Efficient Semiparametric Inference Under Two-Phase Sampling, With Applications to Genetic Association Studies

In modern epidemiological and clinical studies, the covariates of interest may involve genome sequencing, biomarker assay, or medical imaging and thus are prohibitively expensive to measure on a large number of subjects. A cost-effective solution is the two-phase design, under which the outcome and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the American Statistical Association Jg. 112; H. 520; S. 1468 - 1476
Hauptverfasser: Tao, Ran, Zeng, Donglin, Lin, Dan-Yu
Format: Journal Article
Sprache:Englisch
Veröffentlicht: United States Taylor & Francis 02.10.2017
Taylor & Francis Group,LLC
Taylor & Francis Ltd
Schlagworte:
ISSN:0162-1459, 1537-274X, 1537-274X
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract In modern epidemiological and clinical studies, the covariates of interest may involve genome sequencing, biomarker assay, or medical imaging and thus are prohibitively expensive to measure on a large number of subjects. A cost-effective solution is the two-phase design, under which the outcome and inexpensive covariates are observed for all subjects during the first phase and that information is used to select subjects for measurements of expensive covariates during the second phase. For example, subjects with extreme values of quantitative traits were selected for whole-exome sequencing in the National Heart, Lung, and Blood Institute (NHLBI) Exome Sequencing Project (ESP). Herein, we consider general two-phase designs, where the outcome can be continuous or discrete, and inexpensive covariates can be continuous and correlated with expensive covariates. We propose a semiparametric approach to regression analysis by approximating the conditional density functions of expensive covariates given inexpensive covariates with B-spline sieves. We devise a computationally efficient and numerically stable EM-algorithm to maximize the sieve likelihood. In addition, we establish the consistency, asymptotic normality, and asymptotic efficiency of the estimators. Furthermore, we demonstrate the superiority of the proposed methods over existing ones through extensive simulation studies. Finally, we present applications to the aforementioned NHLBI ESP. Supplementary materials for this article are available online
AbstractList In modern epidemiological and clinical studies, the covariates of interest may involve genome sequencing, biomarker assay, or medical imaging and thus are prohibitively expensive to measure on a large number of subjects. A cost-effective solution is the two-phase design, under which the outcome and inexpensive covariates are observed for all subjects during the first phase and that information is used to select subjects for measurements of expensive covariates during the second phase. For example, subjects with extreme values of quantitative traits were selected for whole-exome sequencing in the National Heart, Lung, and Blood Institute (NHLBI) Exome Sequencing Project (ESP). Herein, we consider general two-phase designs, where the outcome can be continuous or discrete, and inexpensive covariates can be continuous and correlated with expensive covariates. We propose a semiparametric approach to regression analysis by approximating the conditional density functions of expensive covariates given inexpensive covariates with B-spline sieves. We devise a computationally efficient and numerically stable EM-algorithm to maximize the sieve likelihood. In addition, we establish the consistency, asymptotic normality, and asymptotic efficiency of the estimators. Furthermore, we demonstrate the superiority of the proposed methods over existing ones through extensive simulation studies. Finally, we present applications to the aforementioned NHLBI ESP. Supplementary materials for this article are available online
In modern epidemiological and clinical studies, the covariates of interest may involve genome sequencing, biomarker assay, or medical imaging and thus are prohibitively expensive to measure on a large number of subjects. A cost-effective solution is the two-phase design, under which the outcome and inexpensive covariates are observed for all subjects during the first phase and that information is used to select subjects for measurements of expensive covariates during the second phase. For example, subjects with extreme values of quantitative traits were selected for whole-exome sequencing in the National Heart, Lung, and Blood Institute (NHLBI) Exorne Sequencing Project (ESP). Herein, we consider general two-phase designs, where the outcome can be continuous or discrete, and inexpensive covariates can be continuous and correlated with expensive covariates. We propose a semiparametric approach to regression analysis by approximating the conditional density functions of expensive covariates given inexpensive covariates with B-spline sieves. We devise a computationally efficient and numerically stable EM-algorithm to maximize the sieve likelihood. In addition, we establish the consistency, asymptotic normality, and asymptotic efficiency of the estimators. Furthermore, we demonstrate the superiority of the proposed methods over existing ones through extensive simulation studies. Finally, we present applications to the aforementioned NHLBI ESP.
