Mixture Models With a Prior on the Number of Components
A natural Bayesian approach for mixture models with an unknown number of components is to take the usual finite mixture model with symmetric Dirichlet weights, and put a prior on the number of components-that is, to use a mixture of finite mixtures (MFM). The most commonly used method of inference f...
Uložené v:
| Vydané v: | Journal of the American Statistical Association Ročník 113; číslo 521; s. 340 - 356 |
|---|---|
| Hlavní autori: | , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
United States
Taylor & Francis
02.01.2018
Taylor & Francis Group,LLC Taylor & Francis Ltd |
| Predmet: | |
| ISSN: | 0162-1459, 1537-274X, 1537-274X |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | A natural Bayesian approach for mixture models with an unknown number of components is to take the usual finite mixture model with symmetric Dirichlet weights, and put a prior on the number of components-that is, to use a mixture of finite mixtures (MFM). The most commonly used method of inference for MFMs is reversible jump Markov chain Monte Carlo, but it can be nontrivial to design good reversible jump moves, especially in high-dimensional spaces. Meanwhile, there are samplers for Dirichlet process mixture (DPM) models that are relatively simple and are easily adapted to new applications. It turns out that, in fact, many of the essential properties of DPMs are also exhibited by MFMs-an exchangeable partition distribution, restaurant process, random measure representation, and stick-breaking representation-and crucially, the MFM analogues are simple enough that they can be used much like the corresponding DPM properties. Consequently, many of the powerful methods developed for inference in DPMs can be directly applied to MFMs as well; this simplifies the implementation of MFMs and can substantially improve mixing. We illustrate with real and simulated data, including high-dimensional gene expression data used to discriminate cancer subtypes. Supplementary materials for this article are available online. |
|---|---|
| AbstractList | A natural Bayesian approach for mixture models with an unknown number of components is to take the usual finite mixture model with symmetric Dirichlet weights, and put a prior on the number of components-that is, to use a mixture of finite mixtures (MFM). The most commonly used method of inference for MFMs is reversible jump Markov chain Monte Carlo, but it can be nontrivial to design good reversible jump moves, especially in high-dimensional spaces. Meanwhile, there are samplers for Dirichlet process mixture (DPM) models that are relatively simple and are easily adapted to new applications. It turns out that, in fact, many of the essential properties of DPMs are also exhibited by MFMs-an exchangeable partition distribution, restaurant process, random measure representation, and stick-breaking representation-and crucially, the MFM analogues are simple enough that they can be used much like the corresponding DPM properties. Consequently, many of the powerful methods developed for inference in DPMs can be directly applied to MFMs as well; this simplifies the implementation of MFMs and can substantially improve mixing. We illustrate with real and simulated data, including high-dimensional gene expression data used to discriminate cancer subtypes. Supplementary materials for this article are available online. A natural Bayesian approach for mixture models with an unknown number of components is to take the usual finite mixture model with symmetric Dirichlet weights, and put a prior on the number of components-that is, to use a mixture of finite mixtures (MFM). The most commonly-used method of inference for MFMs is reversible jump Markov chain Monte Carlo, but it can be nontrivial to design good reversible jump moves, especially in high-dimensional spaces. Meanwhile, there are samplers for Dirichlet process mixture (DPM) models that are relatively simple and are easily adapted to new applications. It turns out that, in fact, many of the essential properties of DPMs are also exhibited by MFMs-an exchangeable partition distribution, restaurant process, random measure representation, and stick-breaking