Melanoma segmentation using deep learning with test-time augmentations and conditional random fields

In a computer-aided diagnostic (CAD) system for skin lesion segmentation, variations in shape and size of the skin lesion makes the segmentation task more challenging. Lesion segmentation is an initial step in CAD schemes as it leads to low error rates in quantification of the structure, boundary, a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scientific reports Jg. 12; H. 1; S. 3948 - 16
Hauptverfasser: Ashraf, Hassan, Waris, Asim, Ghafoor, Muhammad Fazeel, Gilani, Syed Omer, Niazi, Imran Khan
Format: Journal Article
Sprache:Englisch
Veröffentlicht: London Nature Publishing Group UK 10.03.2022
Nature Publishing Group
Nature Research
Nature Portfolio
Schlagworte:
ISSN:2045-2322, 2045-2322
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract In a computer-aided diagnostic (CAD) system for skin lesion segmentation, variations in shape and size of the skin lesion makes the segmentation task more challenging. Lesion segmentation is an initial step in CAD schemes as it leads to low error rates in quantification of the structure, boundary, and scale of the skin lesion. Subjective clinical assessment of the skin lesion segmentation results provided by current state-of-the-art deep learning segmentation techniques does not offer the required results as per the inter-observer agreement of expert dermatologists. This study proposes a novel deep learning-based, fully automated approach to skin lesion segmentation, including sophisticated pre and postprocessing approaches. We use three deep learning models, including UNet, deep residual U-Net (ResUNet), and improved ResUNet (ResUNet++). The preprocessing phase combines morphological filters with an inpainting algorithm to eliminate unnecessary hair structures from the dermoscopic images. Finally, we used test time augmentation (TTA) and conditional random field (CRF) in the postprocessing stage to improve segmentation accuracy. The proposed method was trained and evaluated on ISIC-2016 and ISIC-2017 skin lesion datasets. It achieved an average Jaccard Index of 85.96% and 80.05% for ISIC-2016 and ISIC-2017 datasets, when trained individually. When trained on combined dataset (ISIC-2016 and ISIC-2017), the proposed method achieved an average Jaccard Index of 80.73% and 90.02% on ISIC-2017 and ISIC-2016 testing datasets. The proposed methodological framework can be used to design a fully automated computer-aided skin lesion diagnostic system due to its high scalability and robustness.
AbstractList In a computer-aided diagnostic (CAD) system for skin lesion segmentation, variations in shape and size of the skin lesion makes the segmentation task more challenging. Lesion segmentation is an initial step in CAD schemes as it leads to low error rates in quantification of the structure, boundary, and scale of the skin lesion. Subjective clinical assessment of the skin lesion segmentation results provided by current state-of-the-art deep learning segmentation techniques does not offer the required results as per the inter-observer agreement of expert dermatologists. This study proposes a novel deep learning-based, fully automated approach to skin lesion segmentation, including sophisticated pre and postprocessing approaches. We use three deep learning models, including UNet, deep residual U-Net (ResUNet), and improved ResUNet (ResUNet++). The preprocessing phase combines morphological filters with an inpainting algorithm to eliminate unnecessary hair structures from the dermoscopic images. Finally, we used test time augmentation (TTA) and conditional random field (CRF) in the postprocessing stage to improve segmentation accuracy. The proposed method was trained and evaluated on ISIC-2016 and ISIC-2017 skin lesion datasets. It achieved an average Jaccard Index of 85.96% and 80.05% for ISIC-2016 and ISIC-2017 datasets, when trained individually. When trained on combined dataset (ISIC-2016 and ISIC-2017), the proposed method achieved an average Jaccard Index of 80.73% and 90.02% on ISIC-2017 and ISIC-2016 testing datasets. The proposed methodological framework can be used to design a fully automated computer-aided skin lesion diagnostic system due to its high scalability and robustness.
