003
References_xml – volume-title: Bayes and Empirical Bayes Methods for Data Analysis
  year: 1996
  ident: cit0011
– ident: cit0055
  doi: 10.1371/journal.pone.0009024
– ident: cit0077
  doi: 10.1198/jasa.2011.tm10563
– ident: cit0052
  doi: 10.1080/10618600.2015.1089775
– ident: cit0006
  doi: 10.1007/BF00993164
– ident: cit0064
  doi: 10.1080/01621459.2014.984812
– volume-title: The American Soldier, Vol. 1: Adjustment During Army Life
  year: 1949
  ident: cit0069
– ident: cit0074
  doi: 10.1016/j.csda.2013.03.027
– ident: cit0062
  doi: 10.1007/BF00116037
– ident: cit0005
  doi: 10.1038/nature11003
– ident: cit0079
  doi: 10.1111/j.1467-9868.2005.00503.x
– ident: cit0019
  doi: 10.1007/BF02551274
– ident: cit0054
– ident: cit0039
  doi: 10.1186/bcr2596
– volume: 10
  year: 2009
  ident: cit0051
  publication-title: Journal of Machine Learning Research
– ident: cit0068
  doi: 10.1111/1467-9868.00346
– ident: cit0076
  doi: 10.1016/j.ygyno.2007.08.009
– ident: cit0058
  doi: 10.1186/bcr2635
– ident: cit0003
  doi: 10.1080/10618600.2017.1328364
– volume: 78
  start-page: 2170
  year: 2010
  ident: cit0050
  publication-title: Protein
  doi: 10.1002/prot.22718
– ident: cit0065
  doi: 10.1111/rssb.12095
– ident: cit0048
  doi: 10.1093/biomet/asn036
– ident: cit0013
  doi: 10.1214/15-AOS1334
– ident: cit0012
  doi: 10.1093/biomet/asq017
– ident: cit0026
  doi: 10.1109/TPAMI.1984.4767596
– ident: cit0045
  doi: 10.1080/01621459.2012.695654
– ident: cit0042
  doi: 10.4161/cam.4.1.10973
– ident: cit0063
  doi: 10.1214/10-AOS792
– volume: 58
  start-page: 267
  year: 1996
  ident: cit0072
  publication-title: Journal of the Royal Statistical Society
  doi: 10.1111/j.2517-6161.1996.tb02080.x
– ident: cit0046
  doi: 10.1007/s11222-005-4786-8
– start-page: 2066
  year: 2016
  ident: cit0070
  publication-title: Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence
– ident: cit0031
  doi: 10.1186/1471-2407-14-334
– ident: cit0021
  doi: 10.1198/016214501753382273
– ident: cit0033
  doi: 10.1214/13-AOS1087
– ident: cit0017
  doi: 10.1080/01621459.2014.920256
– ident: cit0044
  doi: 10.1093/neuonc/now037
– ident: cit0029
  doi: 10.1093/biomet/82.4.711
– ident: cit0015
  doi: 10.1214/09-AOAS285
– ident: cit0028
  doi: 10.1214/12-AOAS590
– ident: cit0002
  doi: 10.1200/JCO.2010.28.9199
– ident: cit0053
  doi: 10.1063/1.1699114
– ident: cit0023
  doi: 10.1111/j.1467-9868.2008.00674.x
– ident: cit0022
  doi: 10.1111/j.1467-9868.2008.00674.x
– ident: cit0061
– ident: cit0056
  doi: 10.1017/S0016672310000662
– ident: cit0047
  doi: 10.1080/01621459.2012.761942
– ident: cit0057
  doi: 10.1198/016214508000000337
– ident: cit0004
  doi: 10.1214/009053604000000238
– ident: cit0036
  doi: 10.1016/0893-6080(89)90020-8
– ident: cit0038
  doi: 10.1080/01621459.2012.682536
– volume: 70
  start-page: 2847
  year: 2017
  ident: cit0059
  publication-title: Proceedings of the 34th International Conference on Machine Learning
– ident: cit0060
  doi: 10.1111/j.1467-9868.2009.00718.x
