Expansion of Human Regulatory T-Cells From Patients With Type 1 Diabetes

Expansion of Human Regulatory T-Cells From Patients With Type 1 Diabetes Amy L. Putnam 1 , Todd M. Brusko 1 , Michael R. Lee 1 , Weihong Liu 1 , Gregory L. Szot 1 , Taumoha Ghosh 1 , Mark A. Atkinson 2 and Jeffrey A. Bluestone 1 1 Diabetes Center at the University of California, San Francisco (UCSF)...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Diabetes (New York, N.Y.) Ročník 58; číslo 3; s. 652 - 662
Hlavní autoři: Putnam, Amy L., Brusko, Todd M., Lee, Michael R., Liu, Weihong, Szot, Gregory L., Ghosh, Taumoha, Atkinson, Mark A., Bluestone, Jeffrey A.
Médium: Journal Article
Jazyk:angličtina
Vydáno: United States American Diabetes Association 01.03.2009
Témata:
ISSN:0012-1797, 1939-327X, 1939-327X
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Expansion of Human Regulatory T-Cells From Patients With Type 1 Diabetes Amy L. Putnam 1 , Todd M. Brusko 1 , Michael R. Lee 1 , Weihong Liu 1 , Gregory L. Szot 1 , Taumoha Ghosh 1 , Mark A. Atkinson 2 and Jeffrey A. Bluestone 1 1 Diabetes Center at the University of California, San Francisco (UCSF), San Francisco, California 2 Department of Pathology, University of Florida, College of Medicine, Gainesville, Florida Corresponding author: Jeffrey A. Bluestone, jbluest{at}diabetes.ucsf.edu Abstract OBJECTIVE— Regulatory T-cells (Tregs) have catalyzed the field of immune regulation. However, translating Treg-based therapies from animal models of autoimmunity to human clinical trials requires robust methods for the isolation and expansion of these cells—a need forming the basis for these studies. RESEARCH DESIGN AND METHODS— Tregs from recent-onset type 1 diabetic patients and healthy control subjects were isolated by fluorescence-activated cell sorting and compared for their capacity to expand in vitro in response to anti-CD3–anti-CD28–coated microbeads and IL-2. Expanded cells were examined for suppressive function, lineage markers and FOXP3, and cytokine production. RESULTS— Both CD4 + CD127 lo/− and CD4 + CD127 lo/− CD25 + T-cells could be expanded and used as Tregs. However, expansion of CD4 + CD127 lo/− cells required the addition of rapamycin to maintain lineage purity. In contrast, expansion of CD4 + CD127 lo/− CD25 + T-cells, especially the CD45RA + subset, resulted in high yield, functional Tregs that maintained higher FOXP3 expression in the absence of rapamycin. Tregs from type 1 diabetic patients and control subjects expanded similarly and were equally capable of suppressing T-cell proliferation. Regulatory cytokines were produced by Tregs after culture; however, a portion of FOXP3 + cells were capable of producing interferon (IFN)-γ after reactivation. IFN-γ production was observed from both CD45RO + and CD45RA + Treg populations. CONCLUSIONS— The results support the feasibility of isolating Tregs for in vitro expansion. Based on expansion capacity, FOXP3 stability, and functional properties, the CD4 + CD127 lo/− CD25 + T-cells represent a viable cell population for cellular therapy in this autoimmune disease. Footnotes Published ahead of print at http://diabetes.diabetesjournals.org on 15 December 2008. A.L.P. and T.M.B. contributed equally to this work. Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered. See http://creativecommons.org/licenses/by-nc-nd/3.0/ for details. The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked “advertisement” in accordance with 18 U.S.C. Section 1734 solely to indicate this fact. Accepted December 5, 2008. Received August 25, 2008. DIABETES
AbstractList OBJECTIVE--Regulatory T-cells (Tregs) have catalyzed the field of immune regulation. However, translating Treg-based therapies from animal models of autoimmunity to human clinical trials requires robust methods for the isolation and expansion of these cells--a need forming the basis for these studies. RESEARCH DESIGN AND METHODS--Tregs from recent-onset type 1 diabetic patients and healthy control subjects were isolated by fluorescence-activated cell sorting and compared for their capacity to expand in vitro in response to anti-CD3-antiCD28-coated microbeads and IL-2. Expanded cells were examined for suppressive function, lineage markers and FOXP3, and cytokine production. RESULTS--Both [CD4.sup.+][CD127.sup.lo/-] and [CD4.sup.+][CD127.sup.lo/-][CD25.sup.+] T-cells could be expanded and used as Tregs. However, expansion of [CD4.sup.+][CD127.sup.lo/-] cells required the addition of rapamycin to maintain lineage purity. In contrast, expansion of [CD4.sup.+][CD127.sup.lo/-][CD25.sup.+] T-cells, especially the [CD45RA.sup.+] subset, resulted in high yield, functional Tregs that maintained higher FOXP3 expression in the absence of rapamycin. Tregs from type 1 diabetic patients and control subjects expanded similarly and were equally capable of suppressing T-cell proliferation. Regulatory cytokines were produced by Tregs after culture; however, a portion of [FOXP3.sup.+] cells were capable of producing interferon (IFN)-γ after reactivation. IFN-γ production was observed from both [CD45RO.sup.+] and [CD45RA.sup.+] Treg populations. CONCLUSIONS--The results support the feasibility of isolating Tregs for in vitro expansion. Based on expansion capacity, FOXP3 stability, and functional properties, the [CD4.sup.+][CD127.sup.lo/-][CD25.sup.+] T-cells represent a viable cell population for cellular therapy in this autoimmune disease.
Regulatory T-cells (Tregs) have catalyzed the field of immune regulation. However, translating Treg-based therapies from animal models of autoimmunity to human clinical trials requires robust methods for the isolation and expansion of these cells-a need forming the basis for these studies.OBJECTIVERegulatory T-cells (Tregs) have catalyzed the field of immune regulation. However, translating Treg-based therapies from animal models of autoimmunity to human clinical trials requires robust methods for the isolation and expansion of these cells-a need forming the basis for these studies.Tregs from recent-onset type 1 diabetic patients and healthy control subjects were isolated by fluorescence-activated cell sorting and compared for their capacity to expand in vitro in response to anti-CD3-anti-CD28-coated microbeads and IL-2. Expanded cells were examined for suppressive function, lineage markers and FOXP3, and cytokine production.RESEARCH DESIGN AND METHODSTregs from recent-onset type 1 diabetic patients and healthy control subjects were isolated by fluorescence-activated cell sorting and compared for their capacity to expand in vitro in response to anti-CD3-anti-CD28-coated microbeads and IL-2. Expanded cells were examined for suppressive function, lineage markers and FOXP3, and cytokine production.Both CD4+CD127(lo/-) and CD4+CD127(lo/-)CD25+ T-cells could be expanded and used as Tregs. However, expansion of CD4+CD127(lo/-) cells required the addition of rapamycin to maintain lineage purity. In contrast, expansion of CD4+CD127(lo/-)CD25+ T-cells, especially the CD45RA+ subset, resulted in high yield, functional Tregs that maintained higher FOXP3 expression in the absence of rapamycin. Tregs from type 1 diabetic patients and control subjects expanded similarly and were equally capable of suppressing T-cell proliferation. Regulatory cytokines were produced by Tregs after culture; however, a portion of FOXP3+ cells were capable of producing interferon (IFN)-gamma after reactivation. IFN-gamma production was observed from both CD45RO+ and CD45RA+ Treg populations.RESULTSBoth CD4+CD127(lo/-) and CD4+CD127(lo/-)CD25+ T-cells could be expanded and used as Tregs. However, expansion of CD4+CD127(lo/-) cells required the addition of rapamycin to maintain lineage purity. In contrast, expansion of CD4+CD127(lo/-)CD25+ T-cells, especially the CD45RA+ subset, resulted in high yield, functional Tregs that maintained higher FOXP3 expression in the absence of rapamycin. Tregs from type 1 diabetic patients and control subjects expanded similarly and were equally capable of suppressing T-cell proliferation. Regulatory cytokines were produced by Tregs after culture; however, a portion of FOXP3+ cells were capable of producing interferon (IFN)-gamma after reactivation. IFN-gamma production was observed from both CD45RO+ and CD45RA+ Treg populations.The results support the feasibility of isolating Tregs for in vitro expansion. Based on expansion capacity, FOXP3 stability, and functional properties, the CD4+CD127(lo/-)CD25+ T-cells represent a viable cell population for cellular therapy in this autoimmune disease.CONCLUSIONSThe results support the feasibility of isolating Tregs for in vitro expansion. Based on expansion capacity, FOXP3 stability, and functional properties, the CD4+CD127(lo/-)CD25+ T-cells represent a viable cell population for cellular therapy in this autoimmune disease.
