A ranking of diffusion MRI compartment models with in vivo human brain data

Purpose Diffusion magnetic resonance imaging (MRI) microstructure imaging provides a unique noninvasive probe into tissue microstructure. The technique relies on biophysically motivated mathematical models, relating microscopic tissue features to the magnetic resonance (MR) signal. This work aims to...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Magnetic resonance in medicine Ročník 72; číslo 6; s. 1785 - 1792
Hlavní autori: Ferizi, Uran, Schneider, Torben, Panagiotaki, Eleftheria, Nedjati-Gilani, Gemma, Zhang, Hui, Wheeler-Kingshott, Claudia A. M., Alexander, Daniel C.
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: United States Blackwell Publishing Ltd 01.12.2014
Wiley Subscription Services, Inc
BlackWell Publishing Ltd
Predmet:
ISSN:0740-3194, 1522-2594, 1522-2594
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Purpose Diffusion magnetic resonance imaging (MRI) microstructure imaging provides a unique noninvasive probe into tissue microstructure. The technique relies on biophysically motivated mathematical models, relating microscopic tissue features to the magnetic resonance (MR) signal. This work aims to determine which compartment models of diffusion MRI are best at describing measurements from in vivo human brain white matter. Methods Recent work shows that three compartment models, designed to capture intra‐axonal, extracellular, and isotropically restricted diffusion, best explain multi‐b‐value data sets from fixed rat corpus callosum. We extend this investigation to in vivo by using a live human subject on a clinical scanner. The analysis compares models of one, two, and three compartments and ranks their ability to explain the measured data. We enhance the original methodology to further evaluate the stability of the ranking. Results As with fixed tissue, three compartment models explain the data best. However, a clearer hierarchical structure and simpler models emerge. We also find that splitting the scanning into shorter sessions has little effect on the ranking of models, and that the results are broadly reproducible across sessions. Conclusion Three compartments are required to explain diffusion MR measurements from in vivo corpus callosum, which informs the choice of model for microstructure imaging applications in the brain. Magn Reson Med 72:1785–1792, 2014. © 2013 The authors. Magnetic Resonance in Medicine Published by Wiley Periodicals, Inc. on behalf of International Society of Medicine in Resonance.
AbstractList Diffusion magnetic resonance imaging (MRI) microstructure imaging provides a unique noninvasive probe into tissue microstructure. The technique relies on biophysically motivated mathematical models, relating microscopic tissue features to the magnetic resonance (MR) signal. This work aims to determine which compartment models of diffusion MRI are best at describing measurements from in vivo human brain white matter. Recent work shows that three compartment models, designed to capture intra-axonal, extracellular, and isotropically restricted diffusion, best explain multi-b-value data sets from fixed rat corpus callosum. We extend this investigation to in vivo by using a live human subject on a clinical scanner. The analysis compares models of one, two, and three compartments and ranks their ability to explain the measured data. We enhance the original methodology to further evaluate the stability of the ranking. As with fixed tissue, three compartment models explain the data best. However, a clearer hierarchical structure and simpler models emerge. We also find that splitting the scanning into shorter sessions has little effect on the ranking of models, and that the results are broadly reproducible across sessions. Three compartments are required to explain diffusion MR measurements from in vivo corpus callosum, which informs the choice of model for microstructure imaging applications in the brain.
Purpose Diffusion magnetic resonance imaging (MRI) microstructure imaging provides a unique noninvasive probe into tissue microstructure. The technique relies on biophysically motivated mathematical models, relating microscopic tissue features to the magnetic resonance (MR) signal. This work aims to determine which compartment models of diffusion MRI are best at describing measurements from in vivo human brain white matter. Methods Recent work shows that three compartment models, designed to capture intra-axonal, extracellular, and isotropically restricted diffusion, best explain multi-b-value data sets from fixed rat corpus callosum. We extend this investigation to in vivo by using a live human subject on a clinical scanner. The analysis compares models of one, two, and three compartments and ranks their ability to explain the measured data. We enhance the original methodology to further evaluate the stability of the ranking. Results As with fixed tissue, three compartment models explain the data best. However, a clearer hierarchical structure and simpler models emerge. We also find that splitting the scanning into shorter sessions has little effect on the ranking of models, and that the results are broadly reproducible across sessions. Conclusion Three compartments are required to explain diffusion MR measurements from in vivo corpus callosum, which informs the choice of model for microstructure imaging applications in the brain. Magn Reson Med 72:1785-1792, 2014. copyright 2013 The authors. Magnetic Resonance in Medicine Published by Wiley Periodicals, Inc. on behalf of International Society of Medicine in Resonance.
Purpose Diffusion magnetic resonance imaging (MRI) microstructure imaging provides a unique noninvasive probe into tissue microstructure. The technique relies on biophysically motivated mathematical models, relating microscopic tissue features to the magnetic resonance (MR) signal. This work aims to determine which compartment models of diffusion MRI are best at describing measurements from in vivo human brain white matter. Methods Recent work shows that three compartment models, designed to capture intra-axonal, extracellular, and isotropically restricted diffusion, best explain multi-b-value data sets from fixed rat corpus callosum. We extend this investigation to in vivo by using a live human subject on a clinical scanner. The analysis compares models of one, two, and three compartments and ranks their ability to explain the measured data. We enhance the original methodology to further evaluate the stability of the ranking. Results As with fixed tissue, three compartment models explain the data best. However, a clearer hierarchical structure and simpler models emerge. We also find that splitting the scanning into shorter sessions has little effect on the ranking of models, and that the results are broadly reproducible across sessions. Conclusion Three compartments are required to explain diffusion MR measurements from in vivo corpus callosum, which informs the choice of model for microstructure imaging applications in the brain. Magn Reson Med 72:1785-1792, 2014. © 2013 The authors. Magnetic Resonance in Medicine Published by Wiley Periodicals, Inc. on behalf of International Society of Medicine in Resonance.
