Mixture Models With a Prior on the Number of Components

A natural Bayesian approach for mixture models with an unknown number of components is to take the usual finite mixture model with symmetric Dirichlet weights, and put a prior on the number of components-that is, to use a mixture of finite mixtures (MFM). The most commonly used method of inference f...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Journal of the American Statistical Association Ročník 113; číslo 521; s. 340 - 356
Hlavní autori: Miller, Jeffrey W., Harrison, Matthew T.
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: United States Taylor & Francis 02.01.2018
Taylor & Francis Group,LLC
Taylor & Francis Ltd
Predmet:
ISSN:0162-1459, 1537-274X, 1537-274X
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract A natural Bayesian approach for mixture models with an unknown number of components is to take the usual finite mixture model with symmetric Dirichlet weights, and put a prior on the number of components-that is, to use a mixture of finite mixtures (MFM). The most commonly used method of inference for MFMs is reversible jump Markov chain Monte Carlo, but it can be nontrivial to design good reversible jump moves, especially in high-dimensional spaces. Meanwhile, there are samplers for Dirichlet process mixture (DPM) models that are relatively simple and are easily adapted to new applications. It turns out that, in fact, many of the essential properties of DPMs are also exhibited by MFMs-an exchangeable partition distribution, restaurant process, random measure representation, and stick-breaking representation-and crucially, the MFM analogues are simple enough that they can be used much like the corresponding DPM properties. Consequently, many of the powerful methods developed for inference in DPMs can be directly applied to MFMs as well; this simplifies the implementation of MFMs and can substantially improve mixing. We illustrate with real and simulated data, including high-dimensional gene expression data used to discriminate cancer subtypes. Supplementary materials for this article are available online.
AbstractList A natural Bayesian approach for mixture models with an unknown number of components is to take the usual finite mixture model with symmetric Dirichlet weights, and put a prior on the number of components-that is, to use a mixture of finite mixtures (MFM). The most commonly used method of inference for MFMs is reversible jump Markov chain Monte Carlo, but it can be nontrivial to design good reversible jump moves, especially in high-dimensional spaces. Meanwhile, there are samplers for Dirichlet process mixture (DPM) models that are relatively simple and are easily adapted to new applications. It turns out that, in fact, many of the essential properties of DPMs are also exhibited by MFMs-an exchangeable partition distribution, restaurant process, random measure representation, and stick-breaking representation-and crucially, the MFM analogues are simple enough that they can be used much like the corresponding DPM properties. Consequently, many of the powerful methods developed for inference in DPMs can be directly applied to MFMs as well; this simplifies the implementation of MFMs and can substantially improve mixing. We illustrate with real and simulated data, including high-dimensional gene expression data used to discriminate cancer subtypes. Supplementary materials for this article are available online.
A natural Bayesian approach for mixture models with an unknown number of components is to take the usual finite mixture model with symmetric Dirichlet weights, and put a prior on the number of components-that is, to use a mixture of finite mixtures (MFM). The most commonly-used method of inference for MFMs is reversible jump Markov chain Monte Carlo, but it can be nontrivial to design good reversible jump moves, especially in high-dimensional spaces. Meanwhile, there are samplers for Dirichlet process mixture (DPM) models that are relatively simple and are easily adapted to new applications. It turns out that, in fact, many of the essential properties of DPMs are also exhibited by MFMs-an exchangeable partition distribution, restaurant process, random measure representation, and stick-breaking representation-and crucially, the MFM analogues are simple enough that they can be used much like the corresponding DPM properties. Consequently, many of the powerful methods developed for inference in DPMs can be directly applied to MFMs as well; this simplifies the implementation of MFMs and can substantially improve mixing. We illustrate with real and simulated data, including high-dimensional gene expression data used to discriminate cancer subtypes.
A natural Bayesian approach for mixture models with an unknown number of components is to take the usual finite mixture model with symmetric Dirichlet weights, and put a prior on the number of components-that is, to use a mixture of finite mixtures (MFM). The most commonly-used method of inference for MFMs is reversible jump Markov chain Monte Carlo, but it can be nontrivial to design good reversible jump moves, especially in high-dimensional spaces. Meanwhile, there are samplers for Dirichlet process mixture (DPM) models that are relatively simple and are easily adapted to new applications. It turns out that, in fact, many of the essential properties of DPMs are also exhibited by MFMs-an exchangeable partition distribution, restaurant process, random measure representation, and stick-breaking representation-and crucially, the MFM analogues are simple enough that they can be used much like the corresponding DPM properties. Consequently, many of the powerful methods developed for inference in DPMs can be directly applied to MFMs as well; this simplifies the implementation of MFMs and can substantially improve mixing. We illustrate with real and simulated data, including high-dimensional gene expression data used to discriminate cancer subtypes.A natural Bayesian approach for mixture models with an unknown number of components is to take the usual finite mixture model with symmetric Dirichlet weights, and put a prior on the number of components-that is, to use a mixture of finite mixtures (MFM). The most commonly-used method of inference for MFMs is reversible jump Markov chain Monte Carlo, but it can be nontrivial to design good reversible jump moves, especially in high-dimensional spaces. Meanwhile, there are samplers for Dirichlet process mixture (DPM) models that are relatively simple and are easily adapted to new applications. It turns out that, in fact, many of the essential properties of DPMs are also exhibited by MFMs-an exchangeable partition distribution, restaurant process, random measure representation, and stick-breaking representation-and crucially, the MFM analogues are simple enough that they can be used much like the corresponding DPM properties. Consequently, many of the powerful methods developed for inference in DPMs can be directly applied to MFMs as well; this simplifies the implementation of MFMs and can substantially improve mixing. We illustrate with real and simulated data, including high-dimensional gene expression data used to discriminate cancer subtypes.