In modern epidemiological and clinical studies, the covariates of interest may involve genome sequencing, biomarker assay, or medical imaging and thus are prohibitively expensive to measure on a large number of subjects. A cost-effective solution is the two-phase design, under which the outcome and inexpensive covariates are observed for all subjects during the first phase and that information is used to select subjects for measurements of expensive covariates during the second phase. For example, subjects with extreme values of quantitative traits were selected for whole-exome sequencing in the National Heart, Lung, and Blood Institute (NHLBI) Exome Sequencing Project (ESP). Herein, we consider general two-phase designs, where the outcome can be continuous or discrete, and inexpensive covariates can be continuous and correlated with expensive covariates. We propose a semiparametric approach to regression analysis by approximating the conditional density functions of expensive covariates given inexpensive covariates with B-spline sieves. We devise a computationally efficient and numerically stable EM-algorithm to maximize the sieve likelihood. In addition, we establish the consistency, asymptotic normality, and asymptotic efficiency of the estimators. Furthermore, we demonstrate the superiority of the proposed methods over existing ones through extensive simulation studies. Finally, we present applications to the aforementioned NHLBI ESP.
In modern epidemiological and clinical studies, the covariates of interest may involve genome sequencing, biomarker assay, or medical imaging and thus are prohibitively expensive to measure on a large number of subjects. A cost-effective solution is the two-phase design, under which the outcome and inexpensive covariates are observed for all subjects during the first phase and that information is used to select subjects for measurements of expensive covariates during the second phase. For example, subjects with extreme values of quantitative traits were selected for whole-exome sequencing in the National Heart, Lung, and Blood Institute (NHLBI) Exome Sequencing Project (ESP). Herein, we consider general two-phase designs, where the outcome can be continuous or discrete, and inexpensive covariates can be continuous and correlated with expensive covariates. We propose a semiparametric approach to regression analysis by approximating the conditional density functions of expensive covariates given inexpensive covariates with B-spline sieves. We devise a computationally efficient and numerically stable EM-algorithm to maximize the sieve likelihood. In addition, we establish the consistency, asymptotic normality, and asymptotic efficiency of the estimators. Furthermore, we demonstrate the superiority of the proposed methods over existing ones through extensive simulation studies. Finally, we present applications to the aforementioned NHLBI ESP.In modern epidemiological and clinical studies, the covariates of interest may involve genome sequencing, biomarker assay, or medical imaging and thus are prohibitively expensive to measure on a large number of subjects. A cost-effective solution is the two-phase design, under which the outcome and inexpensive covariates are observed for all subjects during the first phase and that information is used to select subjects for measurements of expensive covariates during the second phase. For example, subjects with extreme values of quantitative traits were selected for whole-exome sequencing in the National Heart, Lung, and Blood Institute (NHLBI) Exome Sequencing Project (ESP). Herein, we consider general two-phase designs, where the outcome can be continuous or discrete, and inexpensive covariates can be continuous and correlated with expensive covariates. We propose a semiparametric approach to regression analysis by approximating the conditional density functions of expensive covariates given inexpensive covariates with B-spline sieves. We devise a computationally efficient and numerically stable EM-algorithm to maximize the sieve likelihood. In addition, we establish the consistency, asymptotic normality, and asymptotic efficiency of the estimators. Furthermore, we demonstrate the superiority of the proposed methods over existing ones through extensive simulation studies. Finally, we present applications to the aforementioned NHLBI ESP.