Diffusion magnetic resonance imaging (MRI) microstructure imaging provides a unique noninvasive probe into tissue microstructure. The technique relies on biophysically motivated mathematical models, relating microscopic tissue features to the magnetic resonance (MR) signal. This work aims to determine which compartment models of diffusion MRI are best at describing measurements from in vivo human brain white matter.PURPOSEDiffusion magnetic resonance imaging (MRI) microstructure imaging provides a unique noninvasive probe into tissue microstructure. The technique relies on biophysically motivated mathematical models, relating microscopic tissue features to the magnetic resonance (MR) signal. This work aims to determine which compartment models of diffusion MRI are best at describing measurements from in vivo human brain white matter.Recent work shows that three compartment models, designed to capture intra-axonal, extracellular, and isotropically restricted diffusion, best explain multi-b-value data sets from fixed rat corpus callosum. We extend this investigation to in vivo by using a live human subject on a clinical scanner. The analysis compares models of one, two, and three compartments and ranks their ability to explain the measured data. We enhance the original methodology to further evaluate the stability of the ranking.METHODSRecent work shows that three compartment models, designed to capture intra-axonal, extracellular, and isotropically restricted diffusion, best explain multi-b-value data sets from fixed rat corpus callosum. We extend this investigation to in vivo by using a live human subject on a clinical scanner. The analysis compares models of one, two, and three compartments and ranks their ability to explain the measured data. We enhance the original methodology to further evaluate the stability of the ranking.As with fixed tissue, three compartment models explain the data best. However, a clearer hierarchical structure and simpler models emerge. We also find that splitting the scanning into shorter sessions has little effect on the ranking of models, and that the results are broadly reproducible across sessions.RESULTSAs with fixed tissue, three compartment models explain the data best. However, a clearer hierarchical structure and simpler models emerge. We also find that splitting the scanning into shorter sessions has little effect on the ranking of models, and that the results are broadly reproducible across sessions.Three compartments are required to explain diffusion MR measurements from in vivo corpus callosum, which informs the choice of model for microstructure imaging applications in the brain.CONCLUSIONThree compartments are required to explain diffusion MR measurements from in vivo corpus callosum, which informs the choice of model for microstructure imaging applications in the brain.
Purpose Diffusion magnetic resonance imaging (MRI) microstructure imaging provides a unique noninvasive probe into tissue microstructure. The technique relies on biophysically motivated mathematical models, relating microscopic tissue features to the magnetic resonance (MR) signal. This work aims to determine which compartment models of diffusion MRI are best at describing measurements from in vivo human brain white matter. Methods Recent work shows that three compartment models, designed to capture intra‐axonal, extracellular, and isotropically restricted diffusion, best explain multi‐b‐value data sets from fixed rat corpus callosum. We extend this investigation to in vivo by using a live human subject on a clinical scanner. The analysis compares models of one, two, and three compartments and ranks their ability to explain the measured data. We enhance the original methodology to further evaluate the stability of the ranking. Results As with fixed tissue, three compartment models explain the data best. However, a clearer hierarchical structure and simpler models emerge. We also find that splitting the scanning into shorter sessions has little effect on the ranking of models, and that the results are broadly reproducible across sessions. Conclusion Three compartments are required to explain diffusion MR measurements from in vivo corpus callosum, which informs the choice of model for microstructure imaging applications in the brain. Magn Reson Med 72:1785–1792, 2014. © 2013 The authors. Magnetic Resonance in Medicine Published by Wiley Periodicals, Inc. on behalf of International Society of Medicine in Resonance.
Author Zhang, Hui
Ferizi, Uran
Wheeler-Kingshott, Claudia A. M.
Schneider, Torben
Alexander, Daniel C.
Panagiotaki, Eleftheria
Nedjati-Gilani, Gemma
Author_xml – sequence: 1
  givenname: Uran
  surname: Ferizi
  fullname: Ferizi, Uran
  email: uran.ferizi.10@ucl.ac.uk
  organization: Department of Computer Science and Centre for Medical Image Computing, University College London, London, UK
– sequence: 2
  givenname: Torben
  surname: Schneider
  fullname: Schneider, Torben
  organization: NMR Research Unit, Department of Neuroinflammation, Institute of Neurology, University College London, London, UK
– sequence: 3
  givenname: Eleftheria
  surname: Panagiotaki
  fullname: Panagiotaki, Eleftheria
  organization: Department of Computer Science and Centre for Medical Image Computing, University College London, London, UK
– sequence: 4
  givenname: Gemma
  surname: Nedjati-Gilani
  fullname: Nedjati-Gilani, Gemma
  organization: Department of Computer Science and Centre for Medical Image Computing, University College London, London, UK
– sequence: 5
  givenname: Hui
  surname: Zhang
  fullname: Zhang, Hui
  organization: Department of Computer Science and Centre for Medical Image Computing, University College London, London, UK
– sequence: 6
  givenname: Claudia A. M.
  surname: Wheeler-Kingshott
  fullname: Wheeler-Kingshott, Claudia A. M.
  organization: NMR Research Unit, Department of Neuroinflammation, Institute of Neurology, University College London, London, UK
– sequence: 7
  givenname: Daniel C.
  surname: Alexander
  fullname: Alexander, Daniel C.
