Diversity of conformational states and changes within the EF-hand protein superfamily
The EF‐hand motif, which assumes a helix‐loop‐helix structure normally responsible for Ca2+ binding, is found in a large number of functionally diverse Ca2+ binding proteins collectively known as the EF‐hand protein superfamily. In many superfamily members, Ca2+ binding induces a conformational chan...
Gespeichert in:
| Veröffentlicht in: | Proteins, structure, function, and bioinformatics Jg. 37; H. 3; S. 499 - 507 |
|---|---|
| Hauptverfasser: | , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
New York
John Wiley & Sons, Inc
15.11.1999
|
| Schlagworte: | |
| ISSN: | 0887-3585, 1097-0134 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | The EF‐hand motif, which assumes a helix‐loop‐helix structure normally responsible for Ca2+ binding, is found in a large number of functionally diverse Ca2+ binding proteins collectively known as the EF‐hand protein superfamily. In many superfamily members, Ca2+ binding induces a conformational change in the EF‐hand motif, leading to the activation or inactivation of target proteins. In calmodulin and troponin C, this is described as a change from the closed conformational state in the absence of Ca2+ to the open conformational state in its presence. It is now clear from structures of other EF‐hand proteins that this “closed‐to‐open” conformational transition is not the sole model for EF‐hand protein structural response to Ca2+. More complex modes of conformational change are observed in EF‐hand proteins that interact with a covalently attached acyl group (e.g., recoverin) and in those that dimerize (e.g., S100B, calpain). In fact, EF‐hand proteins display a multitude of unique conformational states, together constituting a conformational continuum. Using a quantitative 3D approach termed vector geometry mapping (VGM), we discuss this tertiary structural diversity of EF‐hand proteins and its correlation with target recognition. Proteins 1999;37:499–507. ©1999 Wiley‐Liss, Inc. |
|---|---|
| AbstractList | The EF-hand motif, which assumes a helix-loop-helix structure normally responsible for Ca2+ binding, is found in a large number of functionally diverse Ca2+ binding proteins collectively known as the EF-hand protein superfamily. In many superfamily members, Ca2+ binding induces a conformational change in the EF-hand motif, leading to the activation or inactivation of target proteins. In calmodulin and troponin C, this is described as a change from the closed conformational state in the absence of Ca2+ to the open conformational state in its presence. It is now clear from structures of other EF-hand proteins that this "closed-to-open" conformational transition is not the sole model for EF-hand protein structural response to Ca2+. More complex modes of conformational change are observed in EF-hand proteins that interact with a covalently attached acyl group (e.g., recoverin) and in those that dimerize (e.g., S100B, calpain). In fact, EF-hand proteins display a multitude of unique conformational states, together constituting a conformational continuum. Using a quantitative 3D approach termed vector geometry mapping (VGM), we discuss this tertiary structural diversity of EF-hand proteins and its correlation with target recognition. The EF‐hand motif, which assumes a helix‐loop‐helix structure normally responsible for Ca2+ binding, is found in a large number of functionally diverse Ca2+ binding proteins collectively known as the EF‐hand protein superfamily. In many superfamily members, Ca2+ binding induces a conformational change in the EF‐hand motif, leading to the activation or inactivation of target proteins. In calmodulin and troponin C, this is described as a change from the closed conformational state in the absence of Ca2+ to the open conformational state in its presence. It is now clear from structures of other EF‐hand proteins that this “closed‐to‐open” conformational transition is not the sole model for EF‐hand protein structural response to Ca2+. More complex modes of conformational change are observed in EF‐hand proteins that interact with a covalently attached acyl group (e.g., recoverin) and in those that dimerize (e.g., S100B, calpain). In fact, EF‐hand proteins display a multitude of unique conformational states, together constituting a conformational continuum. Using a quantitative 3D approach termed vector geometry mapping (VGM), we discuss this tertiary structural diversity of EF‐hand proteins and its correlation with target recognition. Proteins 1999;37:499–507. ©1999 Wiley‐Liss, Inc. The EF-hand motif, which assumes a helix-loop-helix structure normally responsible for Ca2+ binding, is found in a large number of functionally diverse Ca2+ binding proteins collectively known as the EF-hand protein superfamily. In many superfamily members, Ca2+ binding induces a conformational change in the EF-hand motif, leading to the activation or inactivation of target proteins. In calmodulin and troponin C, this is described as a change from the closed conformational state in the absence of Ca2+ to the open conformational state in its presence. It is now clear from structures of other EF-hand proteins that this "closed-to-open" conformational transition is not the sole model for EF-hand protein structural response to Ca2+. More complex modes of conformational change are observed in EF-hand proteins that interact with a covalently attached acyl group (e.g., recoverin) and in those that dimerize (e.g., S100B, calpain). In fact, EF-hand proteins display a multitude of unique conformational states, together constituting a conformational continuum. Using a quantitative 3D approach termed vector geometry mapping (VGM), we discuss this tertiary structural diversity of EF-hand proteins and its correlation with target recognition.The EF-hand motif, which assumes a helix-loop-helix structure normally responsible for Ca2+ binding, is found in a large number of functionally diverse Ca2+ binding proteins collectively known as the EF-hand protein superfamily. In many superfamily members, Ca2+ binding induces a conformational change in the EF-hand motif, leading to the activation or inactivation of target proteins. In calmodulin and troponin C, this is described as a change from the closed conformational state in the absence of Ca2+ to the open conformational state in its presence. It is now clear from structures of other EF-hand proteins that this "closed-to-open" conformational transition is not the sole model for EF-hand protein structural response to Ca2+. More complex modes of conformational change are observed in EF-hand proteins that interact with a covalently attached acyl group (e.g., recoverin) and in those that dimerize (e.g., S100B, calpain). In fact, EF-hand proteins display a multitude of unique conformational states, together constituting a conformational continuum. Using a quantitative 3D approach termed vector geometry mapping (VGM), we discuss this tertiary structural diversity of EF-hand proteins and its correlation with target recognition. |
| Author | Swindells, Mark B. Yap, Kyoko L. Ikura, Mitsuhiko Ames, James B. |
| Author_xml | – sequence: 1 givenname: Kyoko L. surname: Yap fullname: Yap, Kyoko L. organization: Division of Molecular and Structural Biology, Ontario Cancer Institute and Department of Medical Biophysics, University of Toronto, Toronto, Canada – sequence: 2 givenname: James B. surname: Ames fullname: Ames, James B. organization: Center for Advanced Research in Biotechnology, University of Maryland Biotechnology Institute, Rockville, Maryland – sequence: 3 givenname: Mark B. surname: Swindells fullname: Swindells, Mark B. organization: Inpharmatica, London,United Kingdom – sequence: 4 givenname: Mitsuhiko surname: Ikura fullname: Ikura, Mitsuhiko email: mikura@oci.utoronto.ca organization: Division of Molecular and Structural Biology, Ontario Cancer Institute and Department of Medical Biophysics, University of Toronto, Toronto, Canada |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/10591109$$D View this record in MEDLINE/PubMed |
| BookMark | eNqFkd1v0zAUxS00xLrBv4DyhLaHFDuO47ggxJR9UDStfGxi28uVm15TQz5K7DL63-Mo3YQEEk-2js_96fqcPbLTtA0S8pbRMaM0eXnweVpMDxlVMqaMpwdMKcUYE4dcTvjrVKnJ5Gh6HH_4NLtk8g0f03Exe5XEN4_I6GFoh4xonsuYi1zskj3nvlFKM8WzJ2SXURF4VI3I1bH9iZ2zfhO1JirbxrRdrb1tG11FzmuPLtLNIiqXuvka7nfWL20T-SVGJ6fxsn9ada3HoLn1Cjuja1ttnpLHRlcOn23PfXJ1enJZvIvPZ2fT4ug8LkWehtUyLvkioQnXrFSYpBlnpZELgzSdp0zMhdCoMuTciCylyLQ0kjGjMzVnYZDvkxcDN-zwY43OQ21diVWlG2zXDsJ30yRL8mB8vjWu5zUuYNXZWncbuA8iGK4HQ9m1znVo_rBA3wlA3wn08UIfL9x3AlwCh9AJQOgEhk6CQqGYQQI3AX07oO9shZu_uP_F_pO6VQI8HuDWefz1ANfdd8gklwK-XJzBdX578V4KBR_5b7sFrvA |