Regulatory T-cells (Tregs) have catalyzed the field of immune regulation. However, translating Treg-based therapies from animal models of autoimmunity to human clinical trials requires robust methods for the isolation and expansion of these cells-a need forming the basis for these studies. Tregs from recent-onset type 1 diabetic patients and healthy control subjects were isolated by fluorescence-activated cell sorting and compared for their capacity to expand in vitro in response to anti-CD3-anti-CD28-coated microbeads and IL-2. Expanded cells were examined for suppressive function, lineage markers and FOXP3, and cytokine production. Both CD4+CD127(lo/-) and CD4+CD127(lo/-)CD25+ T-cells could be expanded and used as Tregs. However, expansion of CD4+CD127(lo/-) cells required the addition of rapamycin to maintain lineage purity. In contrast, expansion of CD4+CD127(lo/-)CD25+ T-cells, especially the CD45RA+ subset, resulted in high yield, functional Tregs that maintained higher FOXP3 expression in the absence of rapamycin. Tregs from type 1 diabetic patients and control subjects expanded similarly and were equally capable of suppressing T-cell proliferation. Regulatory cytokines were produced by Tregs after culture; however, a portion of FOXP3+ cells were capable of producing interferon (IFN)-gamma after reactivation. IFN-gamma production was observed from both CD45RO+ and CD45RA+ Treg populations. The results support the feasibility of isolating Tregs for in vitro expansion. Based on expansion capacity, FOXP3 stability, and functional properties, the CD4+CD127(lo/-)CD25+ T-cells represent a viable cell population for cellular therapy in this autoimmune disease.
Regulatory T-cells (Tregs) have catalyzed the field of immune regulation. However, translating Treg-based therapies from animal models of autoimmunity to human clinical trials requires robust methods for the isolation and expansion of these cells-a need forming the basis for these studies. Tregs from recent-onset type 1 diabetic patients and healthy control subjects were isolated by fluorescence-activated cell sorting and compared for their capacity to expand in vitro in response to anti-CD3-anti-CD28-coated microbeads and IL-2. Expanded cells were examined for suppressive function, lineage markers and FOXP3, and cytokine production. Both CD4+CD127(lo/-) and CD4+CD127(lo/-)CD25+ T-cells could be expanded and used as Tregs. However, expansion of CD4+CD127(lo/-) cells required the addition of rapamycin to maintain lineage purity. In contrast, expansion of CD4+CD127(lo/-)CD25+ T-cells, especially the CD45RA+ subset, resulted in high yield, functional Tregs that maintained higher FOXP3 expression in the absence of rapamycin. Tregs from type 1 diabetic patients and control subjects expanded similarly and were equally capable of suppressing T-cell proliferation. Regulatory cytokines were produced by Tregs after culture; however, a portion of FOXP3+ cells were capable of producing interferon (IFN)-gamma after reactivation. IFN-gamma production was observed from both CD45RO+ and CD45RA+ Treg populations. The results support the feasibility of isolating Tregs for in vitro expansion. Based on expansion capacity, FOXP3 stability, and functional properties, the CD4+CD127(lo/-)CD25+ T-cells represent a viable cell population for cellular therapy in this autoimmune disease.
OBJECTIVE—Regulatory T-cells (Tregs) have catalyzed the field of immune regulation. However, translating Treg-based therapies from animal models of autoimmunity to human clinical trials requires robust methods for the isolation and expansion of these cells—a need forming the basis for these studies. RESEARCH DESIGN AND METHODS—Tregs from recent-onset type 1 diabetic patients and healthy control subjects were isolated by fluorescence-activated cell sorting and compared for their capacity to expand in vitro in response to anti-CD3–anti-CD28–coated microbeads and IL-2. Expanded cells were examined for suppressive function, lineage markers and FOXP3, and cytokine production. RESULTS—Both CD4+CD127lo/− and CD4+CD127lo/−CD25+ T-cells could be expanded and used as Tregs. However, expansion of CD4+CD127lo/− cells required the addition of rapamycin to maintain lineage purity. In contrast, expansion of CD4+CD127lo/−CD25+ T-cells, especially the CD45RA+ subset, resulted in high yield, functional Tregs that maintained higher FOXP3 expression in the absence of rapamycin. Tregs from type 1 diabetic patients and control subjects expanded similarly and were equally capable of suppressing T-cell proliferation. Regulatory cytokines were produced by Tregs after culture; however, a portion of FOXP3+ cells were capable of producing interferon (IFN)-γ after reactivation. IFN-γ production was observed from both CD45RO+ and CD45RA+ Treg populations. CONCLUSIONS—The results support the feasibility of isolating Tregs for in vitro expansion. Based on expansion capacity, FOXP3 stability, and functional properties, the CD4+CD127lo/−CD25+ T-cells represent a viable cell population for cellular therapy in this autoimmune disease.
Expansion of Human Regulatory T-Cells From Patients With Type 1 Diabetes Amy L. Putnam 1 , Todd M. Brusko 1 , Michael R. Lee 1 , Weihong Liu 1 , Gregory L. Szot 1 , Taumoha Ghosh 1 , Mark A. Atkinson 2 and Jeffrey A. Bluestone 1 1 Diabetes Center at the University of California, San Francisco (UCSF), San Francisco, California 2 Department of Pathology, University of Florida, College of Medicine, Gainesville, Florida Corresponding author: Jeffrey A. Bluestone, jbluest{at}diabetes.ucsf.edu Abstract OBJECTIVE— Regulatory T-cells (Tregs) have catalyzed the field of immune regulation. However, translating Treg-based therapies from animal models of autoimmunity to human clinical trials requires robust methods for the isolation and expansion of these cells—a need forming the basis for these studies. RESEARCH DESIGN AND METHODS— Tregs from recent-onset type 1 diabetic patients and healthy control subjects were isolated by fluorescence-activated cell sorting and compared for their capacity to expand in vitro in response to anti-CD3–anti-CD28–coated microbeads and IL-2. Expanded cells were examined for suppressive function, lineage markers and FOXP3, and cytokine production. RESULTS— Both CD4 + CD127 lo/− and CD4 + CD127 lo/− CD25 + T-cells could be expanded and used as Tregs. However, expansion of CD4 + CD127 lo/− cells required the addition of rapamycin to maintain lineage purity. In contrast, expansion of CD4 + CD127 lo/− CD25 + T-cells, especially the CD45RA + subset, resulted in high yield, functional Tregs that maintained higher FOXP3 expression in the absence of rapamycin. Tregs from type 1 diabetic patients and control subjects expanded similarly and were equally capable of suppressing T-cell proliferation. Regulatory cytokines were produced by Tregs after culture; however, a portion of FOXP3 + cells were capable of producing interferon (IFN)-γ after reactivation. IFN-γ production was observed from both CD45RO + and CD45RA + Treg populations. CONCLUSIONS— The results support the feasibility of isolating Tregs for in vitro expansion. Based on expansion capacity, FOXP3 stability, and functional properties, the CD4 + CD127 lo/− CD25 + T-cells represent a viable cell population for cellular therapy in this autoimmune disease. Footnotes Published ahead of print at http://diabetes.diabetesjournals.org on 15 December 2008. A.L.P. and T.M.B. contributed equally to this work. Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered. See http://creativecommons.org/licenses/by-nc-nd/3.0/ for details. The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked “advertisement” in accordance with 18 U.S.C. Section 1734 solely to indicate this fact. Accepted December 5, 2008. Received August 25, 2008. DIABETES
OBJECTIVE—Regulatory T-cells (Tregs) have catalyzed the field of immune regulation. However, translating Treg-based therapies from animal models of autoimmunity to human clinical trials requires robust methods for the isolation and expansion of these cells—a need forming the basis for these studies. RESEARCH DESIGN AND METHODS—Tregs from recent-onset type 1 diabetic patients and healthy control subjects were isolated by fluorescence-activated cell sorting and compared for their capacity to expand in vitro in response to anti-CD3–anti-CD28–coated microbeads and IL-2. Expanded cells were examined for suppressive function, lineage markers and FOXP3, and cytokine production. RESULTS—Both CD4+CD127lo/− and CD4+CD127lo/−CD25+ T-cells could be expanded and used as Tregs. However, expansion of CD4+CD127lo/− cells required the addition of rapamycin to maintain lineage purity. In contrast, expansion of CD4+CD127lo/−CD25+ T-cells, especially the CD45RA+ subset, resulted in high yield, functional Tregs that maintained higher FOXP3 expression in the absence of rapamycin. Tregs from type 1 diabetic patients and control subjects expanded similarly and were equally capable of suppressing T-cell proliferation. Regulatory cytokines were produced by Tregs after culture; however, a portion of FOXP3+ cells were capable of producing interferon (IFN)-γ after reactivation. IFN-γ production was observed from both CD45RO+ and CD45RA+ Treg populations. CONCLUSIONS—The results support the feasibility of isolating Tregs for in vitro expansion. Based on expansion capacity, FOXP3 stability, and functional properties, the CD4+CD127lo/−CD25+ T-cells represent a viable cell population for cellular therapy in this autoimmune disease.