  organization: Department of Computer Science and Centre for Medical Image Computing, University College London, London, UK
BackLink https://www.ncbi.nlm.nih.gov/pubmed/24347370$$D View this record in MEDLINE/PubMed
BookMark eNqNkc1u1DAUhS1URKeFBS-ALLGBRVr_JvEGqVRQKjoFjUAsrZvE7rhN7MFOpvTtcZl2BJVArCz5fuf4XJ89tOODNwg9p-SAEsIOhzgcMElq8gjNqGSsYFKJHTQjlSAFp0rsor2ULgkhSlXiCdplgouKV2SGPh7hCP7K-QscLO6ctVNyweP54hS3YVhBHAfjRzyEzvQJX7txiZ3Ha7cOeDkN4HETIV90MMJT9NhCn8yzu3MffX3_7svxh-Ls08np8dFZ0co6BxIliFpAbUgFsirBNqaF1jZCEmZEZ6jg1NqO8C6PSAO16BpmlWBl3rWmku-jNxvf1dQMpmtzvgi9XkU3QLzRAZz-c-LdUl-EtRasqqVQ2eDVnUEM3yeTRj241Jq-B2_ClDQtec6iak7-A2XZUJKSZvTlA_QyTNHnn7ilGM8vqzJTL34Pv019X0kGXm-ANoaUorFbhBJ9W7fOdetfdWf28AHbuhHGXGDe2_X_Uly73tz83VrPF_N7RbFRuDSaH1sFxCtd5sBSfzs_0YtKfT5_q4hW_CeWMsml
CODEN MRMEEN
CitedBy_id crossref_primary_10_1109_TMI_2016_2646920
crossref_primary_10_1016_j_jns_2022_120446
crossref_primary_10_1002_nbm_3841
crossref_primary_10_1016_j_media_2017_06_008
crossref_primary_10_1016_j_neuroimage_2016_07_042
crossref_primary_10_1038_nrneurol_2015_194
crossref_primary_10_1016_j_neuroimage_2017_04_064
crossref_primary_10_1016_j_neuroimage_2018_06_071
crossref_primary_10_1016_j_neuroimage_2020_116534
crossref_primary_10_1016_j_neuroimage_2014_11_015
crossref_primary_10_1002_nbm_3888
crossref_primary_10_1016_j_neuroimage_2017_10_051
crossref_primary_10_1016_j_neurobiolaging_2017_04_021
crossref_primary_10_1016_j_neuroimage_2018_04_025
crossref_primary_10_1186_s41747_018_0057_2
crossref_primary_10_3389_fnins_2024_1467786
crossref_primary_10_1016_j_neuroimage_2015_01_045
crossref_primary_10_1016_j_neuroimage_2015_06_027
crossref_primary_10_3389_fphy_2017_00061
crossref_primary_10_1016_j_mri_2021_11_012
crossref_primary_10_1016_j_neuroimage_2018_05_047
crossref_primary_10_3233_JAD_220476
crossref_primary_10_1002_mrm_26393
crossref_primary_10_1016_j_neuroimage_2018_08_071
crossref_primary_10_1002_mrm_28216
crossref_primary_10_1038_srep38927
crossref_primary_10_1002_mrm_27606
crossref_primary_10_1007_s12311_023_01572_y
crossref_primary_10_1002_hbm_26143
crossref_primary_10_1016_j_neuroimage_2017_07_060
crossref_primary_10_1016_j_neuroimage_2023_120376
crossref_primary_10_1002_mrm_27471
crossref_primary_10_1016_j_neuroimage_2018_07_020
crossref_primary_10_1002_nbm_3945
crossref_primary_10_1016_j_neuroimage_2020_117206
crossref_primary_10_1002_mrm_27036
crossref_primary_10_1002_hbm_25241
crossref_primary_10_1002_mrm_27181
crossref_primary_10_1016_j_media_2017_03_007
crossref_primary_10_1016_j_neuroimage_2022_119135
crossref_primary_10_1155_2014_467560
crossref_primary_10_1109_TMI_2015_2430850
crossref_primary_10_1016_j_neuroimage_2022_119138
crossref_primary_10_1002_mrm_27101
crossref_primary_10_1088_1361_6560_ac46de
crossref_primary_10_1002_nbm_3894
crossref_primary_10_1016_j_neulet_2018_12_007
crossref_primary_10_1016_j_neuroimage_2021_117849
crossref_primary_10_1002_nbm_3496
crossref_primary_10_1109_TMI_2020_3042765
crossref_primary_10_1007_s00429_018_1663_8
crossref_primary_10_1002_nbm_3734
crossref_primary_10_3389_fnins_2018_00102
crossref_primary_10_1002_nbm_3930
crossref_primary_10_1016_j_neuroimage_2018_04_075
crossref_primary_10_3389_fnhum_2014_01066
Cites_doi 10.1002/nbm.786
10.1002/mrm.10609
10.1016/j.neuroimage.2012.03.072
10.1006/jmrb.1994.1037
10.1063/1.1670306
10.1016/j.neuroimage.2011.09.081
10.1002/mrm.20283
10.1002/mrm.20274
10.1016/j.neuroimage.2011.01.084
10.1002/mrm.21646
10.1093/brain/awp042
10.1002/nbm.782
10.1002/mrm.1910370115
10.1214/aos/1176344136
10.1016/j.neuroimage.2010.05.043
10.1002/mrm.21167
10.1214/aos/1176344552
10.1016/j.neuroimage.2012.01.056
10.1002/mrm.21577
10.1002/mrm.21977
10.1007/978-3-540-88378-4_1
10.1002/nbm.1795
ContentType Journal Article
Copyright 2013 The Authors. Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society of Medicine in Resonance.
2014 Wiley Periodicals, Inc.
2013 The Authors. Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society of Medicine in Resonance. 2013
Copyright_xml – notice: 2013 The Authors. Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society of Medicine in Resonance.
– notice: 2014 Wiley Periodicals, Inc.
– notice: 2013 The Authors. Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society of Medicine in Resonance. 2013
DBID BSCLL
24P
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
8FD
FR3
K9.