Author Zeng, Donglin
Tao, Ran
Lin, Dan-Yu
Author_xml – sequence: 1
  givenname: Ran
  surname: Tao
  fullname: Tao, Ran
  organization: Department of Biostatistics, Vanderbilt University Medical Center
– sequence: 2
  givenname: Donglin
  surname: Zeng
  fullname: Zeng, Donglin
  organization: Department of Biostatistics, University of North Carolina
– sequence: 3
  givenname: Dan-Yu
  surname: Lin
  fullname: Lin, Dan-Yu
  email: lin@bios.unc.edu
  organization: Department of Biostatistics, Vanderbilt University Medical Center
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29479125$$D View this record in MEDLINE/PubMed
BookMark eNqFUl1rFDEUHaRit9WfUBnwxQdnzedMgiAupdZCQWFb9C1kMkk3y0yyTTKW_nsz3d2ifbB5CUnOOffek3NUHDjvdFGcQDCHgIGPANYIEsrnCMBmDhGnrCYvihmkuKlQQ34dFLMJU02gw-IoxjXIq2HsVXGIOGk4RHRWDGfGWGW1S-VSD3Yjgxx0ClaVF87ooJ3S5bXrdCiv7nz1YyWjLpdy2PTW3Xwof9q0KhebfFIyWe9imXx5rp1OWWARo1f24b5cprGzOr4uXhrZR_1mtx8X11_Prk6_VZffzy9OF5eVooykipvGEERa3CqFMKIcsa7BykBmDJS8I1R12KAWtLIGNUUd1A1hXHetMoi3Ch8Xn7e6m7EddKfyeEH2YhPsIMO98NKKf1-cXYkb_1tQhjDFPAu83wkEfzvqmMRgo9J9L532YxQIAogxyaY_DwWA4QY29aT67gl07cfgshMC4ZoTVjPQZNTbv5t_7Hr_aRnwaQtQwccYtBHKpgef8yy2FxCIKSJiHxExRUTsIpLZ9Al7X-A53smWt47Jh0cSoQAxgCcfvmzfrTM-DPLOh74TSd73PpggnbJR4P-X-APzw90j
CitedBy_id crossref_primary_10_1093_aje_kwz127
crossref_primary_10_1111_biom_13616
crossref_primary_10_1111_biom_13512
crossref_primary_10_1093_aje_kwz200
crossref_primary_10_1186_s13195_021_00808_5
crossref_primary_10_1002_sim_70111
crossref_primary_10_1002_sim_9300
crossref_primary_10_1002_sim_8799
crossref_primary_10_1002_sim_8876
crossref_primary_10_1093_biomtc_ujaf095
crossref_primary_10_1111_biom_13140
crossref_primary_10_21105_joss_07320
crossref_primary_10_1093_biomtc_ujad010
crossref_primary_10_1002_cjs_11566
crossref_primary_10_1093_biostatistics_kxab044
crossref_primary_10_1111_rssa_12689
crossref_primary_10_1007_s12561_023_09369_7
crossref_primary_10_1186_s12874_023_01950_4
crossref_primary_10_1002_sim_7914
crossref_primary_10_1159_000502738
crossref_primary_10_1038_s41586_024_08260_9
crossref_primary_10_1002_sim_8760
crossref_primary_10_1002_sim_9673
crossref_primary_10_1111_biom_13571
crossref_primary_10_1080_01621459_2019_1671200
crossref_primary_10_1515_scid_2019_0015
crossref_primary_10_1177_0962280220978500
Cites_doi 10.1111/1467-9868.00185
10.1093/biomet/84.1.57
10.1080/01621459.2015.1008099
10.1198/016214504000001853
10.1016/S0197-2456(97)00078-0
10.1214/aos/1059655907
10.1016/1047-2797(91)90005-W
10.1093/biomet/asn073
10.1093/aje/kwf113
10.1016/0895-4356(88)90080-7
10.1093/oxfordjournals.aje.a115184
10.1210/jc.2011-0322
10.1016/S0140-6736(08)60208-1
10.1111/j.2517-6161.1995.tb02036.x
10.1093/biomet/92.2.399
10.1073/pnas.1221713110
10.1093/oxfordjournals.aje.a113266
10.1137/1.9781611973907
10.1198/016214503388619184
10.1007/s10985-007-9066-9
10.2105/AJPH.41.3.279
10.1038/ng.271
ContentType Journal Article
Copyright 2017 American Statistical Association 2017
Copyright © 2017 American Statistical Association
2017 American Statistical Association
Copyright_xml – notice: 2017 American Statistical Association 2017
– notice: Copyright © 2017 American Statistical Association
– notice: 2017 American Statistical Association
DBID AAYXX
CITATION
NPM
8BJ
FQK
JBE
K9.