| Cites_doi | 10.1016/0022-2836(88)90208-2 10.1038/376444a0 10.1093/protein/6.5.485 10.1038/380595a0 10.1038/nsb0797-539 10.1006/jmbi.1993.1322 10.1023/A:1009253808876 10.3109/10409238409108717 10.1074/jbc.274.27.19329 10.1016/S0021-9258(18)68533-3 10.1023/A:1008315517955 10.1002/pro.5560070206 10.1073/pnas.82.10.3187 10.1074/jbc.270.27.16147 10.1016/S0092-8674(00)81052-1 10.1038/nsb0995-758 10.1107/S0021889891004399 10.1002/j.1460-2075.1995.tb00175.x 10.1038/18044 10.1016/S0021-9258(17)35835-0 10.1038/nsb0995-790 10.1038/nsb0797-532 10.1074/jbc.271.32.19346 10.1126/science.3037704 10.1074/jbc.273.22.13367 10.1126/science.281.5381.1357 10.1016/S0021-9258(19)50367-2 10.1016/0166-2236(92)90067-I 10.1006/jmbi.1995.0308 10.1038/nsb0995-777 10.1110/ps.8.4.800 10.1016/S0021-9258(19)44043-X 10.1016/0022-2836(92)91004-9 10.1139/o98-055 10.1083/jcb.112.5.981 10.1073/pnas.93.1.13 10.1016/S0006-8993(97)01002-0 10.1038/18050 10.1016/S0969-2126(96)00006-8 10.1021/bi972635p 10.1074/jbc.274.17.11848 10.1073/pnas.92.23.10644 10.1016/S0006-3495(85)83831-5 10.1021/bi972701n 10.1016/S0969-2126(96)00111-6 10.1139/o98-062 10.1021/bi9631531 10.1016/S0969-2126(98)00024-0 10.1023/A:1009282307967 10.1002/j.1460-2075.1988.tb03089.x 10.1021/bi9612226 10.1016/S0167-4838(99)00006-0 10.1016/S0969-2126(98)00023-9 10.1016/S0969-2126(98)00022-7 10.1038/4965 10.1016/S0968-0004(06)80021-6 10.1016/S0969-2126(98)00049-5 10.1038/38310 10.1002/pro.5560060721 10.1038/nsb0995-768 10.1016/S0959-440X(96)80106-0 10.1126/science.8430337 10.1038/4956 10.1021/bi00354a041 10.1016/S0021-9258(19)84447-2 10.1016/S0021-9258(18)42107-2 10.1016/S0014-5793(97)01535-4 10.1146/annurev.bb.24.060195.000505 |
| ContentType | Journal Article |
| Copyright | Copyright © 1999 Wiley‐Liss, Inc. |
| Copyright_xml | – notice: Copyright © 1999 Wiley‐Liss, Inc. |
| DBID | BSCLL AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
| DOI | 10.1002/(SICI)1097-0134(19991115)37:3<499::AID-PROT17>3.0.CO;2-Y |
| DatabaseName | Istex CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Anatomy & Physiology Chemistry Biology |
| EISSN | 1097-0134 |
| EndPage | 507 |
| ExternalDocumentID | 10591109 10_1002__SICI_1097_0134_19991115_37_3_499__AID_PROT17_3_0_CO_2_Y PROT17 ark_67375_WNG_X8ZNJ759_Q |
| Genre | article Research Support, U.S. Gov't, P.H.S Review Research Support, Non-U.S. Gov't Journal Article |
| GrantInformation_xml | – fundername: National Institutes of Health funderid: EY‐12347 – fundername: Medical Research Council of Canada – fundername: NEI NIH HHS grantid: EY-12347 – fundername: NEI NIH HHS grantid: R01 EY012347 |
| GroupedDBID | -~X .3N .GA .GJ .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 31~ 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5RE 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHQN AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABIJN ABLJU ACAHQ ACBWZ ACCZN ACFBH ACGFS ACIWK ACPOU ACPRK ACRPL ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADZMN AEIGN AEIMD AEUYR AEYWJ AFBPY AFFPM AFGKR AFRAH AFWVQ AFZJQ AGQPQ AGYGG AHBTC AHMBA AITYG AIURR AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BLYAC BMNLL BNHUX BROTX BRXPI BSCLL BY8 CS3 D-E D-F D0L DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS EJD F00 F01 F04 F5P FEDTE G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HVGLF HZ~ IX1 JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- P2P P2W P2X P4D PQQKQ Q.N Q11 QB0 QRW R.K RNS ROL RX1 SUPJJ UB1 V2E W8V W99 WBFHL WBKPD WIB WIH WIK WJL WOHZO WQJ WXSBR WYISQ XG1 XPP XV2 ZGI ZXP ZZTAW ~IA ~WT AAHHS ACCFJ AEEZP AEQDE AEUQT AFPWT AIWBW AJBDE RBB RWI WRC AAYXX CITATION O8X CGR CUY CVF ECM EIF NPM 7X8 |
| ID | FETCH-LOGICAL-c5847-36373d2023a1c9e24631cf7dfe04b415b55ae96e33f5640e1a7f711fa69b13d23 |
| IEDL.DBID | DRFUL |
| ISICitedReferencesCount | 238 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000083429400017&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0887-3585 |
| IngestDate | Sun Nov 09 09:26:14 EST 2025 Mon Jul 21 05:49:54 EDT 2025 Sat Nov 29 06:05:32 EST 2025 Wed Jan 22 17:09:50 EST 2025 Sun Sep 21 06:17:33 EDT 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 3 |
| Language | English |
| License | http://doi.wiley.com/10.1002/tdm_license_1.1 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c5847-36373d2023a1c9e24631cf7dfe04b415b55ae96e33f5640e1a7f711fa69b13d23 |
| Notes | Medical Research Council of Canada ark:/67375/WNG-X8ZNJ759-Q National Institutes of Health - No. EY-12347 ArticleID:PROT17 istex:253A2461603372618DF05504B86F97692018D3A9 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 |
| OpenAccessLink | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/%28SICI%291097-0134%2819991115%2937%3A3%3C499%3A%3AAID-PROT17%3E3.0.CO%3B2-Y |
| PMID | 10591109 |
| PQID | 69342628 |
| PQPubID | 23479 |
| PageCount | 9 |
| ParticipantIDs | proquest_miscellaneous_69342628 pubmed_primary_10591109 crossref_primary_10_1002__SICI_1097_0134_19991115_37_3_499__AID_PROT17_3_0_CO_2_Y wiley_primary_10_1002_SICI_1097_0134_19991115_37_3_499_AID_PROT17_3_0_CO_2_Y_PROT17 istex_primary_ark_67375_WNG_X8ZNJ759_Q |
| PublicationCentury | 1900 |
| PublicationDate | 15 November 1999 |
| PublicationDateYYYYMMDD | 1999-11-15 |
| PublicationDate_xml | – month: 11 year: 1999 text: 15 November 1999 day: 15 |
| PublicationDecade | 1990 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York – name: United States |
| PublicationTitle | Proteins, structure, function, and bioinformatics |
| PublicationTitleAlternate | Proteins |
| PublicationYear | 1999 |
| Publisher | John Wiley & Sons, Inc |
| Publisher_xml | – name: John Wiley & Sons, Inc |
| References | Lin GD, Chattopadhyay D, Maki M, et al. Crystal structure of calcium bound domain VI of calpain at 1.9 Å resolution and its role in enzyme assembly, regulation, and inhibitor binding. Nat Struct Biol 1997; 4:539-547. Medline Brodersen DE, Etzerodt M, Madsen P, et al. EF-hands at atomic resolution: The structure of human psoriasin (S100A7) solved by MAD phasing. Structure 1998; 6:477-489. Medline Vijay-Kumar S, Kumar VD. Crystal structure of recombinant bovine neurocalcin. Nat Struct Biol 1999; 6:80-88. Medline Mäler L, Potts BC, Chazin WJ. High resolution solution structure of apo calcyclin and structural variations in the S100 family of calcium-binding proteins. J Biomol NMR 1999; 13:233-247. Medline Drohat AC, Baldisseri DM, Rustandi RR, Weber DJ. Solution structure of calcium-bound rat S100B(ββ) as determined by nuclear magnetic resonance spectroscopy. Biochemistry 1998; 37:2729-2740. Medline Lukas TJ, Burgess WH, Prendergast FG, Lau W, Watterson DM. Calmodulin binding domains: Characterization of a phosphorylation and calmodulin binding site from myosin light chain kinase. Biochemistry 1986; 25:1458-1464. Medline de Beer T, Carter RE, Lobel-Rice KE, Sorkin A, Overduin M. Structure and Asn-Pro-Phe binding pocket of the Eps15 homology domain. Science 1998; 281:1357-1360. Medline Blumenthal DK, Takio K, Edelman AM, et al. Identification of the calmodulin-binding domain of skeletal muscle myosin light chain kinase. Proc Natl Acad Sci USA 1985; 82:3187-3191. Medline Skelton NJ, Kördel J, Chazin WJ. Determination of the solution structure of Apo calbindin D9k by NMR spectroscopy. J Mol Biol 1995; 249:441-462. Medline Sastry M, Ketchem RR, Crescenzi O, Weber C, Lubienski MJ, Hidaka H, Chazin WJ. The three-dimensional structure of Ca2+-bound calcyclin: Implications for Ca2+-signal transduction by S100 proteins. Structure 1998; 6:223-231. Medline Smith SP, Shaw GS. A novel calcium-sensitive switch revealed by the structure of human S100B in the calcium-bound form. Structure 1998; 6:211-222. Medline Ames JB, Ishima R, Tanaka T, Gordon JI, Stryer L, Ikura M. Molecular mechanics of calcium-myristoyl switches. Nature 1997; 389:198-202. Medline Vijay-Kumar S, Cook WJ. Structure of a sarcoplasmic calcium-binding protein from Nereis diversicolor refined at 2.0 Å resolution. J Mol Biol 1992; 224:413-426. Medline Nelson MR, Chazin WJ. Structures of EF-hand Ca2+-binding proteins: Diversity in the organization, packing and response to Ca2+ binding. Biometals 1998; 11:297-318. Medline Drohat AC, Amburgey JC, Abildgaard F, Starich MR, Baldisseri D, Weber DJ. Solution structure of rat apo-S100B(ββ) as determined by NMR spectroscopy. Biochemistry 1996; 35:11577-11588. Medline Travé G, Lacombe PJ, Pfuhl M, Saraste M, Pastore A. Molecular mechanism of the calcium-induced conformational change in the spectrin EF-hands. EMBO J 1995; 14:4922-4931. Medline Orengo CA, Flores TP, Taylor WR, Thornton JM. Identification and classification of protein fold families. Protein Eng 1993; 6:485-500. Medline Hanley RM, Means AR, Ono T, et al. Functional analysis of a complementary DNA for the 50-kilodalton subunit of calmodulin kinase II. Science 1987; 237:293-297. Medline Dizhoor AM, Chen CK, Olshevskaya E, Sinelnikova VV, Phillipov P, Hurley JB. Role of the acylated amino terminus of recoverin in Ca2+-dependent membrane interaction. Science 1993; 259:829-832. Medline Ames JB, Tanaka T, Stryer L, Ikura M. Portrait of a myristoyl switch protein. Curr Opin Struct Biol 1996; 6:432-438. Medline Yap KL, Ames JB, Swindells MB, Ikura M. Vector geometry mapping: A method to characterize the conformation of helix-loop-helix calcium binding proteins. Methods Mol Biol, in press. Dizhoor AM, Hurley JB. Inactivation of EF-hands makes GCAP-2 (p24) a constitutive activator of photoreceptor guanylyl cyclase by preventing a Ca2+-induced "activator-to-inhibitor" transition. J Biol Chem 1996; 271:19346-19350. Medline Meng W, Sawasdikosol S, Burakoff SJ, Eck MJ. Structure of the amino-terminal domain of Cbl complexed to its binding site on ZAP-70 kinase. Nature 1999; 398:84-90. Medline Kördel J, Skelton NJ, Akke M, Chazin WJ. High-resolution structure of calcium-loaded calbindin D9k. J Mol Biol 1993; 231:711-734. Medline Speicher DW, Weglarz L, DeSilva TM. Properties of human red cell spectrin heterodimer (side-to-side) assembly and identification