representation-and crucially, the MFM analogues are simple enough that they can be used much like the corresponding DPM properties. Consequently, many of the powerful methods developed for inference in DPMs can be directly applied to MFMs as well; this simplifies the implementation of MFMs and can substantially improve mixing. We illustrate with real and simulated data, including high-dimensional gene expression data used to discriminate cancer subtypes. A natural Bayesian approach for mixture models with an unknown number of components is to take the usual finite mixture model with symmetric Dirichlet weights, and put a prior on the number of components-that is, to use a mixture of finite mixtures (MFM). The most commonly-used method of inference for MFMs is reversible jump Markov chain Monte Carlo, but it can be nontrivial to design good reversible jump moves, especially in high-dimensional spaces. Meanwhile, there are samplers for Dirichlet process mixture (DPM) models that are relatively simple and are easily adapted to new applications. It turns out that, in fact, many of the essential properties of DPMs are also exhibited by MFMs-an exchangeable partition distribution, restaurant process, random measure representation, and stick-breaking representation-and crucially, the MFM analogues are simple enough that they can be used much like the corresponding DPM properties. Consequently, many of the powerful methods developed for inference in DPMs can be directly applied to MFMs as well; this simplifies the implementation of MFMs and can substantially improve mixing. We illustrate with real and simulated data, including high-dimensional gene expression data used to discriminate cancer subtypes.A natural Bayesian approach for mixture models with an unknown number of components is to take the usual finite mixture model with symmetric Dirichlet weights, and put a prior on the number of components-that is, to use a mixture of finite mixtures (MFM). The most commonly-used method of inference for MFMs is reversible jump Markov chain Monte Carlo, but it can be nontrivial to design good reversible jump moves, especially in high-dimensional spaces. Meanwhile, there are samplers for Dirichlet process mixture (DPM) models that are relatively simple and are easily adapted to new applications. It turns out that, in fact, many of the essential properties of DPMs are also exhibited by MFMs-an exchangeable partition distribution, restaurant process, random measure representation, and stick-breaking representation-and crucially, the MFM analogues are simple enough that they can be used much like the corresponding DPM properties. Consequently, many of the powerful methods developed for inference in DPMs can be directly applied to MFMs as well; this simplifies the implementation of MFMs and can substantially improve mixing. We illustrate with real and simulated data, including high-dimensional gene expression data used to discriminate cancer subtypes. |
| Author | Miller, Jeffrey W. Harrison, Matthew T. |
| Author_xml | – sequence: 1 givenname: Jeffrey W. surname: Miller fullname: Miller, Jeffrey W. email: jwmillerusa@gmail.com organization: Department of Biostatistics, Harvard University – sequence: 2 givenname: Matthew T. surname: Harrison fullname: Harrison, Matthew T. organization: Division of Applied Mathematics, Brown University |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29983475$$D View this record in MEDLINE/PubMed |
| BookMark | eNqFkU1v1DAQhi1URLcLP6EoEhcuWcZ27NhCQqBV-ZBa4ACCm-U4DutVEi-2A-2_x9FuV9AD9cUezfPOjOc9QyejHy1C5xhWGAS8AMwJrphckfxaYcIYp_wBWmBG65LU1fcTtJiZcoZO0VmMW8inFuIROiVSClrVbIHqK3edpmCLK9_aPhbfXNoUuvgcnA-FH4u0scXHaWhsjrpi7YddHmNM8TF62Ok-2ieHe4m-vr34sn5fXn5692H95rI0TFSp7DgBI0jTSiC0gUZyY2vccm66ltPG1MRKaRvSSsGAga0lSK6bhghsuJUNXaJX-7q7qRlsa3LvoHu1C27Q4UZ57dS_mdFt1A__S3GgDDDkAs8PBYL_OdmY1OCisX2vR-unqAgGTGlFgN2PAq8zS_NXlujZHXTrpzDmTShCRCU4FcAz9fTv4Y9T364_A2wPmOBjDLY7IhjUbLO6tVnNNquDzVn38o7OuKST8_MOXH-v-nyv3sbkw7FlxYAIRkTOv97n3dj5MOjfPvStSvqm96ELejQuKvr_Fn8AsyXHqw |
