Current Methods for Recurrent Events Data With Dependent Termination A Bayesian Perspective

There has been a recent surge of interest in modeling and methods for analyzing recurrent events data with risk of termination dependent on the history of the recurrent events. To aid future users in understanding the implications of modeling assumptions and modeling properties, we review the state-...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Journal of the American Statistical Association Ročník 103; číslo 482; s. 866 - 878
Hlavní autori: Sinha, Debajyoti, Maiti, Tapabrata, Ibrahim, Joseph G, Ouyang, Bichun
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Alexandria, VA Taylor & Francis 01.06.2008
American Statistical Association
Taylor & Francis Ltd
Predmet:
ISSN:0162-1459, 1537-274X
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract There has been a recent surge of interest in modeling and methods for analyzing recurrent events data with risk of termination dependent on the history of the recurrent events. To aid future users in understanding the implications of modeling assumptions and modeling properties, we review the state-of-the-art statistical methods and present novel theoretical properties, identifiability results, and practical consequences of key modeling assumptions of several fully specified stochastic models. After introducing stochastic models with 2 noninformative termination process, we focus on a class of models that allows both negative and positive association between the risk of termination and the rate of recurrent events through a frailty variable. We also discuss the relationship, as well as the major differences between these models in terms of their motivations and physical interpretations. We discuss associated Bayesian methods based on Markov chain Monte Carlo tools, and novel model diagnostic tools to perform inference based on fully specified models. We demonstrate the usefulness of the current methodology through an analysis of a data set from a clinical trial. Finally, we explore possible future extensions and limitations of the methodology.
AbstractList There has been a recent surge of interest in modeling and methods for analyzing recurrent events data with risk of termination dependent on the history of the recurrent events. To aid future users in understanding the implications of modeling assumptions and modeling properties, we review the state-of-the-art statistical methods and present novel theoretical properties, identifiability results, and practical consequences of key modeling assumptions of several fully specified stochastic models. After introducing stochastic models with 2 noninformative termination process, we focus on a class of models that allows both negative and positive association between the risk of termination and the rate of recurrent events through a frailty variable. We also discuss the relationship, as well as the major differences between these models in terms of their motivations and physical interpretations. We discuss associated Bayesian methods based on Markov chain Monte Carlo tools, and novel model diagnostic tools to perform inference based on fully specified models. We demonstrate the usefulness of the current methodology through an analysis of a data set from a clinical trial. Finally, we explore possible future extensions and limitations of the methodology. [PUBLICATION ABSTRACT]
There has been a recent surge of interest in modeling and methods for analyzing recurrent events data with risk of termination dependent on the history of the recurrent events. To aid future users in understanding the implications of modeling assumptions and modeling properties, we review the state-of-the-art statistical methods and present novel theoretical properties, identifiability results, and practical consequences of key modeling assumptions of several fully specified stochastic models. After introducing stochastic models with 2 noninformative termination process, we focus on a class of models that allows both negative and positive association between the risk of termination and the rate of recurrent events through a frailty variable. We also discuss the relationship, as well as the major differences between these models in terms of their motivations and physical interpretations. We discuss associated Bayesian methods based on Markov chain Monte Carlo tools, and novel model diagnostic tools to perform inference based on fully specified models. We demonstrate the usefulness of the current methodology through an analysis of a data set from a clinical trial. Finally, we explore possible future extensions and limitations of the methodology.
There has been a recent surge of interest in modeling and methods for analyzing recurrent events data with risk of termination dependent on the history of the recurrent events. To aid the future users in understanding the implications of modeling assumptions and modeling properties, we review the state of the art statistical methods and present novel theoretical properties, identifiability results and practical consequences of key modeling assumptions of several fully specified stochastic models. After introducing stochastic models with noninformative termination process, we focus on a class of models which allows both negative and positive association between the risk of termination and the rate of recurrent events via a frailty variable. We also discuss the relationship as well as the major differences between these models in terms of their motivations and physical interpretations. We discuss associated Bayesian methods based on Markov chain Monte Carlo tools, and novel model diagnostic tools to perform inference based on fully specified models. We demonstrate the usefulness of current methodology through an analysis of a data set from a clinical trial. In conclusion, we explore possible future extensions and limitations of the methodology.