In a computer-aided diagnostic (CAD) system for skin lesion segmentation, variations in shape and size of the skin lesion makes the segmentation task more challenging. Lesion segmentation is an initial step in CAD schemes as it leads to low error rates in quantification of the structure, boundary, and scale of the skin lesion. Subjective clinical assessment of the skin lesion segmentation results provided by current state-of-the-art deep learning segmentation techniques does not offer the required results as per the inter-observer agreement of expert dermatologists. This study proposes a novel deep learning-based, fully automated approach to skin lesion segmentation, including sophisticated pre and postprocessing approaches. We use three deep learning models, including UNet, deep residual U-Net (ResUNet), and improved ResUNet (ResUNet++). The preprocessing phase combines morphological filters with an inpainting algorithm to eliminate unnecessary hair structures from the dermoscopic images. Finally, we used test time augmentation (TTA) and conditional random field (CRF) in the postprocessing stage to improve segmentation accuracy. The proposed method was trained and evaluated on ISIC-2016 and ISIC-2017 skin lesion datasets. It achieved an average Jaccard Index of 85.96% and 80.05% for ISIC-2016 and ISIC-2017 datasets, when trained individually. When trained on combined dataset (ISIC-2016 and ISIC-2017), the proposed method achieved an average Jaccard Index of 80.73% and 90.02% on ISIC-2017 and ISIC-2016 testing datasets. The proposed methodological framework can be used to design a fully automated computer-aided skin lesion diagnostic system due to its high scalability and robustness.In a computer-aided diagnostic (CAD) system for skin lesion segmentation, variations in shape and size of the skin lesion makes the segmentation task more challenging. Lesion segmentation is an initial step in CAD schemes as it leads to low error rates in quantification of the structure, boundary, and scale of the skin lesion. Subjective clinical assessment of the skin lesion segmentation results provided by current state-of-the-art deep learning segmentation techniques does not offer the required results as per the inter-observer agreement of expert dermatologists. This study proposes a novel deep learning-based, fully automated approach to skin lesion segmentation, including sophisticated pre and postprocessing approaches. We use three deep learning models, including UNet, deep residual U-Net (ResUNet), and improved ResUNet (ResUNet++). The preprocessing phase combines morphological filters with an inpainting algorithm to eliminate unnecessary hair structures from the dermoscopic images. Finally, we used test time augmentation (TTA) and conditional random field (CRF) in the postprocessing stage to improve segmentation accuracy. The proposed method was trained and evaluated on ISIC-2016 and ISIC-2017 skin lesion datasets. It achieved an average Jaccard Index of 85.96% and 80.05% for ISIC-2016 and ISIC-2017 datasets, when trained individually. When trained on combined dataset (ISIC-2016 and ISIC-2017), the proposed method achieved an average Jaccard Index of 80.73% and 90.02% on ISIC-2017 and ISIC-2016 testing datasets. The proposed methodological framework can be used to design a fully automated computer-aided skin lesion diagnostic system due to its high scalability and robustness.
Abstract In a computer-aided diagnostic (CAD) system for skin lesion segmentation, variations in shape and size of the skin lesion makes the segmentation task more challenging. Lesion segmentation is an initial step in CAD schemes as it leads to low error rates in quantification of the structure, boundary, and scale of the skin lesion. Subjective clinical assessment of the skin lesion segmentation results provided by current state-of-the-art deep learning segmentation techniques does not offer the required results as per the inter-observer agreement of expert dermatologists. This study proposes a novel deep learning-based, fully automated approach to skin lesion segmentation, including sophisticated pre and postprocessing approaches. We use three deep learning models, including UNet, deep residual U-Net (ResUNet), and improved ResUNet (ResUNet++). The preprocessing phase combines morphological filters with an inpainting algorithm to eliminate unnecessary hair structures from the dermoscopic images. Finally, we used test time augmentation (TTA) and conditional random field (CRF) in the postprocessing stage to improve segmentation accuracy. The proposed method was trained and evaluated on ISIC-2016 and ISIC-2017 skin lesion datasets. It achieved an average Jaccard Index of 85.96% and 80.05% for ISIC-2016 and ISIC-2017 datasets, when trained individually. When trained on combined dataset (ISIC-2016 and ISIC-2017), the proposed method achieved an average Jaccard Index of 80.73% and 90.02% on ISIC-2017 and ISIC-2016 testing datasets. The proposed methodological framework can be used to design a fully automated computer-aided skin lesion diagnostic system due to its high scalability and robustness.