Audience Professional
Author Amy L. Putnam
Weihong Liu
Jeffrey A. Bluestone
Todd M. Brusko
Mark A. Atkinson
Taumoha Ghosh
Gregory L. Szot
Michael R. Lee
AuthorAffiliation 2 Department of Pathology, University of Florida, College of Medicine, Gainesville, Florida
1 Diabetes Center at the University of California, San Francisco (UCSF), San Francisco, California
AuthorAffiliation_xml – name: 1 Diabetes Center at the University of California, San Francisco (UCSF), San Francisco, California
– name: 2 Department of Pathology, University of Florida, College of Medicine, Gainesville, Florida
Author_xml – sequence: 1
  givenname: Amy L.
  surname: Putnam
  fullname: Putnam, Amy L.
  organization: Diabetes Center at the University of California, San Francisco (UCSF), San Francisco, California
– sequence: 2
  givenname: Todd M.
  surname: Brusko
  fullname: Brusko, Todd M.
  organization: Diabetes Center at the University of California, San Francisco (UCSF), San Francisco, California
– sequence: 3
  givenname: Michael R.
  surname: Lee
  fullname: Lee, Michael R.
  organization: Diabetes Center at the University of California, San Francisco (UCSF), San Francisco, California
– sequence: 4
  givenname: Weihong
  surname: Liu
  fullname: Liu, Weihong
  organization: Diabetes Center at the University of California, San Francisco (UCSF), San Francisco, California
– sequence: 5
  givenname: Gregory L.
  surname: Szot
  fullname: Szot, Gregory L.
  organization: Diabetes Center at the University of California, San Francisco (UCSF), San Francisco, California
– sequence: 6
  givenname: Taumoha
  surname: Ghosh
  fullname: Ghosh, Taumoha
  organization: Diabetes Center at the University of California, San Francisco (UCSF), San Francisco, California
– sequence: 7
  givenname: Mark A.
  surname: Atkinson
  fullname: Atkinson, Mark A.
  organization: Department of Pathology, University of Florida, College of Medicine, Gainesville, Florida
– sequence: 8
  givenname: Jeffrey A.
  surname: Bluestone
  fullname: Bluestone, Jeffrey A.
  organization: Diabetes Center at the University of California, San Francisco (UCSF), San Francisco, California
BackLink https://www.ncbi.nlm.nih.gov/pubmed/19074986$$D View this record in MEDLINE/PubMed
BookMark eNptkl1r2zAUhsXoWNNuF_sDw-xi0IFbfdiydDMoWdsMAh0jY7sTsnzsqNhSZtlb8--rkGxZSjgXEtJzvt8zdOK8A4TeEnxJGSuuqhKLlBAuXqAJkUymjBY_T9AEY0JTUsjiFJ2F8IAx5tFeoVMicZFJwSdodvO40i5Y7xJfJ7Ox0y75Bs3Y6sH362SRTqFtQ3Lb-y75qgcLbgjJDzssk8V6BQlJPltdwgDhNXpZ6zbAm915jr7f3iyms3R-f_dlej1PTS6yIZWcScpqxksDLGcVyKowoi4BQAgMUJkso9JQUtaESMEyw0zJ61wCrzXQnJ2jT9u4q7HsIh4L6nWrVr3tdL9WXlt1-OPsUjX-t6I8i91nMcCHXYDe_xohDKqzwcQutQM_BsW5LDjjJILvn4EPfuxdbE5RwrMCx_ojlG6hRregrKt9TGoacBBzxy3VNj5fE5lTXhBBI395hI9WQWfNUYeLA4fIDPA4NHoMQYm7-SGbHmONb1toQMU9TO8P-Xf_z_LfEP_KY5_c9D6EHuo9gtVGemojPbWRXmSvnrHGDlExfrMG2x71-Lj1WNpm-cf2oKqdmPaXXCimeE7ZE2KF5rc
CODEN DIAEAZ
CitedBy_id crossref_primary_10_1172_JCI78089
crossref_primary_10_1016_j_autrev_2021_102761
crossref_primary_10_1586_1744666X_2014_943191
crossref_primary_10_1016_j_isci_2025_112553
crossref_primary_10_1007_s00005_016_0452_4
crossref_primary_10_1016_j_jcyt_2014_11_005
crossref_primary_10_3389_fimmu_2019_00079
crossref_primary_10_1038_nri_2015_18
crossref_primary_10_1038_s41590_020_0784_4
crossref_primary_10_1111_nyas_13191
crossref_primary_10_4049_jimmunol_1203567
crossref_primary_10_3389_fimmu_2020_581433
crossref_primary_10_1038_s41598_021_93025_x
crossref_primary_10_2217_imt_2017_0017
crossref_primary_10_1016_j_matbio_2018_03_022
crossref_primary_10_1038_s44222_024_00238_6
crossref_primary_10_1111_j_1600_065X_2011_01013_x
crossref_primary_10_4049_jimmunol_1203561
crossref_primary_10_1155_2011_286248
crossref_primary_10_4049_jimmunol_1402381
crossref_primary_10_1016_j_coi_2010_08_011
crossref_primary_10_1016_j_immuni_2010_03_018
crossref_primary_10_1111_cei_12019
crossref_primary_10_4049_jimmunol_2000708
crossref_primary_10_1007_s11892_012_0304_5
crossref_primary_10_2337_db12_0562
crossref_primary_10_1016_j_coi_2011_06_006
crossref_primary_10_1016_j_jaut_2017_01_001
crossref_primary_10_1002_dmrr_1034
crossref_primary_10_1681_ASN_2016111206
crossref_primary_10_1007_s00018_022_04563_0
crossref_primary_10_1039_D0BM00622J
crossref_primary_10_1016_j_jaut_2016_03_011
crossref_primary_10_1038_cmi_2010_38
crossref_primary_10_1586_1744666X_2015_1047345
crossref_primary_10_1038_jid_2013_540
crossref_primary_10_1016_j_jacc_2016_08_036
crossref_primary_10_1152_physrev_00003_2010
crossref_primary_10_1002_iid3_1091
crossref_primary_10_3389_fimmu_2022_873560
crossref_primary_10_3389_fimmu_2021_686439
crossref_primary_10_1111_imr_12168
crossref_primary_10_1038_nrrheum_2009_183
crossref_primary_10_3389_fcell_2022_1081644
crossref_primary_10_2337_db19_0061
crossref_primary_10_1186_ar3387
crossref_primary_10_1007_s00262_023_03607_z
crossref_primary_10_1080_08820139_2016_1193869
crossref_primary_10_1016_j_jim_2017_06_009
crossref_primary_10_1371_journal_pone_0090387
crossref_primary_10_4049_jimmunol_1003099
crossref_primary_10_1097_MOT_0b013e328355a992
crossref_primary_10_1016_j_diabres_2017_04_011
crossref_primary_10_1002_ddr_20488
crossref_primary_10_3389_fimmu_2018_00303
crossref_primary_10_1007_s11926_018_0729_1
crossref_primary_10_1136_gutjnl_2014_306919
crossref_primary_10_3389_fimmu_2021_744763
crossref_primary_10_1126_scitranslmed_3002076
crossref_primary_10_2119_molmed_2016_00050
crossref_primary_10_2337_dc12_0038
crossref_primary_10_1016_j_biomaterials_2017_05_009
crossref_primary_10_1111_imr_13362
crossref_primary_10_1016_j_intimp_2015_03_049
crossref_primary_10_3389_fimmu_2020_565518
crossref_primary_10_1111_tri_13972
crossref_primary_10_1016_j_jaut_2012_06_004
crossref_primary_10_1097_TP_0000000000002224
crossref_primary_10_1111_imm_13690
crossref_primary_10_1016_j_matbio_2018_09_003
crossref_primary_10_1097_TP_0b013e3181f9960d
crossref_primary_10_1111_ajt_12433
crossref_primary_10_1126_scitranslmed_aad4134
crossref_primary_10_3389_fimmu_2022_997287
crossref_primary_10_1097_MOT_0b013e32834017ae
crossref_primary_10_1111_bjh_16157
crossref_primary_10_1016_j_jim_2010_10_006
crossref_primary_10_1155_2013_184258
crossref_primary_10_1007_s00125_021_05563_8
crossref_primary_10_4049_jimmunol_1401803
crossref_primary_10_1016_j_clim_2017_01_010
crossref_primary_10_3389_fimmu_2021_626193
crossref_primary_10_1016_j_jcyt_2019_10_011
crossref_primary_10_3390_ijms222312988
crossref_primary_10_3389_fendo_2017_00343
