A novel text sentiment analysis system using improved depthwise separable convolution neural networks

Human behavior is greatly affected by emotions. Human behavior can be predicted by classifying emotions. Therefore, mining people’s emotional tendencies from text is of great significance for predicting the behavior of target groups and making decisions. The good use of emotion classification techno...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:PeerJ. Computer science Ročník 9; s. e1236
Hlavní autoři: Kong, Xiaoyu, Zhang, Ke
Médium: Journal Article
Jazyk:angličtina
Vydáno: United States PeerJ. Ltd 15.02.2023
PeerJ, Inc
PeerJ Inc
Témata:
ISSN:2376-5992, 2376-5992
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Human behavior is greatly affected by emotions. Human behavior can be predicted by classifying emotions. Therefore, mining people’s emotional tendencies from text is of great significance for predicting the behavior of target groups and making decisions. The good use of emotion classification technology can produce huge social and economic benefits. However, due to the rapid development of the Internet, the text information generated on the Internet increases rapidly at an unimaginable speed, which makes the previous method of manually classifying texts one-by-one more and more unable to meet the actual needs. In the subject of sentiment analysis, one of the most pressing problems is how to make better use of computer technology to extract emotional tendencies from text data in a way that is both more efficient and accurate. In the realm of text-based sentiment analysis, the currently available deep learning algorithms have two primary issues to contend with. The first is the high level of complexity involved in training the model, and the second is that the model does not take into account all of the aspects of language and does not make use of word vector information. This research employs an upgraded convolutional neural network (CNN) model as a response to these challenges. The goal of this model is to improve the downsides caused by the problems described above. First, the text separable convolution algorithm is used to perform hierarchical convolution on text features to achieve the refined extraction of word vector information and context information. Doing so avoids semantic confusion and reduces the complexity of convolutional networks. Secondly, the text separable convolution algorithm is applied to text sentiment analysis, and an improved CNN is further proposed. Compared with other models, the proposed model shows better performance in text-based sentiment analysis tasks. This study provides great value for text-based sentiment analysis tasks.
AbstractList Human behavior is greatly affected by emotions. Human behavior can be predicted by classifying emotions. Therefore, mining people’s emotional tendencies from text is of great significance for predicting the behavior of target groups and making decisions. The good use of emotion classification technology can produce huge social and economic benefits. However, due to the rapid development of the Internet, the text information generated on the Internet increases rapidly at an unimaginable speed, which makes the previous method of manually classifying texts one-by-one more and more unable to meet the actual needs. In the subject of sentiment analysis, one of the most pressing problems is how to make better use of computer technology to extract emotional tendencies from text data in a way that is both more efficient and accurate. In the realm of text-based sentiment analysis, the currently available deep learning algorithms have two primary issues to contend with. The first is the high level of complexity involved in training the model, and the second is that the model does not take into account all of the aspects of language and does not make use of word vector information. This research employs an upgraded convolutional neural network (CNN) model as a response to these challenges. The goal of this model is to improve the downsides caused by the problems described above. First, the text separable convolution algorithm is used to perform hierarchical convolution on text features to achieve the refined extraction of word vector information and context information. Doing so avoids semantic confusion and reduces the complexity of convolutional networks. Secondly, the text separable convolution algorithm is applied to text sentiment analysis, and an improved CNN is further proposed. Compared with other models, the proposed model shows better performance in text-based sentiment analysis tasks. This study provides great value for text-based sentiment analysis tasks.