ArticleNumber 3948
Author Ashraf, Hassan
Gilani, Syed Omer
Waris, Asim
Niazi, Imran Khan
Ghafoor, Muhammad Fazeel
Author_xml – sequence: 1
  givenname: Hassan
  surname: Ashraf
  fullname: Ashraf, Hassan
  organization: Department of Biomedical Engineering and Sciences, School of Mechanical and Manufacturing Engineering (SMME), National University of Sciences and Technology (NUST)
– sequence: 2
  givenname: Asim
  surname: Waris
  fullname: Waris, Asim
  email: asim.waris@smme.nust.edu.pk
  organization: Department of Biomedical Engineering and Sciences, School of Mechanical and Manufacturing Engineering (SMME), National University of Sciences and Technology (NUST)
– sequence: 3
  givenname: Muhammad Fazeel
  surname: Ghafoor
  fullname: Ghafoor, Muhammad Fazeel
  organization: Department of Biomedical Engineering and Sciences, School of Mechanical and Manufacturing Engineering (SMME), National University of Sciences and Technology (NUST)
– sequence: 4
  givenname: Syed Omer
  surname: Gilani
  fullname: Gilani, Syed Omer
  organization: Department of Biomedical Engineering and Sciences, School of Mechanical and Manufacturing Engineering (SMME), National University of Sciences and Technology (NUST)
– sequence: 5
  givenname: Imran Khan
  surname: Niazi
  fullname: Niazi, Imran Khan
  organization: Department of Health Science and Technology, Aalborg University, Center of Chiropractic Research, New Zealand College of Chiropractic, Faculty of Health and Environmental Sciences, Health and Rehabilitation Research Institute, AUT University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35273282$$D View this record in MEDLINE/PubMed
BookMark eNp9Ustu3CAUtapUTZrmB7qoLHXTjVtzAQObSlXUR6RU3bRrxJhrhxE2U7AT5e-Lx9O8FmEDF84598F5XRyNYcSieEvqj6Sm8lNihCtZ1QBVLaTk1e2L4gRqxiugAEcPzsfFWUrbOi8OihH1qjimHAQFCSeF_YnejGEwZcJ-wHEykwtjOSc39qVF3JUeTRyX6MZNV-WEaaomN2Bp5nt8Ks1oyzaM1i2h8WXMF2EoO4fepjfFy874hGeH_bT48-3r7_Mf1eWv7xfnXy6rlks2VQDcoOqsEUxtNq1QjQSDraKCGkZFbWVjTUcZY1grpB0naEAQYyTJAF7T0-Ji1bXBbPUuusHEWx2M0_uLEHtt4uRaj5oDb4hA3gmKTAmreIfIOAdGJBFm0fq8au3mzYC2za1G4x-JPn4Z3ZXuw7WWilAJPAvQVcA77DEn3zh9DXvi_jz7XE2rN6gBGqlBASUssz4c0sbwd87D1oNLLfr8SRjmpKGhUoBoYKnw_RPoNswxD3-PEpIuv51R7x72cdfAfwtkAKyANoaUInZ3EFLrxWp6tZrOVtN7q-nbTJJPSK1brZBn4fzz1MNcUs4z9hjvy36G9Q99cekE
CitedBy_id crossref_primary_10_1080_01431161_2025_2496001
crossref_primary_10_32604_cmes_2024_050124
crossref_primary_10_1109_ACCESS_2024_3514865
crossref_primary_10_3390_a15120443
crossref_primary_10_3390_eng5040146
crossref_primary_10_1007_s10462_023_10631_z
crossref_primary_10_1038_s41598_025_02757_7
crossref_primary_10_3390_fi14100277
crossref_primary_10_3390_s25072043
crossref_primary_10_1007_s11042_023_16934_1
crossref_primary_10_1016_j_bspc_2024_106037
crossref_primary_10_3390_app131810076
crossref_primary_10_21597_jist_1575214
crossref_primary_10_1007_s00521_023_08729_0
crossref_primary_10_7717_peerj_cs_1953
crossref_primary_10_3390_diagnostics13132274
crossref_primary_10_1007_s10278_025_01449_y
crossref_primary_10_1080_01431161_2023_2288948
crossref_primary_10_1016_j_engappai_2025_112043
crossref_primary_10_1007_s10278_023_00819_8
crossref_primary_10_1038_s41598_023_39648_8
crossref_primary_10_1002_aisy_202400558
crossref_primary_10_1007_s10278_024_01000_5
crossref_primary_10_1007_s11760_023_02732_7
crossref_primary_10_3390_diagnostics12071548
crossref_primary_10_1007_s10278_024_01106_w
crossref_primary_10_3390_computation11030063
crossref_primary_10_3390_app13148512
crossref_primary_10_1016_j_knosys_2023_110828
crossref_primary_10_1016_j_ins_2023_01_081
crossref_primary_10_1016_j_heliyon_2024_e40608
crossref_primary_10_3390_cancers16061120
crossref_primary_10_1109_ACCESS_2023_3339635
crossref_primary_10_3390_jimaging11010015
crossref_primary_10_1111_jdv_20319
Cites_doi 10.1109/JBHI.2019.2891049
10.1001/jamadermatol.2015.1187
10.1109/TMI.2017.2695227
10.3390/s20061601
10.1016/j.jaad.2017.08.016
10.1109/TBME.2017.2712771
10.1147/JRD.2017.2708299
10.1109/TMI.2016.2642839
10.1109/TIP.2011.2146190
10.1016/j.cmpb.2018.05.027
10.1017/S0022215116000554
10.3390/s18020556
10.1038/s41598-020-61808-3
10.1109/LGRS.2018.2802944
10.1145/1553374.1553479
10.1007/978-3-319-24574-4_28
10.1109/SSCI.2017.8280804
10.1109/ISBI.2018.8363547
10.1109/CVPR.2015.7298965
10.1109/ISM46123.2019.00049
ContentType Journal Article
Copyright The Author(s) 2022
2022. The Author(s).
The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2022
– notice: 2022. The Author(s).