7X8
7S9
L.6
5PM
DOI 10.1080/01621459.2017.1295864
DatabaseName CrossRef
PubMed
International Bibliography of the Social Sciences (IBSS)
International Bibliography of the Social Sciences
International Bibliography of the Social Sciences
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
International Bibliography of the Social Sciences (IBSS)
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList International Bibliography of the Social Sciences (IBSS)


PubMed
AGRICOLA

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Statistics
EISSN 1537-274X
EndPage 1476
ExternalDocumentID PMC5823539
29479125
10_1080_01621459_2017_1295864
45028038
1295864
Genre Article
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: 10.13039/100000054
  grantid: P01CA142538,R01CA082659
  funderid: National Cancer Institute
– fundername: 10.13039/100000057
  grantid: R01GM047845
  funderid: National Institute of General Medical Sciences
– fundername: NCI NIH HHS
  grantid: P01 CA142538
– fundername: NIGMS NIH HHS
  grantid: R01 GM047845
– fundername: NCI NIH HHS
  grantid: P30 CA016086
– fundername: NCI NIH HHS
  grantid: R01 CA082659
GroupedDBID -DZ
-~X
..I
.7F
.QJ
0BK
0R~
29L
2AX
30N
4.4
5GY
5RE
692
7WY
85S
8FL
AAAVZ
AABCJ
AAENE
AAGDL
AAHBH
AAHIA
AAJMT
AALDU
AAMIU
AAPUL
AAQRR
AAWIL
ABAWQ
ABBHK
ABCCY
ABEHJ
ABFAN
ABFIM
ABJNI
ABLIJ
ABLJU
ABPAQ
ABPEM
ABPFR
ABPPZ
ABPQH
ABRLO
ABTAI
ABUFD
ABXSQ
ABXUL
ABXYU
ABYWD
ACGFO
ACGFS
ACGOD
ACHJO
ACIWK
ACMTB
ACNCT
ACTIO
ACTMH
ACUBG
ADCVX
ADGTB
ADLSF
ADMHG
ADODI
ADXHL
AEISY
AENEX
AEOZL
AEPSL
AEUPB
AEYOC
AFFNX
AFRVT
AFVYC
AFXHP
AGDLA
AGLNM
AGMYJ
AHDZW
AIHAF
AIJEM
AIYEW
AKBVH
AKOOK
ALMA_UNASSIGNED_HOLDINGS
ALQZU
ALRMG
AMVHM
AQRUH
AQTUD
AVBZW
AWYRJ
BLEHA
CCCUG
CJ0
CS3
D0L
DGEBU
DKSSO
DQDLB
DSRWC
DU5
EBS
ECEWR
EJD
E~A
E~B
F5P
FJW
GTTXZ
H13
HF~
HQ6
HZ~
H~9
H~P
IPNFZ
IPSME
J.P
JAAYA
JAS
JBMMH
JBZCM
JENOY
JHFFW
JKQEH
JLEZI
JLXEF
JMS
JPL
JST
K60
K6~
KYCEM
LJTGL
LU7
M4Z
MS~
MW2
NA5
NY~
O9-
OFU
OK1
P2P
RIG
RNANH
ROSJB
RTWRZ
RWL
RXW
S-T
SA0
SNACF
TAE
TASJS
TBQAZ
TDBHL
TEJ
TFL
TFT
TFW
TN5
TOXWX
TTHFI
TUROJ
U5U
UPT
UT5
UU3
WH7
WZA
YQT
YYM
ZGOLN
ZUP
~S~
ADYSH
AFSUE
ALIPV
AMPGV
AAYXX
CITATION
.-4
.GJ
07G
1OL
3R3
7X7
88E
88I
8AF
8C1
8FE
8FG
8FI
8FJ
8G5
8R4
8R5
AAFWJ
AAIKQ
AAKBW
ABEFU
ABJCF
ABUWG
ACAGQ
ACGEE
ADBBV
ADULT
AEUMN
AFKRA
AFQQW
AGCQS
AGLEN
AGROQ
AHMOU
AI.
ALCKM
AMATQ
AMEWO
AMXXU
AQUVI
AZQEC
BCCOT
BENPR
BEZIV
BGLVJ
BKNYI
BKOMP
BPHCQ
BPLKW
BVXVI
C06
CCPQU
CRFIH
DMQIW
DWIFK
DWQXO
E.L
FEDTE
FRNLG
FVMVE
FYUFA
GNUQQ
GROUPED_ABI_INFORM_RESEARCH
GUQSH
HCIFZ
HGD
HMCUK
HVGLF
IVXBP
K9-
KQ8
L6V
M0C
M0R
M0T
M1P
M2O
M2P
M7S
MVM
NHB
NPM
NUSFT
P-O
PADUT
PHGZT
PQBIZ
PQBZA
PQQKQ
PRG
PROAC
PSQYO
PTHSS
Q2X
QCRFL
RNS
S0X
SJN
TAQ
TFMCV
UB9
UKHRP
UQL
VH1
VOH
WHG
YXB
YYP
ZCG
ZGI
ZXP
8BJ
FQK
JBE
K9.
