Spatial location and ecological content of support vectors in an SVM classification of tropical vegetation

The Support Vector Machines (SVM) are increasingly far-reaching in remotely sensed data classification. As supervised classifiers, the SVM output depends on the input pixels, pointing out that training is potentially an important stage for optimizing classification accuracy. The SVM consist in proje...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Remote Sensing Letters Ročník 4; číslo 7; s. 686 - 695
Hlavní autoři: Pouteau, Robin, Collin, Antoine
Médium: Journal Article
Jazyk:angličtina
Vydáno: Abingdon Taylor & Francis 01.07.2013
Informa UK Limited
Taylor & Francis Ltd
Taylor and Francis
Témata:
SVM
SVM
ISSN:2150-7058, 2150-704X, 2150-7058
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract The Support Vector Machines (SVM) are increasingly far-reaching in remotely sensed data classification. As supervised classifiers, the SVM output depends on the input pixels, pointing out that training is potentially an important stage for optimizing classification accuracy. The SVM consist in projecting pixels into a high-dimensional feature space and then fitting in a hyperplane, maximizing the distance between the closest vectors and the hyperplane itself. This study aims to locate the pixels acting as support vectors and identify the ecological features they contain in a tropical vegetation context. The analyses focused on a Quickbird-2 image where two vegetation types occur. The physical boundary between classes was delineated in the field, and we used an iterative method to mark and localize the pixels acting as support vectors on the image. Our results highlight that vegetation sampling should focus on ecotones (the transition area between two different and adjacent vegetation classes) in order to minimize the field survey effort and maximize the mapping accuracy.
AbstractList The Support Vector Machines (SVM) are increasingly far-reaching in remotely sensed data classification. As supervised classifiers, the SVM output depends on the input pixels, pointing out that training is potentially an important stage for optimizing classification accuracy. The SVM consist in projecting pixels into a high-dimensional feature space and then fitting in a hyperplane, maximizing the distance between the closest vectors and the hyperplane itself. This study aims to locate the pixels acting as support vectors and identify the ecological features they contain in a tropical vegetation context. The analyses focused on a Quickbird-2 image where two vegetation types occur. The physical boundary between classes was delineated in the field, and we used an iterative method to mark and localize the pixels acting as support vectors on the image. Our results highlight that vegetation sampling should focus on ecotones (the transition area between two different and adjacent vegetation classes) in order to minimize the field survey effort and maximize the mapping accuracy.
The Support Vector Machines (SVM) are increasingly far-reaching in remotely sensed data classification. As supervised classifiers, the SVM output depends on the input pixels, pointing out that training is potentially an important stage for optimizing classification accuracy. The SVM consist in projecting pixels into a high-dimensional feature space and then fitting in a hyperplane, maximizing the distance between the closest vectors and the hyperplane itself. This study aims to locate the pixels acting as support vectors and identify the ecological features they contain in a tropical vegetation context. The analyses focused on a Quickbird-2 image where two vegetation types occur. The physical boundary between classes was delineated in the field, and we used an iterative method to mark and localize the pixels acting as support vectors on the image. Our results highlight that vegetation sampling should focus on ecotones (the transition area between two different and adjacent vegetation classes) in order to minimize the field survey effort and maximize the mapping accuracy. [PUBLICATION ABSTRACT]
Author Pouteau, Robin
Collin, Antoine
Author_xml – sequence: 1
  fullname: Pouteau, Robin
– sequence: 2
  fullname: Collin, Antoine
BackLink https://cir.nii.ac.jp/crid/1871709542897657472$$DView record in CiNii
http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27674787$$DView record in Pascal Francis
https://hal.science/hal-01429043$$DView record in HAL
BookMark eNqFkl1rFDEUhgepYK39B4IDKujFrskkmWS8kVLUCiterBXvQpqPNUs2mSazq_33ntnZivRmM5AJh-c95-TNeVqdxBRtVT3HaI6RQO8azBBH9M-8QZjMuaDwPapOx_CMIyZO_js_qc5LWSNYBFPBxWm1XvZq8CrUIWk4pFiraGqrU0grryGuUxxsHOrk6rLt-5SHemf1kHKp_QjXyx9fax1UKd75Qwpgh5z6vX5nV3bYh59Vj50KxZ4f_mfV9aeP3y-vZotvn79cXixmmgk6zBpzwy1jnChjedNyYp3pOEPmRjMsiCXWcGcNYkwLh5RVrrWYI2OEwga3ipxVb6e8v1SQffYble9kUl5eXSzkGEOYNh2iZIeBfTOxfU63W1sGufFF2xBUtGlbZLP3inWcH0UxgW4bRDkB9OUDdJ22OcKlgaIdp7DG2q8PlCrglMsqal_-ddzwllMuxsLvJ07nVEq2Tmo_OTpk5YPESI6DIA-D8FOOgyCnQQAxfSC-z39E9mqSRe-h3LhjwcHmjtFGdLxl0FsD2IcJ89GlvFG_Uw5GDuoupHx_H3Kk0Ispg1NJqlUGwfUSgBZ8hxmA5_8L-ijeIw
CitedBy_id crossref_primary_10_1007_s13157_021_01442_5
crossref_primary_10_5721_EuJRS20154824
crossref_primary_10_1080_13658816_2015_1018266
crossref_primary_10_1111_ddi_13165
crossref_primary_10_1155_2022_3296495
crossref_primary_10_1007_s10812_024_01680_5
crossref_primary_10_1080_01431161_2018_1513669
crossref_primary_10_1016_j_ecolind_2015_02_017
crossref_primary_10_1002_env_2446
crossref_primary_10_1080_10106049_2015_1132483
crossref_primary_10_3390_rs5073583
crossref_primary_10_1007_s11676_017_0448_x
Cites_doi 10.7551/mitpress/4175.001.0001
10.1109/TGRS.2004.842022
10.1023/A:1009715923555
10.1016/j.asr.2008.02.012
10.1016/j.rse.2006.04.001
10.1080/01431160701395203
10.1109/TGRS.2004.827262
10.1109/TGRS.2004.827257
10.1016/j.cam.2005.09.009
10.1016/j.isprsjprs.2010.11.001
10.1080/014311698214271
10.1016/S0169-5347(03)00070-3
10.1080/01431160500185227
10.1109/TGRS.1990.572944
10.1016/j.ecoinf.2010.07.007
10.1080/01431160512331314083
10.1080/01431160110040323
10.1046/j.1365-2435.1997.00159.x
10.1080/01431160701352154
10.1080/014311600210641
ContentType Journal Article
Contributor Institut Agronomique Néo-Calédonien (IAC)
Contributor_xml – sequence: 1
  fullname: Institut Agronomique Néo-Calédonien (IAC)
Copyright 2013 Taylor & Francis 2013
2015 INIST-CNRS
2013 Taylor & Francis
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: 2013 Taylor & Francis 2013
– notice: 2015 INIST-CNRS
– notice: 2013 Taylor & Francis
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID FBQ
RYH
AAYXX
CITATION
IQODW
7TN
8FD
F1W
FR3
H8D
H96
KR7
L.G
L7M
7S9
L.6
1XC
BXJBU
DOI 10.1080/2150704x.2013.784848
DatabaseName AGRIS
CiNii Complete
CrossRef
Pascal-Francis
Oceanic Abstracts
Technology Research Database
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Advanced Technologies Database with Aerospace
AGRICOLA
AGRICOLA - Academic
Hyper Article en Ligne (HAL)
HAL-SHS: Archive ouverte en Sciences de l'Homme et de la Société
DatabaseTitle CrossRef
Aerospace Database
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Oceanic Abstracts
Technology Research Database
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList Aerospace Database


Aerospace Database
AGRICOLA
DeliveryMethod fulltext_linktorsrc
Discipline Geography
Ecology
Statistics
Computer Science
Environmental Sciences
EISSN 2150-7058
EndPage 695
ExternalDocumentID oai:HAL:hal-01429043v1
2966120741
27674787
10_1080_2150704X_2013_784848
784848
US201600057367
Genre Article
GroupedDBID .7F
0BK
0R~
2DF
30N
3YN
4.4
AAAVI
AAJMT
AALDU
AAMIU
AAPUL
AAQRR
ABCCY
ABFIM
ABFMO
ABJNI
ABJVF
ABLIJ
ABPEM
ABPTK
ABQHQ
ABRLO
ABTAI
ABXUL
ABXYU
ACGFO
ACGFS
ACIWK
ACTIO
ADCVX
ADGTB
ADMSI
AEGYZ
AEISY
AENEX
AEYOC
AFOLD
AFRAH
AFWLO
AGDLA
AHDLD
AHDSZ
AIJEM
AIRXU
AKBVH
AKOOK
ALMA_UNASSIGNED_HOLDINGS
ALQZU
AQRUH
AVBZW
BLEHA
CCCUG
CE4
DGEBU
DKSSO
EBS
EJD
FBQ
FUNRP
FVPDL
GTTXZ
HZ~
IPNFZ
J~4
KYCEM
LJTGL
M4Z
O9-
P2P
PQQKQ
RIG
RNANH
ROSJB
RTWRZ
SNACF
TEN
TFL
TFT
TFW
TQWBC
TTHFI
UU3
V1K
ZGOLN
AAGDL
AAHBH
AAHIA
ABPAQ
AFRVT
AHDZW
AIYEW
AQTUD
AWYRJ
H13
TASJS
TBQAZ
TDBHL
TUROJ
RYH
AAYXX
ABDBF
ACFTK
CITATION
ADYSH
IQODW
7TN
8FD
F1W
FR3
H8D
H96
KR7
L.G
L7M
7S9
L.6
1XC
BXJBU
ID FETCH-LOGICAL-c584t-2db7e5573ade72673efd9750dbc5183e3ed7fed055c8f0aeaf6e170dd8a1d16a3
IEDL.DBID TFW
ISICitedReferencesCount 13
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000318592600008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2150-7058
2150-704X
IngestDate Tue Oct 14 20:44:45 EDT 2025
Fri Sep 05 17:27:07 EDT 2025
Thu Oct 02 06:13:51 EDT 2025
Sat Jul 26 02:11:02 EDT 2025
Wed Apr 02 07:08:33 EDT 2025
Sat Nov 29 07:56:38 EST 2025
Tue Nov 18 22:43:30 EST 2025
Mon Nov 10 09:19:33 EST 2025
Mon Oct 20 23:42:26 EDT 2025
Wed Dec 27 19:17:17 EST 2023
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 7
Keywords iterative methods
accuracy
remote sensing
vegetation
classification
Pixel
ecology
Polynesia
SVM
Language English
License CC BY 4.0
Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c584t-2db7e5573ade72673efd9750dbc5183e3ed7fed055c8f0aeaf6e170dd8a1d16a3
Notes http://dx.doi.org/10.1080/2150704X.2013.784848
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Article-2
ObjectType-Feature-1
content type line 23
ORCID 0000-0001-9559-7572
0000-0003-3090-6551
OpenAccessLink https://cir.nii.ac.jp/crid/1871709542897657472
PQID 1349744441
PQPubID 436422
PageCount 10
ParticipantIDs proquest_journals_1349744441
pascalfrancis_primary_27674787
nii_cinii_1871709542897657472
proquest_miscellaneous_2000035977
fao_agris_US201600057367
proquest_miscellaneous_1372620473
crossref_citationtrail_10_1080_2150704X_2013_784848
hal_primary_oai_HAL_hal_01429043v1
crossref_primary_10_1080_2150704X_2013_784848
informaworld_taylorfrancis_310_1080_2150704X_2013_784848
PublicationCentury 2000
PublicationDate 2013-07-01
PublicationDateYYYYMMDD 2013-07-01
PublicationDate_xml – month: 07
  year: 2013
  text: 2013-07-01
  day: 01
PublicationDecade 2010
PublicationPlace Abingdon
PublicationPlace_xml – name: Abingdon
PublicationTitle Remote Sensing Letters
PublicationYear 2013
Publisher Taylor & Francis
Informa UK Limited
Taylor & Francis Ltd
Taylor and Francis
Publisher_xml – name: Taylor & Francis
– name: Informa UK Limited
– name: Taylor & Francis Ltd
– name: Taylor and Francis
References Lesparre J. (CIT0015) 2006
CIT0010
CIT0021
CIT0020
CIT0001
CIT0012
CIT0023
CIT0011
CIT0022
Candade N. (CIT0006) 2004
CIT0003
CIT0014
Lieng E. (CIT0016) 2005
CIT0025
CIT0002
CIT0024
CIT0005
CIT0004
CIT0026
CIT0018
CIT0017
CIT0009
CIT0008
CIT0019
References_xml – ident: CIT0023
  doi: 10.7551/mitpress/4175.001.0001
– ident: CIT0017
  doi: 10.1109/TGRS.2004.842022
– ident: CIT0004
  doi: 10.1023/A:1009715923555
– ident: CIT0008
  doi: 10.1016/j.asr.2008.02.012
– ident: CIT0011
  doi: 10.1016/j.rse.2006.04.001
– ident: CIT0019
  doi: 10.1080/01431160701395203
– ident: CIT0005
  doi: 10.1109/TGRS.2004.827262
– volume-title: ASPRS Annual Conference Proceedings
  year: 2004
  ident: CIT0006
– volume-title: Proceedings of the ISPRS Committee VII Mid-term Symposium, from Pixels to Processes
  year: 2006
  ident: CIT0015
– ident: CIT0010
  doi: 10.1109/TGRS.2004.827257
– ident: CIT0009
  doi: 10.1016/j.cam.2005.09.009
– ident: CIT0020
  doi: 10.1016/j.isprsjprs.2010.11.001
– ident: CIT0001
  doi: 10.1080/014311698214271
– ident: CIT0025
  doi: 10.1016/S0169-5347(03)00070-3
– ident: CIT0022
  doi: 10.1080/01431160500185227
– ident: CIT0026
– ident: CIT0002
  doi: 10.1109/TGRS.1990.572944
– ident: CIT0003
  doi: 10.1016/j.ecoinf.2010.07.007
– ident: CIT0021
  doi: 10.1080/01431160512331314083
– ident: CIT0014
  doi: 10.1080/01431160110040323
– ident: CIT0012
  doi: 10.1046/j.1365-2435.1997.00159.x
– ident: CIT0018
  doi: 10.1080/01431160701352154
– volume-title: Proceedings of International Symposium of Remote Sensing of Environment
  year: 2005
  ident: CIT0016
– ident: CIT0024
  doi: 10.1080/014311600210641
SSID ssj0000314878
Score 1.9875194
Snippet The Support Vector Machines (SVM) are increasingly far-reaching in remotely sensed data classification. As supervised classifiers, the SVM output depends on...
SourceID hal
proquest
pascalfrancis
crossref
nii
informaworld
fao
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 686
SubjectTerms [INFO.INFO-BI]Computer Science [cs]/Bioinformatics [q-bio.QM]
[INFO.INFO-MO]Computer Science [cs]/Modeling and Simulation
[INFO.INFO-NE]Computer Science [cs]/Neural and Evolutionary Computing [cs.NE]
[INFO.INFO-TI]Computer Science [cs]/Image Processing [eess.IV]
[INFO.INFO-TS]Computer Science [cs]/Signal and Image Processing
[SDE.BE]Environmental Sciences/Biodiversity and Ecology
[SDE.ES]Environmental Sciences/Environment and Society
[SDE.IE]Environmental Sciences/Environmental Engineering
[SDE.MCG]Environmental Sciences/Global Changes
[SDV.EE.ECO]Life Sciences [q-bio]/Ecology, environment/Ecosystems
[SHS.GEO]Humanities and Social Sciences/Geography
[SPI.ACOU]Engineering Sciences [physics]/Acoustics [physics.class-ph]
[SPI.ELEC]Engineering Sciences [physics]/Electromagnetism
[SPI.OPTI]Engineering Sciences [physics]/Optics / Photonic
[SPI.SIGNAL]Engineering Sciences [physics]/Signal and Image processing
[STAT.ME]Statistics [stat]/Methodology [stat.ME]
[STAT.ML]Statistics [stat]/Machine Learning [stat.ML]
Acoustics
Animal and plant ecology
Animal, plant and microbial ecology
Applied geophysics
Biodiversity and Ecology
Bioinformatics
Biological and medical sciences
Classification
Computer Science
Earth sciences
Earth, ocean, space
ecology
Ecology, environment
Ecosystems
ecotones
Electromagnetism
Engineering Sciences
Environment and Society
Environmental Engineering
Environmental Sciences
Exact sciences and technology
Fundamental and applied biological sciences. Psychology
Geography
Global Changes
Humanities and Social Sciences
Hyperplanes
Image Processing
Internal geophysics
Life Sciences
Machine Learning
Mathematical analysis
Methodology
Modeling and Simulation
Neural and Evolutionary Computing
Optics
Photonic
Pixels
Polynesia
Remote sensing
Signal and Image Processing
Statistics
Support vector machines
surveys
SVM
Synecology
Terrestrial ecosystems
Vectors (mathematics)
Vegetation
vegetation types
Title Spatial location and ecological content of support vectors in an SVM classification of tropical vegetation
URI https://www.tandfonline.com/doi/abs/10.1080/2150704X.2013.784848
https://cir.nii.ac.jp/crid/1871709542897657472
https://www.proquest.com/docview/1349744441
https://www.proquest.com/docview/1372620473
https://www.proquest.com/docview/2000035977
https://hal.science/hal-01429043
Volume 4
WOSCitedRecordID wos000318592600008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAWR
  databaseName: Taylor & Francis Journals Complete
  customDbUrl:
  eissn: 2150-7058
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000314878
  issn: 2150-7058
  databaseCode: TFW
  dateStart: 20100325
  isFulltext: true
  titleUrlDefault: https://www.tandfonline.com
  providerName: Taylor & Francis
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La9wwEBZtKLSX9E3cJkEtvaq1Jduyj6F0ySENhSTt3oSsR7Ih2Mvau9B_3xn5wYaSFpJd8MGWZEsafTNjj74h5JPwjqd5FTNrtGEpdxVD2nImK5M4jWwm_UyfyNPTYj4vf2zt4sewSvShfU8UEbAaF7eu2jEi7gtHIyZO5xiYJT7LIoU_gDBofkxhcD77Nb1kQW72IqAx1mFYadw-d0c7t9TTY68bOF6FEMltIlM4WS8WGEepWxhK3-fA-AvOg46aPX94716Q3cE-pUe9QL0kj1z9ijwdUqVf_X5NrjGJMQgtRS2Is0rhTtSZEUQpBr-DJqONp-16ieY93YRPAy1dYGF69vM7NWi0Y5RS3wSU7VbNMtTfuMshBPINuZh9O_96zIaEDcyAHdMxjlzNWSaFtk7yXArnbQkmia1MBtDhhLPSOxtnmSl8rJ32uUtkbG2hE5vkWrwlO3VTuz1CteVFbnPhcfuKLUWFllpVGisym4ORFhExzpMyA5s5JtW4UclAejqOo8JxVP04RoRNtZY9m8d_yu-BCCh9CYCrLs440vEFCslcRuQjyMXUCrJ0Hx-dKDwHXicv41RskogU22KjuvAWZhAXJf596wMQMegbHhNwayUYw-ArgvmYgQvII3J4S_imJ-FIzwQwHJH9URrVgEutQjJKmcIPHu3DdBkQBT8T6do1aywjQ5YCKe4uw8PiQu7Cd_fv4nvyjIfkIhj8vE92utXaHZAnZtMt2tVhWMl_AP-aP0c
linkProvider Taylor & Francis
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1bb9MwFLbYQBov3NEC2zCI10BiJ3HyOCGqIroKaR30zXJsZytCSdWklfj3nOM40SY0kBCtlIfEdmL7-FycL98h5C2vLEuyMgqNVjpMmC1DpC0PRaljq5DNpJ_pmZjP8-Wy-OLRhK2HVWIMXfVEEU5X4-LGzegBEveeoRcTJUtEZvF3Ik_gv0fupmBqUcgXk2_jNguys-dOH2OlEGsNH9Dd0tANA7VXqQaOVw4keZ3KFE7WqxUiKVULg1n1WTB-U-jOSk0e_of-PSIPvItKT3uZekzu2PoJOfDZ0q9-PiXfMY8xyC1FQ4gTS-FW1OpBj1LEv4Mxo01F2-0aPXy6c28HWrrCwvT86xnV6LcjUKlvAsp2m2bt6u_spUdBPiMXk4-LD9PQ52wINbgyXciQrjlNBVfGCpYJbitTgFdiSp2C9rDcGlFZE6WpzqtIWVVlNhaRMbmKTZwp_pzs101tDwlVhuWZyXiFX7CYgpforJWFNjw1GfhpAeHDREntCc0xr8YPGXve02EcJY6j7McxIOFYa90Tevyl_CHIgFSXoHPlxTlDRj7HIpmJgLwBwRhbQaLu6elM4jkIPFkRJXwXByS_LjeycxsxXl4k__Otj0HGoG94jCGyFeAPQ7gIHmQKUSALyMkN6RufhCFDE2jigBwN4ii9amol8lGKBH7waK_Hy6BU8E2Rqm2zxTLCJSoQ_PYyzK0upC988e9dfEUOpouzmZx9mn9-Se4zl2sEsdBHZL_bbO0xuad33ardnLhl_QssU0Ny
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwELfYQMAL32iBbRjEa1hiJ3HyOAHVEKWatA36Zjn-2IpQUjVpJf577pwPdUIDCVopD8nZie3z-XfJ-XeEvOXOsiQro9BopcOE2TJE2vJQlDq2CtlMupGeitksn8-L061d_BhWiT6064givK3Gyb00boiIO2IIYqJkjoFZ_J3IE_jvkNuAnDN0v84n38a3LEjOnntzjIVCLDXsn7uhomvr045TNRyvfIzkNpMpnKwWCwykVA30peuSYPxmz_0iNXn4_817RB70AJUedxr1mNyy1RNyr8-VfvXzKfmOWYxBaykugzisFO5ErR6sKMXod1jKaO1os14ivqcb_22goQsUpmdfv1CNqB3DlLoqQLZd1UtffmMv-xjIZ-Ri8vH8_UnYZ2wINQCZNmRI1pymgitjBcsEt84UgElMqVOwHZZbI5w1UZrq3EXKKpfZWETG5Co2cab4c7Jb1ZXdI1QZlmcm4w73r5iClwjVykIbnpoMUFpA-DBOUvd05phV44eMe9bToR8l9qPs-jEg4Vhq2dF5_EV-D1RAqkuwuPLijCEfn-eQzERA3oBejLUgTffJ8VTiOXA7WRElfBMHJN9WG9n61zC9ukj-51sfgIpB2_AYg18rAA2Dswj4MQUfkAXk8JryjU_CkJ8J7HBA9gdtlL1haiSyUYoEfvBor8fLYFLwO5GqbL1GGeHTFAh-swzzkwvJC1_8exNfkbunHyZy-mn2-SW5z3yiEQyE3ie77WptD8gdvWkXzerQT-pfFJZCIw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Spatial+location+and+ecological+content+of+support+vectors+in+an+SVM+classification+of+tropical+vegetation&rft.jtitle=Remote+sensing+letters&rft.au=Pouteau%2C+Robin&rft.au=Collin%2C+Antoine&rft.date=2013-07-01&rft.pub=Taylor+%26+Francis&rft.issn=2150-7058&rft.eissn=2150-7058&rft.volume=4&rft.issue=7&rft.spage=686&rft.epage=695&rft_id=info:doi/10.1080%2F2150704x.2013.784848&rft.externalDocID=US201600057367
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2150-7058&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2150-7058&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2150-7058&client=summon