Human behavior is greatly affected by emotions. Human behavior can be predicted by classifying emotions. Therefore, mining people's emotional tendencies from text is of great significance for predicting the behavior of target groups and making decisions. The good use of emotion classification technology can produce huge social and economic benefits. However, due to the rapid development of the Internet, the text information generated on the Internet increases rapidly at an unimaginable speed, which makes the previous method of manually classifying texts one-by-one more and more unable to meet the actual needs. In the subject of sentiment analysis, one of the most pressing problems is how to make better use of computer technology to extract emotional tendencies from text data in a way that is both more efficient and accurate. In the realm of text-based sentiment analysis, the currently available deep learning algorithms have two primary issues to contend with. The first is the high level of complexity involved in training the model, and the second is that the model does not take into account all of the aspects of language and does not make use of word vector information. This research employs an upgraded convolutional neural network (CNN) model as a response to these challenges. The goal of this model is to improve the downsides caused by the problems described above. First, the text separable convolution algorithm is used to perform hierarchical convolution on text features to achieve the refined extraction of word vector information and context information. Doing so avoids semantic confusion and reduces the complexity of convolutional networks. Secondly, the text separable convolution algorithm is applied to text sentiment analysis, and an improved CNN is further proposed. Compared with other models, the proposed model shows better performance in text-based sentiment analysis tasks. This study provides great value for text-based sentiment analysis tasks.Human behavior is greatly affected by emotions. Human behavior can be predicted by classifying emotions. Therefore, mining people's emotional tendencies from text is of great significance for predicting the behavior of target groups and making decisions. The good use of emotion classification technology can produce huge social and economic benefits. However, due to the rapid development of the Internet, the text information generated on the Internet increases rapidly at an unimaginable speed, which makes the previous method of manually classifying texts one-by-one more and more unable to meet the actual needs. In the subject of sentiment analysis, one of the most pressing problems is how to make better use of computer technology to extract emotional tendencies from text data in a way that is both more efficient and accurate. In the realm of text-based sentiment analysis, the currently available deep learning algorithms have two primary issues to contend with. The first is the high level of complexity involved in training the model, and the second is that the model does not take into account all of the aspects of language and does not make use of word vector information. This research employs an upgraded convolutional neural network (CNN) model as a response to these challenges. The goal of this model is to improve the downsides caused by the problems described above. First, the text separable convolution algorithm is used to perform hierarchical convolution on text features to achieve the refined extraction of word vector information and context information. Doing so avoids semantic confusion and reduces the complexity of convolutional networks. Secondly, the text separable convolution algorithm is applied to text sentiment analysis, and an improved CNN is further proposed. Compared with other models, the proposed model shows better performance in text-based sentiment analysis tasks. This study provides great value for text-based sentiment analysis tasks.
ArticleNumber e1236
Audience Academic
Author Zhang, Ke
Kong, Xiaoyu
Author_xml – sequence: 1
  givenname: Xiaoyu
  surname: Kong
  fullname: Kong, Xiaoyu
  organization: Wuxi Vocational Institute of Commerce, Wuxi, Jiangsu, China
– sequence: 2
  givenname: Ke
  surname: Zhang
  fullname: Zhang, Ke
  organization: Wuxi Vocational Institute of Commerce, Wuxi, Jiangsu, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37346624$$D View this record in MEDLINE/PubMed
BookMark eNp1kktv3CAUha0qVZOmWXZbWeomXXjKywZW1SjqY6RIlfpYIwZfT5ja4II96fz74pk0jaMWJC6C7x7gcp5nJ847yLKXGC04x_xtDxC2hYkLTGj1JDsjlFdFKSU5eTA_zS5i3CKEcIlTk8-yU8opqyrCzjJY5s7voM0H-DXkEdxguzTk2ul2H23M4z4O0OVjtG6T264Pia7zGvrh5tZGSCm9DnrdQm682_l2HKx3uYMx6DaF4daHH_FF9rTRbYSLu3ieff_w_tvVp-L688fV1fK6MKWgQ2EoAyFZTUiFDZOAQBgjgVBKZV2ua8RqBEhQSWRjJC4lcFSKBgQXupQV0PNsddStvd6qPthOh73y2qrDgg8bpcNgTQtKYOBMN43BdcMMB4GQRowRYijidTNpvTtq9eO6g9qkqqQnzUTnO87eqI3fKYyIQAzRpHB5pxD8zxHioDobDbStduDHqIgggpclYzihrx-hWz-G9AeJ4rwSJUGs_EttdHqBdY1PB5tJVC055aRi1eHYxT-o1GvobPokaGxanyW8mSUkZnLDRo8xqtXXL3P21cOq3Jfjj6MSUBwBE3yMAZp7BCM1mVYdTKtMVJNpE08f8cYOejJRurVt_5P1GxRu8cY
CitedBy_id crossref_primary_10_1515_biol_2022_0859
crossref_primary_10_1080_03081079_2025_2456960
Cites_doi 10.36660/abc.20200596
10.48550/arXiv.1408.5882
10.1109/MCG.2021.3115387
10.1007/s11277-017-5144-9
10.1016/j.cie.2018.06.034
10.1016/j.eswa.2008.07.035
10.1007/s10791-008-9070-z
10.9728/dcs.2019.20.7.1429
10.2174/0929866527666201103145635
10.1016/j.ipm.2014.05.001
10.1109/TLA.2022.9661475
10.1161/CIRCIMAGING.121.012838
10.1007/s11042-020-10314-9
10.1177/07435584211006920
10.1016/j.knosys.2016.02.011
10.1007/s12559-016-9386-8
10.1109/ACCESS.2021.3094925
10.1109/TMM.2020.2985526
10.1007/s11042-018-5870-3
10.1007/s40617-020-00445-8
ContentType Journal Article
Copyright 2023 Kong and Zhang.