– notice: The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7X7
7XB
88A
88E
88I
8FE
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2P
M7P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
JLOSS
Q33
5PM
DOA
DOI 10.1038/s41598-022-07885-y
DatabaseName Springer Nature OA Free Journals (WRLC)
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Collection
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Central Essentials - QC
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
ProQuest Health & Medical Collection
Medical Database
Science Database (ProQuest)
Biological Science Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
Université de Liège - Open Repository and Bibliography (ORBI) (Open Access titles only)
Université de Liège - Open Repository and Bibliography (ORBI)
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList CrossRef
MEDLINE - Academic
MEDLINE




Publicly Available Content Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals (WRLC)
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: PIMPY
  name: ProQuest - Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2045-2322
EndPage 16
ExternalDocumentID oai_doaj_org_article_525617e5f73e497d95fee455241817a0
PMC8913825
oai_orbi_ulg_ac_be_2268_292314
35273282
10_1038_s41598_022_07885_y
Genre Journal Article
GroupedDBID 0R~
3V.
4.4
53G
5VS
7X7
88A
88E
88I
8FE
8FH
8FI
8FJ
AAFWJ
AAJSJ
AAKDD
ABDBF
ABUWG
ACGFS
ACSMW
ACUHS
ADBBV
ADRAZ
AENEX
AEUYN
AFKRA
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
DWQXO
EBD
EBLON
EBS
ESX
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
KQ8
LK8
M0L
M1P
M2P
M48
M7P
M~E
NAO
OK1
PIMPY
PQQKQ
PROAC
PSQYO
RNT
RNTTT
RPM
SNYQT
UKHRP
AASML
AAYXX
AFFHD
AFPKN
CITATION
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
CGR
CUY
CVF
ECM
EIF
NPM
7XB
8FK
K9.
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
PUEGO
EJD
IPNFZ
JLOSS
Q33
RIG
5PM
ID FETCH-LOGICAL-c584t-225ae9fda749bbc79682aec9373a4370d86daf3444e09e3f51ea271aa813a4503
IEDL.DBID 7X7
ISICitedReferencesCount 41
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000838209800039&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2045-2322
IngestDate Fri Oct 03 12:39:15 EDT 2025
Tue Nov 04 02:01:27 EST 2025
Sat Nov 29 01:25:53 EST 2025
Fri Sep 05 07:30:24 EDT 2025
Tue Oct 07 08:04:46 EDT 2025
Thu Jan 02 22:54:06 EST 2025
Sat Nov 29 02:51:42 EST 2025
Tue Nov 18 21:52:24 EST 2025
Fri Feb 21 02:36:34 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License 2022. The Author(s).
Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c584t-225ae9fda749bbc79682aec9373a4370d86daf3444e09e3f51ea271aa813a4503
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
scopus-id:2-s2.0-85126244339
ORCID 0000-0003-0519-0619
OpenAccessLink https://www.proquest.com/docview/2637832941?pq-origsite=%requestingapplication%
PMID 35273282
PQID 2637832941
PQPubID 2041939
PageCount 16
ParticipantIDs doaj_primary_oai_doaj_org_article_525617e5f73e497d95fee455241817a0
pubmedcentral_primary_oai_pubmedcentral_nih_gov_8913825
liege_orbi_v2_oai_orbi_ulg_ac_be_2268_292314
proquest_miscellaneous_2638727620
proquest_journals_2637832941
pubmed_primary_35273282
crossref_primary_10_1038_s41598_022_07885_y
crossref_citationtrail_10_1038_s41598_022_07885_y
springer_journals_10_1038_s41598_022_07885_y
PublicationCentury 2000
PublicationDate 2022-03-10
PublicationDateYYYYMMDD 2022-03-10
PublicationDate_xml – month: 03
  year: 2022
  text: 2022-03-10
  day: 10
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Scientific reports
PublicationTitleAbbrev Sci Rep
PublicationTitleAlternate Sci Rep
PublicationYear 2022
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Research