crossref_primary_10_2337_db18_1081
crossref_primary_10_1371_journal_pone_0109194
crossref_primary_10_3727_096368911X566217
crossref_primary_10_1038_nrendo_2014_2
crossref_primary_10_1016_j_atherosclerosis_2014_01_036
crossref_primary_10_1038_s41591_018_0070_2
crossref_primary_10_1038_s41573_019_0041_4
crossref_primary_10_1111_imr_12529
crossref_primary_10_1111_j_1749_6632_2010_05818_x
crossref_primary_10_1093_femspd_ftw059
crossref_primary_10_1084_jem_20122387
crossref_primary_10_1371_journal_pone_0079072
crossref_primary_10_1016_j_intimp_2021_107669
crossref_primary_10_1016_j_immuni_2009_04_006
crossref_primary_10_1007_s11356_018_3659_6
crossref_primary_10_1126_scitranslmed_3003504
crossref_primary_10_1002_art_42081
crossref_primary_10_1007_s12016_021_08866_1
crossref_primary_10_1111_ajt_12650
crossref_primary_10_4049_jimmunol_1101760
crossref_primary_10_1586_ern_11_163
crossref_primary_10_1371_journal_pone_0086920
crossref_primary_10_1016_j_jacc_2012_07_064
crossref_primary_10_1111_exd_12368
crossref_primary_10_4049_jimmunol_1901250
crossref_primary_10_3389_fimmu_2018_00199
crossref_primary_10_1002_eji_201344381
crossref_primary_10_1016_S2213_8587_13_70113_X
crossref_primary_10_4236_jamp_2025_132029
crossref_primary_10_2478_v10201_011_0034_4
crossref_primary_10_3389_fimmu_2021_783282
crossref_primary_10_1189_jlb_3A0716_295RR
crossref_primary_10_1111_j_1600_6143_2009_02704_x
crossref_primary_10_1038_nm_2154
crossref_primary_10_1016_j_trim_2017_08_005
crossref_primary_10_4049_jimmunol_1701199
crossref_primary_10_3389_fimmu_2015_00654
crossref_primary_10_1182_blood_2011_02_337097
crossref_primary_10_1111_j_1600_065X_2009_00775_x
crossref_primary_10_1016_j_ebiom_2020_102827
crossref_primary_10_1016_j_preteyeres_2013_02_002
crossref_primary_10_1097_JIM_0000000000000227
crossref_primary_10_1182_blood_2009_01_199950
crossref_primary_10_1016_j_smim_2011_07_008
crossref_primary_10_1097_SLA_0b013e31822c9ca7
crossref_primary_10_1016_j_smim_2011_07_007
crossref_primary_10_1016_j_clim_2010_04_014
crossref_primary_10_1146_annurev_immunol_020711_075024
crossref_primary_10_1371_journal_pone_0051644
crossref_primary_10_3390_ijms160922584
crossref_primary_10_1111_ajt_14415
crossref_primary_10_1097_MED_0b013e3283382286
crossref_primary_10_1097_MOT_0b013e328363319d
crossref_primary_10_1016_j_jcyt_2019_04_060
crossref_primary_10_1038_s41577_023_00985_4
crossref_primary_10_1007_s40472_015_0058_5
crossref_primary_10_3389_fimmu_2022_861607
crossref_primary_10_1016_j_humimm_2015_12_004
crossref_primary_10_1097_MOT_0b013e32834ee69f
crossref_primary_10_1016_j_exphem_2016_09_008
crossref_primary_10_1126_scitranslmed_3001809
crossref_primary_10_4049_jimmunol_1003947
crossref_primary_10_1002_jbm_a_37442
crossref_primary_10_1038_gt_2014_45
crossref_primary_10_1038_nri2785
crossref_primary_10_1007_s12026_013_8452_5
crossref_primary_10_1080_2162402X_2019_1648170
crossref_primary_10_1161_CIRCULATIONAHA_117_029870
crossref_primary_10_1016_j_smim_2011_04_001
crossref_primary_10_1016_j_humimm_2011_12_011
crossref_primary_10_1016_j_imlet_2021_03_002
crossref_primary_10_3389_fimmu_2015_00438
crossref_primary_10_1111_1753_0407_12286
crossref_primary_10_1016_j_intimp_2011_05_018
crossref_primary_10_1016_j_jaut_2019_102361
crossref_primary_10_3109_08830185_2013_845181
crossref_primary_10_1155_2011_289343
crossref_primary_10_1137_140955823
crossref_primary_10_1242_dmm_015099
crossref_primary_10_3389_fonc_2014_00209
crossref_primary_10_1016_j_imbio_2017_03_001
crossref_primary_10_1097_MOT_0b013e32832c58f1
crossref_primary_10_1016_j_jaut_2010_10_005
crossref_primary_10_1371_journal_pone_0011726
crossref_primary_10_1084_jem_20101606
crossref_primary_10_4049_jimmunol_1101727
crossref_primary_10_1007_s00125_023_06076_2
crossref_primary_10_3389_fimmu_2018_02332
crossref_primary_10_1007_s00423_015_1313_z
crossref_primary_10_1038_s41467_024_45012_9
crossref_primary_10_1097_QAD_0b013e328358cc75
crossref_primary_10_1097_MOT_0b013e32833bfadc
crossref_primary_10_1172_JCI90598
crossref_primary_10_1002_eji_202250007
crossref_primary_10_1111_cei_12559
crossref_primary_10_1101_cshperspect_a041599
crossref_primary_10_1016_j_immuni_2010_09_002
crossref_primary_10_1016_j_bbmt_2009_06_009
crossref_primary_10_1517_14728222_2015_1037282
crossref_primary_10_3389_fimmu_2022_911151
crossref_primary_10_4049_jimmunol_1001860
crossref_primary_10_1016_j_jaci_2018_10_015
crossref_primary_10_1136_annrheumdis_2018_214024
crossref_primary_10_1093_intimm_dxt020
crossref_primary_10_1016_j_cellimm_2018_09_008
crossref_primary_10_1007_s12026_012_8315_5
crossref_primary_10_1016_j_jcyt_2024_02_023
crossref_primary_10_3389_fimmu_2023_1321228
crossref_primary_10_1016_j_intimp_2013_02_016
crossref_primary_10_1016_j_trim_2016_10_003
crossref_primary_10_1111_j_1600_065X_2012_01130_x
crossref_primary_10_1007_s12026_012_8267_9
crossref_primary_10_1002_rmv_1815
crossref_primary_10_1002_lt_25948
crossref_primary_10_1016_j_clim_2015_08_002
crossref_primary_10_1097_TP_0000000000001664
crossref_primary_10_1084_jem_20221676
crossref_primary_10_1007_s11892_016_0807_6
crossref_primary_10_4049_jimmunol_0903636
crossref_primary_10_1097_MED_0b013e32833c4b2b
crossref_primary_10_1371_journal_pone_0056209
crossref_primary_10_1111_j_1365_2249_2011_04334_x
crossref_primary_10_1111_cei_12978
crossref_primary_10_1371_journal_pone_0182009
crossref_primary_10_3390_ijms21145163
crossref_primary_10_1007_s00441_009_0900_0
crossref_primary_10_1186_s13075_019_2001_0
crossref_primary_10_3389_fimmu_2018_01891
crossref_primary_10_3727_096368909X480314
crossref_primary_10_1038_s42003_024_07381_1
crossref_primary_10_1111_j_1600_6143_2011_03558_x
crossref_primary_10_1111_pedi_12040
crossref_primary_10_1038_nbt0809_687
crossref_primary_10_1002_adfm_202405133
crossref_primary_10_1158_2326_6066_CIR_15_0118
crossref_primary_10_1007_s00005_012_0172_3
crossref_primary_10_1111_cei_12052
crossref_primary_10_1016_j_intimp_2011_07_007
crossref_primary_10_1111_ajt_15761
crossref_primary_10_1007_s00296_010_1427_0
crossref_primary_10_1007_s11892_011_0209_8
crossref_primary_10_1038_icb_2010_137
crossref_primary_10_1080_08830185_2019_1621310
crossref_primary_10_1016_j_cellimm_2012_04_002
crossref_primary_10_53941_ijctm_2025_1000018
crossref_primary_10_1172_JCI79271
crossref_primary_10_1038_s41598_017_10151_1
crossref_primary_10_3109_08916934_2014_886198
crossref_primary_10_1111_imm_12867
crossref_primary_10_1016_j_omtm_2016_12_003