– ident: cit0014
  doi: 10.1093/biomet/asn034
– ident: cit0018
  doi: 10.1038/nature10983
– ident: cit0009
  doi: 10.1023/A:1010933404324
– ident: cit0040
  doi: 10.1016/j.econlet.2005.12.017
– ident: cit0025
  doi: 10.1016/0893-6080(89)90003-8
– ident: cit0027
  doi: 10.1186/1471-2156-12-87
– ident: cit0034
  doi: 10.1080/03610929008830400
– ident: cit0035
  doi: 10.1158/0008-5472.CAN-11-1780
– ident: cit0001
  doi: 10.1093/biomet/66.2.237
– ident: cit0020
  doi: 10.1016/j.molonc.2015.07.006
– ident: cit0078
  doi: 10.1073/pnas.1205943109
– ident: cit0030
  doi: 10.1093/jnci/95.12.851
– ident: cit0067
  doi: 10.1111/1467-9868.00353
– ident: cit0071
  doi: 10.1198/jasa.2011.ap09769
– ident: cit0016
– volume: 10
  start-page: 1829
  year: 2009
  ident: cit0024
  publication-title: Journal of Machine Learning Research
– ident: cit0041
  doi: 10.1080/01621459.1995.10476572
– ident: cit0032
  doi: 10.1093/biomet/57.1.97
– ident: cit0008
  doi: 10.1214/14-AOAS755
– ident: cit0066
  doi: 10.1239/aap/1418396243
– ident: cit0075
  doi: 10.1214/14-AOS1289
– ident: cit0037
  doi: 10.1214/009053607000000019
– ident: cit0073
  doi: 10.1198/jasa.2008.tm08516
– ident: cit0010
  doi: 10.1093/annonc/mdn739
– ident: cit0049
  doi: 10.1214/009053606000000722
– ident: cit0043
  doi: 10.1198/jcgs.2010.10039
– ident: cit0007
  doi: 10.1080/01621459.2014.960967
SSID ssj0000788
Score 2.533369
Snippet Recent advances in high-throughput biotechnologies have provided an unprecedented opportunity for biomarker discovery, which, from a statistical point of view,...
SourceID pubmedcentral
proquest
pubmed
crossref
jstor
informaworld
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 955
SubjectTerms Adaptive algorithms
Algorithms
antineoplastic agents
Applications and Case Studies
Approximation
Bayesian analysis
Bayesian theory
Biological markers
Biomarkers
Biotechnology
Cancer
Cancer cell line encyclopedia
cell lines
Computation
computers
Consistency
data collection
Drugs
Encyclopedias
equations
Feature selection
Genes
Identification
Markov analysis
Markov chain
Markov chains
Monte Carlo simulation
neoplasm cells
Networks
Neural networks
Nonlinear systems
Nonlinear variable selection
Omics data
OpenMP
Parallel Markov chain Monte Carlo
Regression analysis
Simulation
Statistical methods
Statistics
Title Bayesian Neural Networks for Selection of Drug Sensitive Genes
URI https://www.tandfonline.com/doi/abs/10.1080/01621459.2017.1409122
https://www.jstor.org/stable/45029722
https://www.ncbi.nlm.nih.gov/pubmed/31354179
https://www.proquest.com/docview/2770818332
https://www.proquest.com/docview/2221020718
https://www.proquest.com/docview/2266336785
https://pubmed.ncbi.nlm.nih.gov/PMC6660200
Volume 113
WOSCitedRecordID wos000446710500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAWR
  databaseName: Taylor & Francis Journals
  customDbUrl:
  eissn: 1537-274X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000788
  issn: 0162-1459
  databaseCode: TFW
  dateStart: 19220301