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Research
– name: Nature Portfolio
References Li (CR26) 2011; 20
Zafar (CR10) 2020; 20
Codella (CR14) 2017; 61
CR19
Li, Shen (CR24) 2018; 18
CR18
CR17
CR15
Marchetti (CR4) 2018; 78
Hagerty (CR3) 2019; 23
CR13
Zhang, Liu, Wang (CR16) 2018; 15
CR11
Moshkov, Mathe, Kertesz-Farkas, Hollandi, Horvath (CR20) 2020; 10
Radiuk (CR21) 2017; 20
Bi (CR5) 2017; 64
CR8
CR7
CR9
CR25
CR22
Yuan, Chao, Lo (CR6) 2017; 36
Newlands, Currie, Memon, Whitaker, Woolford (CR2) 2016; 130
Rogers, Weinstock, Feldman, Coldiron (CR1) 2015; 151
Al-Masni, Al-Antari, Choi, Han, Kim (CR12) 2018; 162
Yu, Chen, Dou, Qin, Heng (CR23) 2016; 36
MA Al-Masni (7885_CR12) 2018; 162
7885_CR19
JR Hagerty (7885_CR3) 2019; 23
7885_CR15
7885_CR18
7885_CR17
N Moshkov (7885_CR20) 2020; 10
K Zafar (7885_CR10) 2020; 20
7885_CR11
C Newlands (7885_CR2) 2016; 130
7885_CR13
NC Codella (7885_CR14) 2017; 61
Y Yuan (7885_CR6) 2017; 36
L Bi (7885_CR5) 2017; 64
7885_CR7
7885_CR8
7885_CR9
7885_CR22
MA Marchetti (7885_CR4) 2018; 78
7885_CR25
HW Rogers (7885_CR1) 2015; 151
Z Zhang (7885_CR16) 2018; 15
C Li (7885_CR26) 2011; 20
Lequan Yu (7885_CR23) 2016; 36
Y Li (7885_CR24) 2018; 18
PM Radiuk (7885_CR21) 2017; 20
References_xml – volume: 23
  start-page: 1385
  year: 2019
  end-page: 1391
  ident: CR3
  article-title: Deep learning and handcrafted method fusion: Higher diagnostic accuracy for melanoma dermoscopy images
  publication-title: IEEE J. Biomed. Health Inform.
  doi: 10.1109/JBHI.2019.2891049
– ident: CR22
– ident: CR18
– volume: 151
  start-page: 1081
  year: 2015
  end-page: 1086
  ident: CR1
  article-title: Incidence estimate of nonmelanoma skin cancer (keratinocyte carcinomas) in the us population, 2012
  publication-title: JAMA Dermatol.
  doi: 10.1001/jamadermatol.2015.1187
– volume: 36
  start-page: 1876
  year: 2017
  end-page: 1886
  ident: CR6
  article-title: Automatic skin lesion segmentation using deep fully convolutional networks with jaccard distance
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2017.2695227
– volume: 20
  start-page: 1601
  year: 2020
  ident: CR10
  article-title: Skin lesion segmentation from dermoscopic images using convolutional neural network
  publication-title: Sensors
  doi: 10.3390/s20061601
– ident: CR8
– ident: CR25
– volume: 78
  start-page: 270
  year: 2018
  end-page: 277
  ident: CR4
  article-title: Results of the 2016 international skin imaging collaboration international symposium on biomedical imaging challenge: Comparison of the accuracy of computer algorithms to dermatologists for the diagnosis of melanoma from dermoscopic images
  publication-title: J. Am. Acad. Dermatol.
  doi: 10.1016/j.jaad.2017.08.016
– ident: CR19
– volume: 64
  start-page: 2065
  year: 2017
  end-page: 2074
  ident: CR5
  article-title: Dermoscopic image segmentation via multistage fully convolutional networks
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2017.2712771
– volume: 61
  start-page: 5
  year: 2017
  end-page: 1
  ident: CR14
  article-title: Deep learning ensembles for melanoma recognition in dermoscopy images
  publication-title: IBM J. Res. Dev.
  doi: 10.1147/JRD.2017.2708299
– volume: 36
  start-page: 994
  issue: 4
  year: 2016
  end-page: 1004
  ident: CR23
  article-title: Automated Melanoma Recognition in Dermoscopy Images via Very Deep Residual Networks
  publication-title: IEEE Transactions on Medical Imaging
  doi: 10.1109/TMI.2016.2642839
– ident: CR15
– volume: 20
  start-page: 20
  year: 2017
  end-page: 24
  ident: CR21
  article-title: Impact of training set batch size on the performance of convolutional neural networks for diverse datasets
  publication-title: Inf. Technol. Manag. Sci.