There has been a recent surge of interest in modeling and methods for analyzing recurrent events data with risk of termination dependent on the history of the recurrent events. To aid the future users in understanding the implications of modeling assumptions and modeling properties, we review the state of the art statistical methods and present novel theoretical properties, identifiability results and practical consequences of key modeling assumptions of several fully specified stochastic models. After introducing stochastic models with noninformative termination process, we focus on a class of models which allows both negative and positive association between the risk of termination and the rate of recurrent events via a frailty variable. We also discuss the relationship as well as the major differences between these models in terms of their motivations and physical interpretations. We discuss associated Bayesian methods based on Markov chain Monte Carlo tools, and novel model diagnostic tools to perform inference based on fully specified models. We demonstrate the usefulness of current methodology through an analysis of a data set from a clinical trial. In conclusion, we explore possible future extensions and limitations of the methodology.There has been a recent surge of interest in modeling and methods for analyzing recurrent events data with risk of termination dependent on the history of the recurrent events. To aid the future users in understanding the implications of modeling assumptions and modeling properties, we review the state of the art statistical methods and present novel theoretical properties, identifiability results and practical consequences of key modeling assumptions of several fully specified stochastic models. After introducing stochastic models with noninformative termination process, we focus on a class of models which allows both negative and positive association between the risk of termination and the rate of recurrent events via a frailty variable. We also discuss the relationship as well as the major differences between these models in terms of their motivations and physical interpretations. We discuss associated Bayesian methods based on Markov chain Monte Carlo tools, and novel model diagnostic tools to perform inference based on fully specified models. We demonstrate the usefulness of current methodology through an analysis of a data set from a clinical trial. In conclusion, we explore possible future extensions and limitations of the methodology.
Author Sinha, Debajyoti
Ibrahim, Joseph G
Ouyang, Bichun
Maiti, Tapabrata
Author_xml – sequence: 1
  givenname: Debajyoti
  surname: Sinha
  fullname: Sinha, Debajyoti
– sequence: 2
  givenname: Tapabrata
  surname: Maiti
  fullname: Maiti, Tapabrata
– sequence: 3
  givenname: Joseph G
  surname: Ibrahim
  fullname: Ibrahim, Joseph G
– sequence: 4
  givenname: Bichun
  surname: Ouyang
  fullname: Ouyang, Bichun
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=20528571$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/19169433$$D View this record in MEDLINE/PubMed
BookMark eNp9kl1rFDEUhoNU7Lb6BwRlEBRvRpNMvuZCQXbrB1QEqehdyGYSN8tMsk0ylf57M93tqhU2FxPIec7Le-Y9J-DIB28AeIzgK4Ra8RoihhGhUMCbgyG6B2aINrzGnPw4ArMJqAvRHoOTlNYTxIV4AI5Ri1hLmmYGFvMxRuNz9dnkVehSZUOsvhq9ez27Kt9ULVRW1XeXV9XCbIzvptKFiYPzKrvgH4L7VvXJPNrdp-Db-7OL-cf6_MuHT_N357WmguS6E1ogKLjhqFXcUsHUUkFrhTJYF0cGUtbx4pkzirBlli6JMsR0gsElQbY5BW-3uptxOZhOFxtR9XIT3aDitQzKyX8r3q3kz3AlMWsgxrQIvNgJxHA5mpTl4JI2fa-8CWOSDWsZFUIU8OVBEImGEkYYnzSf3UHXYYy-_AdZYijDNIgX6OnfzveWb4MowPMdoJJWvY3Ka5f2HIYUC8pR4cSW0zGkFI2V2uWbEMrArpcIymk35P-7UVrxnda9i0NNT7ZN65RD_OOHMwJLlqX-Zlt3vmzOoH6F2Hcyq-s-xNshmgP6vwF0SNVk
CODEN JSTNAL
CitedBy_id crossref_primary_10_1080_10543406_2014_992524
crossref_primary_10_1007_s11749_010_0183_5
crossref_primary_10_1002_bimj_201700326
crossref_primary_10_1002_sim_9815
crossref_primary_10_1093_jrsssc_qlae003
crossref_primary_10_1177_09622802211048059
crossref_primary_10_1002_sim_9528
crossref_primary_10_1111_biom_13831
crossref_primary_10_1002_sim_5717
crossref_primary_10_1093_biostatistics_kxy026
crossref_primary_10_1002_sim_8168
crossref_primary_10_1177_0962280220962522
crossref_primary_10_1002_sim_4297
crossref_primary_10_1002_bimj_201200160
crossref_primary_10_1515_ijb_2018_0088
crossref_primary_10_1002_sim_7030
crossref_primary_10_1007_s40547_015_0059_7
crossref_primary_10_1080_01621459_2016_1166113
crossref_primary_10_1007_s10985_010_9170_0
crossref_primary_10_1002_sim_6140
crossref_primary_10_1002_sta4_292
Cites_doi 10.2307/2529977
ContentType Journal Article
Copyright American Statistical Association 2008
Copyright 2008 American Statistical Association
2008 INIST-CNRS
Copyright American Statistical Association Jun 2008
Copyright_xml – notice: American Statistical Association 2008
– notice: Copyright 2008 American Statistical Association
– notice: 2008 INIST-CNRS
– notice: Copyright American Statistical Association Jun 2008
DBID AAYXX
CITATION
IQODW
NPM
8BJ
FQK
JBE
K9.