M7Z
P64
7X8
7QO
5PM
DOI 10.1002/mrm.25080
DatabaseName Istex
Wiley Online Library Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Technology Research Database
Engineering Research Database
ProQuest Health & Medical Complete (Alumni)
Biochemistry Abstracts 1
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
Biotechnology Research Abstracts
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Biochemistry Abstracts 1
ProQuest Health & Medical Complete (Alumni)
Engineering Research Database
Technology Research Database
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
Biotechnology Research Abstracts
DatabaseTitleList MEDLINE
Engineering Research Database
Biochemistry Abstracts 1
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Physics
EISSN 1522-2594
EndPage 1792
ExternalDocumentID PMC4278549
3491262311
24347370
10_1002_mrm_25080
MRM25080
ark_67375_WNG_R79PNB90_9
Genre technicalNote
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: National Institute for Health Research UCL Hospitals Biomedical Research Centre
– fundername: EPSRC
  funderid: EP/E007748 and EP/I027084/01
– fundername: Multiple Sclerosis Society of Great Britain and Northern Ireland
GroupedDBID ---
-DZ
.3N
.55
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
31~
33P
3O-
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
53G
5GY
5RE
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A01
A03
AAESR
AAEVG
AAHQN
AAIPD
AAMMB
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDPE
ABEML
ABIJN
ABJNI
ABLJU
ABPVW
ABQWH
ABXGK
ACAHQ
ACBWZ
ACCZN
ACFBH
ACGFO
ACGFS
ACGOF
ACIWK
ACMXC
ACPOU
ACPRK
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADBTR
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEFGJ
AEGXH
AEIGN
AEIMD
AENEX
AEUYR
AEYWJ
AFBPY
AFFNX
AFFPM
AFGKR
AFRAH
AFWVQ
AFZJQ
AGHNM
AGQPQ
AGXDD
AGYGG
AHBTC
AHMBA
AIACR
AIAGR
AIDQK
AIDYY
AIQQE
AITYG
AIURR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMXJE
BROTX
BRXPI
BSCLL
BY8
C45
CS3
D-6
D-7
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRMAN
DRSTM
DU5
EBD
EBS
EJD
EMOBN
F00
F01
F04
FEDTE
FUBAC
G-S
G.N
GNP
GODZA
H.X
HBH
HDBZQ
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
I-F
IX1
J0M
JPC
KBYEO
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M65
MEWTI
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
OVD
P2P
P2W
P2X
P2Z
P4B
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RIWAO
RJQFR
ROL
RX1
RYL
SAMSI
SUPJJ
SV3
TEORI
TUS
TWZ
UB1
V2E
V8K
W8V
W99
WBKPD
WHWMO
WIB
WIH
WIJ
WIK
WIN
WJL
WOHZO
WQJ
WVDHM
WXI
WXSBR
X7M
XG1
XPP
XV2
ZGI
ZXP
ZZTAW
~IA
~WT
24P
AAHHS
ACCFJ
AEEZP
AEQDE
AEUQT
AFPWT
AIWBW
AJBDE
RGB
RWI
WRC
WUP
AAYXX
CITATION
O8X
CGR
CUY
CVF
ECM
EIF
NPM
8FD
FR3
K9.
M7Z
P64
7X8
7QO
5PM
ID FETCH-LOGICAL-c5840-46a484a8e07a576afbecacfb4502e4de1431ffd03dafb0ba84db2f94260028153
IEDL.DBID 24P
ISICitedReferencesCount 67
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000344798300030&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0740-3194
1522-2594
IngestDate Thu Aug 21 13:50:43 EDT 2025
Tue Oct 07 09:44:04 EDT 2025
Thu Oct 02 07:09:53 EDT 2025
Sat Nov 29 14:43:05 EST 2025
Wed Feb 19 01:52:18 EST 2025
Sat Nov 29 02:37:34 EST 2025
Tue Nov 18 21:38:39 EST 2025
Wed Jan 22 16:56:04 EST 2025
Sun Sep 21 06:17:49 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords brain imaging
white matter
diffusion magnetic resonance imaging
microstructure imaging
Language English
License Attribution
2013 The Authors. Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society of Medicine in Resonance.
This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5840-46a484a8e07a576afbecacfb4502e4de1431ffd03dafb0ba84db2f94260028153
Notes istex:037671B7760F8E975573CCBCD6C69ABBF2751A34
EPSRC - No. EP/E007748 and EP/I027084/01
ark:/67375/WNG-R79PNB90-9
ArticleID:MRM25080
National Institute for Health Research UCL Hospitals Biomedical Research Centre
Multiple Sclerosis Society of Great Britain and Northern Ireland
The copyright line for this article was changed on 17 September 2014 after original online publication.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmrm.25080
PMID 24347370
PQID 1622354996
PQPubID 1016391
PageCount 8
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_4278549
proquest_miscellaneous_1635029830
proquest_miscellaneous_1624935061
proquest_journals_1622354996
pubmed_primary_24347370
crossref_primary_10_1002_mrm_25080
crossref_citationtrail_10_1002_mrm_25080
wiley_primary_10_1002_mrm_25080_MRM25080
istex_primary_ark_67375_WNG_R79PNB90_9
PublicationCentury 2000
PublicationDate December 2014
PublicationDateYYYYMMDD 2014-12-01
PublicationDate_xml – month: 12
  year: 2014
  text: December 2014
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Hoboken
– name: Oxford, UK
PublicationTitle Magnetic resonance in medicine
PublicationTitleAlternate Magn. Reson. Med
PublicationYear 2014
Publisher Blackwell Publishing Ltd
Wiley Subscription Services, Inc
BlackWell Publishing Ltd
Publisher_xml – name: Blackwell Publishing Ltd
– name: Wiley Subscription Services, Inc
– name: BlackWell Publishing Ltd
References Zhang H, Hubbard PL, Parker GJM, Alexander DC. Axon diameter mapping in the presence of orientation dispersion with diffusion MRI. Neuroimage 2011;56:1301-1315.
Sotak CH. The role of diffusion tensor imaging in the evaluation of ischaemic brain injury: a review. NMR Biomed 2002;15:561-569.
Schwarz G. Estimating the dimension of a model. Ann Stat 1978;6:461-464.
Efron B. Bootstrap methods: another look at the jackknife. Ann Stat 1979;7:1-26.
Wilm BJ, Svensson J, Henning A, Pruessmann KP, Boesiger P, Kollias SS. Reduced field-of-view MRI using outer volume suppression for spinal cord diffusion imaging. Magn Reson Med 2007;57:625-630.
Jones DK, Basser PJ. Squashing peanuts and smashing pumpkins: how noise distorts diffusion-weighted MR data. Magn Reson Med 2004;52:979-993.
Dyrby TB, Soegaard LV, Hall MG, Ptito M, Alexander DC. Contrast and stability of the axon diameter index from microstructure imaging with diffusion MRI. Magn Reson Med 2012;10:1522-2594.
Tanner JE, Stejskal EO. Restricted self-diffusion of protons in colloidal systems by pulsed-gradient spin echo method. J Chem Phys 1968;49:1768.
Behrens TE, Woolrich MW, Jenkinson M, Johansen-Berg H, Nunes RG, Clare S, Matthews PM, Brady JM, Smith SM. Characterization and propagation of uncertainty in diffusion-weighted MR imaging. Magn Reson Med 2003;50:1077-1088.
Stanisz GJ, Szafer A, Wright GA, Henkelman M. An analytical model of restricted diffusion in bovine optic nerve. Magn Reson Med 1997;37:103-111.
Assaf Y, Freidlin RZ, Rohde GK, Basser PJ. New modeling and experimental framework to characterize hindered and restricted water diffusion in brain white matter. Magn Reson Med 2004;52:965-978.