crossref_primary_10_1007_s00281_019_00741_8
crossref_primary_10_1016_j_trim_2024_102069
crossref_primary_10_1111_cei_12078
crossref_primary_10_1002_eji_201141651
crossref_primary_10_1016_j_humimm_2009_02_007
crossref_primary_10_1111_ajt_13456
crossref_primary_10_2337_db22_0177
crossref_primary_10_1111_j_1600_6143_2011_03963_x
crossref_primary_10_1038_nm_3085
crossref_primary_10_1016_j_jaut_2012_08_001
crossref_primary_10_1586_1744666X_2013_828875
crossref_primary_10_1097_MOT_0000000000000561
crossref_primary_10_3389_fimmu_2019_02742
crossref_primary_10_1038_s41598_022_23515_z
crossref_primary_10_1155_2015_638470
crossref_primary_10_3390_ijms23063155
crossref_primary_10_1007_s12026_014_8616_y
crossref_primary_10_4049_jimmunol_1100269
crossref_primary_10_1007_s00281_010_0204_1
crossref_primary_10_1007_s00281_022_00940_w
crossref_primary_10_1038_cmi_2014_133
Cites_doi 10.1038/ng1958
10.1084/jem.20041179
10.1016/j.immuni.2008.02.017
10.1111/j.1600-065X.2008.00637.x
10.1182/blood-2004-01-0086
10.1038/nri2017
10.2337/diabetes.54.6.1763
10.2337/db06-1248
10.1038/nature01621
10.1038/83713
10.1182/blood.V98.3.597
10.1182/blood-2007-12-128488
10.1016/0952-7915(92)90083-Q
10.2337/diabetes.51.3.638
10.4049/jimmunol.179.11.7924
10.1084/jem.20020394
10.1080/08820130701790368
10.1084/jem.20060772
10.1016/S0140-6736(01)05415-0
10.1034/j.1600-065X.2001.1820112.x
10.1182/blood-2002-07-2015
10.1002/0470871628.ch6
10.1073/pnas.0405234101
10.1084/jem.20080707
10.1084/jem.184.5.2049
10.1002/eji.200738108
10.1084/jem.20051166
10.1038/ng2102
10.4049/jimmunol.181.2.1025
10.1182/blood-2007-06-094482
10.1146/annurev.med.58.061705.145449
10.4049/jimmunol.167.3.1245
10.4049/jimmunol.173.11.6526
10.1016/j.smim.2006.01.004
10.1084/jem.20040139
10.4049/jimmunol.179.9.5785
10.1016/S1074-7613(00)80195-8
10.1146/annurev.immunol.19.1.683
10.2337/diabetes.54.5.1407
10.4049/jimmunol.180.2.858
10.4049/jimmunol.176.11.6752
10.4049/jimmunol.177.12.8338
10.1016/j.smim.2003.12.002
10.2337/diabetes.54.1.92
10.1016/j.bbmt.2006.01.005
10.1016/j.immuni.2008.03.016
10.1084/jem.20020642
ContentType Journal Article
Copyright COPYRIGHT 2009 American Diabetes Association
Copyright American Diabetes Association Mar 2009
Copyright © 2009, American Diabetes Association
Copyright_xml – notice: COPYRIGHT 2009 American Diabetes Association
– notice: Copyright American Diabetes Association Mar 2009
– notice: Copyright © 2009, American Diabetes Association
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
8GL
3V.
7RV
7X7
7XB
88E
88I
8AF
8AO
8C1
8FE
8FH
8FI
8FJ
8FK
8G5
ABUWG
AFKRA
AZQEC
BBNVY
BEC
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
GUQSH
HCIFZ
K9-
K9.
KB0
LK8
M0R
M0S
M1P
M2O
M2P
M7P
MBDVC
NAPCQ
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
S0X
7X8
5PM
DOI 10.2337/db08-1168
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Gale In Context: High School
ProQuest Central (Corporate)
Nursing & Allied Health Database
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
STEM Database
ProQuest Pharma Collection
Public Health Database
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Research Library (Alumni Edition)
ProQuest Central (Alumni Edition)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
eLibrary
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
Research Library Prep
SciTech Premium Collection
Consumer Health Database (Alumni Edition)
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Database (Alumni Edition)
ProQuest Biological Science Collection
Consumer Health Database
Health & Medical Collection (Alumni Edition)
Medical Database
Research Library
Science Database
Biological Science Database
Research Library (Corporate)
Nursing & Allied Health Premium
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
SIRS Editorial
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Research Library Prep
ProQuest Central Student
ProQuest Central Essentials
elibrary
ProQuest AP Science
SciTech Premium Collection
ProQuest Central China
ProQuest One Applied & Life Sciences
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Family Health
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest Hospital Collection (Alumni)
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
ProQuest Nursing & Allied Health Source (Alumni)
ProQuest One Academic
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
SIRS Editorial
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
Research Library (Alumni Edition)
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Family Health (Alumni Edition)
ProQuest Central
ProQuest Health & Medical Research Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
ProQuest Research Library
ProQuest Public Health
ProQuest Central Basic
ProQuest Science Journals
ProQuest Nursing & Allied Health Source
ProQuest SciTech Collection
ProQuest Medical Library
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
Research Library Prep
MEDLINE



CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: BENPR
  name: ProQuest Central (subscription)
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1939-327X
EndPage 662
ExternalDocumentID PMC2646064
1669437421
A195267182
19074986
10_2337_db08_1168
diabetes_58_3_652
Genre Research Support, Non-U.S. Gov't
Journal Article
GeographicLocations United States
GeographicLocations_xml – name: United States
GrantInformation_xml – fundername: NIAID NIH HHS
  grantid: P01 AI042288
GroupedDBID -
08R
0R
1AW
29F
2WC
3V.
4.4
53G
55
5GY
5RE
5RS
5VS
7RV
7X7
88E
88I
8AF
8AO
8C1
8FE
8FH
8FI
8FJ
8G5
8GL
8R4
8R5
AAQQT
AAWTL
AAYEP
AAYJJ
ABFLS
ABOCM
ABPTK
ABUWG
ACDCL
ACGOD
ACPRK
ADACO
ADBBV
ADBIT
AENEX
AFKRA
AHMBA
ALMA_UNASSIGNED_HOLDINGS
AZQEC
BAWUL
BBAFP
BBNVY
BCR
BCU
BEC
BENPR
BES
BHPHI
BKEYQ
BKNYI
BLC
BPHCQ
BVXVI
C1A
CS3
DIK
DU5
DWQXO
E3Z
EBS
EDB
EJD
EX3
F5P
FRP
FYUFA
GICCO
GJ
GNUQQ
GUQSH
GX1
H13
HCIFZ
HZ
H~9
IAG
IAO
IEA
IHR
INH
INR
IOF
IPO
K-O
K9-
KM
KQ8
L7B
LK8
M0R
M1P
M2O
M2P
M2Q
M5
M7P
MBDVC
O0-
O5R
O5S
O9-
OB3
OBH
OK1
OVD
P2P
PADUT
PCD
PEA
PQEST
PQQKQ
PQUKI
PRINS
PROAC
PSQYO
Q2X
RHF
RHI
RPM
S0X
SJFOW
SJN
SV3
TDI
WH7
WOQ
WOW
X7M
XZ
ZA5
ZY1
---
.55
.GJ
.XZ
08P
0R~
18M
354
6PF
AAFWJ
AAKAS
AAYXX
ACGFO
ADZCM
AEGXH
AERZD
AFFHD
AIAGR
AIZAD
BTFSW
CCPQU
CITATION
EMOBN
HMCUK
HZ~
ITC
K2M
M5~
N4W
NAPCQ
OHH
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
TEORI
TR2
UKHRP
VVN
W8F
YFH
YHG
YOC
~KM
1CY
8F7
AAYOK
AFFNX
AI.
ALIPV
CGR
CUY
CVF
ECM
EIF
J5H
MVM
NPM
VH1
XOL
YQJ
ZGI
ZXP
7XB
8FK
ADGHP
K9.
PKEHL
Q9U
7X8
PUEGO
5PM
ID FETCH-LOGICAL-c584t-963923f36bce353de9d7c8fbeee880eedc4429c21bf119834c3cb6f59e6fae253
IEDL.DBID M7P
ISICitedReferencesCount 293
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000263848500020&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0012-1797
1939-327X
IngestDate Tue Nov 04 01:50:45 EST 2025
Thu Sep 04 19:59:08 EDT 2025
Fri Oct 03 09:22:06 EDT 2025
Mon Nov 24 15:51:52 EST 2025
Tue Nov 04 18:48:36 EST 2025
Thu Nov 13 16:13:42 EST 2025
Sat Nov 29 09:45:53 EST 2025
Thu Apr 03 07:03:42 EDT 2025
Sat Nov 29 04:30:31 EST 2025
Tue Nov 18 22:12:04 EST 2025
Fri Jan 15 19:45:50 EST 2021
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
License Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered. See http://creativecommons.org/licenses/by-nc-nd/3.0/ for details.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c584t-963923f36bce353de9d7c8fbeee880eedc4429c21bf119834c3cb6f59e6fae253
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Corresponding author: Jeffrey A. Bluestone, jbluest@diabetes.ucsf.edu
Published ahead of print at http://diabetes.diabetesjournals.org on 15 December 2008.
A.L.P. and T.M.B. contributed equally to this work.
The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked “advertisement” in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.
OpenAccessLink https://pubmed.ncbi.nlm.nih.gov/PMC2646064
PMID 19074986
PQID 216470353
PQPubID 34443
PageCount 11
ParticipantIDs gale_incontextcollege_GICCO_A195267182
gale_infotracacademiconefile_A195267182
crossref_primary_10_2337_db08_1168
proquest_journals_216470353
gale_infotracgeneralonefile_A195267182
gale_incontextgauss_8GL_A195267182
proquest_miscellaneous_66976361
pubmed_primary_19074986
pubmedcentral_primary_oai_pubmedcentral_nih_gov_2646064
crossref_citationtrail_10_2337_db08_1168
highwire_diabetes_diabetes_58_3_652
ProviderPackageCode RHF
RHI
PublicationCentury 2000
PublicationDate 20090301
2009-03-01
2009-Mar
PublicationDateYYYYMMDD 2009-03-01
PublicationDate_xml – month: 03
  year: 2009
  text: 20090301
  day: 01
PublicationDecade 2000
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: New York
PublicationTitle Diabetes (New York, N.Y.)
PublicationTitleAlternate Diabetes
PublicationYear 2009
Publisher American Diabetes Association
Publisher_xml – name: American Diabetes Association
References 2022031208271268200_R40
2022031208271268200_R2
2022031208271268200_R1
2022031208271268200_R27
2022031208271268200_R28
2022031208271268200_R29
2022031208271268200_R23
2022031208271268200_R45
2022031208271268200_R24
2022031208271268200_R46
2022031208271268200_R25
2022031208271268200_R47
2022031208271268200_R26
2022031208271268200_R41
2022031208271268200_R20
2022031208271268200_R42
2022031208271268200_R21
2022031208271268200_R43
2022031208271268200_R22
2022031208271268200_R44
2022031208271268200_R4
2022031208271268200_R3
2022031208271268200_R6
2022031208271268200_R5
2022031208271268200_R8
2022031208271268200_R16
2022031208271268200_R38
2022031208271268200_R7
2022031208271268200_R17
2022031208271268200_R39
2022031208271268200_R18
2022031208271268200_R9
2022031208271268200_R19
2022031208271268200_R12
2022031208271268200_R34
2022031208271268200_R13
2022031208271268200_R35
2022031208271268200_R14
2022031208271268200_R36
2022031208271268200_R15
2022031208271268200_R37
2022031208271268200_R30
2022031208271268200_R31
2022031208271268200_R10
2022031208271268200_R32
2022031208271268200_R11
2022031208271268200_R33
11476858 - Lancet. 2001 Jul 21;358(9277):221-9
11722631 - Immunol Rev. 2001 Aug;182:149-63
15322272 - Proc Natl Acad Sci U S A. 2004 Oct 5;101 Suppl 2:14622-6
18387831 - Immunity. 2008 Apr;28(4):546-58
15557141 - J Immunol. 2004 Dec 1;173(11):6526-31
15616015 - Diabetes. 2005 Jan;54(1):92-9
14609213 - Novartis Found Symp. 2003;252:67-88; discussion 88-91, 106-14
1418712 - Curr Opin Immunol. 1992 Jun;4(3):321-6
16987079 - Annu Rev Med. 2007;58:329-46
17327427 - Diabetes. 2007 Mar;56(3):604-12
16709834 - J Immunol. 2006 Jun 1;176(11):6752-61
17277778 - Nat Genet. 2007 Mar;39(3):329-37
11872661 - Diabetes. 2002 Mar;51(3):638-45
17142730 - J Immunol. 2006 Dec 15;177(12):8338-47
16314435 - J Exp Med. 2005 Dec 5;202(11):1539-47
17676041 - Nat Genet. 2007 Sep;39(9):1074-82
8920894 - J Exp Med. 1996 Nov 1;184(5):2049-53
16458533 - Semin Immunol. 2006 Apr;18(2):103-10
10795741 - Immunity. 2000 Apr;12(4):431-40
15090447 - Blood. 2004 Aug 1;104(3):895-903
17967941 - Blood. 2008 Jan 1;111(1):453-62
18613848 - Immunol Rev. 2008 Jun;223:371-90
12119349 - J Exp Med. 2002 Jul 15;196(2):247-53
17259968 - Nat Rev Immunol. 2007 Feb;7(2):118-30
11137993 - Nat Genet. 2001 Jan;27(1):20-1
12689947 - Blood. 2003 Aug 1;102(3):849-57
15919798 - Diabetes. 2005 Jun;54(6):1763-9
18025240 - J Immunol. 2007 Dec 1;179(11):7924-31
18468463 - Immunity. 2008 May;28(5):687-97
11244051 - Annu Rev Immunol. 2001;19:683-765
12724780 - Nature. 2003 May 29;423(6939):506-11
18725525 - J Exp Med. 2008 Sep 1;205(9):1983-91
17947651 - J Immunol. 2007 Nov 1;179(9):5785-92
16818678 - J Exp Med. 2006 Jul 10;203(7):1701-11
18256318 - Blood. 2008 May 15;111(10):5233-41
15753210 - J Exp Med. 2005 Mar 7;201(5):769-77
18606654 - J Immunol. 2008 Jul 15;181(2):1025-33
15184499 - J Exp Med. 2004 Jun 7;199(11):1455-65
18161521 - Immunol Invest. 2007;36(5-6):607-28
18395864 - Eur J Immunol. 2008 Apr;38(4):931-4
15855327 - Diabetes. 2005 May;54(5):1407-14
12119350 - J Exp Med. 2002 Jul 15;196(2):255-60
11468156 - Blood. 2001 Aug 1;98(3):597-603
16503495 - Biol Blood Marrow Transplant. 2006 Mar;12(3):267-74
15036230 - Semin Immunol. 2004 Apr;16(2):73-80
11466340 - J Immunol. 2001 Aug 1;167(3):1245-53
18178825 - J Immunol. 2008 Jan 15;180(2):858-69
References_xml – ident: 2022031208271268200_R38
  doi: 10.1038/ng1958
– ident: 2022031208271268200_R31
  doi: 10.1084/jem.20041179
– ident: 2022031208271268200_R32
  doi: 10.1016/j.immuni.2008.02.017
– ident: 2022031208271268200_R14
  doi: 10.1111/j.1600-065X.2008.00637.x
– ident: 2022031208271268200_R36
  doi: 10.1182/blood-2004-01-0086
– ident: 2022031208271268200_R45
  doi: 10.1038/nri2017
– ident: 2022031208271268200_R9