of an essential nucleation site. J Biol Chem 1992; 267:14775-14782. Medline Potts BC, Smith J, Akke M, et al. The structure of calcyclin reveals a novel homodimeric fold for S100 Ca2+-binding proteins. Nat Struct Biol 1995; 2:790-796. Medline Ikura M. Calcium binding and conformational response in EF-hand proteins. Trends Biochem Sci 1996; 21:14-17. Medline Jones S, Thornton JM. Principles of protein-protein interactions. Proc Natl Acad Sci USA 1996; 93:13-20. Medline Kawasaki H, Nakayama S, Kretsinger RH. Classification and evolution of EF-hand proteins. Biometals 1998; 11:277-295. Medline Ehlers MD, Zhang S, Bernhadt JP, Huganir RL. Inactivation of NMDA receptors by direct interaction of calmodulin with the NR1 subunit. Cell 1996; 84:745-755. Medline Gagné SM, Li MX, McKay RT, Sykes BD. The NMR angle on troponin C. Biochem Cell Biol 1998; 76:302-312. Medline Kilby PM, Van Eldik LJ, Roberts GC. The solution structure of the bovine S100B protein dimer in the calcium-free state. Structure 1996; 4:1041-1052. Medline Polans AS, Buczylko J, Crabb J, Palczewski K. A photoreceptor calcium binding protein is recognized by autoantibodies obtained from patients with cancer-associated retinopathy. J Cell Biol 1991; 112:981-989. Medline Nelson MR, Chazin WJ. An interaction-based analysis of calcium-induced conformational changes in Ca2+ sensor proteins. Protein Sci 1998; 7:270-282. Medline Drohat AC, Tjandra N, Baldisseri DM, Weber DJ. The use of dipolar couplings for determining the solution structure of rat apo-S100B(ββ). Protein Sci 1999; 8:800-809. Medline Tanaka T, Ames JB, Harvey TS, Stryer L, Ikura M. Sequestration of the membrane-targeting myristoyl group of recoverin in the calcium-free state. Nature 1995; 376:444-447. Medline Kraulis PJ. MOLSCRIPT: A program to produce detailed and schematic plots of protein structures. J Appl Crystallogr 1991; 24:946-950. Finn BE, Evenäs J, Drakenberg T, Waltho JP, Thulin E, Forsén S. Calcium-induced structural changes and domain autonomy in calmodulin. Nat Struct Biol 1995; 2:777-283. Medline Essen LO, Perisic O, Cheung R, Katan M, Williams RL. Crystal structure of a mammalian phosphoinositide-specific phospholipase Cδ. Nature 1996; 380:595-602. Medline Herzberg O, James MN. Refined crystal structure of troponin C from turkey skeletal muscle at 2.0 Å resolution. J Mol Biol 1988; 203:761-779. Medline Rustandi RR, Drohat AC, Baldisseri DM, Wilder PT, Weber DJ. The Ca2+-dependent interaction of S100B(ββ) with a peptide derived from p53. Biochemistry 1998; 37:1951-1960. Medline Crivici A, Ikura M. Molecular and structural basis of target recognition by calmodulin. Annu Rev Biophys Biomol Struct 1995; 24:85-116. Medline Ames JB, Dizhoor AM, Ikura M, Palczewski K, Stryer L. Three-dimensional structure of guanylyl cyclase activating protein-2, a calcium-sensitive modulator of photoreceptor guanylyl cyclases. J Biol Chem 1999; 274:19329-19337. Medline Houdusse A, Cohen C. Target sequence recognition by the calmodulin superfamily: Implications from light chain binding to the regulatory domain of scallop myosin. Proc Natl Acad Sci USA 1995; 92:10644-10647. Medline Blanchard H, Grochulski P, Li Y, et al. Structure of a calpain Ca2+-binding domain reveals a novel EF-hand and Ca2+-induced conformational changes. Nat Struct Biol 1997; 4:532-538. Medline Heizmann CW, Braun K. Changes in Ca2+-binding proteins in human neurodegenerative disorders. Trends Neurosci 1992; 15:259-264. Medline Kuboniwa H, Tjandra N, Grzesiek S, Ren H, Klee CB, Bax A. Solution structure of calcium-free calmodulin. Nat Struct Biol 1995; 2:768-776. Medline Smith SP, Shaw GS. A change-in-hand mechanism for S100 signalling. Biochem Cell Biol 1998; 76:324-333. Medline Kretsinger RH, Nockolds CE. Carp muscle calcium-binding protein. II. Structure determination and general description. J Biol Chem 1973; 248:3313-3326. Medline Whitaker-Azmitia PM, Wingate M, Borella A, Gerlai R, Roder J, Azmitia EC. Transgenic mice overexpressing the neurotrophic factor S-100β show neuronal cytoskeletal and behavioral signs of altered aging processes: Implications for Alzheimer's disease and Down's syndrome. Brain Res 1997; 776:51-60. Medline Takasaki A, Hayashi N, Matsubara M, Yamauchi E, Taniguchi H. Identification of the calmodulin-binding domain of neuron-specific protein kinase C substrate protein CAP-22/NAP-22. Direct involvement of protein myristoylation in calmodulin-target protein interaction. J Biol Chem 1999; 274:11848-11853. Medline Groves P, Finn BE, Kuznicki J, Forsén S. A model for target protein binding to calcium-activated S100 dimers. FEBS Lett 1998; 421:175-179. Medline Lundberg S, Buevich AV, Sethson I, Edlund U, Backman L. Calcium-binding mechanism of human nonerythroid α-spectrin EF-structures. Biochemistry 1997; 36:7199-208. Medline Drohat AC, Nenortas E, Beckett D, Weber DJ. Oligomerization state of S100B at nanomolar concentration determined by large-zone analytical gel filtration chromatography. Protein Sci 1997; 6:1577-1582. Medline Szebenyi DM, Moffat K. The refined structure of vitamin D-dependent calcium-binding protein from bovine intestine. Molecular details, ion binding, and implications for the structure of other calcium-binding proteins. J Biol Chem 1986; 261:8761-8777. Medline Bessiére P, Cottin P, Balny C, Ducastaing A, Bancel F. Hydrostatic pressure and calcium-induced dissociation of calpains. Biochim Biophys Acta 1999; 1430:254-261. Medline Johnsson N, Marriott G, Weber K. p36, the major cytoplasmic substrate of src tyrosine protein kinase, binds to its p11 regulatory subunit via a short amino-terminal amphiphatic helix. EMBO J 1988; 7:2435-2442. Medline Zhang M, Tana 1998; 281 1991; 112 1996; 380 1988; 263 1992; 15 1995; 376 1996; 35 1997; 6 1997; 4 1993; 6 1998; 273 1997; 389 1987; 237 1984; 16 1995; 24 1986; 261 1999; 13 1995; 249 1996; 4 1993; 259 1996; 21 1998; 11 1996; 6 1997; 776 1973; 248 1995; 92 1995; 14 1992; 267 1992; 224 1997 1996; 93 1985; 82 1995; 2 1999; 8 1999; 6 1985; 48 1995; 270 1988; 203 1998; 37 1991; 24 1997; 36 1986; 25 1988; 7 1999; 274 1996; 271 1996; 84 1999; 1430 1999; 398 1998; 7 1998; 6 1998; 76 1998; 421 1993; 231 Meng (10.1002/(SICI)1097-0134(19991115)37:3<499::AID-PROT17>3.0.CO;2-Y-BIB54) 1999; 398 Groves (10.1002/(SICI)1097-0134(19991115)37:3<499::AID-PROT17>3.0.CO;2-Y-BIB46) 1998; 421 Nelson (10.1002/(SICI)1097-0134(19991115)37:3<499::AID-PROT17>3.0.CO;2-Y-BIB17) 1998; 11 Polans (10.1002/(SICI)1097-0134(19991115)37:3<499::AID-PROT17>3.0.CO;2-Y-BIB9) 1991; 112 Yap (10.1002/(SICI)1097-0134(19991115)37:3<499::AID-PROT17>3.0.CO;2-Y-BIB14) Drohat (10.1002/(SICI)1097-0134(19991115)37:3<499::AID-PROT17>3.0.CO;2-Y-BIB37) 1996; 35 Dizhoor (10.1002/(SICI)1097-0134(19991115)37:3<499::AID-PROT17>3.0.CO;2-Y-BIB7) 1996; 271 Ikura (10.1002/(SICI)1097-0134(19991115)37:3<499::AID-PROT17>3.0.CO;2-Y-BIB16) 1997 Speicher (10.1002/(SICI)1097-0134(19991115)37:3<499::AID-PROT17>3.0.CO;2-Y-BIB53) 1992; 267 Kuboniwa (10.1002/(SICI)1097-0134(19991115)37:3<499::AID-PROT17>3.0.CO;2-Y-BIB20) 1995; 2 Heizmann (10.1002/(SICI)1097-0134(19991115)37:3<499::AID-PROT17>3.0.CO;2-Y-BIB10) 1992; 15 Essen (10.1002/(SICI)1097-0134(19991115)37:3<499::AID-PROT17>3.0.CO;2-Y-BIB57) 1996; 380 Tanaka (10.1002/(SICI)1097-0134(19991115)37:3<499::AID-PROT17>3.0.CO;2-Y-BIB25) 1995; 376 M ler (10.1002/(SICI)1097-0134(19991115)37:3<499::AID-PROT17>3.0.CO;2-Y-BIB34) 1999; 13 Blumenthal (10.1002/(SICI)1097-0134(19991115)37:3<499::AID-PROT17>3.0.CO;2-Y-BIB63) 1985; 82 Matsumura (10.1002/(SICI)1097-0134(19991115)37:3<499::AID-PROT17>3.0.CO;2-Y-BIB40) 1998; 6 Jones (10.1002/(SICI)1097-0134(19991115)37:3<499::AID-PROT17>3.0.CO;2-Y-BIB43) 1996; 93 Houdusse (10.1002/(SICI)1097-0134(19991115)37:3<499::AID-PROT17>3.0.CO;2-Y-BIB22) 1996; 4 Smith (10.1002/(SICI)1097-0134(19991115)37:3<499::AID-PROT17>3.0.CO;2-Y-BIB36) 1998; 6 Alexander (10.1002/(SICI)1097-0134(19991115)37:3<499::AID-PROT17>3.0.CO;2-Y-BIB66) 1988; 263 Blanchard (10.1002/(SICI)1097-0134(19991115)37:3<499::AID-PROT17>3.0.CO;2-Y-BIB47) 1997; 4 Gagn (10.1002/(SICI)1097-0134(19991115)37:3<499::AID-PROT17>3.0.CO;2-Y-BIB13) 1998; 76 Vijay-Kumar (10.1002/(SICI)1097-0134(19991115)37:3<499::AID-PROT17>3.0.CO;2-Y-BIB50) 1999; 6 Dizhoor (10.1002/(SICI)1097-0134(19991115)37:3<499::AID-PROT17>3.0.CO;2-Y-BIB6) 1993; 259 K rdel (10.1002/(SICI)1097-0134(19991115)37:3<499::AID-PROT17>3.0.CO;2-Y-BIB30) 1993; 231 Bessi re (10.1002/(SICI)1097-0134(19991115)37:3<499::AID-PROT17>3.0.CO;2-Y-BIB49) 1999; 1430 Kawasaki (10.1002/(SICI)1097-0134(19991115)37:3<499::AID-PROT17>3.0.CO;2-Y-BIB1) 1998; 11 Leavis (10.1002/(SICI)1097-0134(19991115)37:3<499::AID-PROT17>3.0.CO;2-Y-BIB5) 1984; 16 Brodersen (10.1002/(SICI)1097-0134(19991115)37:3<499::AID-PROT17>3.0.CO;2-Y-BIB41) 1998; 6 Ikura (10.1002/(SICI)1097-0134(19991115)37:3<499::AID-PROT17>3.0.CO;2-Y-BIB11) 1996; 21 Ehlers (10.1002/(SICI)1097-0134(19991115)37:3<499::AID-PROT17>3.0.CO;2-Y-BIB4) 1996; 84 Sastry (10.1002/(SICI)1097-0134(19991115)37:3<499::AID-PROT17>3.0.CO;2-Y-BIB33) 1998; 6 Skelton (10.1002/(SICI)1097-0134(19991115)37:3<499::AID-PROT17>3.0.CO;2-Y-BIB31) 1995; 249 Drohat (10.1002/(SICI)1097-0134(19991115)37:3<499::AID-PROT17>3.0.CO;2-Y-BIB44) 1997; 6 Kretsinger (10.1002/(SICI)1097-0134(19991115)37:3<499::AID-PROT17>3.0.CO;2-Y-BIB2) 1973; 248 Ames (10.1002/(SICI)1097-0134(19991115)37:3<499::AID-PROT17>3.0.CO;2-Y-BIB23) 