Barazany D, Basser PJ, Assaf Y. In vivo measurement of axon diameter distribution in the corpus callosum of rat brain. Brain 2009;132:1210-1220.
Panagiotaki E, Schneider T, Siow B, Hall MG, Lythgoe MF, Alexander DC. Compartment models of the diffusion MR signal in brain white matter: a taxonomy and comparison. Neuroimage 2012;59:2241-2254.
Beaulieu C. The basis of anisotropic water diffusion in the nervous system-a technical review. NMR Biomed 2002;15:435-455.
Assaf Y, Blumenfeld-Katzir T, Yovel Y, Basser PJ. AxCaliber: a method for measuring axon diameter distribution from diffusion MRI. Magn Reson Med 2008;59:1347-1354.
Zhang H, Schneider T, Wheeler-Kingshott CA, Alexander DC. NODDI: practical in vivo neurite orientation dispersion and density imaging of the human brain. Neuroimage 2012;61:1000-1016.
Sotiropoulos S, Behrens TE, Jbabdi S. Ball and rackets: inferring fibre fanning from diffusion-weighted MRI. Neuroimage 2012;60:1412-1425.
Basser PJ, Mattiello J, LeBihan D. Estimation of the effective self-diffusion tensor from the NMR spin echo. J Magn Reson 1994;103:247-254.
Alexander DC. A general framework for experiment design in diffusion MRI and its application in measuring direct tissue-microstructure features. Magn Reson Med 2008;60:439-448.
Alexander DC, Hubbard PL, Hall MG, Moore EA, Ptito M, Parker GJM, Dyrby TB. Orientationally invariant indices of axon diameter and density from diffusion MRI. Neuroimage 2010;52:1374-1389.
Shepherd TM, Thelwall PE, Stanisz GJ, Blackband SJ. Aldehyde fixative solutions alter the water relaxation and diffusion properties of nervous tissue. Magn Reson Med 2009;62:26-34.
Nilsson M, Lätt J, Ståhlberg F, van Westen D, Hagslätt H. The importance of axonal undulation in diffusion MR measurements: a Monte Carlo simulation study. NMR Biomed 2012;25:795-805.
2012; 61
2012; 60
2004; 52
2002; 15
2009; 62
1994; 103
1968; 49
1997; 37
2009; 132
2009
2008; 59
2011; 56
2012; 59
2012; 25
2003; 50
2008; 60
2010; 52
2012; 10
2007; 57
1978; 6
1979; 7
e_1_2_5_15_1
e_1_2_5_14_1
e_1_2_5_17_1
e_1_2_5_25_1
e_1_2_5_9_1
e_1_2_5_16_1
e_1_2_5_8_1
e_1_2_5_11_1
e_1_2_5_23_1
e_1_2_5_7_1
e_1_2_5_24_1
e_1_2_5_6_1
e_1_2_5_13_1
e_1_2_5_21_1
e_1_2_5_5_1
e_1_2_5_12_1
e_1_2_5_22_1
e_1_2_5_4_1
e_1_2_5_3_1
e_1_2_5_2_1
e_1_2_5_19_1
e_1_2_5_18_1
Dyrby TB (e_1_2_5_10_1) 2012; 10
e_1_2_5_20_1
20580932 - Neuroimage. 2010 Oct 1;52(4):1374-89
15508168 - Magn Reson Med. 2004 Nov;52(5):965-78
8978638 - Magn Reson Med. 1997 Jan;37(1):103-11
21316474 - Neuroimage. 2011 Jun 1;56(3):1301-15
22484410 - Neuroimage. 2012 Jul 16;61(4):1000-16
18666109 - Magn Reson Med. 2008 Aug;60(2):439-48
19403788 - Brain. 2009 May;132(Pt 5):1210-20
17326167 - Magn Reson Med. 2007 Mar;57(3):625-30
22001791 - Neuroimage. 2012 Feb 1;59(3):2241-54
18506799 - Magn Reson Med. 2008 Jun;59(6):1347-54
22020832 - NMR Biomed. 2012 May;25(5):795-805
23023798 - Magn Reson Med. 2013 Sep;70(3):711-21
22270351 - Neuroimage. 2012 Apr 2;60(2):1412-25
12489102 - NMR Biomed. 2002 Nov-Dec;15(7-8):561-9
19353660 - Magn Reson Med. 2009 Jul;62(1):26-34
12489094 - NMR Biomed. 2002 Nov-Dec;15(7-8):435-55
15508154 - Magn Reson Med. 2004 Nov;52(5):979-93
14587019 - Magn Reson Med. 2003 Nov;50(5):1077-88
8019776 - J Magn Reson B. 1994 Mar;103(3):247-54
References_xml – reference: Assaf Y, Blumenfeld-Katzir T, Yovel Y, Basser PJ. AxCaliber: a method for measuring axon diameter distribution from diffusion MRI. Magn Reson Med 2008;59:1347-1354.
– reference: Stanisz GJ, Szafer A, Wright GA, Henkelman M. An analytical model of restricted diffusion in bovine optic nerve. Magn Reson Med 1997;37:103-111.
– reference: Schwarz G. Estimating the dimension of a model. Ann Stat 1978;6:461-464.
– reference: Sotiropoulos S, Behrens TE, Jbabdi S. Ball and rackets: inferring fibre fanning from diffusion-weighted MRI. Neuroimage 2012;60:1412-1425.
– reference: Jones DK, Basser PJ. Squashing peanuts and smashing pumpkins: how noise distorts diffusion-weighted MR data. Magn Reson Med 2004;52:979-993.
– reference: Zhang H, Schneider T, Wheeler-Kingshott CA, Alexander DC. NODDI: practical in vivo neurite orientation dispersion and density imaging of the human brain. Neuroimage 2012;61:1000-1016.
– reference: Basser PJ, Mattiello J, LeBihan D. Estimation of the effective self-diffusion tensor from the NMR spin echo. J Magn Reson 1994;103:247-254.
– reference: Barazany D, Basser PJ, Assaf Y. In vivo measurement of axon diameter distribution in the corpus callosum of rat brain. Brain 2009;132:1210-1220.
– reference: Assaf Y, Freidlin RZ, Rohde GK, Basser PJ. New modeling and experimental framework to characterize hindered and restricted water diffusion in brain white matter. Magn Reson Med 2004;52:965-978.