COPYRIGHT 2023 PeerJ. Ltd.
2023 Kong and Zhang. This is an open access article distributed under the terms of the Creative Commons Attribution License: https://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, reproduction and adaptation in any medium and for any purpose provided that it is properly attributed. For attribution, the original author(s), title, publication source (PeerJ Computer Science) and either DOI or URL of the article must be cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2023 Kong and Zhang 2023 Kong and Zhang
Copyright_xml – notice: 2023 Kong and Zhang.
– notice: COPYRIGHT 2023 PeerJ. Ltd.
– notice: 2023 Kong and Zhang. This is an open access article distributed under the terms of the Creative Commons Attribution License: https://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, reproduction and adaptation in any medium and for any purpose provided that it is properly attributed. For attribution, the original author(s), title, publication source (PeerJ Computer Science) and either DOI or URL of the article must be cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2023 Kong and Zhang 2023 Kong and Zhang
DBID AAYXX
CITATION
NPM
ISR
3V.
7XB
8AL
8FE
8FG
8FK
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
M0N
P5Z
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
DOA
DOI 10.7717/peerj-cs.1236
DatabaseName CrossRef
PubMed
Gale In Context: Science
ProQuest Central (Corporate)
ProQuest Central (purchase pre-March 2016)
Computing Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni Edition)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central Korea
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
Computing Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
Computer Science Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies & Aerospace Collection
ProQuest Computing
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList

CrossRef

Publicly Available Content Database
PubMed
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 2376-5992
ExternalDocumentID oai_doaj_org_article_81e74affc1df4c7e800a04422c307dfe
PMC10280403
A737264603
37346624
10_7717_peerj_cs_1236
Genre Journal Article
GrantInformation_xml – fundername: Jiangsu University Philosophy and Social Science Research General Project “Research on the Realistic Dilemma and Technical Appeals of University Precision Funding from the Perspective of Big Data”
  grantid: 2022SJYB1050
GroupedDBID 53G
5VS
8FE
8FG
AAFWJ
AAYXX
ABUWG
ADBBV
AFFHD
AFKRA
AFPKN
ALMA_UNASSIGNED_HOLDINGS
ARAPS
AZQEC
BCNDV
BENPR
BGLVJ
BPHCQ
CCPQU
CITATION
DWQXO
FRP
GNUQQ
GROUPED_DOAJ
HCIFZ
IAO
ICD
IEA
ISR
ITC
K6V
K7-
M~E
OK1
P62
PHGZM
PHGZT
PIMPY
PQGLB
PQQKQ
PROAC
RPM
3V.