– volume: 20
  start-page: 2007
  year: 2011
  end-page: 2016
  ident: CR26
  article-title: A level set method for image segmentation in the presence of intensity inhomogeneities with application to MRI
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2011.2146190
– ident: CR17
– ident: CR13
– ident: CR11
– ident: CR9
– volume: 162
  start-page: 221
  year: 2018
  end-page: 231
  ident: CR12
  article-title: Skin lesion segmentation in dermoscopy images via deep full resolution convolutional networks
  publication-title: Comput. Methods Progr. Biomed.
  doi: 10.1016/j.cmpb.2018.05.027
– volume: 130
  start-page: S125
  year: 2016
  end-page: S132
  ident: CR2
  article-title: Non-melanoma skin cancer: United kingdom national multidisciplinary guidelines
  publication-title: J. Laryngol. Otol.
  doi: 10.1017/S0022215116000554
– volume: 18
  start-page: 556
  year: 2018
  ident: CR24
  article-title: Skin lesion analysis towards melanoma detection using deep learning network
  publication-title: Sensors
  doi: 10.3390/s18020556
– ident: CR7
– volume: 10
  start-page: 1
  year: 2020
  end-page: 7
  ident: CR20
  article-title: Test-time augmentation for deep learning-based cell segmentation on microscopy images
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-020-61808-3
– volume: 15
  start-page: 749
  year: 2018
  end-page: 753
  ident: CR16
  article-title: Road extraction by deep residual u-net. IEEE Geosci
  publication-title: Remote Sens. Lett.
  doi: 10.1109/LGRS.2018.2802944
– volume: 23
  start-page: 1385
  year: 2019
  ident: 7885_CR3
  publication-title: IEEE J. Biomed. Health Inform.
  doi: 10.1109/JBHI.2019.2891049
– volume: 151
  start-page: 1081
  year: 2015
  ident: 7885_CR1
  publication-title: JAMA Dermatol.
  doi: 10.1001/jamadermatol.2015.1187
– ident: 7885_CR22
  doi: 10.1145/1553374.1553479
– ident: 7885_CR8
– ident: 7885_CR15
  doi: 10.1007/978-3-319-24574-4_28
– volume: 36
  start-page: 994
  issue: 4
  year: 2016
  ident: 7885_CR23
  publication-title: IEEE Transactions on Medical Imaging
  doi: 10.1109/TMI.2016.2642839
– ident: 7885_CR7
  doi: 10.1109/SSCI.2017.8280804
– ident: 7885_CR13
  doi: 10.1109/ISBI.2018.8363547
– volume: 15
  start-page: 749
  year: 2018
  ident: 7885_CR16
  publication-title: Remote Sens. Lett.
  doi: 10.1109/LGRS.2018.2802944
– volume: 130
  start-page: S125
  year: 2016
  ident: 7885_CR2
  publication-title: J. Laryngol. Otol.
  doi: 10.1017/S0022215116000554
– volume: 18
  start-page: 556
  year: 2018
  ident: 7885_CR24
  publication-title: Sensors
  doi: 10.3390/s18020556
– ident: 7885_CR11
– volume: 61
  start-page: 5
  year: 2017
  ident: 7885_CR14
  publication-title: IBM J. Res. Dev.
  doi: 10.1147/JRD.2017.2708299
– ident: 7885_CR18
  doi: 10.1109/CVPR.2015.7298965
– ident: 7885_CR19
– volume: 20
  start-page: 2007
  year: 2011
  ident: 7885_CR26
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2011.2146190
– volume: 162
  start-page: 221
  year: 2018
  ident: 7885_CR12
  publication-title: Comput. Methods Progr. Biomed.
  doi: 10.1016/j.cmpb.2018.05.027
– volume: 36
  start-page: 1876
  year: 2017
  ident: 7885_CR6
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2017.2695227
– ident: 7885_CR25
– volume: 20
  start-page: 20
  year: 2017
  ident: 7885_CR21
  publication-title: Inf. Technol. Manag. Sci.
– volume: 10
  start-page: 1
  year: 2020
  ident: 7885_CR20
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-020-61808-3
– volume: 64
  start-page: 2065
  year: 2017
  ident: 7885_CR5
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2017.2712771
– volume: 20
  start-page: 1601
  year: 2020
  ident: 7885_CR10
  publication-title: Sensors
  doi: 10.3390/s20061601
– ident: 7885_CR17
  doi: 10.1109/ISM46123.2019.00049
– volume: 78
  start-page: 270
  year: 2018
  ident: 7885_CR4
  publication-title: J. Am. Acad. Dermatol.
  doi: 10.1016/j.jaad.2017.08.016
– ident: 7885_CR9
  doi: 10.1109/TMI.2017.2695227
SSID ssj0000529419
Score 2.5568166
Snippet In a computer-aided diagnostic (CAD) system for skin lesion segmentation, variations in shape and size of the skin lesion makes the segmentation task more...
Abstract In a computer-aided diagnostic (CAD) system for skin lesion segmentation, variations in shape and size of the skin lesion makes the segmentation task...