7X8
7S9
L.6
5PM
ID FETCH-LOGICAL-c584t-9f7f424b3bcc2325928d73cf18ff1a9d45cd3f2b0ba60652d1e7489edbcf29bc3
IEDL.DBID TFW
ISICitedReferencesCount 26
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000423299400008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0162-1459
1537-274X
IngestDate Tue Nov 04 01:59:23 EST 2025
Fri Oct 03 00:03:01 EDT 2025
Thu Oct 02 09:12:28 EDT 2025
Mon Nov 10 00:50:57 EST 2025
Thu Apr 03 06:58:36 EDT 2025
Tue Nov 18 21:46:27 EST 2025
Sat Nov 29 03:56:43 EST 2025
Thu May 29 09:14:48 EDT 2025
Mon Oct 20 23:48:49 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 520
Keywords Semiparametric efficiency
Responseselective sampling
Biased sampling
Genome sequencing
EM algorithm
Sieve approximation
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c584t-9f7f424b3bcc2325928d73cf18ff1a9d45cd3f2b0ba60652d1e7489edbcf29bc3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://figshare.com/articles/journal_contribution/Efficient_Semiparametric_Inference_Under_Two-Phase_Sampling_With_Applications_to_Genetic_Association_Studies/5829636
PMID 29479125
PQID 2369486807
PQPubID 41715
PageCount 9
ParticipantIDs proquest_miscellaneous_2008371769
crossref_primary_10_1080_01621459_2017_1295864
crossref_citationtrail_10_1080_01621459_2017_1295864
proquest_journals_2369486807
pubmedcentral_primary_oai_pubmedcentral_nih_gov_5823539
proquest_miscellaneous_2101334958
pubmed_primary_29479125
jstor_primary_45028038
informaworld_taylorfrancis_310_1080_01621459_2017_1295864
PublicationCentury 2000
PublicationDate 2017-10-02
PublicationDateYYYYMMDD 2017-10-02
PublicationDate_xml – month: 10
  year: 2017
  text: 2017-10-02
  day: 02
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Alexandria
PublicationTitle Journal of the American Statistical Association
PublicationTitleAlternate J Am Stat Assoc
PublicationYear 2017
Publisher Taylor & Francis
Taylor & Francis Group,LLC
Taylor & Francis Ltd
Publisher_xml – name: Taylor & Francis
– name: Taylor & Francis Group,LLC
– name: Taylor & Francis Ltd
References cit0011
cit0022
cit0001
cit0012
cit0023
cit0010
cit0021
Robins J. (cit0013) 1995; 57
Grenander U. (cit0009) 1981
cit0008
cit0019
cit0006
cit0017
cit0007
cit0018
cit0004
cit0015
cit0005
cit0016
cit0002
cit0024
cit0003
cit0014
Taylor Jr H. A. (cit0020) 2005; 15
References_xml – ident: cit0011
  doi: 10.1111/1467-9868.00185
– ident: cit0017
  doi: 10.1093/biomet/84.1.57
– ident: cit0019
  doi: 10.1080/01621459.2015.1008099
– ident: cit0023
  doi: 10.1198/016214504000001853
– ident: cit0022
  doi: 10.1016/S0197-2456(97)00078-0
– ident: cit0002
  doi: 10.1214/aos/1059655907
– ident: cit0007
  doi: 10.1016/1047-2797(91)90005-W
– ident: cit0018
  doi: 10.1093/biomet/asn073
– ident: cit0001
  doi: 10.1093/aje/kwf113
– ident: cit0008
  doi: 10.1016/0895-4356(88)90080-7
– volume: 15
  start-page: S6-4
  year: 2005
  ident: cit0020
  publication-title: Ethnicity and Disease
– ident: cit0021
  doi: 10.1093/oxfordjournals.aje.a115184
– ident: cit0010
  doi: 10.1210/jc.2011-0322
– ident: cit0015
  doi: 10.1016/S0140-6736(08)60208-1
– volume: 57
  start-page: 409
  year: 1995
  ident: cit0013
  publication-title: Journal of the Royal Statistical Society
  doi: 10.1111/j.2517-6161.1995.tb02036.x
– ident: cit0003
  doi: 10.1093/biomet/92.2.399
– ident: cit0012
  doi: 10.1073/pnas.1221713110
– ident: cit0024
  doi: 10.1093/oxfordjournals.aje.a113266
– volume-title: Abstract Inference
  year: 1981
  ident: cit0009
– ident: cit0016
  doi: 10.1137/1.9781611973907
– ident: cit0005
  doi: 10.1198/016214503388619184
– ident: cit0004
  doi: 10.1007/s10985-007-9066-9
– ident: cit0006
  doi: 10.2105/AJPH.41.3.279
– ident: cit0014
  doi: 10.1038/ng.271
SSID ssj0000788
Score 2.3962152
Snippet In modern epidemiological and clinical studies, the covariates of interest may involve genome sequencing, biomarker assay, or medical imaging and thus are...