7X8
5PM
DOI 10.1198/016214508000000201
DatabaseName CrossRef
Pascal-Francis
PubMed
International Bibliography of the Social Sciences (IBSS)
International Bibliography of the Social Sciences
International Bibliography of the Social Sciences
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
International Bibliography of the Social Sciences (IBSS)
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitleList International Bibliography of the Social Sciences (IBSS)

PubMed

MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Statistics
Mathematics
EISSN 1537-274X
EndPage 878
ExternalDocumentID PMC2630225
1528210231
19169433
20528571
10_1198_016214508000000201
27640108
10710469
Genre Article
Research Support, U.S. Gov't, Non-P.H.S
Journal Article
Research Support, N.I.H., Extramural
Feature
GrantInformation_xml – fundername: NCI NIH HHS
  grantid: R01 CA069222
– fundername: NIGMS NIH HHS
  grantid: R01 GM070335
– fundername: National Science Foundation
  grantid: SES-0318184
GroupedDBID -DZ
-~X
..I
.7F
.QJ
0BK
0R~
29L
2AX
30N
4.4
5GY
5RE
692
7WY
85S
8FL
AABCJ
AAENE
AAGDL
AAHBH
AAHIA
AAJMT
AALDU
AAMIU
AAPUL
AAQRR
AAWIL
ABAWQ
ABBHK
ABCCY
ABEHJ
ABFAN
ABFIM
ABJNI
ABLIJ
ABLJU
ABPAQ
ABPEM
ABPFR
ABPPZ
ABPQH
ABTAI
ABUFD
ABXSQ
ABXUL
ABXYU
ABYWD
ACGFO
ACGFS
ACGOD
ACHJO
ACIWK
ACMTB
ACNCT
ACTCW
ACTIO
ACTMH
ACUBG
ADCVX
ADGTB
ADLSF
ADMHG
ADODI
ADULT
AEISY
AENEX
AEOZL
AEPSL
AEUPB
AEYOC
AFFNX
AFRVT
AFVYC
AFXHP
AGCQS
AGDLA
AGLNM
AGMYJ
AHDZW
AIHAF
AIJEM
AIYEW
AKBVH
AKOOK
ALMA_UNASSIGNED_HOLDINGS
ALQZU
ALRMG
AQRUH
AQTUD
AVBZW
AWYRJ
BLEHA
CCCUG
CJ0
CS3
D0L
DGEBU
DKSSO
DQDLB
DSRWC
DU5
EBS
ECEWR
EJD
E~A
E~B
F5P
FEDTE
FJW
FVMVE
GTTXZ
H13
HF~
HQ6
HZ~
H~9
H~P
IPNFZ
IPSME
J.P
JAAYA
JAS
JBMMH
JBZCM
JENOY
JHFFW
JKQEH
JLEZI
JLXEF
JMS
JPL
JST
K60
K6~
KYCEM
LU7
M4Z
MS~
MVM
MW2
NA5
NY~
O9-
OFU
OK1
P2P
RIG
RNANH
RNS
ROSJB
RTWRZ
RWL
RXW
S-T
SA0
SJN
SNACF
TAE
TASJS
TBQAZ
TDBHL
TEJ
TFL
TFT
TFW
TN5
TOXWX
TTHFI
TUROJ
U5U
UPT
UT5
UU3
WH7
WZA
YQT
YYM
YYP
ZGOLN
~S~
ADYSH
AFSUE
ALIPV
AMPGV
AAYXX
CITATION
.-4
.GJ
07G
1OL
3R3
7X7
88E
88I
8AF
8C1
8FE
8FG
8FI
8FJ
8G5
8R4
8R5
AAAVZ
AAFWJ
AAIKQ
AAKBW
ABEFU
ABJCF
ABRLO
ABUWG
ACAGQ
ACGEE
ADBBV
ADXHL
AEUMN
AFKRA
AFQQW
AGLEN
AGROQ
AHMOU
AI.