1996; 6 Szebenyi (10.1002/(SICI)1097-0134(19991115)37:3<499::AID-PROT17>3.0.CO;2-Y-BIB29) 1986; 261 Zhang (10.1002/(SICI)1097-0134(19991115)37:3<499::AID-PROT17>3.0.CO;2-Y-BIB15) 1995; 2 Herzberg (10.1002/(SICI)1097-0134(19991115)37:3<499::AID-PROT17>3.0.CO;2-Y-BIB27) 1986; 261 Drohat (10.1002/(SICI)1097-0134(19991115)37:3<499::AID-PROT17>3.0.CO;2-Y-BIB38) 1998; 37 Whitaker-Azmitia (10.1002/(SICI)1097-0134(19991115)37:3<499::AID-PROT17>3.0.CO;2-Y-BIB8) 1997; 776 Nelson (10.1002/(SICI)1097-0134(19991115)37:3<499::AID-PROT17>3.0.CO;2-Y-BIB12) 1998; 7 Lundberg (10.1002/(SICI)1097-0134(19991115)37:3<499::AID-PROT17>3.0.CO;2-Y-BIB52) 1997; 36 Orengo (10.1002/(SICI)1097-0134(19991115)37:3<499::AID-PROT17>3.0.CO;2-Y-BIB58) 1993; 6 Wang (10.1002/(SICI)1097-0134(19991115)37:3<499::AID-PROT17>3.0.CO;2-Y-BIB61) 1985; 48 Lin (10.1002/(SICI)1097-0134(19991115)37:3<499::AID-PROT17>3.0.CO;2-Y-BIB48) 1997; 4 Ames (10.1002/(SICI)1097-0134(19991115)37:3<499::AID-PROT17>3.0.CO;2-Y-BIB28) 1999; 274 Vijay-Kumar (10.1002/(SICI)1097-0134(19991115)37:3<499::AID-PROT17>3.0.CO;2-Y-BIB55) 1992; 224 Drohat (10.1002/(SICI)1097-0134(19991115)37:3<499::AID-PROT17>3.0.CO;2-Y-BIB39) 1999; 8 Johnsson (10.1002/(SICI)1097-0134(19991115)37:3<499::AID-PROT17>3.0.CO;2-Y-BIB65) 1988; 7 de Beer (10.1002/(SICI)1097-0134(19991115)37:3<499::AID-PROT17>3.0.CO;2-Y-BIB56) 1998; 281 Smith (10.1002/(SICI)1097-0134(19991115)37:3<499::AID-PROT17>3.0.CO;2-Y-BIB45) 1998; 76 Finn (10.1002/(SICI)1097-0134(19991115)37:3<499::AID-PROT17>3.0.CO;2-Y-BIB19) 1995; 2 Rustandi (10.1002/(SICI)1097-0134(19991115)37:3<499::AID-PROT17>3.0.CO;2-Y-BIB68) 1998; 37 Kilby (10.1002/(SICI)1097-0134(19991115)37:3<499::AID-PROT17>3.0.CO;2-Y-BIB35) 1996; 4 R ty (10.1002/(SICI)1097-0134(19991115)37:3<499::AID-PROT17>3.0.CO;2-Y-BIB42) 1999; 6 Klee (10.1002/(SICI)1097-0134(19991115)37:3<499::AID-PROT17>3.0.CO;2-Y-BIB60) 1998; 273 Ames (10.1002/(SICI)1097-0134(19991115)37:3<499::AID-PROT17>3.0.CO;2-Y-BIB26) 1997; 389 Klenchin (10.1002/(SICI)1097-0134(19991115)37:3<499::AID-PROT17>3.0.CO;2-Y-BIB69) 1995; 270 Kraulis (10.1002/(SICI)1097-0134(19991115)37:3<499::AID-PROT17>3.0.CO;2-Y-BIB70) 1991; 24 Lukas (10.1002/(SICI)1097-0134(19991115)37:3<499::AID-PROT17>3.0.CO;2-Y-BIB62) 1986; 25 Hanley (10.1002/(SICI)1097-0134(19991115)37:3<499::AID-PROT17>3.0.CO;2-Y-BIB64) 1987; 237 Carrion (10.1002/(SICI)1097-0134(19991115)37:3<499::AID-PROT17>3.0.CO;2-Y-BIB59) 1999; 398 Potts (10.1002/(SICI)1097-0134(19991115)37:3<499::AID-PROT17>3.0.CO;2-Y-BIB32) 1995; 2 Houdusse (10.1002/(SICI)1097-0134(19991115)37:3<499::AID-PROT17>3.0.CO;2-Y-BIB21) 1995; 92 Trav (10.1002/(SICI)1097-0134(19991115)37:3<499::AID-PROT17>3.0.CO;2-Y-BIB51) 1995; 14 Crivici (10.1002/(SICI)1097-0134(19991115)37:3<499::AID-PROT17>3.0.CO;2-Y-BIB3) 1995; 24 Tokumitsu (10.1002/(SICI)1097-0134(19991115)37:3<499::AID-PROT17>3.0.CO;2-Y-BIB67) 1992; 267 Herzberg (10.1002/(SICI)1097-0134(19991115)37:3<499::AID-PROT17>3.0.CO;2-Y-BIB18) 1988; 203 Takasaki (10.1002/(SICI)1097-0134(19991115)37:3<499::AID-PROT17>3.0.CO;2-Y-BIB24) 1999; 274 |
| References_xml | – reference: Orengo CA, Flores TP, Taylor WR, Thornton JM. Identification and classification of protein fold families. Protein Eng 1993; 6:485-500. Medline – reference: Blumenthal DK, Takio K, Edelman AM, et al. Identification of the calmodulin-binding domain of skeletal muscle myosin light chain kinase. Proc Natl Acad Sci USA 1985; 82:3187-3191. Medline – reference: Ehlers MD, Zhang S, Bernhadt JP, Huganir RL. Inactivation of NMDA receptors by direct interaction of calmodulin with the NR1 subunit. Cell 1996; 84:745-755. Medline – reference: Groves P, Finn BE, Kuznicki J, Forsén S. A model for target protein binding to calcium-activated S100 dimers. FEBS Lett 1998; 421:175-179. Medline – reference: Réty S, Sopkova J, Renouard M, Osterloh D, Gerke V, Tabaries S, Russo-Marie F, Lewit-Bentley A. The crystal structure of a complex of p11 with the annexin II N-terminal peptide. Nat Struct Biol 1999; 6:89-95. Medline – reference: Meng W, Sawasdikosol S, Burakoff SJ, Eck MJ. Structure of the amino-terminal domain of Cbl complexed to its binding site on ZAP-70 kinase. Nature 1999; 398:84-90. Medline – reference: Herzberg O, James MN. Refined crystal structure of troponin C from turkey skeletal muscle at 2.0 Å resolution. J Mol Biol 1988; 203:761-779. Medline – reference: Klee CB, Ren H, Wang X. Regulation of the calmodulin-stimulated protein phosphatase, calcineurin. J Biol Chem 1998; 273:13367-13370. Medline – reference: Finn BE, Evenäs J, Drakenberg T, Waltho JP, Thulin E, Forsén S. Calcium-induced structural changes and domain autonomy in calmodulin. Nat Struct Biol 1995; 2:777-283. Medline – reference: Wang CK, Cheung HC. Energetics of the binding of calcium and troponin I to troponin C from rabbit skeletal muscle. Biophys J 1985; 48:727-739. Medline – reference: Nelson MR, Chazin WJ. Structures of EF-hand Ca2+-binding proteins: Diversity in the organization, packing and response to Ca2+ binding. Biometals 1998; 11:297-318. Medline – reference: Polans AS, Buczylko J, Crabb J, Palczewski K. A photoreceptor calcium binding protein is recognized by autoantibodies obtained from patients with cancer-associated retinopathy. J Cell Biol 1991; 112:981-989. Medline – reference: Gagné SM, Li MX, McKay RT, Sykes BD. The NMR angle on troponin C. Biochem Cell Biol 1998; 76:302-312. Medline – reference: Takasaki A, Hayashi N, Matsubara M, Yamauchi E, Taniguchi H. Identification of the calmodulin-binding domain of neuron-specific protein kinase C substrate protein CAP-22/NAP-22. Direct involvement of protein myristoylation in calmodulin-target protein interaction. J Biol Chem 1999; 274:11848-11853. Medline – reference: Kretsinger RH, Nockolds CE. Carp muscle calcium-binding protein. II. Structure determination and general description. J Biol Chem 1973; 248:3313-3326. Medline – reference: Whitaker-Azmitia PM, Wingate M, Borella A, Gerlai R, Roder J, Azmitia EC. Transgenic mice overexpressing the neurotrophic factor S-100β show neuronal cytoskeletal and behavioral signs of altered aging processes: Implications for Alzheimer's disease and Down's syndrome. Brain Res 1997; 776:51-60. Medline – reference: Drohat AC, Amburgey JC, Abildgaard F, Starich MR, Baldisseri D, Weber DJ. Solution structure of rat apo-S100B(ββ) as determined by NMR spectroscopy. Biochemistry 1996; 35:11577-11588. Medline – reference: Rustandi RR, Drohat AC, Baldisseri DM, Wilder PT, Weber DJ. The Ca2+-dependent interaction of S100B(ββ) with a peptide derived from p53. Biochemistry 1998; 37:1951-1960. Medline – reference: Brodersen DE, Etzerodt M, Madsen P, et al. EF-hands at atomic resolution: The structure of human psoriasin (S100A7) solved by MAD phasing. Structure 1998; 6:477-489. Medline – reference: Lin GD, Chattopadhyay D, Maki M, et al. Crystal structure of calcium bound domain VI of calpain at 1.9 Å resolution and its role in enzyme assembly, regulation, and inhibitor binding. Nat Struct Biol 1997; 4:539-547. Medline – reference: Herzberg O, Moult J, James MN. A model for the Ca2+-induced conformational transition of troponin C. A trigger for muscle contraction. J Biol Chem 1986; 261:2638-2644. Medline – reference: Tanaka T, Ames JB, Harvey TS, Stryer L, Ikura M. Sequestration of the membrane-targeting myristoyl group of recoverin in the calcium-free state. Nature 1995; 376:444-447. Medline – reference: Ikura M. Calcium binding and conformational response in EF-hand proteins. Trends Biochem Sci 1996; 21:14-17. Medline – reference: Carrion AM, Link WA, Ledo F, Mellstrom B, Naranjo JR. DREAM is a Ca2+-regulated transcriptional repressor. Nature 1999; 398:80-84. Medline – reference: Potts BC, Smith J, Akke M, et al. The structure of calcyclin reveals a novel homodimeric fold for S100 Ca2+-binding proteins. Nat Struct Biol 1995; 2:790-796. Medline – reference: Bessiére P, Cottin P, Balny C, Ducastaing A, Bancel F. Hydrostatic pressure and calcium-induced dissociation of calpains. Biochim Biophys Acta 1999; 1430:254-261. Medline – reference: Alexander KA, Wakim BT, Doyle GS, Walsh KA, Storm DR. Identification and characterization of the calmodulin-binding domain of neuromodulin, a neurospecific calmodulin-binding protein. J Biol Chem 1988; 263:7544-7549. Medline – reference: Drohat AC, Tjandra N, Baldisseri DM, Weber DJ. The use of dipolar couplings for determining the solution structure of rat apo-S100B(ββ). Protein Sci 1999; 8:800-809. Medline – reference: Heizmann CW, Braun K. Changes in Ca2+-binding proteins in human neurodegenerative disorders. Trends Neurosci 1992; 15:259-264. Medline – reference: Jones S, Thornton JM. Principles of protein-protein interactions. Proc Natl Acad Sci USA 1996; 93:13-20. Medline – reference: Blanchard H, Grochulski P, Li Y, et al. Structure of a calpain Ca2+-binding domain reveals a novel EF-hand and Ca2+-induced conformational changes. Nat Struct Biol 1997; 4:532-538. Medline – reference: Smith SP, Shaw GS. A novel calcium-sensitive switch revealed by the structure of human S100B in the calcium-bound form. Structure 1998; 6:211-222. Medline – reference: Vijay-Kumar S, Cook WJ. Structure of a sarcoplasmic calcium-binding protein from Nereis diversicolor refined at 2.0 Å resolution. J Mol Biol 1992; 224:413-426. Medline – reference: Dizhoor AM, Hurley JB. Inactivation of EF-hands makes GCAP-2 (p24) a constitutive activator of photoreceptor guanylyl cyclase by preventing a Ca2+-induced "activator-to-inhibitor" transition. J Biol Chem 1996; 271:19346-19350. Medline – reference: Matsumura H, Shiba T, Inoue T, Harada S, Kai Y. A novel mode of target recognition suggested by the 2.0 Å structure of holo S100B from bovine brain. Structure 1998; 6:233-241. Medline – reference: Hanley RM, Means AR, Ono T, et al. Functional analysis of a complementary DNA for the 50-kilodalton subunit of calmodulin kinase II. Science 1987; 237:293-297. Medline – reference: Klenchin VA, Calvert PD, Bownds MD. Inhibition of rhodopsin kinase by recoverin. Further evidence for a negative feedback system in phototransduction. J Biol Chem 1995; 270:16147-152. Medline – reference: Drohat AC, Nenortas E, Beckett D, Weber DJ. Oligomerization state of S100B at nanomolar concentration determined by large-zone analytical gel filtration chromatography. Protein Sci 1997; 6:1577-1582. Medline – reference: Zhang M, Tanaka T, Ikura M. Calcium-induced conformational transition revealed by the solution structure of apo calmodulin. Nat Struct Biol 1995; 2:758-767. Medline – reference: Smith SP, Shaw GS. A change-in-hand mechanism for S100 signalling. Biochem Cell Biol 1998; 76:324-333. Medline – reference: Skelton NJ, Kördel J, Chazin WJ. Determination of the solution structure of Apo calbindin D9k by NMR spectroscopy. J Mol Biol 1995; 249:441-462. Medline – reference: de Beer T, Carter RE, Lobel-Rice KE, Sorkin A, Overduin M. Structure and Asn-Pro-Phe binding pocket of the Eps15 homology domain. Science 1998; 281:1357-1360. Medline – reference: Drohat AC, Baldisseri DM, Rustandi RR, Weber DJ. Solution structure of calcium-bound rat S100B(ββ) as determined by nuclear magnetic resonance spectroscopy. Biochemistry 1998; 37:2729-2740. Medline – reference: Yap KL, Ames JB, Swindells MB, Ikura M. Vector geometry mapping: A method to characterize the conformation of helix-loop-helix calcium binding proteins. Methods Mol Biol, in press. – reference: Tokumitsu H, Mizutani A, Minami H, Kobayashi R, Hidaka H. A calcyclin-associated protein is a newly identified member of the Ca2+/phospholipid-binding proteins, annexin family. J Biol Chem 1992; 267:8919-8924. Medline – reference: Mäler L, Potts BC, Chazin WJ. High resolution solution structure of apo calcyclin and structural variations in the S100 family of calcium-binding proteins. J Biomol NMR 1999; 13:233-247. Medline – reference: Ames JB, Tanaka T, Stryer L, Ikura M. Portrait of a myristoyl switch protein. Curr Opin Struct Biol 1996; 6:432-438. Medline – reference: Speicher DW, Weglarz L, DeSilva TM. Properties of human red cell spectrin heterodimer (side-to-side) assembly and identification of an essential nucleation site. J Biol Chem 1992; 267:14775-14782. Medline – reference: Kördel J, Skelton NJ, Akke M, Chazin WJ. High-resolution structure of calcium-loaded calbindin D9k. J Mol Biol 1993; 231:711-734. Medline – reference: Essen LO, Perisic O, Cheung R, Katan M, Williams RL. Crystal structure of a mammalian phosphoinositide-specific phospholipase Cδ. Nature 1996; 380:595-602. Medline – reference: Nelson MR, Chazin WJ. An interaction-based analysis of calcium-induced conformational changes in Ca2+ sensor proteins. Protein Sci 1998; 7:270-282. Medline – reference: Houdusse A, Cohen C. Target sequence recognition by the calmodulin superfamily: Implications from light chain binding to the regulatory domain of scallop myosin. Proc Natl Acad Sci USA 1995; 92:10644-10647. Medline – reference: Vijay-Kumar S, Kumar VD. Crystal structure of recombinant bovine neurocalcin. Nat Struct Biol 1999; 6:80-88. Medline – reference: Kraulis PJ. MOLSCRIPT: A program to produce detailed and schematic plots of protein structures. J Appl Crystallogr 1991; 24:946-950. – reference: Sastry M, Ketchem RR, Crescenzi O, Weber C, Lubienski MJ, Hidaka H, Chazin WJ. The three-dimensional structure of Ca2+-bound calcyclin: Implications for Ca2+-signal transduction by S100 proteins. Structure 1998; 6:223-231. Medline – reference: Ames JB, Dizhoor AM, Ikura M, Palczewski K, Stryer L. Three-dimensional structure of guanylyl cyclase activating protein-2, a calcium-sensitive modulator of photoreceptor guanylyl cyclases. J Biol Chem 1999; 274:19329-19337. Medline – reference: Kilby PM, Van Eldik LJ, Roberts GC. The solution structure of the bovine S100B protein dimer in the calcium-free state. Structure 1996; 4:1041-1052. Medline – reference: Houdusse A, Cohen C. Structure of the regulatory domain of scallop myosin at 2 Å resolution: Implications for regulation. Structure 1996; 4:21-32. Medline – reference: Dizhoor AM, Chen CK, Olshevskaya E, Sinelnikova VV, Phillipov P, Hurley JB. Role of the acylated amino terminus of recoverin in Ca2+-dependent membrane interaction. Science 1993; 259:829-832. Medline – reference: Travé G, Lacombe PJ, Pfuhl M, Saraste M, Pastore A. Molecular mechanism of the calcium-induced conformational change in the spectrin EF-hands. EMBO J 1995; 14:4922-4931. Medline – reference: Johnsson N, Marriott G, Weber K. p36, the major cytoplasmic substrate of src tyrosine protein kinase, binds to its p11 regulatory subunit via a short amino-terminal amphiphatic helix. EMBO J 1988; 7:2435-2442. Medline – reference: Leavis PC, Gergely J. Thin filament proteins and thin filament-linked regulation of vertebrate muscle contraction. CRC Crit Rev Biochem 1984; 16:235-305. Medline – reference: Kawasaki H, Nakayama S, Kretsinger RH. Classification and evolution of EF-hand proteins. Biometals 1998; 11:277-295. Medline – reference: Kuboniwa H, Tjandra N, Grzesiek S, Ren H, Klee CB, Bax A. Solution structure of calcium-free calmodulin. Nat Struct Biol 1995; 2:768-776. Medline – reference: Lukas TJ, Burgess WH, Prendergast FG, Lau W, Watterson DM. Calmodulin binding domains: Characterization of a phosphorylation and calmodulin binding site from myosin light chain kinase. Biochemistry 1986; 25:1458-1464. Medline – reference: Ames JB, Ishima R, Tanaka T, Gordon JI, Stryer L, Ikura M. Molecular mechanics of calcium-myristoyl switches. Nature 1997; 389:198-202. Medline – reference: Lundberg S, Buevich AV, Sethson I, Edlund U, Backman L. Calcium-binding mechanism of human nonerythroid α-spectrin EF-structures. Biochemistry 1997; 36:7199-208. Medline – reference: Szebenyi DM, Moffat K. The refined structure of vitamin D-dependent calcium-binding protein from bovine intestine. Molecular details, ion binding, and implications for the structure of other calcium-binding proteins. J Biol Chem 1986; 261:8761-8777. Medline – reference: Crivici A, Ikura M. Molecular and structural basis of target recognition by calmodulin. Annu Rev Biophys Biomol Struct 1995; 24:85-116. Medline – volume: 37 start-page: 1951 year: 1998 end-page: 1960 article-title: The Ca2+‐dependent interaction of S100B(ββ) with a peptide derived from p53 publication-title: Biochemistry – volume: 4 start-page: 1041 year: 1996 end-page: 1052 article-title: The solution structure of the bovine S100B protein dimer in the calcium‐free state publication-title: Structure – volume: 263 start-page: 7544 year: 1988 end-page: 7549 article-title: Identification and characterization of the calmodulin‐binding domain of neuromodulin, a neurospecific calmodulin‐binding protein publication-title: J Biol Chem – volume: 92 start-page: 10644 year: 1995 end-page: 10647 article-title: Target sequence recognition by the calmodulin superfamily: Implications from light chain binding to the regulatory domain of scallop myosin publication-title: Proc Natl Acad Sci USA – volume: 93 start-page: 13 year: 1996 end-page: 20 article-title: Principles of protein‐protein interactions publication-title: Proc Natl Acad Sci USA – volume: 776 start-page: 51 year: 1997 end-page: 60 article-title: Transgenic mice overexpressing the neurotrophic factor S‐100β show neuronal cytoskeletal and behavioral signs of altered aging processes: Implications for Alzheimer's disease and Down's syndrome publication-title: Brain Res – volume: 24 start-page: 946 year: 1991 end-page: 950 article-title: MOLSCRIPT: A program to produce detailed and schematic plots of protein structures publication-title: J Appl Crystallogr – volume: 376 start-page: 444 year: 1995 end-page: 447 article-title: Sequestration of the membrane‐targeting myristoyl group of recoverin in the calcium‐free state publication-title: Nature – volume: 398 start-page: 84 year: 1999 end-page: 90 article-title: Structure of the amino‐terminal domain of Cbl complexed to its binding site on ZAP‐70 kinase publication-title: Nature – volume: 21 start-page: 14 year: 1996 end-page: 17 article-title: Calcium binding and conformational response in EF‐hand proteins publication-title: Trends Biochem Sci – volume: 237 start-page: 293 year: 1987 end-page: 297 article-title: Functional analysis of a complementary DNA for the 50‐kilodalton subunit of calmodulin kinase II publication-title: Science – volume: 4 start-page: 532 year: 1997 end-page: 538 article-title: Structure of a calpain Ca ‐binding domain reveals a novel EF‐hand and Ca ‐induced conformational changes publication-title: Nat Struct Biol – volume: 11 start-page: 297 year: 1998 end-page: 318 article-title: Structures of EF‐hand Ca ‐binding proteins: Diversity in the organization, packing and response to Ca binding publication-title: Biometals – volume: 6 start-page: 89 year: 1999 end-page: 95 article-title: The crystal structure of a complex of p11 with the annexin II N‐terminal peptide publication-title: Nat Struct Biol – volume: 6 start-page: 477 year: 1998 end-page: 489 article-title: EF‐hands at atomic resolution: The structure of human psoriasin (S100A7) solved by MAD phasing publication-title: Structure – volume: 13 start-page: 233 year: 1999 end-page: 247 article-title: High resolution solution structure of apo calcyclin and structural variations in the S100 family of calcium‐binding proteins publication-title: J Biomol NMR – volume: 6 start-page: 1577 year: 1997 end-page: 1582 article-title: Oligomerization state of S100B at nanomolar concentration determined by large‐zone analytical gel filtration chromatography publication-title: Protein Sci – volume: 36 start-page: 7199 year: 1997 end-page: 208 article-title: Calcium‐binding mechanism of human nonerythroid α‐spectrin EF‐structures publication-title: Biochemistry – volume: 2 start-page: 758 year: 1995 end-page: 767 article-title: Calcium‐induced conformational transition revealed by the solution structure of apo calmodulin publication-title: Nat Struct Biol – volume: 267 start-page: 14775 year: 1992 end-page: 14782 article-title: Properties of human red cell spectrin heterodimer (side‐to‐side) assembly and identification of an essential nucleation site publication-title: J Biol Chem – volume: 224 start-page: 413 year: 1992 end-page: 426 article-title: Structure of a sarcoplasmic calcium‐binding protein from Nereis diversicolor refined at 2.0 Å resolution publication-title: J Mol Biol – volume: 248 start-page: 3313 year: 1973 end-page: 3326 article-title: Carp muscle calcium‐binding protein. II. Structure determination and general description publication-title: J Biol Chem – volume: 37 start-page: 2729 year: 1998 end-page: 2740 article-title: Solution structure of calcium‐bound rat S100B(ββ) as determined by nuclear magnetic resonance spectroscopy publication-title: Biochemistry – volume: 6 start-page: 80 year: 1999 end-page: 88 article-title: Crystal structure of recombinant bovine neurocalcin publication-title: Nat Struct Biol – volume: 261 start-page: 8761 year: 1986 end-page: 8777 article-title: The refined structure of vitamin D‐dependent calcium‐binding protein from bovine intestine. Molecular details, ion binding, and implications for the structure of other calcium‐binding proteins publication-title: J Biol Chem – volume: 2 start-page: 790 year: 1995 end-page: 796 article-title: The structure of calcyclin reveals a novel homodimeric fold for S100 Ca ‐binding proteins publication-title: Nat Struct Biol – volume: 274 start-page: 11848 year: 1999 end-page: 11853 article-title: Identification of the calmodulin‐binding domain of neuron‐specific protein kinase C substrate protein CAP‐22/NAP‐22. Direct involvement of protein myristoylation in calmodulin‐target protein interaction publication-title: J Biol Chem – volume: 6 start-page: 223 year: 1998 end-page: 231 article-title: The three‐dimensional structure of Ca ‐bound calcyclin: Implications for Ca ‐signal transduction by S100 proteins publication-title: Structure – volume: 2 start-page: 768 year: 1995 end-page: 776 article-title: Solution structure of calcium‐free calmodulin publication-title: Nat Struct Biol – volume: 398 start-page: 80 year: 1999 end-page: 84 article-title: DREAM is a Ca ‐regulated transcriptional repressor publication-title: Nature – year: 1997 – volume: 6 start-page: 211 year: 1998 end-page: 222 article-title: A novel calcium‐sensitive switch revealed by the structure of human S100B in the calcium‐bound form publication-title: Structure – volume: 8 start-page: 800 year: 1999 end-page: 809 article-title: The use of dipolar couplings for determining the solution structure of rat apo‐S100B(ββ) publication-title: Protein Sci – volume: 281 start-page: 1357 year: 1998 end-page: 1360 article-title: Structure and Asn‐Pro‐Phe binding pocket of the Eps15 homology domain publication-title: Science – volume: 231 start-page: 711 year: 1993 end-page: 734 article-title: High‐resolution structure of calcium‐loaded calbindin D publication-title: J Mol Biol – volume: 1430 start-page: 254 year: 1999 end-page: 261 article-title: Hydrostatic pressure and calcium‐induced dissociation of calpains publication-title: Biochim Biophys Acta – volume: 24 start-page: 85 year: 1995 end-page: 116 article-title: Molecular and structural basis of target recognition by calmodulin publication-title: Annu Rev Biophys Biomol Struct – volume: 84 start-page: 745 year: 1996 end-page: 755 article-title: Inactivation of NMDA receptors by direct interaction of calmodulin with the NR1 subunit publication-title: Cell – volume: 6 start-page: 485 year: 1993 end-page: 500 article-title: Identification and classification of protein fold families publication-title: Protein Eng – volume: 6 start-page: 233 year: 1998 end-page: 241 article-title: A novel mode of target recognition suggested by the 2.0 Å structure of holo S100B from bovine brain publication-title: Structure – volume: 259 start-page: 829 year: 1993 end-page: 832 article-title: Role of the acylated amino terminus of recoverin in Ca ‐dependent membrane interaction publication-title: Science – volume: 48 start-page: 727 year: 1985 end-page: 739 article-title: Energetics of the binding of calcium and troponin I to troponin C from rabbit skeletal muscle publication-title: Biophys J – volume: 380 start-page: 595 year: 1996 end-page: 602 article-title: Crystal structure of a mammalian phosphoinositide‐specific phospholipase Cδ publication-title: Nature – volume: 112 start-page: 981 year: 1991 end-page: 989 article-title: A photoreceptor calcium binding protein is recognized by autoantibodies obtained from patients with cancer‐associated retinopathy publication-title: J Cell Biol – volume: 16 start-page: 235 year: 1984 end-page: 305 article-title: Thin filament proteins and thin filament‐linked regulation of vertebrate muscle contraction publication-title: CRC Crit Rev Biochem – volume: 7 start-page: 270 year: 1998 end-page: 282 article-title: An interaction‐based analysis of calcium‐induced conformational changes in Ca sensor proteins publication-title: Protein Sci – volume: 82 start-page: 3187 year: 1985 end-page: 3191 article-title: Identification of the calmodulin‐binding domain of skeletal muscle myosin light chain kinase publication-title: Proc Natl Acad Sci USA – article-title: Vector geometry mapping: A method to characterize the conformation of helix‐loop‐helix calcium binding proteins publication-title: Methods Mol Biol – volume: 76 start-page: 324 year: 1998 end-page: 333 article-title: A change‐in‐hand mechanism for S100 signalling publication-title: Biochem Cell Biol – volume: 7 start-page: 2435 year: 1988 end-page: 2442 article-title: p36, the major cytoplasmic substrate of src tyrosine protein kinase, binds to its p11 regulatory subunit via a short amino‐terminal amphiphatic helix publication-title: EMBO J – volume: 25 start-page: 1458 year: 1986 end-page: 1464 article-title: Calmodulin binding domains: Characterization of a phosphorylation and calmodulin binding site from myosin light chain kinase publication-title: Biochemistry – volume: 270 start-page: 16147 year: 1995 end-page: 152 article-title: Inhibition of rhodopsin kinase by recoverin. Further evidence for a negative feedback system in phototransduction publication-title: J Biol Chem – volume: 76 start-page: 302 year: 1998 end-page: 312 article-title: The NMR angle on troponin C publication-title: Biochem Cell Biol – volume: 4 start-page: 539 year: 1997 end-page: 547 article-title: Crystal structure of calcium bound domain VI of calpain at 1.9 Å resolution and its role in enzyme assembly, regulation, and inhibitor binding publication-title: Nat Struct Biol – volume: 271 start-page: 19346 year: 1996 end-page: 19350 article-title: Inactivation of EF‐hands makes GCAP‐2 (p24) a constitutive activator of photoreceptor guanylyl cyclase by preventing a Ca ‐induced “activator‐to‐inhibitor” transition publication-title: J Biol Chem – volume: 203 start-page: 761 year: 1988 end-page: 779 article-title: Refined crystal structure of troponin C from turkey skeletal muscle at 2.0 Å resolution publication-title: J Mol Biol – volume: 4 start-page: 21 year: 1996 end-page: 32 article-title: Structure of the regulatory domain of scallop myosin at 2 Å resolution: Implications for regulation publication-title: Structure – volume: 249 start-page: 441 year: 1995 end-page: 462 article-title: Determination of the solution structure of Apo calbindin D by NMR spectroscopy publication-title: J Mol Biol – volume: 2 start-page: 777 year: 1995 end-page: 283 article-title: Calcium‐induced structural changes and domain autonomy in calmodulin publication-title: Nat Struct Biol – volume: 389 start-page: 198 year: 1997 end-page: 202 article-title: Molecular mechanics of calcium‐myristoyl switches publication-title: Nature – volume: 273 start-page: 13367 year: 1998 end-page: 13370 article-title: Regulation of the calmodulin‐stimulated protein phosphatase, calcineurin publication-title: J Biol Chem – volume: 6 start-page: 432 year: 1996 end-page: 438 article-title: Portrait of a myristoyl switch protein publication-title: Curr Opin Struct Biol – volume: 35 start-page: 11577 year: 1996 end-page: 11588 article-title: Solution structure of rat apo‐S100B(ββ) as determined by NMR spectroscopy publication-title: Biochemistry – volume: 261 start-page: 2638 year: 1986 end-page: 2644 article-title: A model for the Ca ‐induced conformational transition of troponin C. A trigger for muscle contraction publication-title: J Biol Chem – volume: 421 start-page: 175 year: 1998 end-page: 179 article-title: A model for target protein binding to calcium‐activated S100 dimers publication-title: FEBS Lett – volume: 15 start-page: 259 year: 1992 end-page: 264 article-title: Changes in Ca ‐binding proteins in human neurodegenerative disorders publication-title: Trends Neurosci – volume: 14 start-page: 4922 year: 1995 end-page: 4931 article-title: Molecular mechanism of the calcium‐induced conformational change in the spectrin EF‐hands publication-title: EMBO J – volume: 274 start-page: 19329 year: 1999 end-page: 19337 article-title: Three‐dimensional structure of guanylyl cyclase activating protein‐2, a calcium‐sensitive modulator of photoreceptor guanylyl cyclases publication-title: J Biol Chem – volume: 11 start-page: 277 year: 1998 end-page: 295 article-title: Classification and evolution of EF‐hand proteins publication-title: Biometals – volume: 267 start-page: 8919 year: 1992 end-page: 8924 article-title: A calcyclin‐associated protein is a newly identified member of the Ca /phospholipid‐binding proteins, annexin family publication-title: J Biol Chem – volume: 203 start-page: 761 year: 1988 ident: 10.1002/(SICI)1097-0134(19991115)37:3<499::AID-PROT17>3.0.CO;2-Y-BIB18 publication-title: J Mol Biol doi: 10.1016/0022-2836(88)90208-2 – volume: 376 start-page: 444 year: 1995 ident: 10.1002/(SICI)1097-0134(19991115)37:3<499::AID-PROT17>3.0.CO;2-Y-BIB25 publication-title: Nature doi: 10.1038/376444a0 – year: 1997 ident: 10.1002/(SICI)1097-0134(19991115)37:3<499::AID-PROT17>3.0.CO;2-Y-BIB16 – ident: 10.1002/(SICI)1097-0134(19991115)37:3<499::AID-PROT17>3.0.CO;2-Y-BIB14 publication-title: Methods Mol Biol – volume: 6 start-page: 485 year: 1993 ident: 10.1002/(SICI)1097-0134(19991115)37:3<499::AID-PROT17>3.0.CO;2-Y-BIB58 publication-title: Protein Eng doi: 10.1093/protein/6.5.485 – volume: 380 start-page: 595 year: 1996 ident: 10.1002/(SICI)1097-0134(19991115)37:3<499::AID-PROT17>3.0.CO;2-Y-BIB57 publication-title: Nature doi: 10.1038/380595a0 – volume: 4 start-page: 539 year: 1997 ident: 10.1002/(SICI)1097-0134(19991115)37:3<499::AID-PROT17>3.0.CO;2-Y-BIB48 publication-title: Nat Struct Biol doi: 10.1038/nsb0797-539 – volume: 231 start-page: 711 year: 1993 ident: 10.1002/(SICI)1097-0134(19991115)37:3<499::AID-PROT17>3.0.CO;2-Y-BIB30 publication-title: J Mol Biol doi: 10.1006/jmbi.1993.1322 – volume: 11 start-page: 297 year: 1998 ident: 10.1002/(SICI)1097-0134(19991115)37:3<499::AID-PROT17>3.0.CO;2-Y-BIB17 publication-title: Biometals doi: 10.1023/A:1009253808876 – volume: 16 start-page: 235 year: 1984 ident: 10.1002/(SICI)1097-0134(19991115)37:3<499::AID-PROT17>3.0.CO;2-Y-BIB5 publication-title: CRC Crit Rev Biochem doi: 10.3109/10409238409108717 – volume: 274 start-page: 19329 year: 1999 ident: 10.1002/(SICI)1097-0134(19991115)37:3<499::AID-PROT17>3.0.CO;2-Y-BIB28 publication-title: J Biol Chem doi: 10.1074/jbc.274.27.19329 – volume: 263 start-page: 7544 year: 1988 ident: 10.1002/(SICI)1097-0134(19991115)37:3<499::AID-PROT17>3.0.CO;2-Y-BIB66 publication-title: J Biol Chem doi: 10.1016/S0021-9258(18)68533-3 – volume: 13 start-page: 233 year: 1999 ident: 10.1002/(SICI)1097-0134(19991115)37:3<499::AID-PROT17>3.0.CO;2-Y-BIB34 publication-title: J Biomol NMR doi: 10.1023/A:1008315517955 – volume: 7 start-page: 270 year: 1998 ident: 10.1002/(SICI)1097-0134(19991115)37:3<499::AID-PROT17>3.0.CO;2-Y-BIB12 publication-title: Protein Sci doi: 10.1002/pro.5560070206 – volume: 82 start-page: 3187 year: 1985 ident: 10.1002/(SICI)1097-0134(19991115)37:3<499::AID-PROT17>3.0.CO;2-Y-BIB63 publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.82.10.3187 – volume: 270 start-page: 16147 year: 1995 ident: 10.1002/(SICI)1097-0134(19991115)37:3<499::AID-PROT17>3.0.CO;2-Y-BIB69 publication-title: J Biol Chem doi: 10.1074/jbc.270.27.16147 – volume: 84 start-page: 745 year: 1996 ident: 10.1002/(SICI)1097-0134(19991115)37:3<499::AID-PROT17>3.0.CO;2-Y-BIB4 publication-title: Cell doi: 10.1016/S0092-8674(00)81052-1 – volume: 2 start-page: 758 year: 1995 ident: 10.1002/(SICI)1097-0134(19991115)37:3<499::AID-PROT17>3.0.CO;2-Y-BIB15 publication-title: Nat Struct Biol doi: 10.1038/nsb0995-758 – volume: 24 start-page: 946 year: 1991 ident: 10.1002/(SICI)1097-0134(19991115)37:3<499::AID-PROT17>3.0.CO;2-Y-BIB70 publication-title: J Appl Crystallogr doi: 10.1107/S0021889891004399 – volume: 14 start-page: 4922 year: 1995 ident: 10.1002/(SICI)1097-0134(19991115)37:3<499::AID-PROT17>3.0.CO;2-Y-BIB51 publication-title: EMBO J doi: 10.1002/j.1460-2075.1995.tb00175.x – volume: 398 start-page: 80 year: 1999 ident: 10.1002/(SICI)1097-0134(19991115)37:3<499::AID-PROT17>3.0.CO;2-Y-BIB59 publication-title: Nature doi: 10.1038/18044 – volume: 261 start-page: 2638 year: 1986 ident: 10.1002/(SICI)1097-0134(19991115)37:3<499::AID-PROT17>3.0.CO;2-Y-BIB27 publication-title: J Biol Chem doi: 10.1016/S0021-9258(17)35835-0 – volume: 2 start-page: 790 year: 1995 ident: 10.1002/(SICI)1097-0134(19991115)37:3<499::AID-PROT17>3.0.CO;2-Y-BIB32 publication-title: Nat Struct Biol doi: 10.1038/nsb0995-790 – volume: 4 start-page: 532 year: 1997 ident: 10.1002/(SICI)1097-0134(19991115)37:3<499::AID-PROT17>3.0.CO;2-Y-BIB47 publication-title: Nat Struct Biol doi: 10.1038/nsb0797-532 – volume: 271 start-page: 19346 year: 1996 ident: 10.1002/(SICI)1097-0134(19991115)37:3<499::AID-PROT17>3.0.CO;2-Y-BIB7 publication-title: J Biol Chem doi: 10.1074/jbc.271.32.19346 – volume: 237 start-page: 293 year: 1987 ident: 10.1002/(SICI)1097-0134(19991115)37:3<499::AID-PROT17>3.0.CO;2-Y-BIB64 publication-title: Science doi: 10.1126/science.3037704 – volume: 273 start-page: 13367 year: 1998 ident: 10.1002/(SICI)1097-0134(19991115)37:3<499::AID-PROT17>3.0.CO;2-Y-BIB60 publication-title: J Biol Chem doi: 10.1074/jbc.273.22.13367 – volume: 281 start-page: 1357 year: 1998 ident: 10.1002/(SICI)1097-0134(19991115)37:3<499::AID-PROT17>3.0.CO;2-Y-BIB56 publication-title: Science doi: 10.1126/science.281.5381.1357 – volume: 267 start-page: 8919 year: 1992 ident: 10.1002/(SICI)1097-0134(19991115)37:3<499::AID-PROT17>3.0.CO;2-Y-BIB67 publication-title: J Biol Chem doi: 10.1016/S0021-9258(19)50367-2 – volume: 15 start-page: 259 year: 1992 ident: 10.1002/(SICI)1097-0134(19991115)37:3<499::AID-PROT17>3.0.CO;2-Y-BIB10 publication-title: Trends Neurosci doi: 10.1016/0166-2236(92)90067-I – volume: 249 start-page: 441 year: 1995 ident: 10.1002/(SICI)1097-0134(19991115)37:3<499::AID-PROT17>3.0.CO;2-Y-BIB31 publication-title: J Mol Biol doi: 10.1006/jmbi.1995.0308 – volume: 2 start-page: 777 year: 1995 ident: 10.1002/(SICI)1097-0134(19991115)37:3<499::AID-PROT17>3.0.CO;2-Y-BIB19 publication-title: Nat Struct Biol doi: 10.1038/nsb0995-777 – volume: 8 start-page: 800 year: 1999 ident: 10.1002/(SICI)1097-0134(19991115)37:3<499::AID-PROT17>3.0.CO;2-Y-BIB39 publication-title: Protein Sci doi: 10.1110/ps.8.4.800 – volume: 248 start-page: 3313 year: 1973 ident: 10.1002/(SICI)1097-0134(19991115)37:3<499::AID-PROT17>3.0.CO;2-Y-BIB2 publication-title: J Biol Chem doi: 10.1016/S0021-9258(19)44043-X – volume: 224 start-page: 413 year: 1992 ident: 10.1002/(SICI)1097-0134(19991115)37:3<499::AID-PROT17>3.0.CO;2-Y-BIB55 publication-title: J Mol Biol doi: 10.1016/0022-2836(92)91004-9 – volume: 76 start-page: 302 year: 1998 ident: 10.1002/(SICI)1097-0134(19991115)37:3<499::AID-PROT17>3.0.CO;2-Y-BIB13 publication-title: Biochem Cell Biol doi: 10.1139/o98-055 – volume: 112 start-page: 981 year: 1991 ident: 10.1002/(SICI)1097-0134(19991115)37:3<499::AID-PROT17>3.0.CO;2-Y-BIB9 publication-title: J Cell Biol doi: 10.1083/jcb.112.5.981 – volume: 93 start-page: 13 year: 1996 ident: 10.1002/(SICI)1097-0134(19991115)37:3<499::AID-PROT17>3.0.CO;2-Y-BIB43 publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.93.1.13 – volume: 776 start-page: 51 year: 1997 ident: 10.1002/(SICI)1097-0134(19991115)37:3<499::AID-PROT17>3.0.CO;2-Y-BIB8 publication-title: Brain Res doi: 10.1016/S0006-8993(97)01002-0 – volume: 398 start-page: 84 year: 1999 ident: 10.1002/(SICI)1097-0134(19991115)37:3<499::AID-PROT17>3.0.CO;2-Y-BIB54 publication-title: Nature doi: 10.1038/18050 – volume: 4 start-page: 21 year: 1996 ident: 10.1002/(SICI)1097-0134(19991115)37:3<499::AID-PROT17>3.0.CO;2-Y-BIB22 publication-title: Structure doi: 10.1016/S0969-2126(96)00006-8 – volume: 37 start-page: 2729 year: 1998 ident: 10.1002/(SICI)1097-0134(19991115)37:3<499::AID-PROT17>3.0.CO;2-Y-BIB38 publication-title: Biochemistry doi: 10.1021/bi972635p – volume: 274 start-page: 11848 year: 1999 ident: 10.1002/(SICI)1097-0134(19991115)37:3<499::AID-PROT17>3.0.CO;2-Y-BIB24 publication-title: J Biol Chem doi: 10.1074/jbc.274.17.11848 – volume: 92 start-page: 10644 year: 1995 ident: 10.1002/(SICI)1097-0134(19991115)37:3<499::AID-PROT17>3.0.CO;2-Y-BIB21 publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.92.23.10644 – volume: 48 start-page: 727 year: 1985 ident: 10.1002/(SICI)1097-0134(19991115)37:3<499::AID-PROT17>3.0.CO;2-Y-BIB61 publication-title: Biophys J doi: 10.1016/S0006-3495(85)83831-5 – volume: 37 start-page: 1951 year: 1998 ident: 10.1002/(SICI)1097-0134(19991115)37:3<499::AID-PROT17>3.0.CO;2-Y-BIB68 publication-title: Biochemistry doi: 10.1021/bi972701n – volume: 4 start-page: 1041 year: 1996 ident: 10.1002/(SICI)1097-0134(19991115)37:3<499::AID-PROT17>3.0.CO;2-Y-BIB35 publication-title: Structure doi: 10.1016/S0969-2126(96)00111-6 – volume: 76 start-page: 324 year: 1998 ident: 10.1002/(SICI)1097-0134(19991115)37:3<499::AID-PROT17>3.0.CO;2-Y-BIB45 publication-title: Biochem Cell Biol doi: 10.1139/o98-062 – volume: 36 start-page: 7199 year: 1997 ident: 10.1002/(SICI)1097-0134(19991115)37:3<499::AID-PROT17>3.0.CO;2-Y-BIB52 publication-title: Biochemistry doi: 10.1021/bi9631531 – volume: 6 start-page: 233 year: 1998 ident: 10.1002/(SICI)1097-0134(19991115)37:3<499::AID-PROT17>3.0.CO;2-Y-BIB40 publication-title: Structure doi: 10.1016/S0969-2126(98)00024-0 – volume: 11 start-page: 277 year: 1998 ident: 10.1002/(SICI)1097-0134(19991115)37:3<499::AID-PROT17>3.0.CO;2-Y-BIB1 publication-title: Biometals doi: 10.1023/A:1009282307967 – volume: 7 start-page: 2435 year: 1988 ident: 10.1002/(SICI)1097-0134(19991115)37:3<499::AID-PROT17>3.0.CO;2-Y-BIB65 publication-title: EMBO J doi: 10.1002/j.1460-2075.1988.tb03089.x – volume: 35 start-page: 11577 year: 1996 ident: 10.1002/(SICI)1097-0134(19991115)37:3<499::AID-PROT17>3.0.CO;2-Y-BIB37 publication-title: Biochemistry doi: 10.1021/bi9612226 – volume: 1430 start-page: 254 year: 1999 ident: 10.1002/(SICI)1097-0134(19991115)37:3<499::AID-PROT17>3.0.CO;2-Y-BIB49 publication-title: Biochim Biophys Acta doi: 10.1016/S0167-4838(99)00006-0 – volume: 6 start-page: 223 year: 1998 ident: 10.1002/(SICI)1097-0134(19991115)37:3<499::AID-PROT17>3.0.CO;2-Y-BIB33 publication-title: Structure doi: 10.1016/S0969-2126(98)00023-9 – volume: 6 start-page: 211 year: 1998 ident: 10.1002/(SICI)1097-0134(19991115)37:3<499::AID-PROT17>3.0.CO;2-Y-BIB36 publication-title: Structure doi: 10.1016/S0969-2126(98)00022-7 – volume: 6 start-page: 89 year: 1999 ident: 10.1002/(SICI)1097-0134(19991115)37:3<499::AID-PROT17>3.0.CO;2-Y-BIB42 publication-title: Nat Struct Biol doi: 10.1038/4965 – volume: 21 start-page: 14 year: 1996 ident: 10.1002/(SICI)1097-0134(19991115)37:3<499::AID-PROT17>3.0.CO;2-Y-BIB11 publication-title: Trends Biochem Sci doi: 10.1016/S0968-0004(06)80021-6 – volume: 6 start-page: 477 year: 1998 ident: 10.1002/(SICI)1097-0134(19991115)37:3<499::AID-PROT17>3.0.CO;2-Y-BIB41 publication-title: Structure doi: 10.1016/S0969-2126(98)00049-5 – volume: 389 start-page: 198 year: 1997 ident: 10.1002/(SICI)1097-0134(19991115)37:3<499::AID-PROT17>3.0.CO;2-Y-BIB26 publication-title: Nature doi: 10.1038/38310 – volume: 6 start-page: 1577 year: 1997 ident: 10.1002/(SICI)1097-0134(19991115)37:3<499::AID-PROT17>3.0.CO;2-Y-BIB44 publication-title: Protein Sci doi: 10.1002/pro.5560060721 – volume: 2 start-page: 768 year: 1995 ident: 10.1002/(SICI)1097-0134(19991115)37:3<499::AID-PROT17>3.0.CO;2-Y-BIB20 publication-title: Nat Struct Biol doi: 10.1038/nsb0995-768 – volume: 6 start-page: 432 year: 1996 ident: 10.1002/(SICI)1097-0134(19991115)37:3<499::AID-PROT17>3.0.CO;2-Y-BIB23 publication-title: Curr Opin Struct Biol doi: 10.1016/S0959-440X(96)80106-0 – volume: 259 start-page: 829 year: 1993 ident: 10.1002/(SICI)1097-0134(19991115)37:3<499::AID-PROT17>3.0.CO;2-Y-BIB6 publication-title: Science doi: 10.1126/science.8430337 – volume: 6 start-page: 80 year: 1999 ident: 10.1002/(SICI)1097-0134(19991115)37:3<499::AID-PROT17>3.0.CO;2-Y-BIB50 publication-title: Nat Struct Biol doi: 10.1038/4956 – volume: 25 start-page: 1458 year: 1986 ident: 10.1002/(SICI)1097-0134(19991115)37:3<499::AID-PROT17>3.0.CO;2-Y-BIB62 publication-title: Biochemistry doi: 10.1021/bi00354a041 – volume: 261 start-page: 8761 year: 1986 ident: 10.1002/(SICI)1097-0134(19991115)37:3<499::AID-PROT17>3.0.CO;2-Y-BIB29 publication-title: J Biol Chem doi: 10.1016/S0021-9258(19)84447-2 – volume: 267 start-page: 14775 year: 1992 ident: 10.1002/(SICI)1097-0134(19991115)37:3<499::AID-PROT17>3.0.CO;2-Y-BIB53 publication-title: J Biol Chem doi: 10.1016/S0021-9258(18)42107-2 – volume: 421 start-page: 175 year: 1998 ident: 10.1002/(SICI)1097-0134(19991115)37:3<499::AID-PROT17>3.0.CO;2-Y-BIB46 publication-title: FEBS Lett doi: 10.1016/S0014-5793(97)01535-4 – volume: 24 start-page: 85 year: 1995 ident: 10.1002/(SICI)1097-0134(19991115)37:3<499::AID-PROT17>3.0.CO;2-Y-BIB3 publication-title: Annu Rev Biophys Biomol Struct doi: 10.1146/annurev.bb.24.060195.000505 |
| SSID | ssj0006936 |
| Score | 2.1041222 |
| SecondaryResourceType | review_article |
| Snippet | The EF‐hand motif, which assumes a helix‐loop‐helix structure normally responsible for Ca2+ binding, is found in a large number of functionally diverse Ca2+... The EF-hand motif, which assumes a helix-loop-helix structure normally responsible for Ca2+ binding, is found in a large number of functionally diverse Ca2+... |
| SourceID | proquest pubmed crossref wiley istex |
| SourceType | Aggregation Database Index Database Publisher |
| StartPage | 499 |
| SubjectTerms | Amino Acid Motifs Calcium Signaling Calcium-Binding Proteins - chemistry Calmodulin - chemistry conformational change EF-hand protein Helix-Loop-Helix Motifs Molecular Conformation Protein Conformation Troponin C - chemistry |
| Title | Diversity of conformational states and changes within the EF-hand protein superfamily |
| URI | https://api.istex.fr/ark:/67375/WNG-X8ZNJ759-Q/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2F%28SICI%291097-0134%2819991115%2937%3A3%3C499%3A%3AAID-PROT17%3E3.0.CO%3B2-Y https://www.ncbi.nlm.nih.gov/pubmed/10591109 https://www.proquest.com/docview/69342628 |
| Volume | 37 |
| WOSCitedRecordID | wos000083429400017&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library Full Collection 2020 customDbUrl: eissn: 1097-0134 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0006936 issn: 0887-3585 databaseCode: DRFUL dateStart: 19960101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwxV1bb9MwFD7aWmC8cNlglMvwA5u2h2xJnMRxQYgubaFoanfVOl4sO3WkCZFOTYvgBfET-I38Eo5z6ZiYxBNC6kPkqD5H5xzHn33s7wC8wEncc-wYg9eVI8ujyraUo11LBaGSKkEEUZAk7bF-PxwO-f4CfKvuwhT8EPMNNzMy8u-1GeBSZTuXpKEIwI56UQ8XzCaJikti6hlqIwN4HEOYgPMuOpmu0whBPT7hr9VrW_uHg2MH33Totr0dDdbprmudLULdxdD3alBvH3ZP9ubf8oDnRQaLoYjI-ha8KTXY2TTSt-ayNyvJW5Q16SuU2WxeyntdSHuJsq5MgHXjyy_XodurYDmf7bp3_7ed7sGdEieTVhHY92FBp8uw0krldPzpK9kg-cnVPCWwDDd3q6elqKpftwKn7erICRknBJf983ua2G9-jyojMh2R4upzRsyO9HlKEBCTTvfn9x8mpUByGgtszWYXelJsBj2Ak27nOHpnlWUkrNjkgC0aUEZHpky8dGKuXS-gTpywUaJtTyF-Ub4vNQ80pYkfeLZ2JEuY4yQy4MrBP9KHUEvHqX4ExNa-nfCQK5eHnk8lT-KYascbKVzGMuU24KDyrbgo2EJEwQvtCmG8UCb80Qei8oCgTFCBthcC7S4Ku2OLLaKBcMVZAzbyIJl3KCcfzWk85ovT_lsxDD_03zOfi4MGPK-iSKCpTeJHpno8ywRGsSk8EDZgtQiu35TzueGcbcBRHkN_aP1Xpa_VuWx5_E96fQK3c-4McxbTfwq16WSmn8GN-PP0PJuswSIbhmvlOP4Fih5B8Q |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwxV1LbxMxEB6VBCgXHi2P8KoPtGoP267X-3JBiHST0ECa9JGqKRdrvfFKFWJT5YHgBD-B38gvYbzeTamoxAkh5bDyKp7RzHj92WN_A_ACJ3GX2gkGrxMPLZdJ25JUOZb0QxnLFBGEIUnqBN1uOBjw_QX4Vt6FMfwQ8w03PTLy77Ue4HpDeuuCNRQR2FE7auOKWWdRcU3MXM1tpBEP1YwJOPGil9kqixDV4xP-6u2GtX_Y61N802Sb9mbUW2U7jnV6DaouRqJXgWrjsHXcmX_MfZ5XGTRjEaH1TXhTaLC1rqVvzGWvl5I3WLDNXqHM7e0Lea-NtJco69IMWNXO_HIVvL2MlvPprnXnvxvqLtwukDKpm9C-BwsqW4LlehZPR5--kjWSn13NkwJLcGOnfFqMygp2y3DSKA-dkFFKcOE_v6mJ_eY3qSYkzobEXH6eEL0nfZYRhMSk2fr5_YdOKpCcyAJbJ7NzNTbbQffhuNXsR7tWUUjCSnQW2GI-C9hQF4qPacKVg66mSRoMU2W7EhGM9LxYcV8xlnq-aysaB2lAaRr7XFL8I3sAlWyUqUdAbOXZKQ-5dHjoeizmaZIwRd2hxIVsIJ0aHJTOFeeGL0QYZmhHCO2FIuWPPhClBwQLBBNoeyHQ7sLYHVtsEfWEI05rsJZHybzDePxRn8cLPHHSfSsG4Yfuu8Dj4qAGK2UYCTS1Tv3EmRrNJgLDWJceCGvw0ETXb8p5XLPO1uAoD6I_tP6r0lfqXLQ8_ie9rsDibn-vIzrt7vsncCtn0tAnM72nUJmOZ-oZXE8-T88m4-fFcP4FYJ9E-Q |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwxV1bb9MwFLbGCoMXLtuAcJsf2LQ9ZIvj3FwQoktbKFRtd9M6Xiw7caQJkVa9IHiCn8Bv5JdwHCcdE5N4Qkh9iBzV5-ic4_izj_0dhJ7DJO4RJ4HgdUVqe1Q6tiTKtWUQSSEzQBCGJKkb9nrRcMgGS-hbdRfG8EMsNtz0yCi-13qAq3Ga7V2whgICO-rEHVgx6ywqrImpp7mNNOIhmjEBJl7wMt2kMaB6eIJfo9O0B4f9YwJvWnTX2Y37m3Tftc-uoZrnswBGdq152D7pLj7mASuqDJqxCNB6Bb0uNdjb1tJ3FrK3K8k7NKzTlyCzXr-Q98pIewGyLs2ANe3ML1fB28touZju2nf-u6HuotslUsYNE9r30JLKV9FaIxez0aeveAsXZ1eLpMAqurFfPd2Mqwp2a-i0WR06waMMw8J_cVMT-i1uUk2xyFNsLj9Psd6TPs8xQGLcav_8_kMnFXBBZAGt0_lYTcx20Do6abeO47d2WUjCTnQW2KYBDWmqC8ULkjDlegElSRammXI8CQhG-r5QLFCUZn7gOYqIMAsJyUTAJIE_0vtoOR_l6iHCjvKdjEVMuizyfCpYliRUES-VsJANpWuhg8q5fGz4QrhhhnY5114oU_7gA155gNOQUw625xzszo3docXhcZ-7_MxCW0WULDoUk4_6PF7o89PeGz6MPvTehT7jBxbaqMKIg6l16kfkajSfcghjXXogstADE12_KeczzTproaMiiP7Q-q9KX6lz2fLon_S6gVYGzTbvdnrvH6NbBZGGPpjpP0HLs8lcPUXXk8-z8-nkWTmafwGBJER0 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Diversity+of+conformational+states+and+changes+within+the+EF-hand+protein+superfamily&rft.jtitle=Proteins%2C+structure%2C+function%2C+and+bioinformatics&rft.au=Yap%2C+K+L&rft.au=Ames%2C+J+B&rft.au=Swindells%2C+M+B&rft.au=Ikura%2C+M&rft.date=1999-11-15&rft.issn=0887-3585&rft.volume=37&rft.issue=3&rft.spage=499&rft_id=info:doi/10.1002%2F%28SICI%291097-0134%2819991115%2937%3A3%3C499%3A%3AAID-PROT17%3E3.0.CO%3B2-Y&rft_id=info%3Apmid%2F10591109&rft.externalDocID=10591109 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0887-3585&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0887-3585&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0887-3585&client=summon |