Performance assessment of ontology matching systems for FAIR data

Background Ontology matching should contribute to the interoperability aspect of FAIR data (Findable, Accessible, Interoperable, and Reusable). Multiple data sources can use different ontologies for annotating their data and, thus, creating the need for dynamic ontology matching services. In this ex...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Journal of biomedical semantics Ročník 13; číslo 1; s. 1 - 17
Hlavní autoři: van Damme, Philip, Fernández-Breis, Jesualdo Tomás, Benis, Nirupama, Miñarro-Gimenez, Jose Antonio, de Keizer, Nicolette F., Cornet, Ronald
Médium: Journal Article
Jazyk:angličtina
Vydáno: London BioMed Central 15.07.2022
BioMed Central Ltd
Springer Nature B.V
BMC
Témata:
ISSN:2041-1480, 2041-1480
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Background Ontology matching should contribute to the interoperability aspect of FAIR data (Findable, Accessible, Interoperable, and Reusable). Multiple data sources can use different ontologies for annotating their data and, thus, creating the need for dynamic ontology matching services. In this experimental study, we assessed the performance of ontology matching systems in the context of a real-life application from the rare disease domain. Additionally, we present a method for analyzing top-level classes to improve precision. Results We included three ontologies (NCIt, SNOMED CT, ORDO) and three matching systems (AgreementMakerLight 2.0, FCA-Map, LogMap 2.0). We evaluated the performance of the matching systems against reference alignments from BioPortal and the Unified Medical Language System Metathesaurus (UMLS). Then, we analyzed the top-level ancestors of matched classes, to detect incorrect mappings without consulting a reference alignment. To detect such incorrect mappings, we manually matched semantically equivalent top-level classes of ontology pairs. AgreementMakerLight 2.0, FCA-Map, and LogMap 2.0 had F1-scores of 0.55, 0.46, 0.55 for BioPortal and 0.66, 0.53, 0.58 for the UMLS respectively. Using vote-based consensus alignments increased performance across the board. Evaluation with manually created top-level hierarchy mappings revealed that on average 90% of the mappings’ classes belonged to top-level classes that matched. Conclusions Our findings show that the included ontology matching systems automatically produced mappings that were modestly accurate according to our evaluation. The hierarchical analysis of mappings seems promising when no reference alignments are available. All in all, the systems show potential to be implemented as part of an ontology matching service for querying FAIR data. Future research should focus on developing methods for the evaluation of mappings used in such mapping services, leading to their implementation in a FAIR data ecosystem.
AbstractList Abstract Background Ontology matching should contribute to the interoperability aspect of FAIR data (Findable, Accessible, Interoperable, and Reusable). Multiple data sources can use different ontologies for annotating their data and, thus, creating the need for dynamic ontology matching services. In this experimental study, we assessed the performance of ontology matching systems in the context of a real-life application from the rare disease domain. Additionally, we present a method for analyzing top-level classes to improve precision. Results We included three ontologies (NCIt, SNOMED CT, ORDO) and three matching systems (AgreementMakerLight 2.0, FCA-Map, LogMap 2.0). We evaluated the performance of the matching systems against reference alignments from BioPortal and the Unified Medical Language System Metathesaurus (UMLS). Then, we analyzed the top-level ancestors of matched classes, to detect incorrect mappings without consulting a reference alignment. To detect such incorrect mappings, we manually matched semantically equivalent top-level classes of ontology pairs. AgreementMakerLight 2.0, FCA-Map, and LogMap 2.0 had F1-scores of 0.55, 0.46, 0.55 for BioPortal and 0.66, 0.53, 0.58 for the UMLS respectively. Using vote-based consensus alignments increased performance across the board. Evaluation with manually created top-level hierarchy mappings revealed that on average 90% of the mappings’ classes belonged to top-level classes that matched. Conclusions Our findings show that the included ontology matching systems automatically produced mappings that were modestly accurate according to our evaluation. The hierarchical analysis of mappings seems promising when no reference alignments are available. All in all, the systems show potential to be implemented as part of an ontology matching service for querying FAIR data. Future research should focus on developing methods for the evaluation of mappings used in such mapping services, leading to their implementation in a FAIR data ecosystem.
Ontology matching should contribute to the interoperability aspect of FAIR data (Findable, Accessible, Interoperable, and Reusable). Multiple data sources can use different ontologies for annotating their data and, thus, creating the need for dynamic ontology matching services. In this experimental study, we assessed the performance of ontology matching systems in the context of a real-life application from the rare disease domain. Additionally, we present a method for analyzing top-level classes to improve precision. We included three ontologies (NCIt, SNOMED CT, ORDO) and three matching systems (AgreementMakerLight 2.0, FCA-Map, LogMap 2.0). We evaluated the performance of the matching systems against reference alignments from BioPortal and the Unified Medical Language System Metathesaurus (UMLS). Then, we analyzed the top-level ancestors of matched classes, to detect incorrect mappings without consulting a reference alignment. To detect such incorrect mappings, we manually matched semantically equivalent top-level classes of ontology pairs. AgreementMakerLight 2.0, FCA-Map, and LogMap 2.0 had F1-scores of 0.55, 0.46, 0.55 for BioPortal and 0.66, 0.53, 0.58 for the UMLS respectively. Using vote-based consensus alignments increased performance across the board. Evaluation with manually created top-level hierarchy mappings revealed that on average 90% of the mappings' classes belonged to top-level classes that matched. Our findings show that the included ontology matching systems automatically produced mappings that were modestly accurate according to our evaluation. The hierarchical analysis of mappings seems promising when no reference alignments are available. All in all, the systems show potential to be implemented as part of an ontology matching service for querying FAIR data. Future research should focus on developing methods for the evaluation of mappings used in such mapping services, leading to their implementation in a FAIR data ecosystem.