ALCKM
AMATQ
AMEWO
AMVHM
AMXXU
AQUVI
AZQEC
BCCOT
BENPR
BEZIV
BGLVJ
BKNYI
BKOMP
BPHCQ
BPLKW
BVXVI
C06
CCPQU
CRFIH
DMQIW
DWIFK
DWQXO
E.L
FRNLG
FYUFA
GNUQQ
GROUPED_ABI_INFORM_RESEARCH
GUQSH
HCIFZ
HGD
HMCUK
HVGLF
IQODW
IVXBP
K9-
KQ8
L6V
LJTGL
M0C
M0R
M0T
M1P
M2O
M2P
M7S
NHB
NUSFT
P-O
PADUT
PHGZM
PHGZT
PJZUB
PPXIY
PQBIZ
PQBZA
PQGLB
PQQKQ
PRG
PROAC
PSQYO
PTHSS
Q2X
QCRFL
S0X
TAQ
TFMCV
UB9
UKHRP
UQL
VH1
VOH
WHG
YXB
ZCG
ZGI
ZUP
ZXP
NPM
8BJ
FQK
JBE
K9.
7X8
5PM
ID FETCH-LOGICAL-c584t-d8c81087e719a7f586aba0ff8ae2c916e056d716276512f6f5b4ae4ed860b41f3
IEDL.DBID TFW
ISICitedReferencesCount 25
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000257897500043&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0162-1459
IngestDate Tue Nov 04 01:57:51 EST 2025
Sun Nov 09 10:02:01 EST 2025
Mon Sep 29 06:22:52 EDT 2025
Tue Nov 11 14:40:57 EST 2025
Mon Jul 21 06:06:07 EDT 2025
Mon Jul 21 09:16:06 EDT 2025
Tue Nov 18 21:51:42 EST 2025
Sat Nov 29 05:11:01 EST 2025
Thu May 29 08:44:08 EDT 2025
Mon Oct 20 23:48:11 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 482
Keywords Biometrics
Bayes estimation
Stochastic model
Monte Carlo method
Data analysis
Identifiability
Semiparametric Bayes
Statistical distribution
Mixed Poisson process
Statistical association
Statistical estimation
Multivariate analysis
Stochastic method
Gibbs sampling
M-site model
Markov chain
Statistical method
Medical science
Numerical analysis
Risk rate
Clinical trial
Frailty
Approximation theory
Application
Language English
License CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c584t-d8c81087e719a7f586aba0ff8ae2c916e056d716276512f6f5b4ae4ed860b41f3
Notes SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
ObjectType-Article-2
PMID 19169433
PQID 274627317
PQPubID 41715
PageCount 13
ParticipantIDs proquest_journals_274627317
crossref_citationtrail_10_1198_016214508000000201
crossref_primary_10_1198_016214508000000201
informaworld_taylorfrancis_310_1198_016214508000000201
proquest_miscellaneous_1835464675
proquest_miscellaneous_36965888
jstor_primary_27640108
pubmedcentral_primary_oai_pubmedcentral_nih_gov_2630225
pubmed_primary_19169433
pascalfrancis_primary_20528571
PublicationCentury 2000
PublicationDate 2008-06-01
PublicationDateYYYYMMDD 2008-06-01
PublicationDate_xml – month: 06
  year: 2008
  text: 2008-06-01
  day: 01
PublicationDecade 2000
PublicationPlace Alexandria, VA
PublicationPlace_xml – name: Alexandria, VA
– name: United States
– name: Alexandria
PublicationTitle Journal of the American Statistical Association
PublicationTitleAlternate J Am Stat Assoc
PublicationYear 2008
Publisher Taylor & Francis
American Statistical Association
Taylor & Francis Ltd
Publisher_xml – name: Taylor & Francis
– name: American Statistical Association
– name: Taylor & Francis Ltd
References (p_12); 48
(p_37); 84
Journal (p_27); 4
(p_61); 16
p_14
Frailty Model (p_21); 90
Renewal Processes (p_45); 81
(p_54); 62
(p_25); 11
(p_42); 44
Quality-Adjusted Survival (p_63); 84
(p_6); 34
Annals (p_20); 19