SourceID doaj
pubmedcentral
liege
proquest
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 3948
SubjectTerms 692/699
692/700
Automation
Datasets
Deep Learning
Dermoscopy
Dermoscopy - methods
Engineering, computing & technology
Humanities and Social Sciences
Humans
Ingénierie, informatique & technologie
Lesions
Melanoma
Melanoma - diagnostic imaging
Multidisciplinary
Neural Networks, Computer
Science
Science (multidisciplinary)
Segmentation
Skin Diseases
Skin lesions
Skin Neoplasms
Skin Neoplasms - diagnostic imaging
Skin Neoplasms - pathology
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lj9MwELbQCiQuiDdZFmQkbhBt_KrtIyBWHGDFAdDerEk8KZXadLVpV-q_Z-yk3S3PC1IOVTJxY89M5pvMeIaxl9gKhwQb6O1XuVI3AGWNmHZyRaWisG2VI_jfPtrTU3d25j9fa_WVcsKG8sDDwh0bssnCommtQu1t9KZF1MaQ5XHCQvbWK-uvOVNDVW_ptfDjLplKueOeLFXaTSZTsqVzptzsWaJcsJ8A6jyFqn-HNn9NmvwpcpoN0slddmdEkvzNMIN77AZ299mtobfk5gGLn3AO3XIBvMfpYtxh1PGU5z7lEfGcjw0jpjx9i-UEOVdl6jTPYX1F33PoIiefOc6Gj4acbFtcLnjOfOsfsq8n77-8-1COLRXKhpDGqiTtBfRtBKt9XTfWT5wEbAijKNDKVtFNIrRKa42VR9UagSCtAHCCCEylHrGDbtnhE8Yl1EhM8F5Wta6jpINGdwYjgbCooWBiu7yhGeuNp7YX85Dj3sqFgSWBWBIyS8KmYK9295wP1Tb-Sv02cW1HmSpl5xMkP2GUn_Av-SnY68xzuqmehUuZR8m_13MapQk1BoKoLsgEhXXBjraiEUZt74OcKEtvRpK4gr3YXSY9TcEX6HC5zjSOsOJE0j8-HiRp9-AqVcEj37dgdk_G9ma2f6Wbfc-1wFOUmZx8msVWGq8e688rd_g_Vu4puy2zOqXkxiN2sLpY4zN2s7lczfqL51kffwD-Mzcy
  priority: 102
  providerName: Directory of Open Access Journals
Title Melanoma segmentation using deep learning with test-time augmentations and conditional random fields
URI https://link.springer.com/article/10.1038/s41598-022-07885-y
https://www.ncbi.nlm.nih.gov/pubmed/35273282
https://www.proquest.com/docview/2637832941
https://www.proquest.com/docview/2638727620
https://orbi.uliege.be/handle/2268/292314
https://pubmed.ncbi.nlm.nih.gov/PMC8913825
https://doaj.org/article/525617e5f73e497d95fee455241817a0
Volume 12
WOSCitedRecordID wos000838209800039&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals (WRLC)
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: DOA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: M~E
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Biological Science Database
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: M7P
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: 7X7
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest - Publicly Available Content Database
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: PIMPY
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: BENPR
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Science Database (ProQuest)
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: M2P
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/sciencejournals