Background Ontology matching should contribute to the interoperability aspect of FAIR data (Findable, Accessible, Interoperable, and Reusable). Multiple data sources can use different ontologies for annotating their data and, thus, creating the need for dynamic ontology matching services. In this experimental study, we assessed the performance of ontology matching systems in the context of a real-life application from the rare disease domain. Additionally, we present a method for analyzing top-level classes to improve precision. Results We included three ontologies (NCIt, SNOMED CT, ORDO) and three matching systems (AgreementMakerLight 2.0, FCA-Map, LogMap 2.0). We evaluated the performance of the matching systems against reference alignments from BioPortal and the Unified Medical Language System Metathesaurus (UMLS). Then, we analyzed the top-level ancestors of matched classes, to detect incorrect mappings without consulting a reference alignment. To detect such incorrect mappings, we manually matched semantically equivalent top-level classes of ontology pairs. AgreementMakerLight 2.0, FCA-Map, and LogMap 2.0 had F1-scores of 0.55, 0.46, 0.55 for BioPortal and 0.66, 0.53, 0.58 for the UMLS respectively. Using vote-based consensus alignments increased performance across the board. Evaluation with manually created top-level hierarchy mappings revealed that on average 90% of the mappings' classes belonged to top-level classes that matched. Conclusions Our findings show that the included ontology matching systems automatically produced mappings that were modestly accurate according to our evaluation. The hierarchical analysis of mappings seems promising when no reference alignments are available. All in all, the systems show potential to be implemented as part of an ontology matching service for querying FAIR data. Future research should focus on developing methods for the evaluation of mappings used in such mapping services, leading to their implementation in a FAIR data ecosystem. Keywords: Ontology matching, FAIR data, Semantic interoperability, Rare diseases
Ontology matching should contribute to the interoperability aspect of FAIR data (Findable, Accessible, Interoperable, and Reusable). Multiple data sources can use different ontologies for annotating their data and, thus, creating the need for dynamic ontology matching services. In this experimental study, we assessed the performance of ontology matching systems in the context of a real-life application from the rare disease domain. Additionally, we present a method for analyzing top-level classes to improve precision.BACKGROUNDOntology matching should contribute to the interoperability aspect of FAIR data (Findable, Accessible, Interoperable, and Reusable). Multiple data sources can use different ontologies for annotating their data and, thus, creating the need for dynamic ontology matching services. In this experimental study, we assessed the performance of ontology matching systems in the context of a real-life application from the rare disease domain. Additionally, we present a method for analyzing top-level classes to improve precision.We included three ontologies (NCIt, SNOMED CT, ORDO) and three matching systems (AgreementMakerLight 2.0, FCA-Map, LogMap 2.0). We evaluated the performance of the matching systems against reference alignments from BioPortal and the Unified Medical Language System Metathesaurus (UMLS). Then, we analyzed the top-level ancestors of matched classes, to detect incorrect mappings without consulting a reference alignment. To detect such incorrect mappings, we manually matched semantically equivalent top-level classes of ontology pairs. AgreementMakerLight 2.0, FCA-Map, and LogMap 2.0 had F1-scores of 0.55, 0.46, 0.55 for BioPortal and 0.66, 0.53, 0.58 for the UMLS respectively. Using vote-based consensus alignments increased performance across the board. Evaluation with manually created top-level hierarchy mappings revealed that on average 90% of the mappings' classes belonged to top-level classes that matched.RESULTSWe included three ontologies (NCIt, SNOMED CT, ORDO) and three matching systems (AgreementMakerLight 2.0, FCA-Map, LogMap 2.0). We evaluated the performance of the matching systems against reference alignments from BioPortal and the Unified Medical Language System Metathesaurus (UMLS). Then, we analyzed the top-level ancestors of matched classes, to detect incorrect mappings without consulting a reference alignment. To detect such incorrect mappings, we manually matched semantically equivalent top-level classes of ontology pairs. AgreementMakerLight 2.0, FCA-Map, and LogMap 2.0 had F1-scores of 0.55, 0.46, 0.55 for BioPortal and 0.66, 0.53, 0.58 for the UMLS respectively. Using vote-based consensus alignments increased performance across the board. Evaluation with manually created top-level hierarchy mappings revealed that on average 90% of the mappings' classes belonged to top-level classes that matched.Our findings show that the included ontology matching systems automatically produced mappings that were modestly accurate according to our evaluation. The hierarchical analysis of mappings seems promising when no reference alignments are available. All in all, the systems show potential to be implemented as part of an ontology matching service for querying FAIR data. Future research should focus on developing methods for the evaluation of mappings used in such mapping services, leading to their implementation in a FAIR data ecosystem.CONCLUSIONSOur findings show that the included ontology matching systems automatically produced mappings that were modestly accurate according to our evaluation. The hierarchical analysis of mappings seems promising when no reference alignments are available. All in all, the systems show potential to be implemented as part of an ontology matching service for querying FAIR data. Future research should focus on developing methods for the evaluation of mappings used in such mapping services, leading to their implementation in a FAIR data ecosystem.
Background Ontology matching should contribute to the interoperability aspect of FAIR data (Findable, Accessible, Interoperable, and Reusable). Multiple data sources can use different ontologies for annotating their data and, thus, creating the need for dynamic ontology matching services. In this experimental study, we assessed the performance of ontology matching systems in the context of a real-life application from the rare disease domain. Additionally, we present a method for analyzing top-level classes to improve precision. Results We included three ontologies (NCIt, SNOMED CT, ORDO) and three matching systems (AgreementMakerLight 2.0, FCA-Map, LogMap 2.0). We evaluated the performance of the matching systems against reference alignments from BioPortal and the Unified Medical Language System Metathesaurus (UMLS). Then, we analyzed the top-level ancestors of matched classes, to detect incorrect mappings without consulting a reference alignment. To detect such incorrect mappings, we manually matched semantically equivalent top-level classes of ontology pairs. AgreementMakerLight 2.0, FCA-Map, and LogMap 2.0 had F1-scores of 0.55, 0.46, 0.55 for BioPortal and 0.66, 0.53, 0.58 for the UMLS respectively. Using vote-based consensus alignments increased performance across the board. Evaluation with manually created top-level hierarchy mappings revealed that on average 90% of the mappings’ classes belonged to top-level classes that matched. Conclusions Our findings show that the included ontology matching systems automatically produced mappings that were modestly accurate according to our evaluation. The hierarchical analysis of mappings seems promising when no reference alignments are available. All in all, the systems show potential to be implemented as part of an ontology matching service for querying FAIR data. Future research should focus on developing methods for the evaluation of mappings used in such mapping services, leading to their implementation in a FAIR data ecosystem.
Background Ontology matching should contribute to the interoperability aspect of FAIR data (Findable, Accessible, Interoperable, and Reusable). Multiple data sources can use different ontologies for annotating their data and, thus, creating the need for dynamic ontology matching services. In this experimental study, we assessed the performance of ontology matching systems in the context of a real-life application from the rare disease domain. Additionally, we present a method for analyzing top-level classes to improve precision. Results We included three ontologies (NCIt, SNOMED CT, ORDO) and three matching systems (AgreementMakerLight 2.0, FCA-Map, LogMap 2.0). We evaluated the performance of the matching systems against reference alignments from BioPortal and the Unified Medical Language System Metathesaurus (UMLS). Then, we analyzed the top-level ancestors of matched classes, to detect incorrect mappings without consulting a reference alignment. To detect such incorrect mappings, we manually matched semantically equivalent top-level classes of ontology pairs. AgreementMakerLight 2.0, FCA-Map, and LogMap 2.0 had F1-scores of 0.55, 0.46, 0.55 for BioPortal and 0.66, 0.53, 0.58 for the UMLS respectively. Using vote-based consensus alignments increased performance across the board. Evaluation with manually created top-level hierarchy mappings revealed that on average 90% of the mappings’ classes belonged to top-level classes that matched. Conclusions Our findings show that the included ontology matching systems automatically produced mappings that were modestly accurate according to our evaluation. The hierarchical analysis of mappings seems promising when no reference alignments are available. All in all, the systems show potential to be implemented as part of an ontology matching service for querying FAIR data. Future research should focus on developing methods for the evaluation of mappings used in such mapping services, leading to their implementation in a FAIR data ecosystem.
ArticleNumber 19
Audience Academic
Author Benis, Nirupama
Fernández-Breis, Jesualdo Tomás
de Keizer, Nicolette F.
Miñarro-Gimenez, Jose Antonio
Cornet, Ronald
van Damme, Philip
Author_xml – sequence: 1
  givenname: Philip
  orcidid: 0000-0002-7124-8949
  surname: van Damme
  fullname: van Damme, Philip
  email: p.vandamme@amsterdamumc.nl
  organization: Amsterdam UMC location University of Amsterdam, Department of Medical Informatics, Meibergdreef 9, Amsterdam Public Health, Digital Health & Methodology
– sequence: 2
  givenname: Jesualdo Tomás
  surname: Fernández-Breis
  fullname: Fernández-Breis, Jesualdo Tomás
  organization: Departamento de Informática y Sistemas, Universidad de Murcia, IMIB-Arrixaca
– sequence: 3
  givenname: Nirupama
  surname: Benis
  fullname: Benis, Nirupama
  organization: Amsterdam UMC location University of Amsterdam, Department of Medical Informatics, Meibergdreef 9, Amsterdam Public Health, Digital Health & Methodology
– sequence: 4
  givenname: Jose Antonio
  surname: Miñarro-Gimenez
  fullname: Miñarro-Gimenez, Jose Antonio
  organization: Departamento de Informática y Sistemas, Universidad de Murcia, IMIB-Arrixaca
– sequence: 5
  givenname: Nicolette F.
  surname: de Keizer
  fullname: de Keizer, Nicolette F.
  organization: Amsterdam UMC location University of Amsterdam, Department of Medical Informatics, Meibergdreef 9, Amsterdam Public Health, Methodology & Quality of Care
– sequence: 6
  givenname: Ronald
  surname: Cornet
  fullname: Cornet, Ronald
  organization: Amsterdam UMC location University of Amsterdam, Department of Medical Informatics, Meibergdreef 9, Amsterdam Public Health, Digital Health & Methodology
BookMark eNp9kl1rFDEYhYNUbK39A14NeOPN1HxP5kZYitWFgiJ6HbKZN9MsM0lNssL-e7O7pe0W6eRiQnKe83LCeYtOQgyA0HuCLwlR8lMmjFHZYkpbjGnHWvEKnVHMSUu4widP9qfoIuc1rh9jBCv2Bp0yoTjBjJyhxQ9ILqbZBAuNyRlyniGUJromhhKnOG6b2RR768PY5G0uMOemAs31YvmzGUwx79BrZ6YMF_f_c_T7-suvq2_tzfevy6vFTWvrsNJySh2RBAuycpIRa5gRnEkMwjDnetfh1TBYjqEH0gkl8SCoBeVID9IIbNk5Wh58h2jW-i752aStjsbr_UFMozapeDuBBkmcoEIIDsAlZ0rJjlnBOlNjgxiq1-eD191mNcNga-JkpiPT45vgb_UY_-qeKq6kqgYf7w1S_LOBXPTss4VpMgHiJmsq-xqVEdZX6Ydn0nXcpFCfaq_iAkvOH1WjqQF8cLHOtTtTvegIlpRThavq8j-qugaYva0Fcb6eHwH0ANgUc07gHjISrHc90oce6dojve-RFhVSzyDriyk-7t7CTy-j7IDmOieMkB7DvkD9Azxm2V0
CitedBy_id crossref_primary_10_1109_ACCESS_2023_3248969
crossref_primary_10_1038_s41597_024_03882_0
Cites_doi 10.1016/j.drudis.2019.05.020
10.14778/1687553.1687598
10.1038/sdata.2016.18
10.1186/s13326-018-0178-9
10.1007/978-3-642-25073-6_18
10.1007/978-3-642-01907-4-8
10.1007/978-3-540-49612-0
10.1186/s13326-017-0128-y
10.1162/dint_a_00028
10.1038/npre.2011.6670.1
10.3233/SW-160238
10.1007/978-3-319-11915-1-2
10.1186/s13326-018-0187-8
10.1186/s13326-017-0170-9
10.3233/SW-2011-0025
10.1186/1471-2105-10-S2-S1
10.1186/s13326-017-0162-9
10.1186/2041-1480-2-S1-S2
10.1002/cfg.445
10.1162/dint_a_00040
10.1007/978-3-642-22630-4-6
10.1016/j.eswa.2014.08.032
ContentType Journal Article
Copyright The Author(s) 2022
COPYRIGHT 2022 BioMed Central Ltd.
2022. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2022. The Author(s).
Copyright_xml – notice: The Author(s) 2022
– notice: COPYRIGHT 2022 BioMed Central Ltd.
– notice: 2022. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2022. The Author(s).
DBID C6C
AAYXX
CITATION
3V.
7X7
7XB
88E
8FE
8FG
8FH
8FI
8FJ
8FK
ABJCF
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
L6V
LK8
M0S
M1P
M7P
M7S
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
7X8
5PM
DOA
DOI 10.1186/s13326-022-00273-5
DatabaseName SpringerOpen Free (Free internet resource, activated by CARLI)
CrossRef
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials - QC
Biological Science Collection
ProQuest Central
Technology Collection
Natural Science Collection
ProQuest One Community College
ProQuest Central Korea
Proquest Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Engineering Collection
ProQuest Biological Science Collection
ProQuest Health & Medical Collection
Medical Database
Biological Science Database
Engineering Database
Proquest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Health & Medical Research Collection
ProQuest Engineering Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Engineering Collection
Engineering Database
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList


MEDLINE - Academic
Publicly Available Content Database

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: PIMPY
  name: ProQuest Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Languages & Literatures
Mathematics
EISSN 2041-1480
EndPage 17
ExternalDocumentID oai_doaj_org_article_e61f525554ee464388673c537a841e5d
PMC9284868
A710624280
10_1186_s13326_022_00273_5
GeographicLocations Netherlands
GeographicLocations_xml – name: Netherlands
GrantInformation_xml – fundername: Ministerio de Economía, Industria y Competitividad, Gobierno de España
  grantid: TIN2017-85949-C2-1-R
  funderid: http://dx.doi.org/10.13039/501100010198
– fundername: Horizon 2020
  grantid: 825575
  funderid: http://dx.doi.org/10.13039/501100007601
– fundername: ;
  grantid: 825575
– fundername: ;
  grantid: TIN2017-85949-C2-1-R
GroupedDBID 0R~
53G
5VS
7X7
88E
8FE
8FG
8FH
8FI
8FJ
AAFWJ
AAJSJ
AASML
ABDBF
ABJCF
ABUWG
ACGFO
ACGFS
ACIWK
ACPRK
ACUHS
ADBBV
ADRAZ
ADUKV
AEGXH
AENEX
AFKRA
AFPKN
AHBYD
AHYZX
AIAGR
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AOIJS
BAPOH
BAWUL
BBNVY
BCNDV
BENPR
BFQNJ
BGLVJ
BHPHI
BMC
BPHCQ
BVXVI
C6C
CCPQU
DIK
E3Z
EBD
EBLON
EBS
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
HCIFZ
HMCUK
HYE
IAO
IEA
IHR
INH
INR
ITC
KQ8
L6V
LK8
M1P
M48
M7P
M7S
ML~
M~E
O5R
O5S
OK1
PGMZT
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PTHSS
PUEGO
RBZ
RNS
ROL
RPM
RSV
SMT
SOJ
TUS
UKHRP
AAYXX
AFFHD
CITATION
3V.
7XB
8FK
AZQEC
DWQXO
GNUQQ
K9.
PKEHL
PQEST
PQUKI
PRINS
7X8
5PM
ID FETCH-LOGICAL-c584t-422f161051bf631ca3a54360e5a3ff9f70bddc40e9e175860d52ce8f19e6a50c3
IEDL.DBID DOA
ISICitedReferencesCount 1
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000825999700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2041-1480
IngestDate Mon Nov 10 04:33:53 EST 2025
Tue Nov 04 01:47:38 EST 2025
Fri Sep 05 12:46:47 EDT 2025
Sun Oct 19 00:08:11 EDT 2025
Tue Nov 11 10:12:06 EST 2025
Tue Nov 04 18:02:25 EST 2025
Tue Nov 18 21:36:32 EST 2025
Sat Nov 29 06:03:07 EST 2025
Sat Sep 06 07:20:50 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Rare diseases
Ontology matching
Semantic interoperability
FAIR data
Language English
License Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c584t-422f161051bf631ca3a54360e5a3ff9f70bddc40e9e175860d52ce8f19e6a50c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-7124-8949
OpenAccessLink https://doaj.org/article/e61f525554ee464388673c537a841e5d
PMID 35841031
PQID 2691450644
PQPubID 2040220
PageCount 17
ParticipantIDs doaj_primary_oai_doaj_org_article_e61f525554ee464388673c537a841e5d
pubmedcentral_primary_oai_pubmedcentral_nih_gov_9284868
proquest_miscellaneous_2691053139
proquest_journals_2691450644
gale_infotracmisc_A710624280
gale_infotracacademiconefile_A710624280
crossref_primary_10_1186_s13326_022_00273_5
crossref_citationtrail_10_1186_s13326_022_00273_5
springer_journals_10_1186_s13326_022_00273_5
PublicationCentury 2000
PublicationDate 2022-07-15
PublicationDateYYYYMMDD 2022-07-15
PublicationDate_xml – month: 07
  year: 2022
  text: 2022-07-15
  day: 15
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
PublicationTitle Journal of biomedical semantics
PublicationTitleAbbrev J Biomed Semant
PublicationYear 2022
Publisher BioMed Central
BioMed Central Ltd
Springer Nature B.V
BMC
Publisher_xml – name: BioMed Central
– name: BioMed Central Ltd
– name: Springer Nature B.V
– name: BMC
References E Jiménez-Ruiz (273_CR32) 2012
L Otero-Cerdeira (273_CR9) 2015; 42
IF Cruz (273_CR23) 2009; 2
M Zhao (273_CR25) 2018; 9
273_CR10
M Martínez-Romero (273_CR12) 2017; 8
D Faria (273_CR24) 2014; 1272
M Quesada-Martínez (273_CR6) 2017
273_CR30
S Hertling (273_CR43) 2020; 2788
273_CR28
273_CR27
273_CR26
MR Kamdar (273_CR5) 2017; 8
M Horridge (273_CR20) 2011; 2
A Jacobsen (273_CR41) 2020; 2
D Faria (273_CR29) 2018; 9
MD Wilkinson (273_CR2) 2016; 3
E Jiménez-Ruiz (273_CR39) 2007
J Euzenat (273_CR35) 2007
D Vasant (273_CR44) 2014
A Ghazvinian (273_CR31) 2009; 2009
273_CR21
273_CR40
273_CR14
E Jiménez-Ruiz (273_CR36) 2013; 1014
273_CR34
273_CR11
273_CR33
273_CR18
273_CR8
273_CR17
273_CR16
273_CR38
273_CR15
273_CR37
Directorate-General for Research and Innovation (273_CR1) 2017
G Guizzardi (273_CR4) 2020; 2
NH Shah (273_CR13) 2009; 10
I Harrow (273_CR22) 2017; 8
273_CR7
273_CR19
273_CR3
P Kolyvakis (273_CR42) 2018; 9
References_xml – ident: 273_CR7
  doi: 10.1016/j.drudis.2019.05.020
– ident: 273_CR16
– volume: 1014
  start-page: 1000
  year: 2013
  ident: 273_CR36
  publication-title: CEUR Work Proc
– ident: 273_CR14
– volume: 2
  start-page: 1586
  issue: 2
  year: 2009
  ident: 273_CR23
  publication-title: Proc VLDB Endowment
  doi: 10.14778/1687553.1687598
– volume-title: Is my ontology matching system similar to yours?
  year: 2007
  ident: 273_CR39
– volume: 3
  start-page: 1
  year: 2016
  ident: 273_CR2
  publication-title: Sci Data
  doi: 10.1038/sdata.2016.18
– volume: 9
  start-page: 1
  issue: 1
  year: 2018
  ident: 273_CR25
  publication-title: J Biomed Semant
  doi: 10.1186/s13326-018-0178-9
– ident: 273_CR3
– ident: 273_CR18
– ident: 273_CR26
  doi: 10.1007/978-3-642-25073-6_18
– ident: 273_CR28
– ident: 273_CR19
  doi: 10.1007/978-3-642-01907-4-8
– ident: 273_CR8
– ident: 273_CR10
  doi: 10.1007/978-3-540-49612-0
– volume: 8
  start-page: 1
  issue: 1
  year: 2017
  ident: 273_CR12
  publication-title: J Biomed Semant
  doi: 10.1186/s13326-017-0128-y
– volume-title: ORDO: An Ontology Connecting Rare Disease, Epidemiology and Genetic Data
  year: 2014
  ident: 273_CR44
– volume: 2009
  start-page: 198
  issue: 1
  year: 2009
  ident: 273_CR31
  publication-title: AMIA Ann Symp Proc
– volume-title: Guidelines to the Rules on Open Access to Scientific Publications and Open Access to Research Data in Horizon 2020
  year: 2017
  ident: 273_CR1
– volume: 2
  start-page: 56
  year: 2020
  ident: 273_CR41
  publication-title: Data Intell
  doi: 10.1162/dint_a_00028
– ident: 273_CR27
  doi: 10.1038/npre.2011.6670.1
– volume-title: Artificial Intelligence in Medicine
  year: 2017
  ident: 273_CR6
– volume: 8
  start-page: 853
  issue: 6
  year: 2017
  ident: 273_CR5
  publication-title: Semant Web
  doi: 10.3233/SW-160238
– ident: 273_CR15
– ident: 273_CR37
  doi: 10.1007/978-3-319-11915-1-2
– ident: 273_CR40
– volume: 9
  start-page: 1
  issue: 1
  year: 2018
  ident: 273_CR42
  publication-title: J Biomed Semant
  doi: 10.1186/s13326-018-0187-8
– volume: 9
  start-page: 1
  issue: 1
  year: 2018
  ident: 273_CR29
  publication-title: J Biomed Semant
  doi: 10.1186/s13326-017-0170-9
– volume: 2
  start-page: 11
  issue: 1
  year: 2011
  ident: 273_CR20
  publication-title: Semantic Web
  doi: 10.3233/SW-2011-0025
– volume-title: E-LKR
  year: 2012
  ident: 273_CR32
– ident: 273_CR34
– volume: 1272
  start-page: 457
  year: 2014
  ident: 273_CR24
  publication-title: CEUR Work Proc
– ident: 273_CR11
– volume: 10
  start-page: 1
  issue: SUPPL. 9
  year: 2009
  ident: 273_CR13
  publication-title: BMC Bioinformatics
  doi: 10.1186/1471-2105-10-S2-S1
– volume: 8
  start-page: 1
  issue: 1
  year: 2017
  ident: 273_CR22
  publication-title: J Biomed Semant
  doi: 10.1186/s13326-017-0162-9
– ident: 273_CR33
  doi: 10.1186/2041-1480-2-S1-S2
– ident: 273_CR38
– volume: 2788
  start-page: 60
  year: 2020
  ident: 273_CR43
  publication-title: CEUR Work Proc
– ident: 273_CR17
  doi: 10.1002/cfg.445
– ident: 273_CR30
– volume-title: Proc 20th International Joint Conference on Artificial Intelligence
  year: 2007
  ident: 273_CR35
– volume: 2
  start-page: 181
  issue: 1-2
  year: 2020
  ident: 273_CR4
  publication-title: Data Intell
  doi: 10.1162/dint_a_00040
– ident: 273_CR21
  doi: 10.1007/978-3-642-22630-4-6
– volume: 42
  start-page: 949
  issue: 2
  year: 2015
  ident: 273_CR9
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2014.08.032
SSID ssj0000331083
Score 2.2596605
Snippet Background Ontology matching should contribute to the interoperability aspect of FAIR data (Findable, Accessible, Interoperable, and Reusable). Multiple data...
Background Ontology matching should contribute to the interoperability aspect of FAIR data (Findable, Accessible, Interoperable, and Reusable). Multiple data...
Ontology matching should contribute to the interoperability aspect of FAIR data (Findable, Accessible, Interoperable, and Reusable). Multiple data sources can...
Abstract Background Ontology matching should contribute to the interoperability aspect of FAIR data (Findable, Accessible, Interoperable, and Reusable)....
SourceID doaj
pubmedcentral
proquest
gale
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Algorithms
Analysis
Bioinformatics
Combinatorial Libraries
Computational Biology/Bioinformatics
Computer Appl. in Life Sciences
Controlled vocabularies
Cystic fibrosis
Data entry
Data Mining and Knowledge Discovery
FAIR data
Interoperability
Matching
Mathematics
Mathematics and Statistics
Medical research
Medical terminology
Medicine, Experimental
Methods
Ontology
Ontology matching
Performance assessment
Performance evaluation
Rare diseases
Semantic interoperability
Semantics
Web Ontology Language-OWL
SummonAdditionalLinks – databaseName: Biological Science Database
  dbid: M7P
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lj9MwELZg4cCF9yOwICMhOEC08TPOCRVEBVK1qhCgvVmJY8NKqFmaLr-fGcdJFVbshWttK3bnkW8mM58JecFqCJOD8nnjfJHLijfYrMxyVgblQF98G5M531bl8bE5OanWKeHWp7LK0SdGR912DnPkR1xXTCK7mnx79ivHW6Pw62q6QuMquYYsCTyW7q2nHEshALwYMfbKGH3UQ0jGseqW55HJJVez91Gk7b_onC8WTP711TS-jJa3_vcYt8nNBEPpYtCbO-SK39wlD1cpednTl3Q18S3398hive8voPVE5km7QJH_ADPzFKBvrMukAzl0T2EBXS4-faZYhXqffF1--PL-Y54uX8gdYJJdLjkPgAbBZpugBXO1qJUUuvCqFiFUoSyatnWy8JUHBGJ00SruvAms8rpWhRMPyMGm2_hHhNZMBqN4I0RTgr9ANmIFYY5qdSPgYTwjbBSBdYmZHC_I-GljhGK0HcRmQWw2is2qjLye1pwNvByXzn6Hkp1mIqd2_KHbfrfJRK3XLCiIsJT0XgJQM0aXsD9R1kYyr9qMvEK9sGj5sD1XpwYGOCRyaNkFgDXstjFFRg5nM8Fi3Xx41A2bPEZv94qRkefTMK7EKriN786HOeg0RZWRcqaRs5PNRzanPyJreAVAxGiTkTej7u4f_u9_7vHle31CbvBoTGXO1CE52G3P_VNy3f3enfbbZ9Ea_wAe8jjV
  priority: 102
  providerName: ProQuest
– databaseName: SpringerLINK Contemporary 1997-Present
  dbid: RSV
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB5B4QAHHuUVKMhICA4QNX7GOS6IFUhLVRWoerMcx4ZKKIs2W34_Y-dRhQISXOOx7Ngz45nxzGeAZ9Simxykz2vni1xUrI7FyjSnZZAO-cU3KZhzvCoPDvTJSXU4FIV1Y7b7eCWZNHUSa632O_SmWEyYZXkCYcnlZbiCx52ODzYcfTyeIisFR5NF87FC5rddZ6dQAuu_qJIvpkn-cleajqDlzf-b_C24MZicZNHzyG245NtduL8aApUdeU5WE7ZytwvXP0xIrt0dWByeVxYQO8F4knUgEfkgxuQJ0qaMTNLDQncEO5Dl4v0Rifmnd-Hz8u2nN-_y4dmF3KE1ss0FYwHtQJTWOihOneVWCq4KLy0PoQplUTeNE4WvPNoeWhWNZM7rQCuvrCwcvwc77br1D4BYKoKWrOa8LlFTRBxiiQ6ObFTNcTCWAR23wbgBkzw-jfHNJN9EK9MvnMGFM2nhjMzg5dTne4_I8Vfq13F3J8qIpp0-rDdfzCCcxisaJPpWUngv0ETTWpU4P15aLaiXTQYvIm-YKPM4PWeH0gX8yYieZRZopsU6G11ksDejRFl18-aRu8ygKzrDVEVFxA0UGTydmmPPmP_W-vVZTxPVJa8yKGdcOfuzeUt7-jXhhVdogmilM3g18ub54H9euYf_Rv4IrrHE3mVO5R7sbDdn_jFcdT-2p93mSZLQn22hM2E
  priority: 102
  providerName: Springer Nature
Title Performance assessment of ontology matching systems for FAIR data
URI https://link.springer.com/article/10.1186/s13326-022-00273-5
https://www.proquest.com/docview/2691450644
https://www.proquest.com/docview/2691053139
https://pubmed.ncbi.nlm.nih.gov/PMC9284868
https://doaj.org/article/e61f525554ee464388673c537a841e5d
Volume 13
WOSCitedRecordID wos000825999700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVADU
  databaseName: BioMed Central Open Access Free
  customDbUrl:
  eissn: 2041-1480
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331083
  issn: 2041-1480
  databaseCode: RBZ
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: https://www.biomedcentral.com/search/
  providerName: BioMedCentral
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2041-1480
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331083
  issn: 2041-1480
  databaseCode: DOA
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2041-1480
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331083
  issn: 2041-1480
  databaseCode: M~E
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Biological Science Database
  customDbUrl:
  eissn: 2041-1480
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331083
  issn: 2041-1480
  databaseCode: M7P
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Engineering Database
  customDbUrl:
  eissn: 2041-1480
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331083
  issn: 2041-1480
  databaseCode: M7S