al Society (p_40); 66
References_xml – volume: 81
  start-page: 83
  ident: p_45
  publication-title: Biometrika
– ident: p_14
  doi: 10.2307/2529977
– volume: 62
  start-page: 293
  ident: p_54
  publication-title: Ser. B
– volume: 84
  start-page: 473
  ident: p_37
  publication-title: Statistical Association
– volume: 66
  start-page: 239
  ident: p_40
  publication-title: Ser. B
– volume: 84
  start-page: 339
  ident: p_63
  publication-title: Biometrika
– volume: 34
  start-page: 187
  ident: p_6
  publication-title: Ser. B
– volume: 16
  start-page: 833
  ident: p_61
  publication-title: Medicine
– volume: 90
  start-page: 355
  ident: p_21
  publication-title: Biometrics
– volume: 4
  start-page: 65
  ident: p_27
  publication-title: Graphical Statistics
– volume: 44
  start-page: 414
  ident: p_42
  publication-title: Ser. B
– volume: 48
  start-page: 381
  ident: p_12
  publication-title: Journal
– volume: 19
  start-page: 2244
  ident: p_20
  publication-title: Statistics
– volume: 11
  start-page: 419
  ident: p_25
  publication-title: Statistica Sinica
SSID ssj0000788
Score 2.0361533
SecondaryResourceType review_article
Snippet There has been a recent surge of interest in modeling and methods for analyzing recurrent events data with risk of termination dependent on the history of the...
SourceID pubmedcentral
proquest
pubmed
pascalfrancis
crossref
jstor
informaworld
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 866
SubjectTerms Algorithms
Applications
Bayesian analysis
Censorship
Clinical research
Clinical trials
Data
Estimation
Exact sciences and technology
Frailty
General topics
Gibbs sampler
Gibbs sampling
Global analysis, analysis on manifolds
Graft rejection
Health care costs
Inference
Logical givens
M-site model
Markov analysis
Mathematics
Medical sciences
Mixed Poisson process
Modeling
Multivariate analysis
Musical intervals
Novels
Parametric models
Probability and statistics
Property
Recurrent
Recurrent events
Research methods
Review Article
Sciences and techniques of general use
Semiparametric Bayes
Statistical analysis
Statistical methods
Statistics
Stochastic models
Stochastic processes
Termination
Topology. Manifolds and cell complexes. Global analysis and analysis on manifolds
Usefulness
Subtitle A Bayesian Perspective
Title Current Methods for Recurrent Events Data With Dependent Termination
URI https://www.tandfonline.com/doi/abs/10.1198/016214508000000201
https://www.jstor.org/stable/27640108
https://www.ncbi.nlm.nih.gov/pubmed/19169433
https://www.proquest.com/docview/274627317
https://www.proquest.com/docview/1835464675
https://www.proquest.com/docview/36965888
https://pubmed.ncbi.nlm.nih.gov/PMC2630225
Volume 103
WOSCitedRecordID wos000257897500043&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAWR
  databaseName: Taylor & Francis Journals Complete
  customDbUrl:
  eissn: 1537-274X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000788
  issn: 0162-1459
  databaseCode: TFW
  dateStart: 19220301
  isFulltext: true