  doi: 10.2337/diabetes.54.6.1763
– ident: 2022031208271268200_R20
  doi: 10.2337/db06-1248
– ident: 2022031208271268200_R40
  doi: 10.1038/nature01621
– ident: 2022031208271268200_R6
  doi: 10.1038/83713
– ident: 2022031208271268200_R27
  doi: 10.1182/blood.V98.3.597
– ident: 2022031208271268200_R41
  doi: 10.1182/blood-2007-12-128488
– ident: 2022031208271268200_R34
  doi: 10.1016/0952-7915(92)90083-Q
– ident: 2022031208271268200_R11
  doi: 10.2337/diabetes.51.3.638
– ident: 2022031208271268200_R25
  doi: 10.4049/jimmunol.179.11.7924
– ident: 2022031208271268200_R42
  doi: 10.1084/jem.20020394
– ident: 2022031208271268200_R17
  doi: 10.1080/08820130701790368
– ident: 2022031208271268200_R15
  doi: 10.1084/jem.20060772
– ident: 2022031208271268200_R1
  doi: 10.1016/S0140-6736(01)05415-0
– ident: 2022031208271268200_R2
  doi: 10.1034/j.1600-065X.2001.1820112.x
– ident: 2022031208271268200_R26
  doi: 10.1182/blood-2002-07-2015
– ident: 2022031208271268200_R18
  doi: 10.1002/0470871628.ch6
– ident: 2022031208271268200_R7
  doi: 10.1073/pnas.0405234101
– ident: 2022031208271268200_R46
  doi: 10.1084/jem.20080707
– ident: 2022031208271268200_R3
  doi: 10.1084/jem.184.5.2049
– ident: 2022031208271268200_R12
  doi: 10.1002/eji.200738108
– ident: 2022031208271268200_R44
  doi: 10.1084/jem.20051166
– ident: 2022031208271268200_R21
  doi: 10.1038/ng2102
– ident: 2022031208271268200_R30
  doi: 10.4049/jimmunol.181.2.1025
– ident: 2022031208271268200_R16
  doi: 10.1182/blood-2007-06-094482
– ident: 2022031208271268200_R8
  doi: 10.1146/annurev.med.58.061705.145449
– ident: 2022031208271268200_R13
  doi: 10.4049/jimmunol.167.3.1245
– ident: 2022031208271268200_R33
  doi: 10.4049/jimmunol.173.11.6526
– ident: 2022031208271268200_R47
  doi: 10.1016/j.smim.2006.01.004
– ident: 2022031208271268200_R24
  doi: 10.1084/jem.20040139
– ident: 2022031208271268200_R28
  doi: 10.4049/jimmunol.179.9.5785
– ident: 2022031208271268200_R5
  doi: 10.1016/S1074-7613(00)80195-8
– ident: 2022031208271268200_R35
  doi: 10.1146/annurev.immunol.19.1.683
– ident: 2022031208271268200_R22
  doi: 10.2337/diabetes.54.5.1407
– ident: 2022031208271268200_R29
  doi: 10.4049/jimmunol.180.2.858
– ident: 2022031208271268200_R39
  doi: 10.4049/jimmunol.176.11.6752
– ident: 2022031208271268200_R19
  doi: 10.4049/jimmunol.177.12.8338
– ident: 2022031208271268200_R4
  doi: 10.1016/j.smim.2003.12.002
– ident: 2022031208271268200_R23
  doi: 10.2337/diabetes.54.1.92
– ident: 2022031208271268200_R37
  doi: 10.1016/j.bbmt.2006.01.005
– ident: 2022031208271268200_R10
  doi: 10.1016/j.immuni.2008.03.016
– ident: 2022031208271268200_R43
  doi: 10.1084/jem.20020642
– reference: 16818678 - J Exp Med. 2006 Jul 10;203(7):1701-11
– reference: 18178825 - J Immunol. 2008 Jan 15;180(2):858-69
– reference: 14609213 - Novartis Found Symp. 2003;252:67-88; discussion 88-91, 106-14
– reference: 17947651 - J Immunol. 2007 Nov 1;179(9):5785-92
– reference: 18606654 - J Immunol. 2008 Jul 15;181(2):1025-33
– reference: 17259968 - Nat Rev Immunol. 2007 Feb;7(2):118-30
– reference: 11722631 - Immunol Rev. 2001 Aug;182:149-63
– reference: 11476858 - Lancet. 2001 Jul 21;358(9277):221-9
– reference: 17142730 - J Immunol. 2006 Dec 15;177(12):8338-47
– reference: 11244051 - Annu Rev Immunol. 2001;19:683-765
– reference: 18725525 - J Exp Med. 2008 Sep 1;205(9):1983-91
– reference: 18395864 - Eur J Immunol. 2008 Apr;38(4):931-4
– reference: 18256318 - Blood. 2008 May 15;111(10):5233-41
– reference: 11872661 - Diabetes. 2002 Mar;51(3):638-45
– reference: 15616015 - Diabetes. 2005 Jan;54(1):92-9
– reference: 1418712 - Curr Opin Immunol. 1992 Jun;4(3):321-6
– reference: 17277778 - Nat Genet. 2007 Mar;39(3):329-37
– reference: 15753210 - J Exp Med. 2005 Mar 7;201(5):769-77
– reference: 11468156 - Blood. 2001 Aug 1;98(3):597-603
– reference: 15322272 - Proc Natl Acad Sci U S A. 2004 Oct 5;101 Suppl 2:14622-6
– reference: 16503495 - Biol Blood Marrow Transplant. 2006 Mar;12(3):267-74
– reference: 11466340 - J Immunol. 2001 Aug 1;167(3):1245-53
– reference: 16458533 - Semin Immunol. 2006 Apr;18(2):103-10
– reference: 17676041 - Nat Genet. 2007 Sep;39(9):1074-82
– reference: 18468463 - Immunity. 2008 May;28(5):687-97
– reference: 18613848 - Immunol Rev. 2008 Jun;223:371-90
– reference: 18025240 - J Immunol. 2007 Dec 1;179(11):7924-31
– reference: 15036230 - Semin Immunol. 2004 Apr;16(2):73-80
– reference: 18387831 - Immunity. 2008 Apr;28(4):546-58
– reference: 12689947 - Blood. 2003 Aug 1;102(3):849-57
– reference: 15090447 - Blood. 2004 Aug 1;104(3):895-903
– reference: 16987079 - Annu Rev Med. 2007;58:329-46
– reference: 15919798 - Diabetes. 2005 Jun;54(6):1763-9
– reference: 16314435 - J Exp Med. 2005 Dec 5;202(11):1539-47
– reference: 15184499 - J Exp Med. 2004 Jun 7;199(11):1455-65
– reference: 17967941 - Blood. 2008 Jan 1;111(1):453-62
– reference: 10795741 - Immunity. 2000 Apr;12(4):431-40
– reference: 17327427 - Diabetes. 2007 Mar;56(3):604-12
– reference: 11137993 - Nat Genet. 2001 Jan;27(1):20-1
– reference: 16709834 - J Immunol. 2006 Jun 1;176(11):6752-61
– reference: 12119349 - J Exp Med. 2002 Jul 15;196(2):247-53
– reference: 12724780 - Nature. 2003 May 29;423(6939):506-11
– reference: 15557141 - J Immunol. 2004 Dec 1;173(11):6526-31
– reference: 12119350 - J Exp Med. 2002 Jul 15;196(2):255-60
– reference: 8920894 - J Exp Med. 1996 Nov 1;184(5):2049-53
– reference: 15855327 - Diabetes. 2005 May;54(5):1407-14
– reference: 18161521 - Immunol Invest. 2007;36(5-6):607-28
SSID ssj0006060
Score 2.455189
Snippet Expansion of Human Regulatory T-Cells From Patients With Type 1 Diabetes Amy L. Putnam 1 , Todd M. Brusko 1 , Michael R. Lee 1 , Weihong Liu 1 , Gregory L....
OBJECTIVE—Regulatory T-cells (Tregs) have catalyzed the field of immune regulation. However, translating Treg-based therapies from animal models of...
Regulatory T-cells (Tregs) have catalyzed the field of immune regulation. However, translating Treg-based therapies from animal models of autoimmunity to human...
OBJECTIVE--Regulatory T-cells (Tregs) have catalyzed the field of immune regulation. However, translating Treg-based therapies from animal models of...
SourceID pubmedcentral
proquest
gale
pubmed
crossref
highwire
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 652
SubjectTerms Adult
Age of Onset
Antigens, CD - immunology
Autoimmune diseases
Autoimmunity
CD4-Positive T-Lymphocytes - immunology
Cell Division
Cell Proliferation
Cells
Cytokines - metabolism
Diabetes
Diabetes Mellitus, Type 1 - immunology
Disease
Female
Flow Cytometry
Forkhead Transcription Factors - analysis
Health aspects
Humans
Immunology and Transplantation
Immunosuppression
Ionomycin - pharmacology
Male
Phenotype
Reference Values
Research design
T cells
T-Lymphocytes, Regulatory - cytology
T-Lymphocytes, Regulatory - drug effects
T-Lymphocytes, Regulatory - immunology
Tetradecanoylphorbol Acetate - pharmacology
Type 1 diabetes
Young Adult
Title Expansion of Human Regulatory T-Cells From Patients With Type 1 Diabetes
URI http://diabetes.diabetesjournals.org/content/58/3/652.abstract
https://www.ncbi.nlm.nih.gov/pubmed/19074986
https://www.proquest.com/docview/216470353
https://www.proquest.com/docview/66976361
https://pubmed.ncbi.nlm.nih.gov/PMC2646064
Volume 58
WOSCitedRecordID wos000263848500020&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: Biological Science Database
  customDbUrl:
  eissn: 1939-327X
  dateEnd: 20130731
  omitProxy: false
  ssIdentifier: ssj0006060
  issn: 0012-1797
  databaseCode: M7P
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Consumer Health Database
  customDbUrl:
  eissn: 1939-327X
  dateEnd: 20130731
  omitProxy: false
  ssIdentifier: ssj0006060
  issn: 0012-1797
  databaseCode: M0R
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/familyhealth
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1939-327X
  dateEnd: 20130731
  omitProxy: false
  ssIdentifier: ssj0006060
  issn: 0012-1797
  databaseCode: 7X7
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central (subscription)
  customDbUrl:
  eissn: 1939-327X
  dateEnd: 20130731
  omitProxy: false
  ssIdentifier: ssj0006060
  issn: 0012-1797
  databaseCode: BENPR
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Nursing and Allied Health Journals - PSU access expires 11/30/25.
  customDbUrl:
  eissn: 1939-327X
  dateEnd: 20130731
  omitProxy: false
  ssIdentifier: ssj0006060
  issn: 0012-1797
  databaseCode: 7RV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/nahs
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Public Health Database
  customDbUrl:
  eissn: 1939-327X
  dateEnd: 20130731
  omitProxy: false
  ssIdentifier: ssj0006060
  issn: 0012-1797
  databaseCode: 8C1
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/publichealth
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Research Library
  customDbUrl:
  eissn: 1939-327X
  dateEnd: 20130731
  omitProxy: false
  ssIdentifier: ssj0006060
  issn: 0012-1797
  databaseCode: M2O
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/pqrl
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Science Database
  customDbUrl:
  eissn: 1939-327X
  dateEnd: 20130731
  omitProxy: false
  ssIdentifier: ssj0006060
  issn: 0012-1797
  databaseCode: M2P
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/sciencejournals
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwELfYhhAvfMPKoFiAxl6i1XbiOE9oVC172LqqGqNvVuI4W6WSbE2L4L_nLnG6BVW88HJKlFNk587nu_Pld4R8jEVqo1hGnjQBgmob4SkpU0_5Kun5Ycqzqh3QxUk4GqnpNBq72pzSlVU2NrEy1GlhMEd-yBH4qicC8fn6xsOmUXi46jpobJEdBEkQVeXeeG2IwTev_0BhHFE4wxpYiAsRHqYJopoyBFi9sx01RrlBCt7kdf5dPHlnNxo-_s95PCGPnBtKj2q9eUru2fwZeXDqDtqfk-PBLzATmEmjRUarTD-d1G3ri8Vveu717Xxe0uGi-EHHNTRrSb_PllcUA1vKqKu0KV-Qb8PBef_Yc00XPAO-yNKDBQk-XyZkYiyMEiSZhkZlibUWljrsqMaHLcxwlmSMRUr4RphEZkFkZRZbHoiXZDsvcrtLqOUYoAk_YUHm88wmMcThGQSIcG9ZHHXIQfPttXGI5NgYY64hMkExaRSTRjF1yPs163UNw7GJaR8FqBHWIse6GVPnXjTMr3-mj1gUcAl7MYe3tRkv41VZavX1pMX0yTFlBYzKxO5_BZgbQma1OPdbnJc1YPgmxg-NaukmtX57ESgttAyAa6_RHO0MSqnXatMh79ZPwRLg8U6c22JVainBtRSSdcirWkNvvxRmQCIlOyRs6e6aATHG20_y2VWFNQ7-Miwj__U_x7RHHtaHbFia94ZsLxcr-5bcNz-Xs3LRJVvh5ALpNKyoAqr6rEt2vgxG4wncnfYqys8qOu5Wy_gPZE5HVA
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1bb9MwFLamgYAX7pcyYBaXwUu02U6c5AGhqax0WlemqRt7M4ljd5VKMpoW2I_iP3JObltQxdseeGqqfIrs5Fx8fI6_Q8jrSCQmjGToSO0hqbYWTiBl4gRuEG-5fsJt0Q7oeOAPh8HJSXiwQn7XZ2GwrLK2iYWhTjKNe-SbHImvtoQnPpx9d7BpFCZX6w4apVTsmfOfELHl73c_wud9w3lvZ9TtO1VTAUeDr507IHCwprFCxtrA02Ckia8DGxtjQJTBY2gXTLTmLLYMAnLhaqFjab3QSBsZjk0iwOJfAwzDCjL_8Lgx_BALlCdeGEfWT78kMuJC-JtJjCyqDAldL7m_2gnUzMTLVrl_F2te8n69O__Ze7tLblfLbLpd6sU9smLS--TGflVI8ID0d36BGcSdQppZWmQy6KEZYy-zbHZOR07XTKc57c2yb_SgpJ7N6ZfJ_JRi4E4ZrSqJ8ofk6Erm8YispllqnhBqOAagwo2ZZ11uTRz58AMBMPw3LAo75F39rZWuGNex8cdUQeSFYqFQLBSKRYe8bKBnJc3IMtAGCoxC2o4U64J0ubekYH7dz2qbhR6XsNbg8LQ2cBwt8lwFnwYt0NsKZDMYlY6q8xgwN6QEayE3WshxSYi-DPiqFmVVpw4uLrxACSU9QK3Vkqoqg5mrRkw7ZL25C5YO01dRarJFrqSEpbOQrEMelxpx8aZwhycMZIf4LV1pAMih3r6TTk4LLnWIB0Bt3af_HNM6udkf7Q_UYHe4t0ZulQlFLEN8Rlbns4V5Tq7rH_NJPntRGARKvl61Jv0BZdOesA
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3db9MwELemgSZe-P4IA2bxMXiJutiJkzwgNHUrm1ZKhcbYm0kcu6tUktG0wP40_jvu4qRdUMXbHnhKopwiO_7d2ec7_46QlwnPdJyI2BUqQFJtxd1IiMyN_Cjd8cOMmaoc0Ek_HAyi09N4uEZ-N2dhMK2ysYmVoc4KhXvkHYbEVzs84B1TZ0UM93rvzr-7WEAKA61NNQ2LkCN98RO8t_Lt4R4M9SvGevvH3QO3LjDgKph3Zy6AD9Y3hotUafgytDoLVWRSrTXAGmYP5YO5VsxLjQfOOfcVV6kwQayFSTTDghFg_a-FHECMh9S7y-wS8Avs6RePIQNoaEmNGOdhJ0uRUdVDctdLU2EzITQsxatWvH8nbl6aCXu3_uN_eJvcrJffdNfqyx2ypvO7ZONDnWBwjxzs_wLziDuItDC0inDQT3qENc6K6QU9drt6Milpb1p8o0NLSVvSL-PZGUWHnnq0zjAq75PPV9KPB2Q9L3L9iFDN0DHlfuoFxmdGp0kIF3CM4Vl7SeyQN824S1UzsWNBkIkEjwwhIhEiEiHikOcL0XNLP7JKaBvBI5HOI8dRVXbPSUL_uh_lrhcHTMAahMHX2oKjZF6WMnrfbwm9roVMAa1SSX1OA_qGVGEtye2W5MgSpa8SfNHAWjYhheVNEEkuRQBSmw1qZW1IS7mArEO2Fm_BAmJYK8l1MS-lELCk5sJzyEOrHcs_hTs_cSQcErb0ZiGA3OrtN_n4rOJYBz8BVNh__M82bZENUCDZPxwcbZIbNs6I2YlPyPpsOtdPyXX1YzYup88q20DJ16tWpD8AM6cL
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Expansion+of+Human+Regulatory+T-Cells+From+Patients+With+Type+1+Diabetes&rft.jtitle=Diabetes+%28New+York%2C+N.Y.%29&rft.au=Putnam%2C+Amy+L&rft.au=Brusko%2C+Todd+M&rft.au=Lee%2C+Michael+R&rft.au=Liu%2C+Weihong&rft.date=2009-03-01&rft.pub=American+Diabetes+Association&rft.issn=0012-1797&rft.eissn=1939-327X&rft.volume=58&rft.issue=3&rft.spage=652&rft_id=info:doi/10.2337%2Fdb08-1168&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=1669437421
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0012-1797&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0012-1797&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0012-1797&client=summon