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 2041-1480
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331083
  issn: 2041-1480
  databaseCode: 7X7
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2041-1480
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331083
  issn: 2041-1480
  databaseCode: BENPR
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Publicly Available Content Database
  customDbUrl:
  eissn: 2041-1480
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331083
  issn: 2041-1480
  databaseCode: PIMPY
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 2041-1480
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331083
  issn: 2041-1480
  databaseCode: RSV
  dateStart: 20101201
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB5B4cAF8SZQVkZCcICosR0_ctyirqi0rKItVMvJShxbrYSyqNny-xk72W1DBVy4REpsK854xv7GmfkM8IZW6CZ74dLauizNC1aHZGWaUuWFRX1xTdzMOZ2rxUKvVkV57aivEBPW0wP3gjtwknqBuFfkzuW4fGotFbeCq0rn1IkmzL6ZKq45U3EO5ghbNN9myWh50KEzxkK8LUsjh0sqRitRJOy_OS3fDJX87X9pXIZmD-D-gB_JtO_3Q7jl2kfwbD7sOnbkLZnviJK7xzAtrxIDSLVj4SRrTwJxQdhSJ4hZY0Al6VmdO4INyGx6vCQhfPQJfJ0dffn4KR1OTUgtgolNmjPmEcahsdVecmorXomcy8yJintfeJXVTWPzzBUOoYOWWSOYddrTwslKZJY_hb123brnQCqaey1YzXmt0NADjbBA_0Q0ssYh0CwBupWgsQOleDjZ4ruJroWWppe6QambKHUjEni_a_OjJ9T4a-3DMDC7moEMOz5AFTGDiph_qUgC78KwmmCy2D1bDZkH-JGB_MpMEWWFNBmdJbA_qommZsfFW8Uwg6l3hsmC5oH2L0_g9a44tAzha61bX_Z1wmzHiwTUSKFGXzYuac_PIt13gQhCS53Ah63qXb38z5J78T8k9xLusWgxKqViH_Y2F5fuFdy1Pzfn3cUEbquVilc9gTuHR4tyOYlmOAkRtGW8nmBJefy5_IZ3y5PTX60GMao
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1bb9MwFD4aHRK8cL8EBhiJywNEi-3YcR4QKpdq1bqqQmMaTyZxbJiE2tF0IP4Uv5Hj3Kowsbc98FrbjZ18Phf7nO8APKEZuslO2DA3NgrjlOU-WZmGNHHCIF5sUR3mHEyS6VQdHqazDfjd5sL4sMpWJlaCulgYf0a-zWRKY8-uFr8-_h76qlH-drUtoVHDYtf--okuW_lq_A6_71PGRu_33-6ETVWB0KCyXYUxYw7NHARj7iSnJuOZiLmMrMi4c6lLorwoTBzZ1KJqVTIqBDNWOZpamYnIcPzfC7AZe7APYHM23pt96k51Io7mkuJtdo6S2yU6gczH-bKw4o4JRU8DVoUCTquD0yGaf93TVupvdPV_e3HX4EpjaJNhvTOuw4ad34A7k-Z4tiTPyKRjlC5vwnC2zqAgWUdXShaOeIYHf_dA0LivIk9JTX9dEhxARsPxB-LjbG_Bx3NZz20YzBdzexdIRmOnBMs5zxOUiJ5vWaAjJwqZc3wYC4C2n1ybhnvdlwD5pisfTEldw0QjTHQFEy0CeNGNOa6ZR87s_cYjqevpWcOrHxbLL7oRQtpK6gT6kCK2NkZTVCmZ4Px4kqmYWlEE8NzjUHvZhtMzWZOigYv0LGF6iOaozydSUQBbvZ4ok0y_ucWibmRiqddADOBx1-xH-ji_uV2c1H28WuBpAElvB_RW1m-ZH32teNFTNLWUVAG8bPfK-uH_fnP3zp7rI7i0s7830ZPxdPc-XGbVRk5CKrZgsFqe2Adw0fxYHZXLh40sIPD5vHfRHy4NltU
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Zb9QwEB5BQag8cJQrUMBICB4ganzGeVyOFRXLasVR9c1KHLtUQtlqs-X3M3ayKaGAhHiNx3Jsz4xnxjOfAZ7SEt1kL11aWZelomBVKFamKc29tMgvro7BnINZPp_rw8Ni8VMVf8x231xJdjUNAaWpWe-d1L4Tca32WvSsWEieZWkEZEnlRbgkQiJ98Nc_HQxRloyj-aL5plrmt11HJ1IE7j-vns-nTP5ybxqPo-n1_5_IDbjWm6Jk0vHOTbjgmh24O-sDmC15RmYD5nK7A1c_DAiv7S2YLM4qDkg5wHuSpScBESHE6gnSxkxN0sFFtwQ7kOlk_yMJeam34cv07efX79L-OYbUopWyTgVjHu1DlOLKK05tyUspuMqcLLn3hc-zqq6tyFzh0CbRKqsls057WjhVyszyO7DVLBt3D0hJhdeSVZxXOWqQgE8s0fGRtao4DsYSoJstMbbHKg9PZnwz0WfRynQLZ3DhTFw4IxN4MfQ56ZA6_kr9Kuz0QBlQtuOH5erI9EJrnKJeos8lhXMCTTetVY7_x_NSC-pkncDzwCcm6AL8PVv2JQ04yYCqZSZovoX6G50lsDuiRBm24-YNp5leh7SGqYKKgCcoEngyNIeeIS-uccvTjiaoUV4kkI84dDSzcUtz_DXiiBdommilE3i54dOzwf-8cvf_jfwxXFm8mZrZ_vz9A9hmkdPzlMpd2FqvTt1DuGy_r4_b1aMouD8AYtM_KQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Performance+assessment+of+ontology+matching+systems+for+FAIR+data&rft.jtitle=Journal+of+biomedical+semantics&rft.au=Philip+van+Damme&rft.au=Jesualdo+Tom%C3%A1s+Fern%C3%A1ndez-Breis&rft.au=Nirupama+Benis&rft.au=Jose+Antonio+Mi%C3%B1arro-Gimenez&rft.date=2022-07-15&rft.pub=BMC&rft.eissn=2041-1480&rft.volume=13&rft.issue=1&rft.spage=1&rft.epage=17&rft_id=info:doi/10.1186%2Fs13326-022-00273-5&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_e61f525554ee464388673c537a841e5d
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-1480&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-1480&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-1480&client=summon