Spatial location and ecological content of support vectors in an SVM classification of tropical vegetation
The Support Vector Machines (SVM) are increasingly far-reaching in remotely sensed data classification. As supervised classifiers, the SVM output depends on the input pixels, pointing out that training is potentially an important stage for optimizing classification accuracy. The SVM consist in proje...
Uloženo v:
| Vydáno v: | Remote Sensing Letters Ročník 4; číslo 7; s. 686 - 695 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Abingdon
Taylor & Francis
01.07.2013
Informa UK Limited Taylor & Francis Ltd Taylor and Francis |
| Témata: | |
| ISSN: | 2150-7058, 2150-704X, 2150-7058 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | The Support Vector Machines (SVM) are increasingly far-reaching in remotely sensed data classification. As supervised classifiers, the SVM output depends on the input pixels, pointing out that training is potentially an important stage for optimizing classification accuracy. The SVM consist in projecting pixels into a high-dimensional feature space and then fitting in a hyperplane, maximizing the distance between the closest vectors and the hyperplane itself. This study aims to locate the pixels acting as support vectors and identify the ecological features they contain in a tropical vegetation context. The analyses focused on a Quickbird-2 image where two vegetation types occur. The physical boundary between classes was delineated in the field, and we used an iterative method to mark and localize the pixels acting as support vectors on the image. Our results highlight that vegetation sampling should focus on ecotones (the transition area between two different and adjacent vegetation classes) in order to minimize the field survey effort and maximize the mapping accuracy. |
|---|---|
| AbstractList | The Support Vector Machines (SVM) are increasingly far-reaching in remotely sensed data classification. As supervised classifiers, the SVM output depends on the input pixels, pointing out that training is potentially an important stage for optimizing classification accuracy. The SVM consist in projecting pixels into a high-dimensional feature space and then fitting in a hyperplane, maximizing the distance between the closest vectors and the hyperplane itself. This study aims to locate the pixels acting as support vectors and identify the ecological features they contain in a tropical vegetation context. The analyses focused on a Quickbird-2 image where two vegetation types occur. The physical boundary between classes was delineated in the field, and we used an iterative method to mark and localize the pixels acting as support vectors on the image. Our results highlight that vegetation sampling should focus on ecotones (the transition area between two different and adjacent vegetation classes) in order to minimize the field survey effort and maximize the mapping accuracy. The Support Vector Machines (SVM) are increasingly far-reaching in remotely sensed data classification. As supervised classifiers, the SVM output depends on the input pixels, pointing out that training is potentially an important stage for optimizing classification accuracy. The SVM consist in projecting pixels into a high-dimensional feature space and then fitting in a hyperplane, maximizing the distance between the closest vectors and the hyperplane itself. This study aims to locate the pixels acting as support vectors and identify the ecological features they contain in a tropical vegetation context. The analyses focused on a Quickbird-2 image where two vegetation types occur. The physical boundary between classes was delineated in the field, and we used an iterative method to mark and localize the pixels acting as support vectors on the image. Our results highlight that vegetation sampling should focus on ecotones (the transition area between two different and adjacent vegetation classes) in order to minimize the field survey effort and maximize the mapping accuracy. [PUBLICATION ABSTRACT] |
| Author | Pouteau, Robin Collin, Antoine |
| Author_xml | – sequence: 1 fullname: Pouteau, Robin – sequence: 2 fullname: Collin, Antoine |
| BackLink | https://cir.nii.ac.jp/crid/1871709542897657472$$DView record in CiNii http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27674787$$DView record in Pascal Francis https://hal.science/hal-01429043$$DView record in HAL |
| BookMark | eNqFkl1rFDEUhgepYK39B4IDKujFrskkmWS8kVLUCiterBXvQpqPNUs2mSazq_33ntnZivRmM5AJh-c95-TNeVqdxBRtVT3HaI6RQO8azBBH9M-8QZjMuaDwPapOx_CMIyZO_js_qc5LWSNYBFPBxWm1XvZq8CrUIWk4pFiraGqrU0grryGuUxxsHOrk6rLt-5SHemf1kHKp_QjXyx9fax1UKd75Qwpgh5z6vX5nV3bYh59Vj50KxZ4f_mfV9aeP3y-vZotvn79cXixmmgk6zBpzwy1jnChjedNyYp3pOEPmRjMsiCXWcGcNYkwLh5RVrrWYI2OEwga3ipxVb6e8v1SQffYble9kUl5eXSzkGEOYNh2iZIeBfTOxfU63W1sGufFF2xBUtGlbZLP3inWcH0UxgW4bRDkB9OUDdJ22OcKlgaIdp7DG2q8PlCrglMsqal_-ddzwllMuxsLvJ07nVEq2Tmo_OTpk5YPESI6DIA-D8FOOgyCnQQAxfSC-z39E9mqSRe-h3LhjwcHmjtFGdLxl0FsD2IcJ89GlvFG_Uw5GDuoupHx_H3Kk0Ispg1NJqlUGwfUSgBZ8hxmA5_8L-ijeIw |
| CitedBy_id | crossref_primary_10_1007_s13157_021_01442_5 crossref_primary_10_5721_EuJRS20154824 crossref_primary_10_1080_13658816_2015_1018266 crossref_primary_10_1111_ddi_13165 crossref_primary_10_1155_2022_3296495 crossref_primary_10_1007_s10812_024_01680_5 crossref_primary_10_1080_01431161_2018_1513669 crossref_primary_10_1016_j_ecolind_2015_02_017 crossref_primary_10_1002_env_2446 crossref_primary_10_1080_10106049_2015_1132483 crossref_primary_10_3390_rs5073583 crossref_primary_10_1007_s11676_017_0448_x |
| Cites_doi | 10.7551/mitpress/4175.001.0001 10.1109/TGRS.2004.842022 10.1023/A:1009715923555 10.1016/j.asr.2008.02.012 10.1016/j.rse.2006.04.001 10.1080/01431160701395203 10.1109/TGRS.2004.827262 10.1109/TGRS.2004.827257 10.1016/j.cam.2005.09.009 10.1016/j.isprsjprs.2010.11.001 10.1080/014311698214271 10.1016/S0169-5347(03)00070-3 10.1080/01431160500185227 10.1109/TGRS.1990.572944 10.1016/j.ecoinf.2010.07.007 10.1080/01431160512331314083 10.1080/01431160110040323 10.1046/j.1365-2435.1997.00159.x 10.1080/01431160701352154 10.1080/014311600210641 |
| ContentType | Journal Article |
| Contributor | Institut Agronomique Néo-Calédonien (IAC) |
| Contributor_xml | – sequence: 1 fullname: Institut Agronomique Néo-Calédonien (IAC) |
| Copyright | 2013 Taylor & Francis 2013 2015 INIST-CNRS 2013 Taylor & Francis Distributed under a Creative Commons Attribution 4.0 International License |
| Copyright_xml | – notice: 2013 Taylor & Francis 2013 – notice: 2015 INIST-CNRS – notice: 2013 Taylor & Francis – notice: Distributed under a Creative Commons Attribution 4.0 International License |
| DBID | FBQ RYH AAYXX CITATION IQODW 7TN 8FD F1W FR3 H8D H96 KR7 L.G L7M 7S9 L.6 1XC BXJBU |
| DOI | 10.1080/2150704x.2013.784848 |
| DatabaseName | AGRIS CiNii Complete CrossRef Pascal-Francis Oceanic Abstracts Technology Research Database ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Advanced Technologies Database with Aerospace AGRICOLA AGRICOLA - Academic Hyper Article en Ligne (HAL) HAL-SHS: Archive ouverte en Sciences de l'Homme et de la Société |
| DatabaseTitle | CrossRef Aerospace Database Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Oceanic Abstracts Technology Research Database ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Advanced Technologies Database with Aerospace AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | Aerospace Database Aerospace Database AGRICOLA |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Geography Ecology Statistics Computer Science Environmental Sciences |
| EISSN | 2150-7058 |
| EndPage | 695 |
| ExternalDocumentID | oai:HAL:hal-01429043v1 2966120741 27674787 10_1080_2150704X_2013_784848 784848 US201600057367 |
| Genre | Article |
| GroupedDBID | .7F 0BK 0R~ 2DF 30N 3YN 4.4 AAAVI AAJMT AALDU AAMIU AAPUL AAQRR ABCCY ABFIM ABFMO ABJNI ABJVF ABLIJ ABPEM ABPTK ABQHQ ABRLO ABTAI ABXUL ABXYU ACGFO ACGFS ACIWK ACTIO ADCVX ADGTB ADMSI AEGYZ AEISY AENEX AEYOC AFOLD AFRAH AFWLO AGDLA AHDLD AHDSZ AIJEM AIRXU AKBVH AKOOK ALMA_UNASSIGNED_HOLDINGS ALQZU AQRUH AVBZW BLEHA CCCUG CE4 DGEBU DKSSO EBS EJD FBQ FUNRP FVPDL GTTXZ HZ~ IPNFZ J~4 KYCEM LJTGL M4Z O9- P2P PQQKQ RIG RNANH ROSJB RTWRZ SNACF TEN TFL TFT TFW TQWBC TTHFI UU3 V1K ZGOLN AAGDL AAHBH AAHIA ABPAQ AFRVT AHDZW AIYEW AQTUD AWYRJ H13 TASJS TBQAZ TDBHL TUROJ RYH AAYXX ABDBF ACFTK CITATION ADYSH IQODW 7TN 8FD F1W FR3 H8D H96 KR7 L.G L7M 7S9 L.6 1XC BXJBU |
| ID | FETCH-LOGICAL-c584t-2db7e5573ade72673efd9750dbc5183e3ed7fed055c8f0aeaf6e170dd8a1d16a3 |
| IEDL.DBID | TFW |
| ISICitedReferencesCount | 13 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000318592600008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2150-7058 2150-704X |
| IngestDate | Tue Oct 14 20:44:45 EDT 2025 Fri Sep 05 17:27:07 EDT 2025 Thu Oct 02 06:13:51 EDT 2025 Sat Jul 26 02:11:02 EDT 2025 Wed Apr 02 07:08:33 EDT 2025 Sat Nov 29 07:56:38 EST 2025 Tue Nov 18 22:43:30 EST 2025 Mon Nov 10 09:19:33 EST 2025 Mon Oct 20 23:42:26 EDT 2025 Wed Dec 27 19:17:17 EST 2023 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 7 |
| Keywords | iterative methods accuracy remote sensing vegetation classification Pixel ecology Polynesia SVM |
| Language | English |
| License | CC BY 4.0 Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c584t-2db7e5573ade72673efd9750dbc5183e3ed7fed055c8f0aeaf6e170dd8a1d16a3 |
| Notes | http://dx.doi.org/10.1080/2150704X.2013.784848 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Article-2 ObjectType-Feature-1 content type line 23 |
| ORCID | 0000-0001-9559-7572 0000-0003-3090-6551 |
| OpenAccessLink | https://cir.nii.ac.jp/crid/1871709542897657472 |
| PQID | 1349744441 |
| PQPubID | 436422 |
| PageCount | 10 |
| ParticipantIDs | proquest_journals_1349744441 pascalfrancis_primary_27674787 nii_cinii_1871709542897657472 proquest_miscellaneous_2000035977 fao_agris_US201600057367 proquest_miscellaneous_1372620473 crossref_citationtrail_10_1080_2150704X_2013_784848 hal_primary_oai_HAL_hal_01429043v1 crossref_primary_10_1080_2150704X_2013_784848 informaworld_taylorfrancis_310_1080_2150704X_2013_784848 |
| PublicationCentury | 2000 |
| PublicationDate | 2013-07-01 |
| PublicationDateYYYYMMDD | 2013-07-01 |
| PublicationDate_xml | – month: 07 year: 2013 text: 2013-07-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | Abingdon |
| PublicationPlace_xml | – name: Abingdon |
| PublicationTitle | Remote Sensing Letters |
| PublicationYear | 2013 |
| Publisher | Taylor & Francis Informa UK Limited Taylor & Francis Ltd Taylor and Francis |
| Publisher_xml | – name: Taylor & Francis – name: Informa UK Limited – name: Taylor & Francis Ltd – name: Taylor and Francis |
| References | Lesparre J. (CIT0015) 2006 CIT0010 CIT0021 CIT0020 CIT0001 CIT0012 CIT0023 CIT0011 CIT0022 Candade N. (CIT0006) 2004 CIT0003 CIT0014 Lieng E. (CIT0016) 2005 CIT0025 CIT0002 CIT0024 CIT0005 CIT0004 CIT0026 CIT0018 CIT0017 CIT0009 CIT0008 CIT0019 |
| References_xml | – ident: CIT0023 doi: 10.7551/mitpress/4175.001.0001 – ident: CIT0017 doi: 10.1109/TGRS.2004.842022 – ident: CIT0004 doi: 10.1023/A:1009715923555 – ident: CIT0008 doi: 10.1016/j.asr.2008.02.012 – ident: CIT0011 doi: 10.1016/j.rse.2006.04.001 – ident: CIT0019 doi: 10.1080/01431160701395203 – ident: CIT0005 doi: 10.1109/TGRS.2004.827262 – volume-title: ASPRS Annual Conference Proceedings year: 2004 ident: CIT0006 – volume-title: Proceedings of the ISPRS Committee VII Mid-term Symposium, from Pixels to Processes year: 2006 ident: CIT0015 – ident: CIT0010 doi: 10.1109/TGRS.2004.827257 – ident: CIT0009 doi: 10.1016/j.cam.2005.09.009 – ident: CIT0020 doi: 10.1016/j.isprsjprs.2010.11.001 – ident: CIT0001 doi: 10.1080/014311698214271 – ident: CIT0025 doi: 10.1016/S0169-5347(03)00070-3 – ident: CIT0022 doi: 10.1080/01431160500185227 – ident: CIT0026 – ident: CIT0002 doi: 10.1109/TGRS.1990.572944 – ident: CIT0003 doi: 10.1016/j.ecoinf.2010.07.007 – ident: CIT0021 doi: 10.1080/01431160512331314083 – ident: CIT0014 doi: 10.1080/01431160110040323 – ident: CIT0012 doi: 10.1046/j.1365-2435.1997.00159.x – ident: CIT0018 doi: 10.1080/01431160701352154 – volume-title: Proceedings of International Symposium of Remote Sensing of Environment year: 2005 ident: CIT0016 – ident: CIT0024 doi: 10.1080/014311600210641 |
| SSID | ssj0000314878 |
| Score | 1.9875194 |
| Snippet | The Support Vector Machines (SVM) are increasingly far-reaching in remotely sensed data classification. As supervised classifiers, the SVM output depends on... |
| SourceID | hal proquest pascalfrancis crossref nii informaworld fao |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 686 |
| SubjectTerms | [INFO.INFO-BI]Computer Science [cs]/Bioinformatics [q-bio.QM] [INFO.INFO-MO]Computer Science [cs]/Modeling and Simulation [INFO.INFO-NE]Computer Science [cs]/Neural and Evolutionary Computing [cs.NE] [INFO.INFO-TI]Computer Science [cs]/Image Processing [eess.IV] [INFO.INFO-TS]Computer Science [cs]/Signal and Image Processing [SDE.BE]Environmental Sciences/Biodiversity and Ecology [SDE.ES]Environmental Sciences/Environment and Society [SDE.IE]Environmental Sciences/Environmental Engineering [SDE.MCG]Environmental Sciences/Global Changes [SDV.EE.ECO]Life Sciences [q-bio]/Ecology, environment/Ecosystems [SHS.GEO]Humanities and Social Sciences/Geography [SPI.ACOU]Engineering Sciences [physics]/Acoustics [physics.class-ph] [SPI.ELEC]Engineering Sciences [physics]/Electromagnetism [SPI.OPTI]Engineering Sciences [physics]/Optics / Photonic [SPI.SIGNAL]Engineering Sciences [physics]/Signal and Image processing [STAT.ME]Statistics [stat]/Methodology [stat.ME] [STAT.ML]Statistics [stat]/Machine Learning [stat.ML] Acoustics Animal and plant ecology Animal, plant and microbial ecology Applied geophysics Biodiversity and Ecology Bioinformatics Biological and medical sciences Classification Computer Science Earth sciences Earth, ocean, space ecology Ecology, environment Ecosystems ecotones Electromagnetism Engineering Sciences Environment and Society Environmental Engineering Environmental Sciences Exact sciences and technology Fundamental and applied biological sciences. Psychology Geography Global Changes Humanities and Social Sciences Hyperplanes Image Processing Internal geophysics Life Sciences Machine Learning Mathematical analysis Methodology Modeling and Simulation Neural and Evolutionary Computing Optics Photonic Pixels Polynesia Remote sensing Signal and Image Processing Statistics Support vector machines surveys SVM Synecology Terrestrial ecosystems Vectors (mathematics) Vegetation vegetation types |
| Title | Spatial location and ecological content of support vectors in an SVM classification of tropical vegetation |
| URI | https://www.tandfonline.com/doi/abs/10.1080/2150704X.2013.784848 https://cir.nii.ac.jp/crid/1871709542897657472 https://www.proquest.com/docview/1349744441 https://www.proquest.com/docview/1372620473 https://www.proquest.com/docview/2000035977 https://hal.science/hal-01429043 |
| Volume | 4 |
| WOSCitedRecordID | wos000318592600008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAWR databaseName: Taylor & Francis Journals Complete customDbUrl: eissn: 2150-7058 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000314878 issn: 2150-7058 databaseCode: TFW dateStart: 20100325 isFulltext: true titleUrlDefault: https://www.tandfonline.com providerName: Taylor & Francis |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La9wwEBZtKLSX9E3cJkEtvaq1Jduyj6F0ySENhSTt3oSsR7Ih2Mvau9B_3xn5wYaSFpJd8MGWZEsafTNjj74h5JPwjqd5FTNrtGEpdxVD2nImK5M4jWwm_UyfyNPTYj4vf2zt4sewSvShfU8UEbAaF7eu2jEi7gtHIyZO5xiYJT7LIoU_gDBofkxhcD77Nb1kQW72IqAx1mFYadw-d0c7t9TTY68bOF6FEMltIlM4WS8WGEepWxhK3-fA-AvOg46aPX94716Q3cE-pUe9QL0kj1z9ijwdUqVf_X5NrjGJMQgtRS2Is0rhTtSZEUQpBr-DJqONp-16ieY93YRPAy1dYGF69vM7NWi0Y5RS3wSU7VbNMtTfuMshBPINuZh9O_96zIaEDcyAHdMxjlzNWSaFtk7yXArnbQkmia1MBtDhhLPSOxtnmSl8rJ32uUtkbG2hE5vkWrwlO3VTuz1CteVFbnPhcfuKLUWFllpVGisym4ORFhExzpMyA5s5JtW4UclAejqOo8JxVP04RoRNtZY9m8d_yu-BCCh9CYCrLs440vEFCslcRuQjyMXUCrJ0Hx-dKDwHXicv41RskogU22KjuvAWZhAXJf596wMQMegbHhNwayUYw-ArgvmYgQvII3J4S_imJ-FIzwQwHJH9URrVgEutQjJKmcIPHu3DdBkQBT8T6do1aywjQ5YCKe4uw8PiQu7Cd_fv4nvyjIfkIhj8vE92utXaHZAnZtMt2tVhWMl_AP-aP0c |
| linkProvider | Taylor & Francis |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1bb9MwFLbYQBov3NEC2zCI10BiJ3HyOCGqIroKaR30zXJsZytCSdWklfj3nOM40SY0kBCtlIfEdmL7-FycL98h5C2vLEuyMgqNVjpMmC1DpC0PRaljq5DNpJ_pmZjP8-Wy-OLRhK2HVWIMXfVEEU5X4-LGzegBEveeoRcTJUtEZvF3Ik_gv0fupmBqUcgXk2_jNguys-dOH2OlEGsNH9Dd0tANA7VXqQaOVw4keZ3KFE7WqxUiKVULg1n1WTB-U-jOSk0e_of-PSIPvItKT3uZekzu2PoJOfDZ0q9-PiXfMY8xyC1FQ4gTS-FW1OpBj1LEv4Mxo01F2-0aPXy6c28HWrrCwvT86xnV6LcjUKlvAsp2m2bt6u_spUdBPiMXk4-LD9PQ52wINbgyXciQrjlNBVfGCpYJbitTgFdiSp2C9rDcGlFZE6WpzqtIWVVlNhaRMbmKTZwp_pzs101tDwlVhuWZyXiFX7CYgpforJWFNjw1GfhpAeHDREntCc0xr8YPGXve02EcJY6j7McxIOFYa90Tevyl_CHIgFSXoHPlxTlDRj7HIpmJgLwBwRhbQaLu6elM4jkIPFkRJXwXByS_LjeycxsxXl4k__Otj0HGoG94jCGyFeAPQ7gIHmQKUSALyMkN6RufhCFDE2jigBwN4ii9amol8lGKBH7waK_Hy6BU8E2Rqm2zxTLCJSoQ_PYyzK0upC988e9dfEUOpouzmZx9mn9-Se4zl2sEsdBHZL_bbO0xuad33ardnLhl_QssU0Ny |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwELfYQMAL32iBbRjEa1hiJ3HyOAHVEKWatA36Zjn-2IpQUjVpJf577pwPdUIDCVopD8nZie3z-XfJ-XeEvOXOsiQro9BopcOE2TJE2vJQlDq2CtlMupGeitksn8-L061d_BhWiT6064givK3Gyb00boiIO2IIYqJkjoFZ_J3IE_jvkNuAnDN0v84n38a3LEjOnntzjIVCLDXsn7uhomvr045TNRyvfIzkNpMpnKwWCwykVA30peuSYPxmz_0iNXn4_817RB70AJUedxr1mNyy1RNyr8-VfvXzKfmOWYxBaykugzisFO5ErR6sKMXod1jKaO1os14ivqcb_22goQsUpmdfv1CNqB3DlLoqQLZd1UtffmMv-xjIZ-Ri8vH8_UnYZ2wINQCZNmRI1pymgitjBcsEt84UgElMqVOwHZZbI5w1UZrq3EXKKpfZWETG5Co2cab4c7Jb1ZXdI1QZlmcm4w73r5iClwjVykIbnpoMUFpA-DBOUvd05phV44eMe9bToR8l9qPs-jEg4Vhq2dF5_EV-D1RAqkuwuPLijCEfn-eQzERA3oBejLUgTffJ8VTiOXA7WRElfBMHJN9WG9n61zC9ukj-51sfgIpB2_AYg18rAA2Dswj4MQUfkAXk8JryjU_CkJ8J7HBA9gdtlL1haiSyUYoEfvBor8fLYFLwO5GqbL1GGeHTFAh-swzzkwvJC1_8exNfkbunHyZy-mn2-SW5z3yiEQyE3ie77WptD8gdvWkXzerQT-pfFJZCIw |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Spatial+location+and+ecological+content+of+support+vectors+in+an+SVM+classification+of+tropical+vegetation&rft.jtitle=Remote+sensing+letters&rft.au=Pouteau%2C+Robin&rft.au=Collin%2C+Antoine&rft.date=2013-07-01&rft.pub=Taylor+%26+Francis&rft.issn=2150-7058&rft.eissn=2150-7058&rft.volume=4&rft.issue=7&rft.spage=686&rft.epage=695&rft_id=info:doi/10.1080%2F2150704x.2013.784848&rft.externalDocID=US201600057367 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2150-7058&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2150-7058&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2150-7058&client=summon |