| CitedBy_id | crossref_primary_10_1080_01621459_2024_2444700 crossref_primary_10_1214_21_BA1294 crossref_primary_10_1007_s11634_025_00640_x crossref_primary_10_1080_01621459_2018_1537918 crossref_primary_10_1002_sim_9309 crossref_primary_10_1111_exsy_12688 crossref_primary_10_1214_24_BA1458 crossref_primary_10_1093_jrsssc_qlae004 crossref_primary_10_1016_j_spl_2019_108656 crossref_primary_10_1007_s11634_021_00441_y crossref_primary_10_1016_j_spasta_2021_100548 crossref_primary_10_1214_22_BA1326 crossref_primary_10_1080_01621459_2024_2427935 crossref_primary_10_1515_jqas_2019_0106 crossref_primary_10_1016_j_csda_2022_107474 crossref_primary_10_1214_19_BA1150 crossref_primary_10_1080_00036846_2024_2387858 crossref_primary_10_1080_07350015_2022_2143784 crossref_primary_10_1080_01621459_2018_1520114 crossref_primary_10_1214_24_BA1462 crossref_primary_10_1093_jrsssb_qkad076 crossref_primary_10_1134_S1995080222010127 crossref_primary_10_1139_cjfr_2019_0170 crossref_primary_10_1002_sta4_324 crossref_primary_10_1111_biom_13626 crossref_primary_10_1214_24_BA1501 crossref_primary_10_1080_01621459_2024_2427936 crossref_primary_10_1080_10618600_2022_2085727 crossref_primary_10_1214_24_BA1463 crossref_primary_10_1177_1471082X211049278 crossref_primary_10_1080_10618600_2023_2177298 crossref_primary_10_1093_jrsssa_qnad135 crossref_primary_10_1080_01621459_2018_1458618 crossref_primary_10_1016_j_spasta_2022_100715 crossref_primary_10_1214_22_BA1338 crossref_primary_10_1007_s10260_023_00716_y crossref_primary_10_1214_25_AOAS2014 crossref_primary_10_1017_nws_2023_22 crossref_primary_10_1080_01621459_2023_2250098 crossref_primary_10_1007_s11222_020_09935_9 crossref_primary_10_3390_cancers16020251 crossref_primary_10_1109_TKDE_2021_3104155 crossref_primary_10_1016_j_spasta_2021_100495 crossref_primary_10_1080_02664763_2022_2118678 crossref_primary_10_1214_21_BA1272 crossref_primary_10_3390_a16050245 crossref_primary_10_1093_jrsssc_qlac002 crossref_primary_10_1111_insr_12588 crossref_primary_10_1214_21_AOS2072 crossref_primary_10_1111_bmsp_12322 crossref_primary_10_1214_25_BA1549 crossref_primary_10_1080_01621459_2024_2353943 crossref_primary_10_1080_01621459_2023_2257896 crossref_primary_10_1214_19_BA1168 crossref_primary_10_1080_00031305_2025_2561146 crossref_primary_10_1214_22_BA1320 crossref_primary_10_1016_j_csda_2020_107051 crossref_primary_10_1016_j_jeconom_2024_105725 crossref_primary_10_1111_bmsp_12280 crossref_primary_10_1111_anzs_12350 crossref_primary_10_1007_s00357_023_09434_2 crossref_primary_10_1111_mms_13104 crossref_primary_10_1093_biomet_asab056 crossref_primary_10_1007_s11004_021_09961_x crossref_primary_10_1214_25_BA1535 crossref_primary_10_1080_01431161_2022_2058893 crossref_primary_10_1177_09622802231211010 crossref_primary_10_1002_sim_9225 crossref_primary_10_1017_pan_2020_29 crossref_primary_10_1016_j_ejrs_2025_05_009 crossref_primary_10_1111_sjos_12739 crossref_primary_10_1002_cjs_11684 crossref_primary_10_1038_s41598_023_44608_3 crossref_primary_10_1080_10618600_2022_2142594 crossref_primary_10_1016_j_csda_2019_106846 crossref_primary_10_1080_01621459_2022_2149406 crossref_primary_10_1093_biomet_asaa030 crossref_primary_10_1093_biomet_asac051 crossref_primary_10_1214_23_AOS2349 crossref_primary_10_1111_anzs_12369 crossref_primary_10_1080_01621459_2019_1686985 crossref_primary_10_1007_s11634_021_00461_8 crossref_primary_10_1017_nws_2017_6 crossref_primary_10_1080_01621459_2023_2191821 crossref_primary_10_1093_jrsssc_qlad100 crossref_primary_10_1214_24_BA1416 crossref_primary_10_6339_22_JDS1062 crossref_primary_10_1016_j_csda_2024_107942 crossref_primary_10_1002_sim_10151 crossref_primary_10_1080_10618600_2024_2410911 crossref_primary_10_1214_22_AOS2201 crossref_primary_10_1093_jrsssc_qlae064 crossref_primary_10_3390_informatics7030021 crossref_primary_10_1093_biostatistics_kxab038 crossref_primary_10_1002_sim_9806 crossref_primary_10_1109_ACCESS_2020_3009878 crossref_primary_10_1111_biom_13388 crossref_primary_10_1007_s11222_021_10032_8 crossref_primary_10_1080_01621459_2019_1611583 crossref_primary_10_3390_app11167343 crossref_primary_10_1002_env_2694 crossref_primary_10_1016_j_csda_2021_107252 crossref_primary_10_1007_s11222_020_09946_6 crossref_primary_10_1080_01621459_2022_2123332 crossref_primary_10_1080_00949655_2021_1902526 crossref_primary_10_1080_03610926_2024_2438312 crossref_primary_10_1186_s12859_022_04830_8 crossref_primary_10_1080_10543406_2024_2325148 crossref_primary_10_1080_10618600_2021_2000424 crossref_primary_10_1002_cjs_11671 crossref_primary_10_1109_JSTQE_2022_3186798 crossref_primary_10_1080_10618600_2025_2500978 crossref_primary_10_1080_01621459_2024_2402568 crossref_primary_10_1214_25_AOAS2031 crossref_primary_10_1080_10485252_2024_2354841 crossref_primary_10_1186_s13059_024_03289_5 crossref_primary_10_1007_s11634_018_0329_y crossref_primary_10_1093_bioadv_vbaf055 crossref_primary_10_1093_biomtc_ujaf125 crossref_primary_10_1214_18_AOS1712 crossref_primary_10_1016_j_csda_2022_107566 |
| Cites_doi | 10.1080/01621459.1994.10476829 10.1214/aos/1176342871 10.1198/jcgs.2011.09066 10.1016/j.csda.2006.06.006 10.1093/bioinformatics/btq498 10.1016/j.jspi.2010.03.002 10.1214/ECP.v15-1532 10.1080/10618600.2000.10474879 10.1214/10-EJS584 10.1214/aos/1176342360 10.1214/aos/1176348772 10.1111/1467-9868.03711 10.1080/10618600.1998.10474772 10.1111/1467-9868.00095 10.1007/BFb0099421 10.1093/biomet/87.2.371 10.1093/biomet/93.4.877 10.1080/01621459.1995.10476550 10.1198/016214505000000132 10.1214/aos/1016120364 10.1023/B:STCO.0000039484.36470.41 10.1093/biomet/asm061 10.1198/jcgs.2010.09008 10.1093/biomet/82.4.711 10.1214/12-AOS1065 10.1080/03610929008830345 10.1214/07-AAP495 10.1214/06-BA104 10.1093/biomet/asm086 10.1080/03610919408813196 10.1214/088342305000000016 10.21236/ADA101688 10.1093/bioinformatics/17.10.977 10.1089/cmb.2006.0102 10.1198/016214504000001565 10.1007/BF02481094 10.1198/1061860043001 10.1214/009053606000001271 10.1017/CBO9780511802478.004 10.1093/bioinformatics/bth068 10.1198/106186007X238855 10.1214/12-BA715 10.1109/TBME.2013.2275751 10.1111/1467-9469.00242 10.1186/1471-2105-9-497 10.1007/s11222-006-9014-7 10.1093/bioinformatics/18.9.1194 10.1038/ng765 10.1080/01621459.1990.10474918 10.1111/1467-9868.00402 10.1109/TCBB.2007.70269 10.1080/00031305.1998.10480547 10.1214/11-BA605 10.1016/j.cell.2013.01.019 10.1214/07-BA219 10.1093/bioinformatics/18.3.413 10.1007/s11222-006-5338-6 10.1080/10635150490468675 10.1006/dspr.1999.0361 10.1016/S0167-7152(99)00109-1 10.1214/aos/1176348521 10.1007/s10958-006-0335-z 10.1093/genetics/155.2.945 10.1111/j.1467-9574.2012.00516.x 10.1145/1143844.1143976 10.1214/aos/1176342372 10.1214/09-BA409 10.1007/s11222-009-9150-y 10.1214/aos/1013203454 10.1214/13-EJS784 10.1093/biomet/asn012 10.1080/03610910601096262 10.1093/biomet/83.2.275 10.1198/016214505000000727 10.1162/jmlr.2003.3.4-5.993 10.1007/978-94-017-2219-3_14 10.1007/BF02915431 10.1007/BF01213386 10.1214/08-BA304 10.1016/j.media.2006.12.002 10.1007/s11222-012-9351-7 10.1093/biomet/ass023 |
| ContentType | Journal Article |
| Copyright | 2018 American Statistical Association 2018 Copyright © 2018 American Statistical Association 2018 American Statistical Association |
| Copyright_xml | – notice: 2018 American Statistical Association 2018 – notice: Copyright © 2018 American Statistical Association – notice: 2018 American Statistical Association |
| DBID | AAYXX CITATION NPM 8BJ FQK JBE K9. 7X8 7S9 L.6 5PM |
| DOI | 10.1080/01621459.2016.1255636 |
| DatabaseName | CrossRef PubMed International Bibliography of the Social Sciences (IBSS) International Bibliography of the Social Sciences International Bibliography of the Social Sciences ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic AGRICOLA AGRICOLA - Academic PubMed Central (Full Participant titles) |
| DatabaseTitle | CrossRef PubMed International Bibliography of the Social Sciences (IBSS) ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | PubMed AGRICOLA MEDLINE - Academic International Bibliography of the Social Sciences (IBSS) |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Statistics |
| EISSN | 1537-274X |
| EndPage | 356 |
| ExternalDocumentID | PMC6035010 29983475 10_1080_01621459_2016_1255636 45028528 1255636 |
| Genre | Article Journal Article |
| GrantInformation_xml | – fundername: NIEHS NIH HHS grantid: R01 ES027498 – fundername: NIMH NIH HHS grantid: R01 MH102840 – fundername: NIEHS NIH HHS grantid: R01 ES020619 |
| GroupedDBID | -DZ -~X ..I .7F .QJ 0BK 0R~ 29L 2AX 30N 4.4 5GY 5RE 692 7WY 85S 8FL AAAVZ AABCJ AAENE AAGDL AAHBH AAHIA AAJMT AALDU AAMIU AAPUL AAQRR ABBHK ABCCY ABEHJ ABFAN ABFIM ABJNI ABLIJ ABLJU ABPAQ ABPEM ABPFR ABPPZ ABRLO ABTAI ABUFD ABXSQ ABXUL ABXYU ABYWD ACGFO ACGFS ACGOD ACIWK ACMTB ACNCT ACTIO ACTMH ACUBG ADCVX ADGTB ADLSF ADMHG ADODI ADXHL AEISY AENEX AEOZL AEPSL AEUPB AEYOC AFFNX AFRVT AFVYC AFXHP AGDLA AGMYJ AHDZW AIJEM AIYEW AKBVH AKOOK ALMA_UNASSIGNED_HOLDINGS ALQZU ALRMG AMVHM AQRUH AQTUD AVBZW AWYRJ BLEHA CCCUG CJ0 CS3 D0L DGEBU DKSSO DQDLB DSRWC DU5 EBS ECEWR EJD E~A E~B F5P FJW GTTXZ H13 HF~ HQ6 HZ~ H~9 H~P IPNFZ IPSME J.P JAAYA JAS JBMMH JBZCM JENOY JHFFW JKQEH JLEZI JLXEF JMS JPL JST K60 K6~ KYCEM LU7 M4Z MS~ MW2 NA5 NY~ O9- OFU OK1 P2P RIG RNANH ROSJB RTWRZ RWL RXW S-T SA0 SNACF TAE TASJS TBQAZ TDBHL TEJ TFL TFT TFW TN5 TOXWX TTHFI TUROJ U5U UPT UT5 UU3 WH7 WZA YQT YYM ZGOLN ZUP ~S~ ADYSH AFSUE ALIPV AMPGV AAYXX CITATION .-4 .GJ 07G 1OL 3R3 7X7 88E 88I 8AF 8C1 8FE 8FG 8FI 8FJ 8G5 8R4 8R5 AAFWJ AAIKQ AAKBW AAWIL ABAWQ ABEFU ABJCF ABPQH ABUWG ACAGQ ACGEE ACHJO ADBBV ADULT AEUMN AFKRA AFQQW AGCQS AGLEN AGLNM AGROQ AHMOU AI. AIHAF ALCKM AMATQ AMEWO AMXXU AQUVI AZQEC BCCOT BENPR BEZIV BGLVJ BKNYI BKOMP BPHCQ BPLKW BVXVI C06 CCPQU CRFIH DMQIW DWIFK DWQXO E.L FEDTE FRNLG FVMVE FYUFA GNUQQ GROUPED_ABI_INFORM_RESEARCH GUQSH HCIFZ HGD HMCUK HVGLF IVXBP K9- KQ8 L6V LJTGL M0C M0R M0T M1P M2O M2P M7S MVM NHB NPM NUSFT P-O PADUT PHGZM PHGZT PJZUB PPXIY PQBIZ PQBZA PQGLB PQQKQ PRG PROAC PSQYO PTHSS Q2X QCRFL RNS S0X SJN TAQ TFMCV UB9 UKHRP UQL VH1 VOH WHG YXB YYP ZCG ZGI ZXP 8BJ FQK JBE K9. 7X8 7S9 L.6 5PM |
| ID | FETCH-LOGICAL-c584t-f620c82bd9023b0b96ce71d66cfd63bc72e99eb2d985050e79096abb281c6e9b3 |
| IEDL.DBID | TFW |
| ISICitedReferencesCount | 158 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000438960500035&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0162-1459 1537-274X |
| IngestDate | Tue Nov 04 02:01:28 EST 2025 Thu Oct 02 23:57:15 EDT 2025 Sun Nov 09 12:07:42 EST 2025 Sun Nov 09 13:13:45 EST 2025 Mon Jul 21 05:56:07 EDT 2025 Sat Nov 29 03:56:42 EST 2025 Tue Nov 18 22:26:13 EST 2025 Thu May 29 09:01:27 EDT 2025 Mon Oct 20 23:49:07 EDT 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 521 |
| Keywords | model selection clustering density estimation nonparametric Bayesian |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c584t-f620c82bd9023b0b96ce71d66cfd63bc72e99eb2d985050e79096abb281c6e9b3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 The authors gratefully acknowledge support from the National Science Foundation (NSF) grants DMS-1007593, DMS-1309004, and DMS-1045153, the National Institute of Mental Health (NIMH) grant R01MH102840, the Defense Advanced Research Projects Agency (DARPA) contract FA8650-11-1-715, and the National Institutes of Health (NIH) grant R01ES020619. |
| OpenAccessLink | https://figshare.com/articles/dataset/Mixture_models_with_a_prior_on_the_number_of_components/4478384 |
| PMID | 29983475 |
| PQID | 2284863806 |
| PQPubID | 41715 |
| PageCount | 17 |
| ParticipantIDs | proquest_miscellaneous_2101334205 proquest_miscellaneous_2067133302 crossref_primary_10_1080_01621459_2016_1255636 jstor_primary_45028528 pubmedcentral_primary_oai_pubmedcentral_nih_gov_6035010 proquest_journals_2284863806 crossref_citationtrail_10_1080_01621459_2016_1255636 pubmed_primary_29983475 informaworld_taylorfrancis_310_1080_01621459_2016_1255636 |
| PublicationCentury | 2000 |
| PublicationDate | 2018-01-02 |
| PublicationDateYYYYMMDD | 2018-01-02 |
| PublicationDate_xml | – month: 01 year: 2018 text: 2018-01-02 day: 02 |
| PublicationDecade | 2010 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States – name: Alexandria |
| PublicationTitle | Journal of the American Statistical Association |
| PublicationTitleAlternate | J Am Stat Assoc |
| PublicationYear | 2018 |
| Publisher | Taylor & Francis Taylor & Francis Group,LLC Taylor & Francis Ltd |
| Publisher_xml | – name: Taylor & Francis – name: Taylor & Francis Group,LLC – name: Taylor & Francis Ltd |
| References | cit0077 cit0110 (cit0040) 2003; 13 cit0075 (cit0089) 2006 cit0073 cit0074 cit0070 Ishwaran H. (cit0041) 2001 cit0112 cit0113 cit0066 cit0067 cit0064 cit0063 Woo M.-J. (cit0108) 2006 cit0060 (cit0072) 2014; 15 cit0109 cit0105 cit0106 Keribin C. (cit0049) 2000; 62 (cit0079) 2005 cit0068 cit0101 cit0069 cit0102 cit0011 cit0099 cit0097 cit0010 cit0095 cit0096 cit0093 cit0094 cit0091 cit0092 Pritchard J. K. (cit0090) 2000; 155 Dey D. D. (cit0061) 1998 cit0019 cit0018 cit0015 cit0013 cit0001 Stauffer C. (cit0100) 1999; 2 cit0087 cit0084 cit0083 cit0080 cit0081 Cerquetti A. (cit0012) 2011 Ho M.-W. (cit0038) 2007 (cit0062) 1999 Xing E. P. (cit0111) 2006 Teh Y. W. (cit0103) 2007 cit0008 cit0009 cit0006 cit0007 cit0004 Durrett R. (cit0022) 1996 cit0005 Paisley J. W. (cit0082) 2010 cit0002 cit0003 cit0033 cit0034 cit0031 cit0032 cit0030 Chung Y. (cit0014) 2009 (cit0076) 2000; 9 Marrs A. D. (cit0065) 1998 cit0035 cit0036 cit0023 cit0020 cit0021 Hjort N. L. (cit0037) 2000 Thibaux R. (cit0104) 2007 cit0028 cit0029 cit0026 cit0027 cit0024 cit0025 cit0055 cit0056 cit0053 cit0054 cit0051 cit0052 Dahl D. B. (cit0016) 2003 cit0050 Phillips D. B. (cit0086) 1996 Park J.-H. (cit0085) 2010; 20 (cit0088) 1996 cit0059 Ishwaran H. (cit0039) 2001 cit0057 cit0058 cit0044 cit0045 cit0042 cit0043 Sethuraman J. (cit0098) 1994; 4 (cit0017) 2005 Miller J. W. (cit0071) 2013; 26 West M. (cit0107) 1994 Nobile A. (cit0078) 1994 cit0048 cit0046 cit0047 |
| References_xml | – ident: cit0059 doi: 10.1080/01621459.1994.10476829 – start-page: 101 year: 2006 ident: cit0108 publication-title: Journal of the American Statistical Association – ident: cit0002 doi: 10.1214/aos/1176342871 – ident: cit0074 doi: 10.1198/jcgs.2011.09066 – ident: cit0109 doi: 10.1016/j.csda.2006.06.006 – ident: cit0068 doi: 10.1093/bioinformatics/btq498 – volume: 2 year: 1999 ident: cit0100 publication-title: IEEE Computer Society Conference on Computer Vision and Pattern Recognition – ident: cit0073 doi: 10.1016/j.jspi.2010.03.002 – ident: cit0027 doi: 10.1214/ECP.v15-1532 – volume: 9 start-page: 249 year: 2000 ident: cit0076 publication-title: Journal of Computational and Graphical Statistics doi: 10.1080/10618600.2000.10474879 – start-page: 215 year: 1996 ident: cit0086 publication-title: Markov Chain Monte Carlo in Practice – ident: cit0051 doi: 10.1214/10-EJS584 – ident: cit0025 doi: 10.1214/aos/1176342360 – ident: cit0054 doi: 10.1214/aos/1176348772 – ident: cit0009 doi: 10.1111/1467-9868.03711 – ident: cit0064 doi: 10.1080/10618600.1998.10474772 – volume: 4 start-page: 639 year: 1994 ident: cit0098 publication-title: Statistica Sinica – ident: cit0094 doi: 10.1111/1467-9868.00095 – ident: cit0001 doi: 10.1007/BFb0099421 – ident: cit0042 doi: 10.1093/biomet/87.2.371 – ident: cit0050 doi: 10.1093/biomet/93.4.877 – ident: cit0106 – ident: cit0023 doi: 10.1080/01621459.1995.10476550 – ident: cit0055 doi: 10.1198/016214505000000132 – ident: cit0101 doi: 10.1214/aos/1016120364 – volume: 62 start-page: 49 year: 2000 ident: cit0049 publication-title: Sankhya – ident: cit0113 doi: 10.1023/B:STCO.0000039484.36470.41 – volume: 13 start-page: 1211 year: 2003 ident: cit0040 publication-title: Statistica Sinica – ident: cit0056 doi: 10.1093/biomet/asm061 – ident: cit0084 doi: 10.1198/jcgs.2010.09008 – ident: cit0029 doi: 10.1093/biomet/82.4.711 – ident: cit0077 doi: 10.1214/12-AOS1065 – start-page: 245 year: 1996 ident: cit0088 publication-title: Lecture Notes-Monograph Series – start-page: 96 year: 2001 ident: cit0039 publication-title: Journal of the American Statistical Association – volume: 15 start-page: 3333 year: 2014 ident: cit0072 publication-title: Journal of Machine Learning Research – ident: cit0033 doi: 10.1080/03610929008830345 – ident: cit0058 doi: 10.1214/07-AAP495 – volume-title: Bayesian Analysis of Finite Mixture Distributions year: 1994 ident: cit0078 – ident: cit0006 doi: 10.1214/06-BA104 – ident: cit0083 doi: 10.1093/biomet/asm086 – ident: cit0060 doi: 10.1080/03610919408813196 – year: 2011 ident: cit0012 publication-title: arXiv:1105.0892 – ident: cit0046 doi: 10.1214/088342305000000016 – volume-title: Probability: Theory and Examples year: 1996 ident: cit0022 – ident: cit0099 doi: 10.21236/ADA101688 – ident: cit0112 doi: 10.1093/bioinformatics/17.10.977 – ident: cit0110 doi: 10.1089/cmb.2006.0102 – ident: cit0102 doi: 10.1198/016214504000001565 – ident: cit0035 doi: 10.1007/BF02481094 – ident: cit0043 doi: 10.1198/1061860043001 – start-page: 363 year: 1994 ident: cit0107 publication-title: Aspects of Uncertainty: A Tribute to D.V. Lindley – ident: cit0026 doi: 10.1214/009053606000001271 – ident: cit0057 doi: 10.1017/CBO9780511802478.004 – ident: cit0070 doi: 10.1093/bioinformatics/bth068 – volume-title: Combinatorial Stochastic Processes year: 2006 ident: cit0089 – ident: cit0053 doi: 10.1198/106186007X238855 – start-page: 564 year: 2007 ident: cit0104 publication-title: International Conference on Artificial Intelligence and Statistics – start-page: 96 year: 2001 ident: cit0041 publication-title: Journal of the American Statistical Association – ident: cit0008 doi: 10.1214/12-BA715 – ident: cit0011 doi: 10.1109/TBME.2013.2275751 – ident: cit0030 doi: 10.1111/1467-9469.00242 – start-page: 556 year: 2007 ident: cit0103 publication-title: International Conference on Artificial Intelligence and Statistics – ident: cit0019 doi: 10.1186/1471-2105-9-497 – ident: cit0063 – start-page: 50 year: 1999 ident: cit0062 publication-title: ASA Proceedings of the Section on Bayesian Statistical Science – ident: cit0080 doi: 10.1007/s11222-006-9014-7 – start-page: 23 year: 1998 ident: cit0061 publication-title: Practical Nonparametric and Semiparametric Bayesian Statistics – ident: cit0069 doi: 10.1093/bioinformatics/18.9.1194 – start-page: 577 year: 1998 ident: cit0065 publication-title: Advances in Neural Information Processing Systems – ident: cit0003 doi: 10.1038/ng765 – ident: cit0097 doi: 10.1080/01621459.1990.10474918 – volume: 20 start-page: 1203 year: 2010 ident: cit0085 publication-title: Statistica Sinica – ident: cit0091 doi: 10.1111/1467-9868.00402 – ident: cit0092 doi: 10.1109/TCBB.2007.70269 – ident: cit0048 doi: 10.1080/00031305.1998.10480547 – ident: cit0095 doi: 10.1214/11-BA605 – ident: cit0052 doi: 10.1016/j.cell.2013.01.019 – start-page: 847 year: 2010 ident: cit0082 publication-title: Proceedings of the 27th International Conference on Machine Learning – ident: cit0044 doi: 10.1214/07-BA219 – ident: cit0067 doi: 10.1093/bioinformatics/18.3.413 – ident: cit0020 doi: 10.1007/s11222-006-5338-6 – ident: cit0081 doi: 10.1080/10635150490468675 – ident: cit0093 doi: 10.1006/dspr.1999.0361 – ident: cit0032 doi: 10.1016/S0167-7152(99)00109-1 – ident: cit0004 doi: 10.1214/aos/1176348521 – ident: cit0028 doi: 10.1007/s10958-006-0335-z – volume: 155 start-page: 945 year: 2000 ident: cit0090 publication-title: Genetics doi: 10.1093/genetics/155.2.945 – ident: cit0034 doi: 10.1111/j.1467-9574.2012.00516.x – year: 2003 ident: cit0016 publication-title: Technical Report, Department of Statistics, University of Wisconsin—Madison – start-page: 1049 year: 2006 ident: cit0111 publication-title: Proceedings of the 23rd International Conference on Machine Learning doi: 10.1145/1143844.1143976 – ident: cit0005 doi: 10.1214/aos/1176342372 – ident: cit0018 doi: 10.1214/09-BA409 – ident: cit0047 doi: 10.1007/s11222-009-9150-y – ident: cit0045 doi: 10.1214/aos/1013203454 – ident: cit0013 doi: 10.1214/13-EJS784 – year: 2007 ident: cit0038 publication-title: arXiv:0708.0619 – ident: cit0021 doi: 10.1093/biomet/asn012 – start-page: 11 year: 2005 ident: cit0017 publication-title: Journal of Computational and Graphical Statistics – ident: cit0105 doi: 10.1080/03610910601096262 – ident: cit0010 doi: 10.1093/biomet/83.2.275 – year: 2000 ident: cit0037 publication-title: Technical Report, University of Oslo – ident: cit0031 doi: 10.1198/016214505000000727 – ident: cit0007 doi: 10.1162/jmlr.2003.3.4-5.993 – ident: cit0075 doi: 10.1007/978-94-017-2219-3_14 – volume: 26 year: 2013 ident: cit0071 publication-title: Advances in Neural Information Processing Systems – start-page: 104 year: 2009 ident: cit0014 publication-title: Journal of the American Statistical Association – ident: cit0036 doi: 10.1007/BF02915431 – year: 2005 ident: cit0079 publication-title: Technical Report, Department of Statistics, University of Glasgow – ident: cit0087 doi: 10.1007/BF01213386 – ident: cit0066 doi: 10.1214/08-BA304 – ident: cit0015 doi: 10.1016/j.media.2006.12.002 – ident: cit0096 doi: 10.1007/s11222-012-9351-7 – ident: cit0024 doi: 10.1093/biomet/ass023 |
| SSID | ssj0000788 |
| Score | 2.6409655 |
| Snippet | A natural Bayesian approach for mixture models with an unknown number of components is to take the usual finite mixture model with symmetric Dirichlet weights,... |
| SourceID | pubmedcentral proquest pubmed crossref jstor informaworld |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 340 |
| SubjectTerms | Bayesian Bayesian analysis Bayesian theory Cancer Clustering Computer simulation Density estimation Dirichlet problem Gene expression Inference Markov analysis Markov chain Markov chains Mixtures Model selection Monte Carlo method Monte Carlo simulation neoplasms Nonparametric Nonparametric statistics Partition Probabilistic models Property Regression analysis Representations Restaurants Reversible Samplers Statistical methods statistical models Statistics Subtypes Theory and Methods |
| Title | Mixture Models With a Prior on the Number of Components |
| URI | https://www.tandfonline.com/doi/abs/10.1080/01621459.2016.1255636 https://www.jstor.org/stable/45028528 https://www.ncbi.nlm.nih.gov/pubmed/29983475 https://www.proquest.com/docview/2284863806 https://www.proquest.com/docview/2067133302 https://www.proquest.com/docview/2101334205 https://pubmed.ncbi.nlm.nih.gov/PMC6035010 |
| Volume | 113 |
| WOSCitedRecordID | wos000438960500035&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAWR databaseName: Taylor and Francis Online Journals customDbUrl: eissn: 1537-274X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000788 issn: 0162-1459 databaseCode: TFW dateStart: 19220301 isFulltext: true titleUrlDefault: https://www.tandfonline.com providerName: Taylor & Francis |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwEB5R1AOXvnh0C0VG6jXgRxLbR1R11UO74gBib5HtJGIllFS7C-Lnd8Z5lEVtObTHlT2b3fE8PsfjbwA-hSBdJgxPalOlSVrzkDjj0sRmMh7L2DKNF4W_6dnMzOf2oq8mXPVllbSHrjuiiBirybmdXw0VcWeIUohfm66ZiPxUEImWItJtTP3kmpfT61-xWMfOkySRkMhwh-dP37KRnTa4S4d6xd8h0acFlY8y1PT1f_hvb-BVD0_ZeWdPb2Grat7BDiHSjtB5F_T3xQOdOjDqona7YteL9Q1z7GK5aJesbRgCSjaLbUZYWzMKN21DxRp7cDX9cvn5a9J3X0gCgpJ1UueSByN9aTGte-5tHiotyjwPdZkrH7SsrMV9eWkNoiheaYu7Iee9NCLklfVqH7YbfMJ7YMo54XDdA3HBa4wZ3qMNZKL2QVKhywTSQetF6KnJqUPGbSEGBtNeLQWppejVMoHTUexHx83xnIB9vKTFOr4UqbsOJoV6RnY_rv_4pDRDaJZJM4GjwSCK3v9XhcSsbzC0cZQ7GYfRc-k4xjVVe4dzECgIpRSXf5mDEVOpVPJsAgedjY0_AIGEUanGEb1hfeMEYg7fHGkWN5FBPI_nyfzDP-jjEHbwo4lvo-QRbK-Xd9VHeBnu0R6Xx_BCz81x9MWfDtgq-g |
| linkProvider | Taylor & Francis |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELagINEL78JCASNxTfEj8eNYVayK2K44LGpvlu0k6kpVgrbbqj-fGefBLgJ6gLM9eYzHM5_t8TeEfIhR-IIbltWmyrO8ZjHzxueZLUQ6lrFlni4Kz_R8bs7O7OZdGEyrxDV03RFFJF-Nkxs3o4eUuI8AU5BgG--ZcHXAkUVLqrvkXgGxFvnzF9PTn95Yp9qTKJKhzHCL50-P2YpPW-ylQ8bi77DorymVGzFq-uh__N1j8rBHqPSwM6kn5E7VPCW7CEo7TudnRJ8sb_DggWIhtYtLerpcn1NPv66W7Yq2DQVMSeep0ghta4oep20wX-M5-Tb9tDg6zvoCDFkEXLLOaiVYNCKUFiJ7YMGqWGleKhXrUskQtaishaV5aQ0AKVZpCwsiH4IwPKrKBrlHdhp4w0tCpffcw9BHpIPX4DZCADMoeB2iwFyXCckHtbvYs5NjkYwLxwcS014tDtXierVMyMEo9r2j57hNwG6OqVunfZG6K2Li5C2ye8kAxjflBaCzQpgJ2R8swvUu4NIJCPwGvBsDufdjM0xePJHxTdVeQR_AClxKycRf-oDTlDIXrJiQF52RjR8AWMLIXEOL3jK_sQOSh2-3NMvzRCKu0pEye_UP-nhHHhwvTmZu9nn-5TXZhSaTNqfEPtlZr66qN-R-vAbbXL1NU_IH56AuPA |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELagINQL75aFAkbimuJH4scR0a5AlNUeitqbFTuxulKVVLtbxM9nxnnQRdAeytmePMbj8WfP-BtC3ocgyoIblkVT51keWchKU-aZLUQKy9gqTxeFj_RsZk5P7bzPJlz1aZW4h44dUUTy1Ti5L6o4ZMR9AJSC_Np4zYSrfY4kWlLdJfcAOis08uPpyW9nrFPpSRTJUGa4xPOvx2wsTxvkpUPC4t-g6J8ZlVeWqOmj__Bzj8nDHp_Sj51BPSF36uYp2UZI2jE6PyP62-Inhh0ollE7X9GTxfqMlnS-XLRL2jYUECWdpTojtI0U_U3bYLbGc_J9enj86XPWl1_IAqCSdRaVYMEIX1lY1z3zVoVa80qpECslfdCithY25pU1AKNYrS1sh0rvheFB1dbLHbLVwBteECrLkpcw8AHJ4DU4De_BCAoefRCY6TIh-aB1F3puciyRce74QGHaq8WhWlyvlgnZH8UuOnKOmwTs1SF163QqErsSJk7eILuTxn98U14ANiuEmZC9wSBc7wBWTsCyb8C3MZB7NzbD1MV4TNnU7SX0AaTApZRMXNMHXKaUuWDFhOx2NjZ-ACAJI3MNLXrD-sYOSB2-2dIszhKFuEoBZfbyFvp4Sx7MD6bu6Mvs6yuyDS0mnUyJPbK1Xl7Wr8n98ANMc_kmTchfJ68s7g |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mixture+Models+With+a+Prior+on+the+Number+of+Components&rft.jtitle=Journal+of+the+American+Statistical+Association&rft.au=Miller%2C+Jeffrey+W.&rft.au=Harrison%2C+Matthew+T.&rft.date=2018-01-02&rft.pub=Taylor+%26+Francis&rft.issn=0162-1459&rft.eissn=1537-274X&rft.volume=113&rft.issue=521&rft.spage=340&rft.epage=356&rft_id=info:doi/10.1080%2F01621459.2016.1255636&rft.externalDocID=1255636 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0162-1459&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0162-1459&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0162-1459&client=summon |