SourceID pubmedcentral
proquest
pubmed
crossref
jstor
informaworld
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1468
SubjectTerms Algorithms
Applications and Case Studies
Asymptotic properties
Biased sampling
Biological markers
Biomarkers
Blood
clinical trials
Computer simulation
Cost analysis
cost effectiveness
Density
Dominance
EM algorithm
English for special purposes
Epidemiology
Extreme values
Gene sequencing
Genetics
Genome sequencing
Genomics
image analysis
Inference
Medical imaging
Normality
quantitative traits
Regression analysis
Response-selective sampling
Sampling
Semiparametric efficiency
sequence analysis
Sieve approximation
Simulation
simulation models
statistical inference
Statistical methods
Statistics
Title Efficient Semiparametric Inference Under Two-Phase Sampling, With Applications to Genetic Association Studies
URI https://www.tandfonline.com/doi/abs/10.1080/01621459.2017.1295864
https://www.jstor.org/stable/45028038
https://www.ncbi.nlm.nih.gov/pubmed/29479125
https://www.proquest.com/docview/2369486807
https://www.proquest.com/docview/2008371769
https://www.proquest.com/docview/2101334958
https://pubmed.ncbi.nlm.nih.gov/PMC5823539
Volume 112
WOSCitedRecordID wos000423299400008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAWR
  databaseName: Taylor & Francis Journals Complete
  customDbUrl:
  eissn: 1537-274X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000788
  issn: 0162-1459
  databaseCode: TFW
  dateStart: 19220301
  isFulltext: true
  titleUrlDefault: https://www.tandfonline.com
  providerName: Taylor & Francis
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELag4tAL70KgVEbiSMrGj9g-VqgrkFBVqQvdW-Q4NrsSm0XdFP4-M44TdhHQA1wiRfHYjjPj-RyPvyHkFbJIMSMnuS2ZzUUpLJqUygvrPQfIa01kYvr0QZ2d6fncnKdowk0Kq8Q1dOiJIuJcjcZt680QEfcGUArya-Mxk0Idg8OSukRGUHD9aJqz6eXPuVjFzJMokaPIcIbnT7XseKcd7tIhXvF3SPTXgMotDzW99x_e7T65m-ApPen16QG55duHZB8RaU_o_IisTiPpBHSBXvjVEqnDV5iVy9H3w9lBGpMp0dn3dX6-AC9JLyzGrbefX9PLZbegJ1ub5rRbU6S-hsrplqrQFN_4mHycns7evstTzobcAZTpchNUEEzUvHYOwJo0TDeKu1DoEAprGiFdwwOrJ7WFpZNkTeGR_8Y3tQvM1I4fkL123fqnhCovJ8EJH0oGV2G1lbIxngWAcEaXLiNi-FaVS4TmmFfjS1UMvKdpMCsczCoNZkaOR7GvPaPHTQJmWxGqLv5KCX3ek4rfIHsQtWZsSUjcy-Y6I4eDGlVp1thUjJdG6FJPVEZejo_B3nETx7Z-fb2JaUM5rMFL85cyMM9yDktfaOZJr5ljB5gRygCqzYja0dmxAPKN7z5pl4vIOy4145KbZ_8wHs_JPt7GaEh2SPa6q2v_gtxx30CLr47IbTXXR9GCfwCJmkBL