Author Miller, Jeffrey W.
Harrison, Matthew T.
Author_xml – sequence: 1
  givenname: Jeffrey W.
  surname: Miller
  fullname: Miller, Jeffrey W.
  email: jwmillerusa@gmail.com
  organization: Department of Biostatistics, Harvard University
– sequence: 2
  givenname: Matthew T.
  surname: Harrison
  fullname: Harrison, Matthew T.
  organization: Division of Applied Mathematics, Brown University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29983475$$D View this record in MEDLINE/PubMed
BookMark eNqFkU1v1DAQhi1URLcLP6EoEhcuWcZ27NhCQqBV-ZBa4ACCm-U4DutVEi-2A-2_x9FuV9AD9cUezfPOjOc9QyejHy1C5xhWGAS8AMwJrphckfxaYcIYp_wBWmBG65LU1fcTtJiZcoZO0VmMW8inFuIROiVSClrVbIHqK3edpmCLK9_aPhbfXNoUuvgcnA-FH4u0scXHaWhsjrpi7YddHmNM8TF62Ok-2ieHe4m-vr34sn5fXn5692H95rI0TFSp7DgBI0jTSiC0gUZyY2vccm66ltPG1MRKaRvSSsGAga0lSK6bhghsuJUNXaJX-7q7qRlsa3LvoHu1C27Q4UZ57dS_mdFt1A__S3GgDDDkAs8PBYL_OdmY1OCisX2vR-unqAgGTGlFgN2PAq8zS_NXlujZHXTrpzDmTShCRCU4FcAz9fTv4Y9T364_A2wPmOBjDLY7IhjUbLO6tVnNNquDzVn38o7OuKST8_MOXH-v-nyv3sbkw7FlxYAIRkTOv97n3dj5MOjfPvStSvqm96ELejQuKvr_Fn8AsyXHqw
CitedBy_id crossref_primary_10_1080_01621459_2024_2444700
crossref_primary_10_1214_21_BA1294
crossref_primary_10_1007_s11634_025_00640_x
crossref_primary_10_1080_01621459_2018_1537918
crossref_primary_10_1002_sim_9309
crossref_primary_10_1111_exsy_12688
crossref_primary_10_1214_24_BA1458
crossref_primary_10_1093_jrsssc_qlae004
crossref_primary_10_1016_j_spl_2019_108656
crossref_primary_10_1007_s11634_021_00441_y
crossref_primary_10_1016_j_spasta_2021_100548
crossref_primary_10_1214_22_BA1326
crossref_primary_10_1080_01621459_2024_2427935
crossref_primary_10_1515_jqas_2019_0106
crossref_primary_10_1016_j_csda_2022_107474
crossref_primary_10_1214_19_BA1150
crossref_primary_10_1080_00036846_2024_2387858
crossref_primary_10_1080_07350015_2022_2143784
crossref_primary_10_1080_01621459_2018_1520114
crossref_primary_10_1214_24_BA1462
crossref_primary_10_1093_jrsssb_qkad076
crossref_primary_10_1134_S1995080222010127
crossref_primary_10_1139_cjfr_2019_0170
crossref_primary_10_1002_sta4_324
crossref_primary_10_1111_biom_13626
crossref_primary_10_1214_24_BA1501
crossref_primary_10_1080_01621459_2024_2427936
crossref_primary_10_1080_10618600_2022_2085727
crossref_primary_10_1214_24_BA1463
crossref_primary_10_1177_1471082X211049278
crossref_primary_10_1080_10618600_2023_2177298
crossref_primary_10_1093_jrsssa_qnad135
crossref_primary_10_1080_01621459_2018_1458618
crossref_primary_10_1016_j_spasta_2022_100715
crossref_primary_10_1214_22_BA1338
crossref_primary_10_1007_s10260_023_00716_y
crossref_primary_10_1214_25_AOAS2014
crossref_primary_10_1017_nws_2023_22
crossref_primary_10_1080_01621459_2023_2250098
crossref_primary_10_1007_s11222_020_09935_9
crossref_primary_10_3390_cancers16020251
crossref_primary_10_1109_TKDE_2021_3104155
crossref_primary_10_1016_j_spasta_2021_100495
crossref_primary_10_1080_02664763_2022_2118678
crossref_primary_10_1214_21_BA1272
crossref_primary_10_3390_a16050245
crossref_primary_10_1093_jrsssc_qlac002
crossref_primary_10_1111_insr_12588
crossref_primary_10_1214_21_AOS2072
crossref_primary_10_1111_bmsp_12322
crossref_primary_10_1214_25_BA1549
crossref_primary_10_1080_01621459_2024_2353943
crossref_primary_10_1080_01621459_2023_2257896
crossref_primary_10_1214_19_BA1168
crossref_primary_10_1080_00031305_2025_2561146
crossref_primary_10_1214_22_BA1320
crossref_primary_10_1016_j_csda_2020_107051
crossref_primary_10_1016_j_jeconom_2024_105725
crossref_primary_10_1111_bmsp_12280
crossref_primary_10_1111_anzs_12350
crossref_primary_10_1007_s00357_023_09434_2
crossref_primary_10_1111_mms_13104
crossref_primary_10_1093_biomet_asab056
crossref_primary_10_1007_s11004_021_09961_x
crossref_primary_10_1214_25_BA1535
crossref_primary_10_1080_01431161_2022_2058893
crossref_primary_10_1177_09622802231211010
crossref_primary_10_1002_sim_9225
crossref_primary_10_1017_pan_2020_29
crossref_primary_10_1016_j_ejrs_2025_05_009
crossref_primary_10_1111_sjos_12739
crossref_primary_10_1002_cjs_11684
crossref_primary_10_1038_s41598_023_44608_3
crossref_primary_10_1080_10618600_2022_2142594
crossref_primary_10_1016_j_csda_2019_106846
crossref_primary_10_1080_01621459_2022_2149406
crossref_primary_10_1093_biomet_asaa030
crossref_primary_10_1093_biomet_asac051
crossref_primary_10_1214_23_AOS2349
crossref_primary_10_1111_anzs_12369
crossref_primary_10_1080_01621459_2019_1686985
crossref_primary_10_1007_s11634_021_00461_8
crossref_primary_10_1017_nws_2017_6
crossref_primary_10_1080_01621459_2023_2191821
crossref_primary_10_1093_jrsssc_qlad100
crossref_primary_10_1214_24_BA1416
crossref_primary_10_6339_22_JDS1062
crossref_primary_10_1016_j_csda_2024_107942
crossref_primary_10_1002_sim_10151
crossref_primary_10_1080_10618600_2024_2410911
crossref_primary_10_1214_22_AOS2201
crossref_primary_10_1093_jrsssc_qlae064
crossref_primary_10_3390_informatics7030021
crossref_primary_10_1093_biostatistics_kxab038
crossref_primary_10_1002_sim_9806
crossref_primary_10_1109_ACCESS_2020_3009878
crossref_primary_10_1111_biom_13388
crossref_primary_10_1007_s11222_021_10032_8
crossref_primary_10_1080_01621459_2019_1611583
crossref_primary_10_3390_app11167343
crossref_primary_10_1002_env_2694
crossref_primary_10_1016_j_csda_2021_107252
crossref_primary_10_1007_s11222_020_09946_6
crossref_primary_10_1080_01621459_2022_2123332
crossref_primary_10_1080_00949655_2021_1902526
crossref_primary_10_1080_03610926_2024_2438312
crossref_primary_10_1186_s12859_022_04830_8
crossref_primary_10_1080_10543406_2024_2325148
crossref_primary_10_1080_10618600_2021_2000424
crossref_primary_10_1002_cjs_11671
crossref_primary_10_1109_JSTQE_2022_3186798
crossref_primary_10_1080_10618600_2025_2500978
crossref_primary_10_1080_01621459_2024_2402568
crossref_primary_10_1214_25_AOAS2031
crossref_primary_10_1080_10485252_2024_2354841
crossref_primary_10_1186_s13059_024_03289_5
crossref_primary_10_1007_s11634_018_0329_y
crossref_primary_10_1093_bioadv_vbaf055
crossref_primary_10_1093_biomtc_ujaf125
crossref_primary_10_1214_18_AOS1712
crossref_primary_10_1016_j_csda_2022_107566
Cites_doi 10.1080/01621459.1994.10476829
10.1214/aos/1176342871
10.1198/jcgs.2011.09066
10.1016/j.csda.2006.06.006
10.1093/bioinformatics/btq498
10.1016/j.jspi.2010.03.002
10.1214/ECP.v15-1532
10.1080/10618600.2000.10474879
10.1214/10-EJS584
10.1214/aos/1176342360
10.1214/aos/1176348772
10.1111/1467-9868.03711
10.1080/10618600.1998.10474772
10.1111/1467-9868.00095
10.1007/BFb0099421
10.1093/biomet/87.2.371
10.1093/biomet/93.4.877
10.1080/01621459.1995.10476550
10.1198/016214505000000132
10.1214/aos/1016120364
10.1023/B:STCO.0000039484.36470.41
10.1093/biomet/asm061
10.1198/jcgs.2010.09008
10.1093/biomet/82.4.711
10.1214/12-AOS1065
10.1080/03610929008830345
10.1214/07-AAP495
10.1214/06-BA104
10.1093/biomet/asm086
10.1080/03610919408813196
10.1214/088342305000000016
10.21236/ADA101688
10.1093/bioinformatics/17.10.977
10.1089/cmb.2006.0102
10.1198/016214504000001565
10.1007/BF02481094
10.1198/1061860043001
10.1214/009053606000001271
10.1017/CBO9780511802478.004
10.1093/bioinformatics/bth068
10.1198/106186007X238855
10.1214/12-BA715
10.1109/TBME.2013.2275751
10.1111/1467-9469.00242
10.1186/1471-2105-9-497
10.1007/s11222-006-9014-7
10.1093/bioinformatics/18.9.1194
10.1038/ng765
10.1080/01621459.1990.10474918
10.1111/1467-9868.00402
10.1109/TCBB.2007.70269
10.1080/00031305.1998.10480547
10.1214/11-BA605
10.1016/j.cell.2013.01.019
10.1214/07-BA219
10.1093/bioinformatics/18.3.413
10.1007/s11222-006-5338-6
10.1080/10635150490468675
10.1006/dspr.1999.0361
10.1016/S0167-7152(99)00109-1
10.1214/aos/1176348521
10.1007/s10958-006-0335-z
10.1093/genetics/155.2.945
10.1111/j.1467-9574.2012.00516.x
10.1145/1143844.1143976
10.1214/aos/1176342372
10.1214/09-BA409
10.1007/s11222-009-9150-y
10.1214/aos/1013203454
10.1214/13-EJS784
10.1093/biomet/asn012
10.1080/03610910601096262
10.1093/biomet/83.2.275
10.1198/016214505000000727
10.1162/jmlr.2003.3.4-5.993
10.1007/978-94-017-2219-3_14
10.1007/BF02915431
10.1007/BF01213386
10.1214/08-BA304
10.1016/j.media.2006.12.002
10.1007/s11222-012-9351-7
10.1093/biomet/ass023
ContentType Journal Article
Copyright 2018 American Statistical Association 2018
Copyright © 2018 American Statistical Association
2018 American Statistical Association
Copyright_xml – notice: 2018 American Statistical Association 2018
– notice: Copyright © 2018 American Statistical Association
– notice: 2018 American Statistical Association
DBID AAYXX
CITATION
NPM
8BJ
FQK
JBE
K9.