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dj9MwDI_gDiRe-D4oHFOQeIPq2iRdkifEoTuBxKYJARpPUdq4Y9LWjnU7af89TtptGh_3gjRF0-qmyew4v9qOTcgrKFMFCBtQ-yUqFoW1cQ7gT3I5zl0qyyR48L99ksOhGo_1qDO4NV1Y5VYnBkXt6sLbyM9Yn0uUPi3St4ufsa8a5b2rXQmNm-TYl832ci7Hcmdj8V4skerurEzC1VmD-5U_U8Z8yKVSWbw52I9C2n6EqTPvsP4b5vwzdPI3_2nYli7v_e-E7pO7HSCl71oJekBuQPWQ3G5LVG4eETeAma3quaUNTObdQaWK-nD5CXUAC9rVnZhQb9KliFxXsS9YT-16T99QWzmKr95u2toeKW6Rrp7TEEDXPCZfLy--vP8Qd5UZ4gIByypGJWBBl85KofO8kLqvmIUCoQ63gsvEqb6zJRdCQKKBl1kKlsnUWpUiQZbwE3JU1RU8JZTZHBBFaM2SXOSO4Qd7Vxk4xHJO2IikW_6Yoktb7qtnzExwn3NlWp4a5KkJPDWbiLze3bNok3ZcS33u2b6j9Am3ww_1cmK69WsyhIaphKyUHISWTmclgMgyHLpKpU0i8iYIDd6UT80VC72E7-sZ9lKYHAwiXWWYR9QiIqdboTCd0mjMXiIi8nJ3GZe79-HYCup1oFEIOfsMn_ikFcXdwLlPpoev0BGRB0J6MLPDK9X0R0gp7p3VimU4i60474f173_u2fWzeE7usLDSfPTjKTlaLdfwgtwqrlbTZtkLSzW0qkeOzy-Go8-9YBHBdsBGvpXYHo8-DkbffwFDWU2I
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lj9MwELaWLgguvB-BBYwEJ4g2cZzaOSDEa7XVttUeFrScjBNPSqU2KU27qH-K38jYSVqVx972gNRD1EwcO_lm_MUz4yHkOeShBKQNaP0C6fNMaz8FsJlcJopMKPLAefA_98VwKE9Pk-Md8rPNhbFhla1NdIbalJldI99n3Ugg-hIevpl9923VKOtdbUto1LA4gtUP_GSrXvc-4Pt9wdjBx5P3h35TVcDPcLJd-AhgDUlutOBJmmYi6UqmIcNpOtI8EoGRXaPziHMOQQJRHoegmQi1liEKxEGE7V4iuxzBHnTI7nFvcPxlvapj_WY8TJrsnCCS-xXOkDaLjdkgTyljf7U1A7pCAUiMJ9ZF_jeW-2ew5m8eWzcRHtz43x7hTXK9odz0ba0jt8gOFLfJlboI5-oOMQOY6KKcalrBaNqkYhXUJgSMqAGY0aayxojaRWuK3HzhL8ZToHq5ka-oLgzNShsB4FZXKZIAU06pCxGs7pJPFzLEe6RTlAU8IJTpFJAnJQkLUp4ahj9sXcZgkK0arj0StnhQWbMxu60PMlEuQCCSqsaQQgwphyG18sjL9TWzeluSc6XfWZitJe2W4u6Pcj5SjYVSMZLfUECciwh4IkwS5wA8jrHrMhQ68MgrB1K8KB2rM-ZaccfLCbaSqRQUcnmpmP1m4B7Za0GoGrNYqQ0CPfJsfRoNmvVS6QLKpZORSKq7DO94v4b-uuOR3S6QSeYRsaUUWyPbPlOMv7lN0607XrIYR9Gqz6Zb_35yD88fxVNy9fBk0Ff93vDoEbnGnJbbWM890lnMl_CYXM7OFuNq_qQxFJR8vWjF-gUtW6Sq
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lj9MwELaWLiAuvB-FBYwEJ4ia2E7tHBBi2a1Y7VJVCNDejBNPSqU2KU27qH-NX8fYTVqVx972gNRD1TiOnX4z89kz4yHkOeSRAqQNqP1CFYjMmCAFcJlclnMbyTz0HvwvJ7LfV6enyWCH_GxyYVxYZaMTvaK2Zeb2yDusyyWiLxFRJ6_DIgYHvTfT74GrIOU8rU05jRVEjmH5A5dv1eujA_yvXzDWO_z07n1QVxgIMjS88wDBbCDJrZEiSdNMJl3FDGRosrkRXIZWda3JuRACwgR4HkdgmIyMURE2iEOO_V4iu5LjoqdFdvcP-4OP6x0e50MTUVJn6oRcdSq0li6jjbmAT6XiYLllDX3RACTJY-cu_xvj_TNw8zfvrTeKvRv_8-u8Sa7XVJy-XcnOLbIDxW1yZVWcc3mH2A8wNkU5MbSC4aRO0SqoSxQYUgswpXXFjSF1m9kUOfs8mI8mQM1i076iprA0K11kgN91pUgObDmhPnSwuks-X8gU75FWURbwgFBmUkD-lCQsTEVqGX6wdxWDRRZrhWmTqMGGzuoD213dkLH2gQNc6RWeNOJJezzpZZu8XN8zXR1Xcm7rfQe5dUt31Lj_oZwNda25dIykOJIQ55KDSKRN4hxAxDEOXUXShG3yygMWb0pH-oz5Xvz3xRh7yXQKGjm-0sytJUSb7DWA1LW6rPQGjW3ybH0ZFZ3zXpkCyoVvo5Bsdxk-8f5KDNYD5-4YQaZYm8gtAdma2faVYvTNH6bu3PSKxTiLRpQ2w_r3m3t4_iyekqsoTfrkqH_8iFxjXuBdCOgeac1nC3hMLmdn81E1e1LrDEq-XrRc_QJVvq1E
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Melanoma+segmentation+using+deep+learning+with+test-time+augmentations+and+conditional+random+fields&rft.jtitle=Scientific+reports&rft.au=Ashraf%2C+Hassan&rft.au=Waris%2C+Asim&rft.au=Ghafoor%2C+Muhammad+Fazeel&rft.au=Gilani%2C+Syed+Omer&rft.date=2022-03-10&rft.pub=Nature+Research&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038%2Fs41598-022-07885-y&rft_id=info%3Apmid%2F35273282&rft.externalDBID=n%2Fa&rft.externalDocID=oai_orbi_ulg_ac_be_2268_292314
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon