Retinopathy Online Challenge: Automatic Detection of Microaneurysms in Digital Color Fundus Photographs

The detection of microaneurysms in digital color fundus photographs is a critical first step in automated screening for diabetic retinopathy (DR), a common complication of diabetes. To accomplish this detection numerous methods have been published in the past but none of these was compared with each...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:IEEE transactions on medical imaging Ročník 29; číslo 1; s. 185 - 195
Hlavní autori: Niemeijer, Meindert, van Ginneken, Bram, Cree, Michael J, Mizutani, Atsushi, Quellec, Gwenole, Sanchez, Clara I, Zhang, Bob, Hornero, Roberto, Lamard, Mathieu, Muramatsu, Chisako, Wu, Xiangqian, Cazuguel, Guy, You, Jane, Mayo, AgustIn, Qin Li, Hatanaka, Yuji, Cochener, Beatrice, Roux, Christian, Karray, Fakhri, Garcia, MarIa, Fujita, Hiroshi, Abramoff, Michael D
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: United States IEEE 01.01.2010
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Institute of Electrical and Electronics Engineers
Predmet:
ISSN:0278-0062, 1558-254X, 1558-254X
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract The detection of microaneurysms in digital color fundus photographs is a critical first step in automated screening for diabetic retinopathy (DR), a common complication of diabetes. To accomplish this detection numerous methods have been published in the past but none of these was compared with each other on the same data. In this work we present the results of the first international microaneurysm detection competition, organized in the context of the Retinopathy Online Challenge (ROC), a multiyear online competition for various aspects of DR detection. For this competition, we compare the results of five different methods, produced by five different teams of researchers on the same set of data. The evaluation was performed in a uniform manner using an algorithm presented in this work. The set of data used for the competition consisted of 50 training images with available reference standard and 50 test images where the reference standard was withheld by the organizers (M. Niemeijer, B. van Ginneken, and M. D. AbrA¿moff). The results obtained on the test data was submitted through a website after which standardized evaluation software was used to determine the performance of each of the methods. A human expert detected microaneurysms in the test set to allow comparison with the performance of the automatic methods. The overall results show that microaneurysm detection is a challenging task for both the automatic methods as well as the human expert. There is room for improvement as the best performing system does not reach the performance of the human expert. The data associated with the ROC microaneurysm detection competition will remain publicly available and the website will continue accepting submissions.
AbstractList The detection of microaneurysms in digital color fundus photographs is a critical first step in automated screening for diabetic retinopathy (DR), a common complication of diabetes. To accomplish this detection numerous methods have been published in the past but none of these was compared with each other on the same data. In this work we present the results of the first international microaneurysm detection competition, organized in the context of the Retinopathy Online Challenge (ROC), a multiyear online competition for various aspects of DR detection. For this competition, we compare the results of five different methods, produced by five different teams of researchers on the same set of data. The evaluation was performed in a uniform manner using an algorithm presented in this work. The set of data used for the competition consisted of 50 training images with available reference standard and 50 test images where the reference standard was witheld by the organizers (M. Niemeijer, B. van Ginneken, and M. D. AbrAmoff). The results obtained on the test data was submitted through a website after which standardized evaluation software was used to determine the performance of each of the methods. A human expert detected microaneurysms in the test set to allow comparison with the performance of the automatic methods. The overall results show that microaneurysm detection is a challenging task for both the automatic methods as well as the human expert. There is room for improvement as the best performing system does not reach the performance of the human expert. The data associated with the ROC microaneurysm detection competition will remain publicly available and the website will continue accepting submissions.
The detection of microaneurysms in digital color fundus photographs is a critical first step in automated screening for diabetic retinopathy (DR), a common complication of diabetes. To accomplish this detection numerous methods have been published in the past but none of these was compared with each other on the same data. In this work we present the results of the first international microaneurysm detection competition, organized in the context of the Retinopathy Online Challenge (ROC), a multiyear online competition for various aspects of DR detection. For this competition, we compare the results of five different methods, produced by five different teams of researchers on the same set of data. The evaluation was performed in a uniform manner using an algorithm presented in this work. The set of data used for the competition consisted of 50 training images with available reference standard and 50 test images where the reference standard was withheld by the organizers (M. Niemeijer, B. van Ginneken, and M. D. Abràmoff). The results obtained on the test data was submitted through a website after which standardized evaluation software was used to determine the performance of each of the methods. A human expert detected microaneurysms in the test set to allow comparison with the performance of the automatic methods. The overall results show that microaneurysm detection is a challenging task for both the automatic methods as well as the human expert. There is room for improvement as the best performing system does not reach the performance of the human expert. The data associated with the ROC microaneurysm detection competition will remain publicly available and the website will continue accepting submissions.
The detection of microaneurysms in digital color fundus photographs is a critical first step in automated screening for diabetic retinopathy (DR), a common complication of diabetes. To accomplish this detection numerous methods have been published in the past but none of these were compared with each other on the same data. In this work we present the results of the first international microaneurysm detection competition, organized in the context of the Retinopathy Online Challenge (ROC), a multiyear online competition for various aspects of DR detection. For this competition, we compare the results of five different methods, produced by five different teams of researchers on the same set of data. The evaluation was performed in a uniform manner using an algorithm presented in this work. The set of data used for the competition consisted of 50 training images with available reference standard and 50 test images where the reference standard was witheld by the organizers (MN, BVG and MDA). The results obtained on the test data was submitted through a website after which standardized evaluation software was used to determine the performance of each of the methods. A human expert detected microaneurysms in the test set to allow comparison with the performance of the automatic methods. The overall results show that microaneurysm detection is a challenging task for both the automatic methods as well as the human expert. There is room for improvement as the best performing system does not reach the performance of the human expert. The data associated with the ROC microaneurysm detection competition will remain publicly available and the website will continue accepting submissions.
The detection of microaneurysms in digital color fundus photographs is a critical first step in automated screening for diabetic retinopathy (DR), a common complication of diabetes. To accomplish this detection numerous methods have been published in the past but none of these was compared with each other on the same data. In this work we present the results of the first international microaneurysm detection competition, organized in the context of the Retinopathy Online Challenge (ROC), a multiyear online competition for various aspects of DR detection. For this competition, we compare the results of five different methods, produced by five different teams of researchers on the same set of data. The evaluation was performed in a uniform manner using an algorithm presented in this work. The set of data used for the competition consisted of 50 training images with available reference standard and 50 test images where the reference standard was withheld by the organizers (M. Niemeijer, B. van Ginneken, and M. D. Abràmoff). The results obtained on the test data was submitted through a website after which standardized evaluation software was used to determine the performance of each of the methods. A human expert detected microaneurysms in the test set to allow comparison with the performance of the automatic methods. The overall results show that microaneurysm detection is a challenging task for both the automatic methods as well as the human expert. There is room for improvement as the best performing system does not reach the performance of the human expert. The data associated with the ROC microaneurysm detection competition will remain publicly available and the website will continue accepting submissions.The detection of microaneurysms in digital color fundus photographs is a critical first step in automated screening for diabetic retinopathy (DR), a common complication of diabetes. To accomplish this detection numerous methods have been published in the past but none of these was compared with each other on the same data. In this work we present the results of the first international microaneurysm detection competition, organized in the context of the Retinopathy Online Challenge (ROC), a multiyear online competition for various aspects of DR detection. For this competition, we compare the results of five different methods, produced by five different teams of researchers on the same set of data. The evaluation was performed in a uniform manner using an algorithm presented in this work. The set of data used for the competition consisted of 50 training images with available reference standard and 50 test images where the reference standard was withheld by the organizers (M. Niemeijer, B. van Ginneken, and M. D. Abràmoff). The results obtained on the test data was submitted through a website after which standardized evaluation software was used to determine the performance of each of the methods. A human expert detected microaneurysms in the test set to allow comparison with the performance of the automatic methods. The overall results show that microaneurysm detection is a challenging task for both the automatic methods as well as the human expert. There is room for improvement as the best performing system does not reach the performance of the human expert. The data associated with the ROC microaneurysm detection competition will remain publicly available and the website will continue accepting submissions.
The detection of microaneurysms in digital color fundus photographs is a critical first step in automated screening for diabetic retinopathy (DR), a common complication of diabetes. To accomplish this detection numerous methods have been published in the past but none of these was compared with each other on the same data. In this work we present the results of the first international microaneurysm detection competition, organized in the context of the Retinopathy Online Challenge (ROC), a multiyear online competition for various aspects of DR detection. For this competition, we compare the results of five different methods, produced by five different teams of researchers on the same set of data. The evaluation was performed in a uniform manner using an algorithm presented in this work. The set of data used for the competition consisted of 50 training images with available reference standard and 50 test images where the reference standard was witheld by the organizers (M. Niemeijer, B. van Ginneken, and M. D. AbrÀmoff). The results obtained on the test data was submitted through a website after which standardized evaluation software was used to determine the performance of each of the methods. A human expert detected microaneurysms in the test set to allow comparison with the performance of the automatic methods. The overall results show that microaneurysm detection is a challenging task for both the automatic methods as well as the human expert. There is room for improvement as the best performing system does not reach the performance of the human expert. The data associated with the ROC microaneurysm detection competition will remain publicly available and the website will continue accepting submissions.
The detection of microaneurysms in digital color fundus photographs is a critical first step in automated screening for diabetic retinopathy (DR), a common complication of diabetes. To accomplish this detection numerous methods have been published in the past but none of these was compared with each other on the same data. In this work we present the results of the first international microaneurysm detection competition, organized in the context of the Retinopathy Online Challenge (ROC), a multiyear online competition for various aspects of DR detection. For this competition, we compare the results of five different methods, produced by five different teams of researchers on the same set of data. The evaluation was performed in a uniform manner using an algorithm presented in this work. The set of data used for the competition consisted of 50 training images with available reference standard and 50 test images where the reference standard was withheld by the organizers (M. Niemeijer, B. van Ginneken, and M. D. AbrA¿moff). The results obtained on the test data was submitted through a website after which standardized evaluation software was used to determine the performance of each of the methods. A human expert detected microaneurysms in the test set to allow comparison with the performance of the automatic methods. The overall results show that microaneurysm detection is a challenging task for both the automatic methods as well as the human expert. There is room for improvement as the best performing system does not reach the performance of the human expert. The data associated with the ROC microaneurysm detection competition will remain publicly available and the website will continue accepting submissions.
Author You, Jane
Cochener, Beatrice
Cree, Michael J
Quellec, Gwenole
Mayo, AgustIn
Karray, Fakhri
Zhang, Bob
Abramoff, Michael D
Mizutani, Atsushi
Muramatsu, Chisako
Sanchez, Clara I
Lamard, Mathieu
Wu, Xiangqian
Qin Li
Hatanaka, Yuji
Fujita, Hiroshi
Niemeijer, Meindert
Hornero, Roberto
Roux, Christian
van Ginneken, Bram
Cazuguel, Guy
Garcia, MarIa
Author_xml – sequence: 1
  givenname: Meindert
  surname: Niemeijer
  fullname: Niemeijer, Meindert
  email: meindert@isi.uu.nl
  organization: Univ. of Bretagne Occidentale, Brest, France
– sequence: 2
  givenname: Bram
  surname: van Ginneken
  fullname: van Ginneken, Bram
  organization: Image Sci. Inst., Utrecht, Netherlands
– sequence: 3
  givenname: Michael J
  surname: Cree
  fullname: Cree, Michael J
  organization: Dept. of Eng., Univ. of Waikato, Hamilton, New Zealand
– sequence: 4
  givenname: Atsushi
  surname: Mizutani
  fullname: Mizutani, Atsushi
  organization: Dept. of Intell. Image Inf., Gifu Univ., Gifu, Japan
– sequence: 5
  givenname: Gwenole
  surname: Quellec
  fullname: Quellec, Gwenole
  organization: Inst. Telecom, Brest, France
– sequence: 6
  givenname: Clara I
  surname: Sanchez
  fullname: Sanchez, Clara I
  organization: Biomed. Eng. Group (GIB), Univ. of Valladolid, Valladolid, Spain
– sequence: 7
  givenname: Bob
  surname: Zhang
  fullname: Zhang, Bob
  organization: Dept. of Electr. & Comput. Eng., Univ. of Waterloo, Waterloo, ON, Canada
– sequence: 8
  givenname: Roberto
  surname: Hornero
  fullname: Hornero, Roberto
  organization: Biomed. Eng. Group (GIB), Univ. of Valladolid, Valladolid, Spain
– sequence: 9
  givenname: Mathieu
  surname: Lamard
  fullname: Lamard, Mathieu
  organization: Univ. of Bretagne Occidentale, Brest, France
– sequence: 10
  givenname: Chisako
  surname: Muramatsu
  fullname: Muramatsu, Chisako
  organization: Dept. of Intell. Image Inf., Gifu Univ., Gifu, Japan
– sequence: 11
  givenname: Xiangqian
  surname: Wu
  fullname: Wu, Xiangqian
  organization: Sch. of Comput. Sci. & Technol., Harbin Inst. of Technol., Harbin, China
– sequence: 12
  givenname: Guy
  surname: Cazuguel
  fullname: Cazuguel, Guy
  organization: Inst. Telecom, Brest, France
– sequence: 13
  givenname: Jane
  surname: You
  fullname: You, Jane
  organization: Dept. of Comput., Hong Kong Polytech. Univ., Hong Kong, China
– sequence: 14
  givenname: AgustIn
  surname: Mayo
  fullname: Mayo, AgustIn
  organization: Dept. of Stat. & Operative Investig., Univ. of Valladolid, Valladolid, Spain
– sequence: 15
  surname: Qin Li
  fullname: Qin Li
  organization: Dept. of Comput., Hong Kong Polytech. Univ., Hong Kong, China
– sequence: 16
  givenname: Yuji
  surname: Hatanaka
  fullname: Hatanaka, Yuji
  organization: Dept. of Electron. Syst. Eng., Univ. of Shiga Prefecture, Hikone, Japan
– sequence: 17
  givenname: Beatrice
  surname: Cochener
  fullname: Cochener, Beatrice
  organization: Univ. of Bretagne Occidentale, Brest, France
– sequence: 18
  givenname: Christian
  surname: Roux
  fullname: Roux, Christian
  organization: Inst. Telecom, Brest, France
– sequence: 19
  givenname: Fakhri
  surname: Karray
  fullname: Karray, Fakhri
  organization: Dept. of Electr. & Comput. Eng., Univ. of Waterloo, Waterloo, ON, Canada
– sequence: 20
  givenname: MarIa
  surname: Garcia
  fullname: Garcia, MarIa
  organization: Biomed. Eng. Group (GIB), Univ. of Valladolid, Valladolid, Spain
– sequence: 21
  givenname: Hiroshi
  surname: Fujita
  fullname: Fujita, Hiroshi
  organization: Dept. of Intell. Image Inf., Gifu Univ., Gifu, Japan
– sequence: 22
  givenname: Michael D
  surname: Abramoff
  fullname: Abramoff, Michael D
  organization: Dept. of Ophthalmology & Visual Sci., Univ. of Iowa Hosp. & Clinics, Iowa City, IA, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/19822469$$D View this record in MEDLINE/PubMed
https://hal.science/hal-00473901$$DView record in HAL
BookMark eNqFkktrGzEUhUVJaZy0-0KhDF007cKp3o_ujNM0AYeUkkJ3Qp65YyuMJWekKfjfR8auF4GmGwnEd64495wTdBRiAITeEnxOCDZf7m6uzynGphyMGWxeoBERQo-p4L-P0AhTpccYS3qMTlK6x5hwgc0rdEyMppRLM0KLn5B9iGuXl5vqNnQ-QDVduq6DsICv1WTIceWyr6sLyFBnH0MV2-rG1310AYZ-k1ap8qG68AufXVdNYxf76nIIzZCqH8uY46J362V6jV62rkvwZn-fol-X3-6mV-PZ7ffr6WQ2roVmedxwojlvFcwbZVqQjeDM6DmhWrm50A0HPm-Na4mQoHiNFTABWkHTKAmsluwUfd7NLR7suvcr129sdN5eTWZ2-4YxV2VV5A8p7NmOXffxYYCU7cqnGrquOItDsloqxYRg4r-kYkxpIxUu5MdnSUoYE9roAn56FiRSEaaVwtvfPzxB7-PQh7JGq4XkgjBMC_R-Dw3zFTQH73-jLoDcASW6lHpobV0S2yaae-c7S7DddsqWTtltp-y-U0WInwgPs_8tebeTeAA44IJqKrRkj_wq1Mo
CODEN ITMID4
CitedBy_id crossref_primary_10_1109_ACCESS_2018_2808160
crossref_primary_10_1016_j_optlastec_2019_105815
crossref_primary_10_1016_j_engappai_2023_107454
crossref_primary_10_1109_ACCESS_2025_3579342
crossref_primary_10_1007_s10278_021_00418_5
crossref_primary_10_1109_TIP_2018_2815345
crossref_primary_10_3390_jimaging9040084
crossref_primary_10_1016_j_media_2018_11_008
crossref_primary_10_1016_j_compbiomed_2020_103995
crossref_primary_10_1016_j_oftale_2012_04_012
crossref_primary_10_1002_jemt_24413
crossref_primary_10_1016_j_cmpb_2012_03_009
crossref_primary_10_1016_j_artmed_2013_12_005
crossref_primary_10_1109_TBDATA_2024_3442548
crossref_primary_10_1016_j_cmpb_2017_10_017
crossref_primary_10_3390_biomedicines10010124
crossref_primary_10_1586_erd_09_76
crossref_primary_10_3390_genes10100817
crossref_primary_10_1016_j_media_2021_101971
crossref_primary_10_1007_s13755_017_0034_9
crossref_primary_10_1109_ACCESS_2018_2816003
crossref_primary_10_1109_TBME_2017_2752701
crossref_primary_10_1371_journal_pone_0161556
crossref_primary_10_1016_j_cmpb_2015_10_007
crossref_primary_10_3103_S1060992X14040110
crossref_primary_10_1186_1472_6947_14_80
crossref_primary_10_1049_iet_ipr_2013_0565
crossref_primary_10_1002_ima_22510
crossref_primary_10_1016_j_compbiomed_2019_103537
crossref_primary_10_1080_21681163_2015_1051187
crossref_primary_10_1016_j_inffus_2022_11_008
crossref_primary_10_1002_deo2_344
crossref_primary_10_1155_2012_727154
crossref_primary_10_3390_math10050686
crossref_primary_10_1016_j_inffus_2021_10_003
crossref_primary_10_1016_j_media_2013_10_014
crossref_primary_10_1109_TIP_2016_2590838
crossref_primary_10_1109_ACCESS_2020_3033027
crossref_primary_10_1016_j_media_2019_101561
crossref_primary_10_3390_e21040417
crossref_primary_10_1007_s10462_024_10770_x
crossref_primary_10_1016_j_pmcj_2017_04_003
crossref_primary_10_1186_s42490_025_00098_0
crossref_primary_10_1016_j_bspc_2022_104184
crossref_primary_10_1002_ima_22067
crossref_primary_10_1109_ACCESS_2022_3178372
crossref_primary_10_1109_TMI_2015_2509785
crossref_primary_10_1016_j_bspc_2023_104635
crossref_primary_10_1016_j_icte_2025_08_001
crossref_primary_10_1109_ACCESS_2021_3101521
crossref_primary_10_1007_s13410_018_0632_3
crossref_primary_10_1016_j_bspc_2022_103648
crossref_primary_10_1016_j_media_2019_101570
crossref_primary_10_1049_iet_ipr_2018_5672
crossref_primary_10_1016_j_cmpb_2020_105687
crossref_primary_10_1016_j_media_2012_06_003
crossref_primary_10_1007_s11042_022_12968_z
crossref_primary_10_1007_s10044_018_0754_8
crossref_primary_10_1016_j_compbiomed_2013_10_007
crossref_primary_10_3390_diagnostics12112894
crossref_primary_10_1007_s11390_019_1977_x
crossref_primary_10_1016_j_compbiomed_2022_106277
crossref_primary_10_1186_s12938_019_0675_9
crossref_primary_10_1038_s41433_023_02717_3
crossref_primary_10_1016_j_oret_2023_08_019
crossref_primary_10_1016_j_imavis_2023_104821
crossref_primary_10_1016_j_media_2015_12_003
crossref_primary_10_1080_21681163_2018_1519851
crossref_primary_10_1155_2015_623619
crossref_primary_10_1016_j_bbe_2017_05_008
crossref_primary_10_1007_s40708_016_0045_3
crossref_primary_10_1016_j_media_2015_12_006
crossref_primary_10_1016_j_bspc_2024_106700
crossref_primary_10_1002_dmrr_3414
crossref_primary_10_1109_TMI_2018_2794988
crossref_primary_10_1016_j_compmedimag_2016_07_011
crossref_primary_10_1109_ACCESS_2019_2935912
crossref_primary_10_1002_mp_13746
crossref_primary_10_1016_j_cmpb_2013_12_009
crossref_primary_10_1109_ACCESS_2023_3326528
crossref_primary_10_1155_2013_368514
crossref_primary_10_1109_ACCESS_2018_2844861
crossref_primary_10_1016_j_media_2020_101742
crossref_primary_10_3390_app12168243
crossref_primary_10_1016_j_cmpb_2016_03_012
crossref_primary_10_1016_j_compmedimag_2013_07_001
crossref_primary_10_1016_j_artmed_2019_101749
crossref_primary_10_1016_j_biopha_2018_07_175
crossref_primary_10_1145_3615862
crossref_primary_10_1089_tmj_2011_0075
crossref_primary_10_1007_s11063_012_9242_0
crossref_primary_10_1016_j_compbiomed_2021_104599
crossref_primary_10_1109_JBHI_2015_2392712
crossref_primary_10_1109_TBME_2017_2707578
crossref_primary_10_1109_TMI_2010_2072789
crossref_primary_10_4018_jehmc_2013070101
crossref_primary_10_1109_TBME_2016_2585344
crossref_primary_10_1016_j_compind_2014_09_005
crossref_primary_10_1016_j_artmed_2019_101758
crossref_primary_10_1080_03091902_2019_1576790
crossref_primary_10_1136_bjophthalmol_2019_315394
crossref_primary_10_1007_s10278_017_0008_0
crossref_primary_10_1007_s00521_015_1929_5
crossref_primary_10_1109_TMI_2019_2901398
crossref_primary_10_3390_app13053108
crossref_primary_10_1016_j_patcog_2013_03_011
crossref_primary_10_3390_s23125726
crossref_primary_10_1002_ima_22945
crossref_primary_10_1007_s13246_022_01129_z
crossref_primary_10_1016_j_jksuci_2021_05_009
crossref_primary_10_1007_s40123_024_00929_8
crossref_primary_10_1016_j_compbiomed_2013_11_014
crossref_primary_10_1007_s10792_024_03377_2
crossref_primary_10_1145_3586580
crossref_primary_10_1016_j_compmedimag_2019_101643
crossref_primary_10_1109_TBME_2012_2193126
crossref_primary_10_1002_ima_22017
crossref_primary_10_1016_j_oftal_2012_04_013
crossref_primary_10_1016_j_survophthal_2023_04_001
crossref_primary_10_1007_s11042_020_09217_6
crossref_primary_10_1007_s00500_022_06752_2
crossref_primary_10_1007_s11517_022_02688_9
crossref_primary_10_1016_j_media_2011_07_004
crossref_primary_10_1016_j_patcog_2011_06_010
crossref_primary_10_1016_j_jbi_2021_103939
crossref_primary_10_1007_s42979_024_03403_1
crossref_primary_10_1109_TMI_2014_2377694
crossref_primary_10_1016_j_medengphy_2010_07_014
crossref_primary_10_1016_j_neucom_2023_126626
crossref_primary_10_1109_JBHI_2015_2498104
crossref_primary_10_1016_j_cmpb_2018_02_016
crossref_primary_10_1007_s11517_022_02737_3
crossref_primary_10_1007_s12065_018_0158_0
crossref_primary_10_1016_j_artmed_2025_103221
crossref_primary_10_1016_j_measurement_2024_116229
crossref_primary_10_1002_jemt_23172
crossref_primary_10_1016_j_ins_2012_03_003
crossref_primary_10_1007_s00138_020_01119_9
crossref_primary_10_1007_s11042_019_07751_6
crossref_primary_10_1259_bjr_20130832
crossref_primary_10_1093_comjnl_bxaa015
crossref_primary_10_1371_journal_pone_0322048
crossref_primary_10_1016_j_knosys_2021_107140
crossref_primary_10_1016_j_patcog_2012_07_002
crossref_primary_10_1080_21681163_2023_2244603
crossref_primary_10_1007_s13042_022_01696_3
crossref_primary_10_1007_s10792_024_02982_5
crossref_primary_10_1016_j_compbiomed_2021_105000
crossref_primary_10_3390_diagnostics13111904
crossref_primary_10_1016_j_ins_2019_06_011
crossref_primary_10_1109_TNB_2018_2840084
crossref_primary_10_1016_j_cmpb_2018_02_001
crossref_primary_10_18359_rcin_4242
crossref_primary_10_1016_j_artmed_2024_102842
crossref_primary_10_1088_1742_6596_705_1_012026
crossref_primary_10_1049_iet_ipr_2018_6212
crossref_primary_10_1016_j_cmpb_2016_10_015
crossref_primary_10_1007_s11831_023_10002_5
crossref_primary_10_1016_j_cmpb_2016_10_017
crossref_primary_10_1007_s10044_017_0630_y
crossref_primary_10_1016_j_compbiomed_2025_110715
crossref_primary_10_1016_j_ophtha_2010_03_046
crossref_primary_10_1109_TMI_2012_2228665
crossref_primary_10_1016_j_asoc_2022_109102
crossref_primary_10_1007_s11892_013_0393_9
crossref_primary_10_1002_ima_22573
crossref_primary_10_1109_ACCESS_2017_2671918
crossref_primary_10_1080_08820538_2020_1855358
crossref_primary_10_1109_TIM_2023_3286003
crossref_primary_10_1109_TBME_2010_2096223
crossref_primary_10_1186_1471_2415_13_40
crossref_primary_10_1016_j_bspc_2022_103536
crossref_primary_10_1002_ima_70015
crossref_primary_10_1109_TBME_2012_2201717
crossref_primary_10_1155_2019_5171965
crossref_primary_10_1016_j_media_2013_12_002
crossref_primary_10_1109_JBHI_2020_3012134
crossref_primary_10_1016_j_cmpb_2011_06_007
crossref_primary_10_1109_TBME_2013_2282625
crossref_primary_10_1016_j_compbiomed_2019_103387
crossref_primary_10_1109_RBME_2010_2084567
crossref_primary_10_1016_j_compmedimag_2013_05_001
crossref_primary_10_1111_ceo_13433
crossref_primary_10_1109_TMI_2019_2928229
crossref_primary_10_1007_s11042_023_16366_x
crossref_primary_10_1016_j_csbj_2016_10_001
crossref_primary_10_1002_ima_70004
crossref_primary_10_1109_ACCESS_2022_3157632
crossref_primary_10_1007_s40745_016_0079_7
crossref_primary_10_4103_0301_4738_178140
crossref_primary_10_7717_peerj_cs_1585
crossref_primary_10_1109_TMI_2020_3025308
crossref_primary_10_1007_s10032_016_0260_8
crossref_primary_10_1007_s10489_017_1048_3
crossref_primary_10_1016_j_bbe_2021_04_005
crossref_primary_10_1016_j_compbiomed_2025_110125
crossref_primary_10_1007_s11042_023_15110_9
crossref_primary_10_3390_technologies12120256
crossref_primary_10_1109_ACCESS_2018_2869858
crossref_primary_10_1016_j_bspc_2024_106998
crossref_primary_10_1016_j_compbiomed_2020_104116
crossref_primary_10_1016_j_media_2011_02_004
crossref_primary_10_1016_j_media_2024_103365
crossref_primary_10_1109_RBME_2018_2885714
crossref_primary_10_1177_0969141315571953
crossref_primary_10_1007_s00500_022_07387_z
crossref_primary_10_1097_IAE_0b013e3182483361
crossref_primary_10_1016_j_irbm_2011_09_010
crossref_primary_10_1016_j_compmedimag_2018_04_005
crossref_primary_10_1016_j_imu_2017_05_006
crossref_primary_10_1371_journal_pone_0217413
crossref_primary_10_1007_s11042_023_16449_9
crossref_primary_10_1016_j_patrec_2012_05_008
crossref_primary_10_1001_jamaophthalmol_2024_3707
crossref_primary_10_1016_j_cmpbup_2021_100013
crossref_primary_10_1007_s42600_023_00320_9
crossref_primary_10_1007_s11042_022_13841_9
crossref_primary_10_1016_j_media_2024_103357
crossref_primary_10_1007_s11042_023_18089_5
crossref_primary_10_1007_s10462_023_10480_w
crossref_primary_10_1109_TMI_2019_2906319
crossref_primary_10_1109_TMI_2010_2089383
crossref_primary_10_1080_21681163_2017_1296379
crossref_primary_10_1038_s41467_018_07619_7
crossref_primary_10_1007_s12652_020_02417_w
Cites_doi 10.1097/00004424-198609000-00009
10.1117/12.955926
10.1117/12.813468
10.1006/cbmr.1996.0021
10.1109/TMI.2005.843738
10.1109/TMI.2004.825627
10.1023/A:1014573219977
10.1109/TMI.2008.2012029
10.1046/j.1464-5491.2002.00613.x
10.1136/bjo.2007.119453
10.1109/42.845178
10.1016/j.media.2007.05.001
10.1117/12.813913
10.1093/jicru/ndn019
10.1007/BF00166760
10.2337/dc07-1312
10.1117/12.771051
10.1117/12.812088
10.1109/83.217222
10.2337/diacare.23.3.390
10.1016/S0161-6420(86)33697-2
10.1016/S0161-6420(99)00010-X
10.1023/A:1011818912717
10.1109/IEMBS.2005.1616400
10.1016/S0010-4825(98)00011-0
10.1148/radiology.174.3.2305073
10.1038/eye.1997.166
10.1109/TMI.2006.879953
10.1089/tmj.2005.11.668
10.1109/TMI.2003.815900
10.1046/j.1464-5491.2000.00338.x
10.1109/TMI.2008.920619
10.1117/12.535349
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Jan 2010
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Jan 2010
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID 97E
RIA
RIE
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
NAPCQ
P64
7X8
7TK
1XC
VOOES
DOI 10.1109/TMI.2009.2033909
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Nursing & Allied Health Premium
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
Neurosciences Abstracts
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Materials Research Database
Civil Engineering Abstracts
Aluminium Industry Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Ceramic Abstracts
Materials Business File
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Aerospace Database
Nursing & Allied Health Premium
Engineered Materials Abstracts
Biotechnology Research Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Corrosion Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
MEDLINE - Academic
Neurosciences Abstracts
DatabaseTitleList Engineering Research Database
Technology Research Database
Engineering Research Database
MEDLINE

MEDLINE - Academic
Materials Research Database

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Engineering
Statistics
Computer Science
EISSN 1558-254X
EndPage 195
ExternalDocumentID oai:HAL:hal-00473901v1
2289399271
19822469
10_1109_TMI_2009_2033909
5282586
Genre orig-research
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NEI NIH HHS
  grantid: R01 EY017066
GroupedDBID ---
-DZ
-~X
.GJ
0R~
29I
4.4
53G
5GY
5RE
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
ACPRK
AENEX
AETIX
AFRAH
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
IBMZZ
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNS
RXW
TAE
TN5
VH1
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
RIG
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
NAPCQ
P64
7X8
7TK
1XC
VOOES
ID FETCH-LOGICAL-c583t-d41844f7ebd79fe6d54398b1287ab58d4e4bf9af156e74c07e35e87edd76e3c63
IEDL.DBID RIE
ISICitedReferencesCount 361
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000273334400017&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0278-0062
1558-254X
IngestDate Sat Nov 29 15:03:46 EST 2025
Tue Oct 07 09:07:54 EDT 2025
Sat Sep 27 17:17:59 EDT 2025
Mon Oct 06 18:01:36 EDT 2025
Sat Sep 27 23:04:53 EDT 2025
Sun Jun 29 17:00:37 EDT 2025
Mon Jul 21 05:37:06 EDT 2025
Sat Nov 29 05:13:24 EST 2025
Tue Nov 18 22:33:41 EST 2025
Tue Aug 26 17:02:43 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly true
Issue 1
Keywords Computer aided detection
Fundus photographs
Diabetic retinopathy
Retina
Computer aided diagnosis
ROC competition
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c583t-d41844f7ebd79fe6d54398b1287ab58d4e4bf9af156e74c07e35e87edd76e3c63
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ObjectType-Article-2
ObjectType-Feature-1
ORCID 0000-0003-1669-7140
OpenAccessLink https://hal.science/hal-00473901
PMID 19822469
PQID 856451302
PQPubID 23462
PageCount 11
ParticipantIDs pubmed_primary_19822469
hal_primary_oai_HAL_hal_00473901v1
crossref_citationtrail_10_1109_TMI_2009_2033909
proquest_journals_856451302
crossref_primary_10_1109_TMI_2009_2033909
ieee_primary_5282586
proquest_miscellaneous_867735535
proquest_miscellaneous_21335898
proquest_miscellaneous_733789670
proquest_miscellaneous_1671387705
PublicationCentury 2000
PublicationDate 2010-Jan.
2010-01-00
2010-Jan
20100101
2010-01
PublicationDateYYYYMMDD 2010-01-01
PublicationDate_xml – month: 01
  year: 2010
  text: 2010-Jan.
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: New York
PublicationTitle IEEE transactions on medical imaging
PublicationTitleAbbrev TMI
PublicationTitleAlternate IEEE Trans Med Imaging
PublicationYear 2010
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Institute of Electrical and Electronics Engineers
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
– name: Institute of Electrical and Electronics Engineers
References ref35
ref13
ref34
ref37
ref15
ref14
ref11
ref2
ref1
(ref10) 0
ref17
ref16
ref19
ref18
cree (ref30) 2005
baudoin (ref12) 1984; 32
isard (ref32) 2001; 44
mizutani (ref33) 2009; 7260
deluca (ref36) 2008; 8
ref24
ref23
ref26
ref25
ref20
ref22
cree (ref28) 2008
ref21
zhang (ref31) 2009; 7260
ref29
snchez (ref27) 2009; 7260
ref8
ref7
ref9
ref4
ref3
ref6
ref5
References_xml – ident: ref25
  doi: 10.1097/00004424-198609000-00009
– ident: ref24
  doi: 10.1117/12.955926
– volume: 7260
  start-page: 72601n
  year: 2009
  ident: ref33
  article-title: automated microaneurysm detection method based on double ring filter in retinal fundus images
  publication-title: SPIE Medical Imaging 2009 Computer-Aided Diagnosis
  doi: 10.1117/12.813468
– ident: ref14
  doi: 10.1006/cbmr.1996.0021
– ident: ref21
  doi: 10.1109/TMI.2005.843738
– ident: ref8
  doi: 10.1109/TMI.2004.825627
– ident: ref11
  doi: 10.1023/A:1014573219977
– ident: ref5
  doi: 10.1109/TMI.2008.2012029
– ident: ref22
  doi: 10.1046/j.1464-5491.2002.00613.x
– ident: ref3
  doi: 10.1136/bjo.2007.119453
– ident: ref6
  doi: 10.1109/42.845178
– ident: ref20
  doi: 10.1016/j.media.2007.05.001
– volume: 7260
  start-page: 72601l
  year: 2009
  ident: ref31
  article-title: hierarchical detection of red lesions in retinal images by multiscale correlation filtering
  publication-title: SPIE Medical Imaging 2009 Computer-Aided Diagnosis
  doi: 10.1117/12.813913
– volume: 8
  start-page: 31
  year: 2008
  ident: ref36
  publication-title: J ICRU
  doi: 10.1093/jicru/ndn019
– ident: ref13
  doi: 10.1007/BF00166760
– ident: ref4
  doi: 10.2337/dc07-1312
– ident: ref34
  doi: 10.1117/12.771051
– volume: 7260
  start-page: 72601m
  year: 2009
  ident: ref27
  article-title: mixture model-based clustering and logistic regression for automatic detection of microaneurysms in retinal images
  publication-title: SPIE Medical Imaging 2009 Computer-Aided Diagnosis
  doi: 10.1117/12.812088
– ident: ref29
  doi: 10.1109/83.217222
– ident: ref1
  doi: 10.2337/diacare.23.3.390
– ident: ref17
  doi: 10.1016/S0161-6420(86)33697-2
– ident: ref2
  doi: 10.1016/S0161-6420(99)00010-X
– volume: 44
  start-page: 111
  year: 2001
  ident: ref32
  article-title: bayesian object localisation in images
  publication-title: Int J Comput Vis
  doi: 10.1023/A:1011818912717
– ident: ref35
  doi: 10.1109/IEMBS.2005.1616400
– year: 0
  ident: ref10
  publication-title: Methods to evaluate segmentation and indexing techniques in the field of retinal ophthalmology
– volume: 32
  start-page: 254
  year: 1984
  ident: ref12
  article-title: automatic detection of microaneurysms in diabetic fluorescein angiographies
  publication-title: Revue d'e?pidemiologie et de sante publique
– year: 2008
  ident: ref28
  publication-title: The Waikato Microaneurysm Detector
– ident: ref16
  doi: 10.1016/S0010-4825(98)00011-0
– ident: ref37
  doi: 10.1148/radiology.174.3.2305073
– ident: ref15
  doi: 10.1038/eye.1997.166
– ident: ref19
  doi: 10.1109/TMI.2006.879953
– ident: ref26
  doi: 10.1089/tmj.2005.11.668
– start-page: 163
  year: 2005
  ident: ref30
  article-title: colour normalisation ro reduce inter-patient and intra-patient variablility in microaneurysm detection in colour retinal images
  publication-title: Proc WDIC2005 ARPS Workshop Digital Image Comput
– ident: ref7
  doi: 10.1109/TMI.2003.815900
– ident: ref18
  doi: 10.1046/j.1464-5491.2000.00338.x
– ident: ref23
  doi: 10.1109/TMI.2008.920619
– ident: ref9
  doi: 10.1117/12.535349
SSID ssj0014509
Score 2.514395
Snippet The detection of microaneurysms in digital color fundus photographs is a critical first step in automated screening for diabetic retinopathy (DR), a common...
SourceID hal
proquest
pubmed
crossref
ieee
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 185
SubjectTerms Algorithms
Aneurysm - diagnosis
Bayes Theorem
Biomedical engineering
Biomedical imaging
Blindness
Cities and towns
Competition
Computer aided detection
computer aided diagnosis
Computer Science
Databases, Factual
Diabetes
diabetic retinopathy
Diagnostic Techniques, Ophthalmological
Engineering Sciences
False Positive Reactions
Fundus Oculi
fundus photographs
Human
Humans
On-line systems
Online
Photography - methods
retina
Retinal Diseases - diagnosis
Retinal Vessels - pathology
Retinopathy
Retinopathy Online Challenge (ROC) competition
ROC Curve
Signal and Image processing
Statistics
Systems engineering and theory
Telecommunications
USA Councils
Websites
Title Retinopathy Online Challenge: Automatic Detection of Microaneurysms in Digital Color Fundus Photographs
URI https://ieeexplore.ieee.org/document/5282586
https://www.ncbi.nlm.nih.gov/pubmed/19822469
https://www.proquest.com/docview/856451302
https://www.proquest.com/docview/1671387705
https://www.proquest.com/docview/21335898
https://www.proquest.com/docview/733789670
https://www.proquest.com/docview/867735535
https://hal.science/hal-00473901
Volume 29
WOSCitedRecordID wos000273334400017&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1558-254X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014509
  issn: 0278-0062
  databaseCode: RIE
  dateStart: 19820101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fa9swED6aMkb3sB_pfnjdOm3sZTA3diRb0t5CutDBUsroIG_Gts5tYbVLbBf6309nOV4flsHejH0hyd3JOuk-fR_AxxiL0Mgs97UxuS80hr7iIWloGKXTlOBQqhObkKenarXSZzvweTgLg4gd-AyP6LLr5Zsqb2mrbBLRQUsVj2AkZezOag0dAxE5OMeUGGODeLppSQZ6cr785ogppwG3S3xHFEroSUI535uNRpeEhexEVrbXm928s3jyf7_4KTzu60s2cwnxDHawHMOje6yDY3i47PvpY9ijWtNRNe_DxQ86_lyRRvEdcxSkbL7RWvnCZm1Tdfyu7BibDsBVsqpgS0L0pUSLeVdf1-yqZMdXF6REwub2vbpmi5bEQdjZZdU4duz6OfxcfD2fn_i9DoOfR4o3vhF2GSgKiZmRusDYRLaKUZmd2WSaRcoIFFmh08IuBVGKPJDII1QSjZEx8jzmL2C3rEp8BUxYt2doHR_yXKhYZ0XGRVAY5JipMEo9mGzikeQ9STlpZfxKusVKoBMbTJLO1EkfTA8-DZ-4cQQd_7D9YL02mBGz9snse0L3iDWTtn9uQw_2KY6DVR9CDw42GZH0w7xOFHHxUOvXg_fDUzs-qeliPV-1dRLGMuRKyiDy4N0Wm2nIeaS08oBtsZCcS6VjGWw3IWJCWzxy-z0vXcL-8Uef7a___tcOYM9hImhj6Q3sNusW38KD_NYm4PrQDraVOuwG229ZayM0
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fb9MwED5tA7HxwI-OH2HADOIFidCkdmKbt6qj6kRbTahIe4uS-LJNGglqkkn77_EladgDReItSq5qe3eOz77P3wfwIcTMNzJJXW1M6gqNvqu4TxoaRuk4JjiUasQm5HKpzs_12Q586s_CIGIDPsPPdNn08k2R1rRVNgzooKUKd-EeKWd1p7X6noEIWkDHiDhjvXC0aUp6erhanLbUlCOP20V-SxVK-EnCOd-Zj3YvCQ3ZyKxsrzibmWf6-P9-8xN41FWYbNymxFPYwXwAD-_wDg7gwaLrqA_ggKrNlqz5EC6-0wHoglSKb1lLQsomG7WVL2xcV0XD8MpOsGogXDkrMrYgTF9MxJi35c-SXeXs5OqCtEjYxL5Z12xakzwIO7ssqpYfu3wGP6ZfV5OZ2ykxuGmgeOUaYReCIpOYGKkzDE1g6xiV2LlNxkmgjECRZDrO7GIQpUg9iTxAJdEYGSJPQ_4c9vIix5fAhHV7gtbxPk-FCnWSJVx4mUGOifKD2IHhJh5R2tGUk1rGddQsVzwd2WCSeKaOumA68LH_xK-WouMftu-t13oz4taejecR3SPeTNoAuvEdOKQ49lZdCB042mRE1A30MlLExkPNXwfe9U_tCKW2i_V8UZeRH0qfKym9wIHjLTYjn_NAaeUA22IhOZdKh9LbbkLUhLZ85PZ7XrQJ-8cfXba_-vtfO4b92Woxj-any29HcNAiJGib6TXsVesa38D99MYm4_ptM-R-A8OaJZU
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Retinopathy+online+challenge%3A+automatic+detection+of+microaneurysms+in+digital+color+fundus+photographs&rft.jtitle=IEEE+transactions+on+medical+imaging&rft.au=Niemeijer%2C+Meindert&rft.au=van+Ginneken%2C+Bram&rft.au=Cree%2C+Michael+J&rft.au=Mizutani%2C+Atsushi&rft.date=2010-01-01&rft.eissn=1558-254X&rft.volume=29&rft.issue=1&rft.spage=185&rft_id=info:doi/10.1109%2FTMI.2009.2033909&rft_id=info%3Apmid%2F19822469&rft.externalDocID=19822469
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0278-0062&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0278-0062&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0278-0062&client=summon