linkProvider Taylor & Francis
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB5BQaIX3qWBAkbiSMrGj9g-VqirViwrpC60t8hxbHYlNlu1Kfx9PM6DXQT0AJdcnLEdZ-z5xh5_A_AaWaSoFqPU5NSkPOcGp5RMM-McC5DX6MjE9Hkip1N1dqbX78JgWCX60L4liohrNU5u3IzuQ-LeBpiCBNt4zyST-8FiCZXzm3BLBFuL_Pmz8enP1VjG3JMokqJMf4vnT9Vs2KcN9tI-YvF3WPTXkMo1GzW-9z--7j7c7RAqOWhV6gHccPVD2EZQ2nI6P4LlYeSdCH0gJ265QPbwJSbmsuS4vz5IYj4lMvu-Sj_Og6EkJwZD1-svb8jpopmTg7Vzc9KsCLJfh8rJmraQLsTxMXwaH87eHaVd2obUBjTTpNpLzykvWWltwGtCU1VJZn2mvM-MrriwFfO0HJUmeE-CVplDChxXldZTXVq2A1v1qna7QKQTI2-58zkNT26UEaLSjvqA4rTKbQK8_1mF7TjNMbXG1yLrqU-7wSxwMItuMBPYH8TOW1KP6wT0uiYUTdxN8W3qk4JdI7sT1WZoiQs8zmYqgb1ej4pu4bgsKMs1V7kayQReDcVhyuM5jqnd6uoyZg5lwQ3P9V_eCUstY8H7Dc08aVVz6ADVXOoAbBOQG0o7vICU45sl9WIeqceFokww_fQfxuMl3DmafZgUk-Pp-2ewjUUxOJLuwVZzceWew237LWj0xYs4kX8AI3lDjQ
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1bb9MwFD6CgdBexnUQGGAkHsnW-BLbjxOsYmKqKq2wvUWOY9NKNJ3Wbvx9fJwLLQL2AC95sY_tOJ_tz_HxdwDeoooU1WKQmpyalOfc4JCSaWacY4HyGh2VmL6cyNFInZ_rcetNuGzdKnEP7RuhiDhX4-C-qHznEXcQWArqa-M1k0zuhwVLqJzfhjuBOucI8snw7OdkLGPoSTRJ0aa7xPOnYjaWpw3x0s5h8XdU9FePyrUlanj_P7zcA9hp-Sk5bAD1EG65-hFsIyVtFJ0fw_woqk6EJpBTN5-hdvgcw3JZctxdHiQxmhKZfF-k42lYJsmpQcf1-us7cjZbTcnh2qk5WS0Ial-HwskaVkjr4PgEPg-PJu8_pm3QhtQGLrNKtZeeU16y0trA1oSmqpLM-kx5nxldcWEr5mk5KE3YOwlaZQ4FcFxVWk91adkubNWL2j0DIp0YeMudz2l4cqOMEJV21AcOp1VuE-Ddtypsq2iOgTW-FVknfNp2ZoGdWbSdmcB-b3bRSHrcZKDXgVCs4r8U3wQ-KdgNtrsRNX1NXOBhNlMJ7HUwKtppY1lQlmuucjWQCbzpk8OAx1McU7vF1TLGDWVhE57rv-QJEy1jYe8bqnnaILNvANVc6kBrE5AbmO0zoOD4Zko9m0bhcaEoE0w__4f-eA33xh-Gxcnx6NML2MaU6BlJ92BrdXnlXsJdex0AffkqDuMfHMFCPw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Efficient+Semiparametric+Inference+Under+Two-Phase+Sampling%2C+With+Applications+to+Genetic+Association+Studies&rft.jtitle=Journal+of+the+American+Statistical+Association&rft.au=Tao%2C+Ran&rft.au=Zeng%2C+Donglin&rft.au=Lin%2C+Dan-Yu&rft.date=2017-10-02&rft.pub=Taylor+%26+Francis&rft.issn=0162-1459&rft.eissn=1537-274X&rft.volume=112&rft.issue=520&rft.spage=1468&rft.epage=1476&rft_id=info:doi/10.1080%2F01621459.2017.1295864&rft.externalDocID=1295864
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0162-1459&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0162-1459&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0162-1459&client=summon