  isFulltext: true
  titleUrlDefault: https://www.tandfonline.com
  providerName: Taylor & Francis
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT8MwDLZg4rAL78d4TEXi2rEkbdNdkHhNnCYkQOxWpW0CSKhD64bEv8dOHzAE7ADHNnHbuI7zuXU-AxwFWiiP069_ESuX2F9cZQLhKsY19xIZ-Glsi03IwSAcDnvXZTZhXqZVUgxtCqII66tpcqs4rzLijhGlEL82bTNhskOMTYyTF8aln6bmbf_-wxdLW3mSJFwSqfbw_HSVmdVphru0ylf8Dol-Taj8tEL1V_5hbKuwXMJT57SwpzVY0Nk6NAmRFoTOG3Bypt407bx0iNcD-w6KRPLcwVE4N7asDr5rZ2Sci_H0Ac9kuc1PcojhOt-Eu_7l7fmVWxZhcBPEJhPXBLHQSiHqS6QfyyTUiCi0wKWfpZ6nDA-4ERx9FSJBlnJD_PbScBYT8ut6RmxBIxtlegccDIbjVISKYIeHkVkv6faMZnj5wKTdMG6BVyk_SkqGciqU8Ryxisi01E5E2olK7bSgU4u9FBQd8wR6n99sNLHfRkxRyCQSc2S3rBnUd_J8Kv9FDfuVXUSlG8gjLiVRBgqBzYd1M05g-iujMj2aYh9OUTcivfC3PggMBeIKvwXbhanVDyCY8KmMXAvkjBHWHYhAfLYle3q0ROIYuuKdu7t_0MceNPEwtAnMYh8ak_FUH8BS8opmOW7DohyGbTsl3wFeSSyb
linkProvider Taylor & Francis
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT-MwEB4hQFouPHZ5FApkJa6B2k7i9ILEqwIt9LJFcLOcxAYklKI-kPj3zDgPWrQLB7hmPHlMxuNvkvE3AHuRETrg9OtfJNon9hdf20j4mnHDg1RGYZa4ZhOy241vb9uTe2GorJJyaFsQRbhYTZObPkZXJXEHCFOIYJv2mTC5T5RNjGMYngtxrSX-_F7n5i0aS9d7klR80ql28fzvNFPr0xR7aVWx-C8s-r6kcmKN6ix9x9Mtw2KJUL2jwqVWYMbkP2GBQGnB6fwLDo_1i6HNlx5Re-DYblFLPvTwMby_rrMOvm6vb73TwfgOj-RDV6LkEcn1cBWuO2e9k3O_7MPgpwhPRr6NEmG0RuCXyjCRaWwQVBiBqz_LgkBbHnErOIYrBIMs45Yo7qXlLCHw1wqsWIPZvJ-bDfAwH04yEWtCHgEmZ-201baG4ekjm7XipAFBZX2VliTl1CvjUbGKy7S0jiLrqNI6Ddiv1Z4Klo7PFNqTr1aN3OcRW_QyUeIT3TXnB_WVgpA6gJGgWTmGKiPBUHEpiTVQCBT_rsU4h-nHjM5Nf4xjOCXeCPbij8YgNhQILcIGrBe-Vt-AYCKkTnINkFNeWA8gDvFpSf5w77jEMXvFK7c2v2CPXfhx3ru6VJcX3T9bsICi2NUziybMjgZjsw3z6TO66GDHzcxXSRAv3Q
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT-MwEB4hFiEu7PIuy0KQuAZqO4nTy0osbAUCVUiA4GY5iQ1IKK2aFol_z4zzgCIeB7hmPE4yHo8_J-NvAHYiI3TA6de_SLRP7C--tpHwNeOGB6mMwixxxSZkrxdfX3fOqmzCokqrpD20LYkiXKymyT3IbJ0Rt4cohfi16ZgJk7vE2MQ4RuEfCJ0jcvKL7tVzMJau9CSp-KRTH-J5r5uJ5WmCvLROWHwLir7OqHyxRHV_fsPL_YL5Cp96-6VDLcCUyRdhjiBpyei8BH__6UdDRy89IvbAtr0yk7zw8C28c1dXBwfb61vvcDi-wSt54RKUPKK4Lpbhsvv_4uDIr6ow-CmCk5Fvo0QYrRH2pTJMZBobhBRG4NrPsiDQlkfcCo7BCqEgy7glgntpOUsI-rUDK1ZgOu_nZg083A0nmYg14Y4At2adtN2xhmH3kc3acdKCoDa-SiuKcqqUca9YzWRaWUeRdVRlnRbsNmqDkqPjM4XOy5FVI_dxxJaVTJT4RHfFuUFzpyCk-l8k2Kj9QlVxoFBcSuIMFALF240YZzD9ltG56Y-xDadtN0K9-KM2iAwFAouwBaulqzUPIJgIqY5cC-SEEzYNiEF8UpLf3TomcZwveOf2-hfssQWzZ4dddXrcO_kNcyiJXTKz2IDp0XBs_sBM-oAeOtx08_IJgQQujw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Bayesian+Neural+Networks+for+Selection+of+Drug+Sensitive+Genes&rft.jtitle=Journal+of+the+American+Statistical+Association&rft.au=Liang%2C+Faming&rft.au=Li%2C+Qizhai&rft.au=Zhou%2C+Lei&rft.date=2018-07-03&rft.issn=0162-1459&rft.eissn=1537-274X&rft.volume=113&rft.issue=523&rft.spage=955&rft.epage=972&rft_id=info:doi/10.1080%2F01621459.2017.1409122&rft.externalDBID=n%2Fa&rft.externalDocID=10_1080_01621459_2017_1409122
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0162-1459&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0162-1459&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0162-1459&client=summon