– reference: Dyrby TB, Soegaard LV, Hall MG, Ptito M, Alexander DC. Contrast and stability of the axon diameter index from microstructure imaging with diffusion MRI. Magn Reson Med 2012;10:1522-2594.
– reference: Wilm BJ, Svensson J, Henning A, Pruessmann KP, Boesiger P, Kollias SS. Reduced field-of-view MRI using outer volume suppression for spinal cord diffusion imaging. Magn Reson Med 2007;57:625-630.
– reference: Alexander DC. A general framework for experiment design in diffusion MRI and its application in measuring direct tissue-microstructure features. Magn Reson Med 2008;60:439-448.
– reference: Behrens TE, Woolrich MW, Jenkinson M, Johansen-Berg H, Nunes RG, Clare S, Matthews PM, Brady JM, Smith SM. Characterization and propagation of uncertainty in diffusion-weighted MR imaging. Magn Reson Med 2003;50:1077-1088.
– reference: Zhang H, Hubbard PL, Parker GJM, Alexander DC. Axon diameter mapping in the presence of orientation dispersion with diffusion MRI. Neuroimage 2011;56:1301-1315.
– reference: Tanner JE, Stejskal EO. Restricted self-diffusion of protons in colloidal systems by pulsed-gradient spin echo method. J Chem Phys 1968;49:1768.
– reference: Alexander DC, Hubbard PL, Hall MG, Moore EA, Ptito M, Parker GJM, Dyrby TB. Orientationally invariant indices of axon diameter and density from diffusion MRI. Neuroimage 2010;52:1374-1389.
– reference: Nilsson M, Lätt J, Ståhlberg F, van Westen D, Hagslätt H. The importance of axonal undulation in diffusion MR measurements: a Monte Carlo simulation study. NMR Biomed 2012;25:795-805.
– reference: Panagiotaki E, Schneider T, Siow B, Hall MG, Lythgoe MF, Alexander DC. Compartment models of the diffusion MR signal in brain white matter: a taxonomy and comparison. Neuroimage 2012;59:2241-2254.
– reference: Sotak CH. The role of diffusion tensor imaging in the evaluation of ischaemic brain injury: a review. NMR Biomed 2002;15:561-569.
– reference: Efron B. Bootstrap methods: another look at the jackknife. Ann Stat 1979;7:1-26.
– reference: Beaulieu C. The basis of anisotropic water diffusion in the nervous system-a technical review. NMR Biomed 2002;15:435-455.
– reference: Shepherd TM, Thelwall PE, Stanisz GJ, Blackband SJ. Aldehyde fixative solutions alter the water relaxation and diffusion properties of nervous tissue. Magn Reson Med 2009;62:26-34.
– volume: 61
  start-page: 1000
  year: 2012
  end-page: 1016
  article-title: NODDI: practical in vivo neurite orientation dispersion and density imaging of the human brain
  publication-title: Neuroimage
– volume: 25
  start-page: 795
  year: 2012
  end-page: 805
  article-title: The importance of axonal undulation in diffusion MR measurements: a Monte Carlo simulation study
  publication-title: NMR Biomed
– volume: 15
  start-page: 435
  year: 2002
  end-page: 455
  article-title: The basis of anisotropic water diffusion in the nervous system—a technical review
  publication-title: NMR Biomed
– volume: 10
  start-page: 1522
  year: 2012
  end-page: 2594
  article-title: Contrast and stability of the axon diameter index from microstructure imaging with diffusion MRI
  publication-title: Magn Reson Med
– volume: 59
  start-page: 2241
  year: 2012
  end-page: 2254
  article-title: Compartment models of the diffusion MR signal in brain white matter: a taxonomy and comparison
  publication-title: Neuroimage
– volume: 52
  start-page: 1374
  year: 2010
  end-page: 1389
  article-title: Orientationally invariant indices of axon diameter and density from diffusion MRI
  publication-title: Neuroimage
– volume: 7
  start-page: 1
  year: 1979
  end-page: 26
  article-title: Bootstrap methods: another look at the jackknife
  publication-title: Ann Stat
– volume: 59
  start-page: 1347
  year: 2008
  end-page: 1354
  article-title: AxCaliber: a method for measuring axon diameter distribution from diffusion MRI
  publication-title: Magn Reson Med
– volume: 60
  start-page: 439
  year: 2008
  end-page: 448
  article-title: A general framework for experiment design in diffusion MRI and its application in measuring direct tissue‐microstructure features
  publication-title: Magn Reson Med
– volume: 50
  start-page: 1077
  year: 2003
  end-page: 1088
  article-title: Characterization and propagation of uncertainty in diffusion‐weighted MR imaging
  publication-title: Magn Reson Med
– volume: 132
  start-page: 1210
  year: 2009
  end-page: 1220
  article-title: In vivo measurement of axon diameter distribution in the corpus callosum of rat brain
  publication-title: Brain
– volume: 49
  start-page: 1768
  year: 1968
  article-title: Restricted self‐diffusion of protons in colloidal systems by pulsed‐gradient spin echo method
  publication-title: J Chem Phys
– start-page: 3
  year: 2009
  end-page: 20
– volume: 15
  start-page: 561
  year: 2002
  end-page: 569
  article-title: The role of diffusion tensor imaging in the evaluation of ischaemic brain injury: a review
  publication-title: NMR Biomed
– volume: 60
  start-page: 1412
  year: 2012
  end-page: 1425
  article-title: Ball and rackets: inferring fibre fanning from diffusion‐weighted MRI
  publication-title: Neuroimage
– volume: 62
  start-page: 26
  year: 2009
  end-page: 34
  article-title: Aldehyde fixative solutions alter the water relaxation and diffusion properties of nervous tissue
  publication-title: Magn Reson Med
– volume: 37
  start-page: 103
  year: 1997
  end-page: 111
  article-title: An analytical model of restricted diffusion in bovine optic nerve
  publication-title: Magn Reson Med
– volume: 57
  start-page: 625
  year: 2007
  end-page: 630
  article-title: Reduced field‐of‐view MRI using outer volume suppression for spinal cord diffusion imaging
  publication-title: Magn Reson Med
– volume: 103
  start-page: 247
  year: 1994
  end-page: 254
  article-title: Estimation of the effective self‐diffusion tensor from the NMR spin echo
  publication-title: J Magn Reson
– volume: 52
  start-page: 965
  year: 2004
  end-page: 978
  article-title: New modeling and experimental framework to characterize hindered and restricted water diffusion in brain white matter
  publication-title: Magn Reson Med
– volume: 52
  start-page: 979
  year: 2004
  end-page: 993
  article-title: Squashing peanuts and smashing pumpkins: how noise distorts diffusion‐weighted MR data
  publication-title: Magn Reson Med
– volume: 6
  start-page: 461
  year: 1978
  end-page: 464
  article-title: Estimating the dimension of a model
  publication-title: Ann Stat
– volume: 56
  start-page: 1301
  year: 2011
  end-page: 1315
  article-title: Axon diameter mapping in the presence of orientation dispersion with diffusion MRI
  publication-title: Neuroimage
– ident: e_1_2_5_3_1
  doi: 10.1002/nbm.786
– ident: e_1_2_5_5_1
  doi: 10.1002/mrm.10609
– ident: e_1_2_5_20_1
  doi: 10.1016/j.neuroimage.2012.03.072
– ident: e_1_2_5_2_1
  doi: 10.1006/jmrb.1994.1037
– ident: e_1_2_5_25_1
  doi: 10.1063/1.1670306
– ident: e_1_2_5_12_1
  doi: 10.1016/j.neuroimage.2011.09.081
– ident: e_1_2_5_17_1
  doi: 10.1002/mrm.20283
– ident: e_1_2_5_6_1
  doi: 10.1002/mrm.20274
– ident: e_1_2_5_11_1
  doi: 10.1016/j.neuroimage.2011.01.084
– ident: e_1_2_5_24_1
  doi: 10.1002/mrm.21646
– ident: e_1_2_5_8_1
  doi: 10.1093/brain/awp042
– ident: e_1_2_5_22_1
  doi: 10.1002/nbm.782
– ident: e_1_2_5_4_1
  doi: 10.1002/mrm.1910370115
– ident: e_1_2_5_18_1
  doi: 10.1214/aos/1176344136
– ident: e_1_2_5_9_1
  doi: 10.1016/j.neuroimage.2010.05.043
– ident: e_1_2_5_15_1
  doi: 10.1002/mrm.21167
– ident: e_1_2_5_19_1
  doi: 10.1214/aos/1176344552
– volume: 10
  start-page: 1522
  year: 2012
  ident: e_1_2_5_10_1
  article-title: Contrast and stability of the axon diameter index from microstructure imaging with diffusion MRI
  publication-title: Magn Reson Med
– ident: e_1_2_5_23_1
  doi: 10.1016/j.neuroimage.2012.01.056
– ident: e_1_2_5_7_1
  doi: 10.1002/mrm.21577
– ident: e_1_2_5_13_1
  doi: 10.1002/mrm.21977
– ident: e_1_2_5_14_1
– ident: e_1_2_5_16_1
  doi: 10.1007/978-3-540-88378-4_1
– ident: e_1_2_5_21_1
  doi: 10.1002/nbm.1795
– reference: 22020832 - NMR Biomed. 2012 May;25(5):795-805
– reference: 8019776 - J Magn Reson B. 1994 Mar;103(3):247-54
– reference: 18506799 - Magn Reson Med. 2008 Jun;59(6):1347-54
– reference: 20580932 - Neuroimage. 2010 Oct 1;52(4):1374-89
– reference: 19353660 - Magn Reson Med. 2009 Jul;62(1):26-34
– reference: 15508154 - Magn Reson Med. 2004 Nov;52(5):979-93
– reference: 8978638 - Magn Reson Med. 1997 Jan;37(1):103-11
– reference: 23023798 - Magn Reson Med. 2013 Sep;70(3):711-21
– reference: 19403788 - Brain. 2009 May;132(Pt 5):1210-20
– reference: 21316474 - Neuroimage. 2011 Jun 1;56(3):1301-15
– reference: 22484410 - Neuroimage. 2012 Jul 16;61(4):1000-16
– reference: 22001791 - Neuroimage. 2012 Feb 1;59(3):2241-54
– reference: 12489102 - NMR Biomed. 2002 Nov-Dec;15(7-8):561-9
– reference: 14587019 - Magn Reson Med. 2003 Nov;50(5):1077-88
– reference: 22270351 - Neuroimage. 2012 Apr 2;60(2):1412-25
– reference: 15508168 - Magn Reson Med. 2004 Nov;52(5):965-78
– reference: 12489094 - NMR Biomed. 2002 Nov-Dec;15(7-8):435-55
– reference: 17326167 - Magn Reson Med. 2007 Mar;57(3):625-30
– reference: 18666109 - Magn Reson Med. 2008 Aug;60(2):439-48
SSID ssj0009974
Score 2.4355726
Snippet Purpose Diffusion magnetic resonance imaging (MRI) microstructure imaging provides a unique noninvasive probe into tissue microstructure. The technique relies...
Diffusion magnetic resonance imaging (MRI) microstructure imaging provides a unique noninvasive probe into tissue microstructure. The technique relies on...
Purpose Diffusion magnetic resonance imaging (MRI) microstructure imaging provides a unique noninvasive probe into tissue microstructure. The technique relies...
SourceID pubmedcentral
proquest
pubmed
crossref
wiley
istex
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1785
SubjectTerms Body Water - metabolism
Brain - anatomy & histology
Brain - metabolism
brain imaging
Computer Processing and Modeling—Note
Computer Simulation
Diffusion
diffusion magnetic resonance imaging
Diffusion Magnetic Resonance Imaging - methods
Humans
Image Interpretation, Computer-Assisted - methods
microstructure imaging
Models, Neurological
Reproducibility of Results
Sensitivity and Specificity
white matter
Title A ranking of diffusion MRI compartment models with in vivo human brain data
URI https://api.istex.fr/ark:/67375/WNG-R79PNB90-9/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmrm.25080
https://www.ncbi.nlm.nih.gov/pubmed/24347370
https://www.proquest.com/docview/1622354996
https://www.proquest.com/docview/1624935061
https://www.proquest.com/docview/1635029830
https://pubmed.ncbi.nlm.nih.gov/PMC4278549
Volume 72
WOSCitedRecordID wos000344798300030&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library - Journals
  customDbUrl:
  eissn: 1522-2594
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009974
  issn: 0740-3194
  databaseCode: DRFUL
  dateStart: 19990101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
– providerCode: PRVWIB
  databaseName: Wiley Online Library Free Content
  customDbUrl:
  eissn: 1522-2594
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009974
  issn: 0740-3194
  databaseCode: WIN
  dateStart: 19990101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwED9NKyBe-BhfhTEZhBAvYYlziW3xND4KE7SqKqb1zXJSW1SwFDVrxZ_P2UkzKgZC4iVK5IvknO98Z_vy-wE8y5OcJ8bkEVphIhQuiYosLqNcmpxLU1KEkYFsQoxGcjpV4x14tfkXpsGH6DbcvGeE-do7uCnqwwvQ0LPl2UuK35LW670kSaXnbeA4vkDcVQ0Es0A_0SjcwArF_LB7dSsY9bxef1yWaf5eMPlrIhsi0eDmf33DLbjRJqDsqLGY27Bjqz24NmyP2PfgaqgJLes78PGIeUZ3im1s4ZhnUln5rTU2nByzpnQ9VKizQKZTM7-jy-YVW8_XCxao_1jh-SeYL0K9CyeDd5_ffIha7oWopJQkjjA3KNFIGwtDSxLjaKxN6QrMYm5xZinNSpybxemMmuLCSJwV3KmAd88lTaP3YLdaVPYBsMQobh0KWtpZxDQ1lDOhwizNnItLW_ThxWYQdNkCk3t-jG-6gVTmmtSkg5r68LQT_d6gcVwm9DyMZCdhll99-ZrI9OnovZ4INR69VrFWfdjfDLVuPbfWZLs89YvmvA9PumbyOX-QYiq7WAUZVGlGqdDfZEiAK5lSf-431tN1iGOK1B9qEVt21Ql4zO_tlmr-JWB_e2YU6h3pLNjVn7Wgh5NhuHn476KP4Drlg9hU6-zD7vlyZR_DlXJ9Pq-XB8G96Cqm8gB6byeDk0_0dHo8-glaNim0
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fb9MwED5NG79eBoxf3QYYhNBewhLnktgSLwMxVm2Jpmpoe7Oc1NaqsRS1a8Wfv7OTZlQMhMRbJF8l53zn--xcvw_gXRqlPNI6DdBkOsDMRkGZhFWQCp1yoSuqMMKLTWRFIc7O5PEKfFz8F6bhh-gu3Fxm-P3aJbi7kN69YQ29nFx-oAIu6MC-hgQ0nHDDab-4odyVDQdzhm6nkbjgFQr5bvfTpWq05hz78zao-XvH5K9I1pei_Yf_9xKPYL2FoGyviZnHsGLqDbiXtx_ZN-Cu7wqtpk_gcI85TXeqbmxsmdNSmbnLNZYP-qxpXvc96szL6UyZu9Nlo5rNR_Mx8-J_rHQKFMy1oT6Fb_tfTj4fBK36QlARKAkDTDUK1MKEmaZDiba02rqyJSYhNzg0BLQia4dhPKShsNQChyW30jPec0Eb6TNYrce1eQEs0pIbixkd7gxiHGtCTSgxiRNrw8qUPdhZrIKqWmpyp5DxXTWkylyRm5R3Uw_edqY_Gj6O24ze-6XsLPTkwjWwZYk6Lb6qQSaPi08yVLIH24u1Vm3uThVFL4_dsTntwZtumLLOfUrRtRnPvA3KOCEw9DcbMuBSxDSf5034dBPiGCPNh0aypcDqDBzr9_JIPTr37N9OG4VmRz7zgfVnL6h8kPuHzX83fQ33D07yI3XULw634AGhQ2x6d7Zh9WoyMy_hTjW_Gk0nr3yuXQN1tSp1
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwED9NLUy88DG-CgMMQoiXsMS5JLbEy2AUpq1RVTGxN8tJbFHB0qldK_58zk6aUTEQEm-RfJGc-_Cd7cvvB_AyjVIeaZ0GaDIdYGajoEjCMkiFTrnQJWUY4ckmsjwXp6dyvAVv1__CNPgQ3YGbiwy_XrsAN-eV3btEDT2bn72hBC5ow95HRyLTg_7BZHhyfAm6KxsU5gzdWiNxjSwU8r3u5Y181Heq_XFVsfl7z-SvtaxPRsNb__cZt-FmW4Sy_cZr7sCWqXdge9Res-_Add8XWi7uwtE-c6zulN_YzDLHprJ0x2tsNDlkTfu671JnnlBnwdypLpvWbDVdzZin_2OF46BgrhH1HpwMP3x-_ylo-ReCksqSMMBUo0AtTJhp2pZoS_bWpS0wCbnBylCpFVlbhXFFQ2GhBVYFt9Jj3nNBS-l96NWz2jwEFmnJjcWMtncGMY411U0oMYkTa8PSFAN4vbaCKltwcseR8V01sMpckZqUV9MAXnSi5w0ix1VCr7wpOwk9_-Za2LJEfck_qkkmx_k7GSo5gN21rVUbvQtF_stjt3FOB_C8G6a4c5cpujazpZdBGSdUDv1NhgS4FDHN50HjPt2EOMZI86GRbMOxOgGH-705Uk-_evxvx45CsyOdecf6sxbUaDLyD4_-XfQZbI8Phur4MD96DDeoPMSmeWcXehfzpXkC18rVxXQxf9oG2093yyse
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+ranking+of+diffusion+MRI+compartment+models+with+in+vivo+human+brain+data&rft.jtitle=Magnetic+resonance+in+medicine&rft.au=Ferizi%2C+Uran&rft.au=Schneider%2C+Torben&rft.au=Panagiotaki%2C+Eleftheria&rft.au=Nedjati-Gilani%2C+Gemma&rft.date=2014-12-01&rft.eissn=1522-2594&rft.volume=72&rft.issue=6&rft.spage=1785&rft_id=info:doi/10.1002%2Fmrm.25080&rft_id=info%3Apmid%2F24347370&rft.externalDocID=24347370
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0740-3194&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0740-3194&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0740-3194&client=summon