  titleUrlDefault: https://www.tandfonline.com
  providerName: Taylor & Francis
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5BxaEXoEAhlC5B4oYi8nD8OCK2Kw5QIbTQvUWOH2ollKIm5fcz43h3G_o4wHUzTtb22PPNePwNwFtmja5ZpTNrrcmYqVo635WZyUtLDpHW4Zbrj8_i-FiuVuprDLj1Ma2SfGg_EkWEvZoWt25jBRIl3yNKIX5twjp5OEoj7wftPq3L5eJkuxGLUHaSxDOUV-s7Mze-YmKXJqyl60xFSpvUPY6cH0te3IRJ_06tvGKrFo_-t5eP4WFEqemHUa324J7rnsAuAdOR1_kpzCOxU_ollKDuU-xJ-o2C9-HXI0qj7NO5HnR6cjacpvNYbHdIl2P6DSnEM_i-OFp-_JTFigyZQaAyZFYaWeRSOFEoLXwtuW517r3UrjQINB3CKUucVIIjkPDc1y3Tjjkred6ywlf7sNOdd-4F3RXnbatKIaxTrCwtIn3OhDdoUAVqjEqgWM9HYyJdOVXN-NkEt0XJ5voAJfBu0-bXSNZxpzS_Os3NEEIkcXKb6q6G-0EhNt_A7qKbmssEZhMN2QrkdSlrgS0P1irTxL2ix9YM-4w4LoE3m6e4yOnkRnfu_LJvCgrPcbRpdQKvb5Ghwoy1lPgnno8quB0CnBnFqioBMVHOjQBRjE-fdGengWq85BWCvPrlvw7VAeyOCTYUtnoFO8PFpTuEB-Y3quvFDO6LlZyFRfsH8yY6lA
linkProvider Taylor & Francis
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZQQaIXKI-WUNoGiRuKyMPPI2K7KmK7QmihvUWO7aiVUIqalN_PjO3dbejjANeNJ1nbY8834_E3hLyj1mhGK51Za01GTdXg-a7MTF5adIi09rdcf8zEfC5PT9XXWOe0j2mV6EO3gSjC79W4uDEYHVa4kh8ApiDBNoKd3J-lgfvzkIGhRfL8xfRkvRULX3gS22cgoJa3Zm59x8gyjXhLl7mKmDipexi7NhS9uA2V_p1cec1aTZ_-dz-3yJMIVNOPQbOekQeue042EZsGaucXZBK5ndJjX4W6T6Er6TeM3_tfDzGTsk8netDpyflwlk5ivd0hXYQMHNSJl-T79HDx6SiLRRkyA1hlyKw0ssilcKJQWrRMct3ovG2ldqUBrOkAUVmkpRIcsETLW9ZQ7aizkucNLdpqm2x0F517hdfFedOoUgjrFC1LC2CfU9EasKkClEYlpFhOSG0iYzkWzvhZe89FyfrmACXk_UrmV-DruLc1vz7P9eCjJHF26-o-wW2vEatvQHfBU81lQvZHKrJukLNSMgGSu0udqeN20YM0hT4DlEvI29VTWOd4eKM7d3HV1wVG6DiYNZaQgzvaYG1GJiX8iZ2gg-shgJlRtKoSIkbauWqALOPjJ935mWcbL3kFOI-9_tehOiCPjxbHs3r2ef5ll2yGfBuMYr0hG8Plldsjj8xvUN3Lfb92_wBZwz3W
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZQQaiXUh4toaUNEjcUkYfjxxGxXYEoqwottLfI8UOthNKqSfv7mbG9uw19HOC6mUnW9mf7m_F4hpD31GhV00plxhidUV21eL4rMp2XBg0ipfwt11-HfDYTJyfyKDrc-hhWiTa0C4ki_FqNk_vCuDDBpfgILAXzayPXyf1RGlg_j4E3M0T4fHq8Wom5rzuJ8hkoyMWlmTvfMdqYRmlLF6GKGDepeug6F2pe3EVK_46tvLFZTZ_9bzM3yUakqemngKvn5JHtXpB1ZKYhsfNLMomZndLvvgZ1n0JL0h_ovfe_HmAcZZ9O1KDS47PhNJ3EartDOg_xN4iIV-Tn9GD--UsWSzJkGpjKkBmhRZELbnkhFXe1YKpVuXNC2VID07TApwwmpeIMmIRjrm6pstQawfKWFq7aImvdeWdf42Vx1ray5NxYScvSANVnlDsNOyoHyMiEFIvxaHTMV45lM3433m6RorndQQn5sNS5CNk6HpRmN4e5GbyPJA5uUz2kuOUBsfwGNBfs1FwkZG-EkJVAXpei5qC5s4BMExeLHrQptBmIXELeLZ_CLMejG9XZ86u-KdA_x2BTqxOyf48MVmashYA_sR0guOoCGBlJqyohfATOpQDmGB8_6c5Ofa7xklXA8uo3_9pV--Tp0WTaHH6dfdsh6yHYBl1Yu2RtuLyyb8kTfQ3IvdzzM_cPZfw8iA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Current+methods+for+recurrent+events+data+with+dependent+termination%3A+a+Bayesian+perspective&rft.jtitle=Journal+of+the+American+Statistical+Association&rft.au=Sinha%2C+Debajyoti&rft.au=Maiti%2C+Tapabrata&rft.au=Ibrahim%2C+Joseph+G&rft.au=Ouyang%2C+Bichun&rft.date=2008-06-01&rft.issn=0162-1459&rft.volume=103&rft.issue=482&rft.spage=866&rft.epage=879&rft_id=info:doi/10.1198%2F016214508000000201&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0162-1459&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0162-1459&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0162-1459&client=summon