7X8
7S9
L.6
5PM
DOI 10.1080/01621459.2016.1255636
DatabaseName CrossRef
PubMed
International Bibliography of the Social Sciences (IBSS)
International Bibliography of the Social Sciences
International Bibliography of the Social Sciences
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
International Bibliography of the Social Sciences (IBSS)
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
PubMed


AGRICOLA
MEDLINE - Academic
International Bibliography of the Social Sciences (IBSS)
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Statistics
EISSN 1537-274X
EndPage 356
ExternalDocumentID PMC6035010
29983475
10_1080_01621459_2016_1255636
45028528
1255636
Genre Article
Journal Article
GrantInformation_xml – fundername: NIEHS NIH HHS
  grantid: R01 ES027498
– fundername: NIMH NIH HHS
  grantid: R01 MH102840
– fundername: NIEHS NIH HHS
  grantid: R01 ES020619
GroupedDBID -DZ
-~X
..I
.7F
.QJ
0BK
0R~
29L
2AX
30N
4.4
5GY
5RE
692
7WY
85S
8FL
AAAVZ
AABCJ
AAENE
AAGDL
AAHBH
AAHIA
AAJMT
AALDU
AAMIU
AAPUL
AAQRR
ABBHK
ABCCY
ABEHJ
ABFAN
ABFIM
ABJNI
ABLIJ
ABLJU
ABPAQ
ABPEM
ABPFR
ABPPZ
ABRLO
ABTAI
ABUFD
ABXSQ
ABXUL
ABXYU
ABYWD
ACGFO
ACGFS
ACGOD
ACIWK
ACMTB
ACNCT
ACTIO
ACTMH
ACUBG
ADCVX
ADGTB
ADLSF
ADMHG
ADODI
ADXHL
AEISY
AENEX
AEOZL
AEPSL
AEUPB
AEYOC
AFFNX
AFRVT
AFVYC
AFXHP
AGDLA
AGMYJ
AHDZW
AIJEM
AIYEW
AKBVH
AKOOK
ALMA_UNASSIGNED_HOLDINGS
ALQZU
ALRMG
AMVHM
AQRUH
AQTUD
AVBZW
AWYRJ
BLEHA
CCCUG
CJ0
CS3
D0L
DGEBU
DKSSO
DQDLB
DSRWC
DU5
EBS
ECEWR
EJD
E~A
E~B
F5P
FJW
GTTXZ
H13
HF~
HQ6
HZ~
H~9
H~P
IPNFZ
IPSME
J.P
JAAYA
JAS
JBMMH
JBZCM
JENOY
JHFFW
JKQEH
JLEZI
JLXEF
JMS
JPL
JST
K60
K6~
KYCEM
LU7
M4Z
MS~
MW2
NA5
NY~
O9-
OFU
OK1
P2P
RIG
RNANH
ROSJB
RTWRZ
RWL
RXW
S-T
SA0
SNACF
TAE
TASJS
TBQAZ
TDBHL
TEJ
TFL
TFT
TFW
TN5
TOXWX
TTHFI
TUROJ
U5U
UPT
UT5
UU3
WH7
WZA
YQT
YYM
ZGOLN
ZUP
~S~
ADYSH
AFSUE
ALIPV
AMPGV
AAYXX
CITATION
.-4
.GJ
07G
1OL
3R3
7X7
88E
88I
8AF
8C1
8FE
8FG
8FI
8FJ
8G5
8R4
8R5
AAFWJ
AAIKQ
AAKBW
AAWIL
ABAWQ
ABEFU
ABJCF
ABPQH
ABUWG
ACAGQ
ACGEE
ACHJO
ADBBV
ADULT
AEUMN
AFKRA
AFQQW
AGCQS
AGLEN
AGLNM
AGROQ
AHMOU
AI.
AIHAF
ALCKM
AMATQ
AMEWO
AMXXU
AQUVI
AZQEC
BCCOT
BENPR
BEZIV
BGLVJ
BKNYI
BKOMP
BPHCQ
BPLKW
BVXVI
C06
CCPQU
CRFIH
DMQIW
DWIFK
DWQXO
E.L
FEDTE
FRNLG
FVMVE
FYUFA
GNUQQ
GROUPED_ABI_INFORM_RESEARCH
GUQSH
HCIFZ
HGD
HMCUK
HVGLF
IVXBP
K9-
KQ8
L6V
LJTGL
M0C
M0R
M0T
M1P
M2O
M2P
M7S
MVM
NHB
NPM
NUSFT
P-O
PADUT
PHGZM
PHGZT
PJZUB
PPXIY
PQBIZ
PQBZA
PQGLB
PQQKQ
PRG
PROAC
PSQYO
PTHSS
Q2X
QCRFL
RNS
S0X
SJN
TAQ
TFMCV
UB9
UKHRP
UQL
VH1
VOH
WHG
YXB
YYP
ZCG
ZGI
ZXP
8BJ
FQK
JBE
K9.
7X8
7S9
L.6
5PM
ID FETCH-LOGICAL-c584t-f620c82bd9023b0b96ce71d66cfd63bc72e99eb2d985050e79096abb281c6e9b3
IEDL.DBID TFW
ISICitedReferencesCount 158
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000438960500035&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0162-1459
1537-274X
IngestDate Tue Nov 04 02:01:28 EST 2025
Thu Oct 02 23:57:15 EDT 2025
Sun Nov 09 12:07:42 EST 2025
Sun Nov 09 13:13:45 EST 2025
Mon Jul 21 05:56:07 EDT 2025
Sat Nov 29 03:56:42 EST 2025
Tue Nov 18 22:26:13 EST 2025
Thu May 29 09:01:27 EDT 2025
Mon Oct 20 23:49:07 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 521
Keywords model selection
clustering
density estimation
nonparametric
Bayesian
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c584t-f620c82bd9023b0b96ce71d66cfd63bc72e99eb2d985050e79096abb281c6e9b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
The authors gratefully acknowledge support from the National Science Foundation (NSF) grants DMS-1007593, DMS-1309004, and DMS-1045153, the National Institute of Mental Health (NIMH) grant R01MH102840, the Defense Advanced Research Projects Agency (DARPA) contract FA8650-11-1-715, and the National Institutes of Health (NIH) grant R01ES020619.
OpenAccessLink https://figshare.com/articles/dataset/Mixture_models_with_a_prior_on_the_number_of_components/4478384
PMID 29983475
PQID 2284863806
PQPubID 41715
PageCount 17
ParticipantIDs proquest_miscellaneous_2101334205
proquest_miscellaneous_2067133302
crossref_primary_10_1080_01621459_2016_1255636
jstor_primary_45028528
pubmedcentral_primary_oai_pubmedcentral_nih_gov_6035010
proquest_journals_2284863806
crossref_citationtrail_10_1080_01621459_2016_1255636
pubmed_primary_29983475
informaworld_taylorfrancis_310_1080_01621459_2016_1255636
PublicationCentury 2000
PublicationDate 2018-01-02
PublicationDateYYYYMMDD 2018-01-02
PublicationDate_xml – month: 01
  year: 2018
  text: 2018-01-02
  day: 02
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Alexandria
PublicationTitle Journal of the American Statistical Association
PublicationTitleAlternate J Am Stat Assoc
PublicationYear 2018
Publisher Taylor & Francis
Taylor & Francis Group,LLC
Taylor & Francis Ltd
Publisher_xml – name: Taylor & Francis
– name: Taylor & Francis Group,LLC
– name: Taylor & Francis Ltd
References cit0077
cit0110
(cit0040) 2003; 13
cit0075
(cit0089) 2006
cit0073
cit0074
cit0070
Ishwaran H. (cit0041) 2001
cit0112
cit0113
cit0066
cit0067
cit0064
cit0063
Woo M.-J. (cit0108) 2006
cit0060
(cit0072) 2014; 15
cit0109
cit0105
cit0106
Keribin C. (cit0049) 2000; 62
(cit0079) 2005
cit0068
cit0101
cit0069
cit0102
cit0011
cit0099
cit0097
cit0010
cit0095
cit0096
cit0093
cit0094
cit0091
cit0092
Pritchard J. K. (cit0090) 2000; 155
Dey D. D. (cit0061) 1998
cit0019
cit0018
cit0015
cit0013
cit0001
Stauffer C. (cit0100) 1999; 2
cit0087
cit0084
cit0083
cit0080
cit0081
Cerquetti A. (cit0012) 2011
Ho M.-W. (cit0038) 2007
(cit0062) 1999
Xing E. P. (cit0111) 2006
Teh Y. W. (cit0103) 2007
cit0008
cit0009
cit0006
cit0007
cit0004
Durrett R. (cit0022) 1996
cit0005
Paisley J. W. (cit0082) 2010
cit0002
cit0003
cit0033
cit0034
cit0031
cit0032
cit0030
Chung Y. (cit0014) 2009
(cit0076) 2000; 9
Marrs A. D. (cit0065) 1998
cit0035
cit0036
cit0023
cit0020
cit0021
Hjort N. L. (cit0037) 2000
Thibaux R. (cit0104) 2007
cit0028
cit0029
cit0026
cit0027
cit0024
cit0025
cit0055
cit0056
cit0053
cit0054
cit0051
cit0052
Dahl D. B. (cit0016) 2003
cit0050
Phillips D. B. (cit0086) 1996
Park J.-H. (cit0085) 2010; 20
(cit0088) 1996
cit0059
Ishwaran H. (cit0039) 2001
cit0057
cit0058
cit0044
cit0045
cit0042
cit0043
Sethuraman J. (cit0098) 1994; 4
(cit0017) 2005
Miller J. W. (cit0071) 2013; 26
West M. (cit0107) 1994
Nobile A. (cit0078) 1994
cit0048
cit0046
cit0047
References_xml – ident: cit0059
  doi: 10.1080/01621459.1994.10476829
– start-page: 101
  year: 2006
  ident: cit0108
  publication-title: Journal of the American Statistical Association
– ident: cit0002
  doi: 10.1214/aos/1176342871
– ident: cit0074
  doi: 10.1198/jcgs.2011.09066
– ident: cit0109
  doi: 10.1016/j.csda.2006.06.006
– ident: cit0068
  doi: 10.1093/bioinformatics/btq498
– volume: 2
  year: 1999
  ident: cit0100
  publication-title: IEEE Computer Society Conference on Computer Vision and Pattern Recognition
– ident: cit0073
  doi: 10.1016/j.jspi.2010.03.002
– ident: cit0027
  doi: 10.1214/ECP.v15-1532
– volume: 9
  start-page: 249
  year: 2000
  ident: cit0076
  publication-title: Journal of Computational and Graphical Statistics
  doi: 10.1080/10618600.2000.10474879
– start-page: 215
  year: 1996
  ident: cit0086
  publication-title: Markov Chain Monte Carlo in Practice
– ident: cit0051
  doi: 10.1214/10-EJS584
– ident: cit0025
  doi: 10.1214/aos/1176342360
– ident: cit0054
  doi: 10.1214/aos/1176348772
– ident: cit0009
  doi: 10.1111/1467-9868.03711
– ident: cit0064
  doi: 10.1080/10618600.1998.10474772
– volume: 4
  start-page: 639
  year: 1994
  ident: cit0098
  publication-title: Statistica Sinica
– ident: cit0094
  doi: 10.1111/1467-9868.00095
– ident: cit0001
  doi: 10.1007/BFb0099421
– ident: cit0042
  doi: 10.1093/biomet/87.2.371
– ident: cit0050
  doi: 10.1093/biomet/93.4.877
– ident: cit0106
– ident: cit0023
  doi: 10.1080/01621459.1995.10476550
– ident: cit0055
  doi: 10.1198/016214505000000132
– ident: cit0101
  doi: 10.1214/aos/1016120364
– volume: 62
  start-page: 49
  year: 2000
  ident: cit0049
  publication-title: Sankhya
– ident: cit0113
  doi: 10.1023/B:STCO.0000039484.36470.41
– volume: 13
  start-page: 1211
  year: 2003
  ident: cit0040
  publication-title: Statistica Sinica
– ident: cit0056
  doi: 10.1093/biomet/asm061
– ident: cit0084
  doi: 10.1198/jcgs.2010.09008
– ident: cit0029
  doi: 10.1093/biomet/82.4.711
– ident: cit0077
  doi: 10.1214/12-AOS1065
– start-page: 245
  year: 1996
  ident: cit0088
  publication-title: Lecture Notes-Monograph Series
– start-page: 96
  year: 2001
  ident: cit0039
  publication-title: Journal of the American Statistical Association
– volume: 15
  start-page: 3333
  year: 2014
  ident: cit0072
  publication-title: Journal of Machine Learning Research
– ident: cit0033
  doi: 10.1080/03610929008830345
– ident: cit0058
  doi: 10.1214/07-AAP495
– volume-title: Bayesian Analysis of Finite Mixture Distributions
  year: 1994
  ident: cit0078
– ident: cit0006
  doi: 10.1214/06-BA104
– ident: cit0083
  doi: 10.1093/biomet/asm086
– ident: cit0060
  doi: 10.1080/03610919408813196
– year: 2011
  ident: cit0012
  publication-title: arXiv:1105.0892
– ident: cit0046
  doi: 10.1214/088342305000000016
– volume-title: Probability: Theory and Examples
  year: 1996
  ident: cit0022
– ident: cit0099
  doi: 10.21236/ADA101688
– ident: cit0112
  doi: 10.1093/bioinformatics/17.10.977
– ident: cit0110
  doi: 10.1089/cmb.2006.0102
– ident: cit0102
  doi: 10.1198/016214504000001565
– ident: cit0035
  doi: 10.1007/BF02481094
– ident: cit0043
  doi: 10.1198/1061860043001
– start-page: 363
  year: 1994
  ident: cit0107
  publication-title: Aspects of Uncertainty: A Tribute to D.V. Lindley
– ident: cit0026
  doi: 10.1214/009053606000001271
– ident: cit0057
  doi: 10.1017/CBO9780511802478.004
– ident: cit0070
  doi: 10.1093/bioinformatics/bth068
– volume-title: Combinatorial Stochastic Processes
  year: 2006
  ident: cit0089
– ident: cit0053
  doi: 10.1198/106186007X238855
– start-page: 564
  year: 2007
  ident: cit0104
  publication-title: International Conference on Artificial Intelligence and Statistics
– start-page: 96
  year: 2001
  ident: cit0041
  publication-title: Journal of the American Statistical Association
– ident: cit0008
  doi: 10.1214/12-BA715
– ident: cit0011
  doi: 10.1109/TBME.2013.2275751
– ident: cit0030
  doi: 10.1111/1467-9469.00242
– start-page: 556
  year: 2007
  ident: cit0103
  publication-title: International Conference on Artificial Intelligence and Statistics
– ident: cit0019
  doi: 10.1186/1471-2105-9-497
– ident: cit0063
– start-page: 50
  year: 1999
  ident: cit0062
  publication-title: ASA Proceedings of the Section on Bayesian Statistical Science
– ident: cit0080
  doi: 10.1007/s11222-006-9014-7
– start-page: 23
  year: 1998
  ident: cit0061
  publication-title: Practical Nonparametric and Semiparametric Bayesian Statistics
– ident: cit0069
  doi: 10.1093/bioinformatics/18.9.1194
– start-page: 577
  year: 1998
  ident: cit0065
  publication-title: Advances in Neural Information Processing Systems
– ident: cit0003
  doi: 10.1038/ng765
– ident: cit0097
  doi: 10.1080/01621459.1990.10474918
– volume: 20
  start-page: 1203
  year: 2010
  ident: cit0085
  publication-title: Statistica Sinica
– ident: cit0091
  doi: 10.1111/1467-9868.00402
– ident: cit0092
  doi: 10.1109/TCBB.2007.70269
– ident: cit0048
  doi: 10.1080/00031305.1998.10480547
– ident: cit0095
  doi: 10.1214/11-BA605
– ident: cit0052
  doi: 10.1016/j.cell.2013.01.019
– start-page: 847
  year: 2010
  ident: cit0082
  publication-title: Proceedings of the 27th International Conference on Machine Learning
– ident: cit0044
  doi: 10.1214/07-BA219
– ident: cit0067
  doi: 10.1093/bioinformatics/18.3.413
– ident: cit0020
  doi: 10.1007/s11222-006-5338-6
– ident: cit0081
  doi: 10.1080/10635150490468675
– ident: cit0093
  doi: 10.1006/dspr.1999.0361
– ident: cit0032
  doi: 10.1016/S0167-7152(99)00109-1
– ident: cit0004
  doi: 10.1214/aos/1176348521
– ident: cit0028
  doi: 10.1007/s10958-006-0335-z
– volume: 155
  start-page: 945
  year: 2000
  ident: cit0090
  publication-title: Genetics
  doi: 10.1093/genetics/155.2.945
– ident: cit0034
  doi: 10.1111/j.1467-9574.2012.00516.x
– year: 2003
  ident: cit0016
  publication-title: Technical Report, Department of Statistics, University of Wisconsin—Madison
– start-page: 1049
  year: 2006
  ident: cit0111
  publication-title: Proceedings of the 23rd International Conference on Machine Learning
  doi: 10.1145/1143844.1143976
– ident: cit0005
  doi: 10.1214/aos/1176342372
– ident: cit0018
  doi: 10.1214/09-BA409
– ident: cit0047
  doi: 10.1007/s11222-009-9150-y
– ident: cit0045
  doi: 10.1214/aos/1013203454
– ident: cit0013
  doi: 10.1214/13-EJS784
– year: 2007
  ident: cit0038
  publication-title: arXiv:0708.0619
– ident: cit0021
  doi: 10.1093/biomet/asn012
– start-page: 11
  year: 2005
  ident: cit0017
  publication-title: Journal of Computational and Graphical Statistics
– ident: cit0105
  doi: 10.1080/03610910601096262
– ident: cit0010
  doi: 10.1093/biomet/83.2.275
– year: 2000
  ident: cit0037
  publication-title: Technical Report, University of Oslo
– ident: cit0031
  doi: 10.1198/016214505000000727
– ident: cit0007
  doi: 10.1162/jmlr.2003.3.4-5.993
– ident: cit0075
  doi: 10.1007/978-94-017-2219-3_14
– volume: 26
  year: 2013
  ident: cit0071
  publication-title: Advances in Neural Information Processing Systems
– start-page: 104
  year: 2009
  ident: cit0014
  publication-title: Journal of the American Statistical Association
– ident: cit0036
  doi: 10.1007/BF02915431
– year: 2005
  ident: cit0079
  publication-title: Technical Report, Department of Statistics, University of Glasgow
– ident: cit0087
  doi: 10.1007/BF01213386
– ident: cit0066
  doi: 10.1214/08-BA304
– ident: cit0015
  doi: 10.1016/j.media.2006.12.002
– ident: cit0096
  doi: 10.1007/s11222-012-9351-7
– ident: cit0024
  doi: 10.1093/biomet/ass023
SSID ssj0000788
Score 2.6409655
Snippet A natural Bayesian approach for mixture models with an unknown number of components is to take the usual finite mixture model with symmetric Dirichlet weights,...
SourceID pubmedcentral
proquest
pubmed
crossref
jstor
informaworld
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 340
SubjectTerms Bayesian
Bayesian analysis
Bayesian theory
Cancer
Clustering
Computer simulation
Density estimation
Dirichlet problem
Gene expression
Inference
Markov analysis
Markov chain
Markov chains
Mixtures
Model selection
Monte Carlo method
Monte Carlo simulation
neoplasms
Nonparametric
Nonparametric statistics
Partition
Probabilistic models
Property
Regression analysis
Representations
Restaurants
Reversible
Samplers
Statistical methods
statistical models
Statistics
Subtypes
Theory and Methods
Title Mixture Models With a Prior on the Number of Components
URI https://www.tandfonline.com/doi/abs/10.1080/01621459.2016.1255636
https://www.jstor.org/stable/45028528
https://www.ncbi.nlm.nih.gov/pubmed/29983475
https://www.proquest.com/docview/2284863806
https://www.proquest.com/docview/2067133302
https://www.proquest.com/docview/2101334205
https://pubmed.ncbi.nlm.nih.gov/PMC6035010
Volume 113
WOSCitedRecordID wos000438960500035&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAWR
  databaseName: Taylor and Francis Online Journals
  customDbUrl:
  eissn: 1537-274X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000788
  issn: 0162-1459
  databaseCode: TFW
  dateStart: 19220301
  isFulltext: true
  titleUrlDefault: https://www.tandfonline.com
  providerName: Taylor & Francis
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwEB5R1AOXvnh0C0VG6jXgRxLbR1R11UO74gBib5HtJGIllFS7C-Lnd8Z5lEVtObTHlT2b3fE8PsfjbwA-hSBdJgxPalOlSVrzkDjj0sRmMh7L2DKNF4W_6dnMzOf2oq8mXPVllbSHrjuiiBirybmdXw0VcWeIUohfm66ZiPxUEImWItJtTP3kmpfT61-xWMfOkySRkMhwh-dP37KRnTa4S4d6xd8h0acFlY8y1PT1f_hvb-BVD0_ZeWdPb2Grat7BDiHSjtB5F_T3xQOdOjDqona7YteL9Q1z7GK5aJesbRgCSjaLbUZYWzMKN21DxRp7cDX9cvn5a9J3X0gCgpJ1UueSByN9aTGte-5tHiotyjwPdZkrH7SsrMV9eWkNoiheaYu7Iee9NCLklfVqH7YbfMJ7YMo54XDdA3HBa4wZ3qMNZKL2QVKhywTSQetF6KnJqUPGbSEGBtNeLQWppejVMoHTUexHx83xnIB9vKTFOr4UqbsOJoV6RnY_rv_4pDRDaJZJM4GjwSCK3v9XhcSsbzC0cZQ7GYfRc-k4xjVVe4dzECgIpRSXf5mDEVOpVPJsAgedjY0_AIGEUanGEb1hfeMEYg7fHGkWN5FBPI_nyfzDP-jjEHbwo4lvo-QRbK-Xd9VHeBnu0R6Xx_BCz81x9MWfDtgq-g
linkProvider Taylor & Francis
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELagINEL78JCASNxTfEj8eNYVayK2K44LGpvlu0k6kpVgrbbqj-fGefBLgJ6gLM9eYzHM5_t8TeEfIhR-IIbltWmyrO8ZjHzxueZLUQ6lrFlni4Kz_R8bs7O7OZdGEyrxDV03RFFJF-Nkxs3o4eUuI8AU5BgG--ZcHXAkUVLqrvkXgGxFvnzF9PTn95Yp9qTKJKhzHCL50-P2YpPW-ylQ8bi77DorymVGzFq-uh__N1j8rBHqPSwM6kn5E7VPCW7CEo7TudnRJ8sb_DggWIhtYtLerpcn1NPv66W7Yq2DQVMSeep0ghta4oep20wX-M5-Tb9tDg6zvoCDFkEXLLOaiVYNCKUFiJ7YMGqWGleKhXrUskQtaishaV5aQ0AKVZpCwsiH4IwPKrKBrlHdhp4w0tCpffcw9BHpIPX4DZCADMoeB2iwFyXCckHtbvYs5NjkYwLxwcS014tDtXierVMyMEo9r2j57hNwG6OqVunfZG6K2Li5C2ye8kAxjflBaCzQpgJ2R8swvUu4NIJCPwGvBsDufdjM0xePJHxTdVeQR_AClxKycRf-oDTlDIXrJiQF52RjR8AWMLIXEOL3jK_sQOSh2-3NMvzRCKu0pEye_UP-nhHHhwvTmZu9nn-5TXZhSaTNqfEPtlZr66qN-R-vAbbXL1NU_IH56AuPA
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELagINQL75aFAkbimuJH4scR0a5AlNUeitqbFTuxulKVVLtbxM9nxnnQRdAeytmePMbj8WfP-BtC3ocgyoIblkVT51keWchKU-aZLUQKy9gqTxeFj_RsZk5P7bzPJlz1aZW4h44dUUTy1Ti5L6o4ZMR9AJSC_Np4zYSrfY4kWlLdJfcAOis08uPpyW9nrFPpSRTJUGa4xPOvx2wsTxvkpUPC4t-g6J8ZlVeWqOmj__Bzj8nDHp_Sj51BPSF36uYp2UZI2jE6PyP62-Inhh0ollE7X9GTxfqMlnS-XLRL2jYUECWdpTojtI0U_U3bYLbGc_J9enj86XPWl1_IAqCSdRaVYMEIX1lY1z3zVoVa80qpECslfdCithY25pU1AKNYrS1sh0rvheFB1dbLHbLVwBteECrLkpcw8AHJ4DU4De_BCAoefRCY6TIh-aB1F3puciyRce74QGHaq8WhWlyvlgnZH8UuOnKOmwTs1SF163QqErsSJk7eILuTxn98U14ANiuEmZC9wSBc7wBWTsCyb8C3MZB7NzbD1MV4TNnU7SX0AaTApZRMXNMHXKaUuWDFhOx2NjZ-ACAJI3MNLXrD-sYOSB2-2dIszhKFuEoBZfbyFvp4Sx7MD6bu6Mvs6yuyDS0mnUyJPbK1Xl7Wr8n98ANMc_kmTchfJ68s7g
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mixture+Models+With+a+Prior+on+the+Number+of+Components&rft.jtitle=Journal+of+the+American+Statistical+Association&rft.au=Miller%2C+Jeffrey+W.&rft.au=Harrison%2C+Matthew+T.&rft.date=2018-01-02&rft.pub=Taylor+%26+Francis&rft.issn=0162-1459&rft.eissn=1537-274X&rft.volume=113&rft.issue=521&rft.spage=340&rft.epage=356&rft_id=info:doi/10.1080%2F01621459.2016.1255636&rft.externalDocID=1255636
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0162-1459&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0162-1459&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0162-1459&client=summon