ARCSS
H13
M0N
NPM
7XB
8AL
8FK
JQ2
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
5PM
ID FETCH-LOGICAL-c583t-c34e894d2261c49e0e8cc9e23339d5bd04d0e083929fc9159e7058fe878a596e3
IEDL.DBID P5Z
ISICitedReferencesCount 3
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000964154600002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2376-5992
IngestDate Fri Oct 03 12:41:15 EDT 2025
Tue Nov 04 02:06:47 EST 2025
Sun Nov 09 12:51:25 EST 2025
Fri Jul 25 22:44:01 EDT 2025
Tue Nov 11 10:00:13 EST 2025
Tue Nov 04 17:50:25 EST 2025
Thu Nov 13 16:42:51 EST 2025
Thu Jan 02 22:52:23 EST 2025
Tue Nov 18 22:03:10 EST 2025
Sat Nov 29 03:45:23 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Emotion analysis system
Depthwise separable convolution
Convolution neural network
Text information
Language English
License https://creativecommons.org/licenses/by/4.0
2023 Kong and Zhang.
This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, reproduction and adaptation in any medium and for any purpose provided that it is properly attributed. For attribution, the original author(s), title, publication source (PeerJ Computer Science) and either DOI or URL of the article must be cited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c583t-c34e894d2261c49e0e8cc9e23339d5bd04d0e083929fc9159e7058fe878a596e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://www.proquest.com/docview/2776852045?pq-origsite=%requestingapplication%
PMID 37346624
PQID 2776852045
PQPubID 2045934
PageCount e1236
ParticipantIDs doaj_primary_oai_doaj_org_article_81e74affc1df4c7e800a04422c307dfe
pubmedcentral_primary_oai_pubmedcentral_nih_gov_10280403
proquest_miscellaneous_2828755441
proquest_journals_2776852045
gale_infotracmisc_A737264603
gale_infotracacademiconefile_A737264603
gale_incontextgauss_ISR_A737264603
pubmed_primary_37346624
crossref_primary_10_7717_peerj_cs_1236
crossref_citationtrail_10_7717_peerj_cs_1236
PublicationCentury 2000
PublicationDate 2023-02-15
PublicationDateYYYYMMDD 2023-02-15
PublicationDate_xml – month: 02
  year: 2023
  text: 2023-02-15
  day: 15
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: San Diego
– name: San Diego, USA
PublicationTitle PeerJ. Computer science
PublicationTitleAlternate PeerJ Comput Sci
PublicationYear 2023
Publisher PeerJ. Ltd
PeerJ, Inc
PeerJ Inc
Publisher_xml – name: PeerJ. Ltd
– name: PeerJ, Inc
– name: PeerJ Inc
References Junaid (10.7717/peerj-cs.1236/ref-10) 2021; 14
Kornbluh (10.7717/peerj-cs.1236/ref-14) 2021; 37
Zhang (10.7717/peerj-cs.1236/ref-26) 2021; 23
Enamoto (10.7717/peerj-cs.1236/ref-3) 2021; 80
Hassan (10.7717/peerj-cs.1236/ref-8) 2016; 100
Schmitz (10.7717/peerj-cs.1236/ref-20) 2021; 20
Noh (10.7717/peerj-cs.1236/ref-16) 2021; 26
Lee (10.7717/peerj-cs.1236/ref-15) 2020; 8
Srinivas (10.7717/peerj-cs.1236/ref-22) 2019; 128
Fornwalt (10.7717/peerj-cs.1236/ref-4) 2021; 14
Habernal (10.7717/peerj-cs.1236/ref-5) 2014; 50
Velsor-Friedrich (10.7717/peerj-cs.1236/ref-24) 2021; 61
Yang (10.7717/peerj-cs.1236/ref-25) 2013; 263–266
Hassan (10.7717/peerj-cs.1236/ref-7) 2016; 51
Sharma (10.7717/peerj-cs.1236/ref-21) 2021; 28
Kazerouni (10.7717/peerj-cs.1236/ref-11) 2021; 9
Kim (10.7717/peerj-cs.1236/ref-13) 2019; 20
Boiy (10.7717/peerj-cs.1236/ref-2) 2009; 12
Hua (10.7717/peerj-cs.1236/ref-9) 2018; 102
Tai (10.7717/peerj-cs.1236/ref-23) 2015; 5
Hassan (10.7717/peerj-cs.1236/ref-6) 2016; 8
Beasley (10.7717/peerj-cs.1236/ref-1) 2021; 41
Paixao (10.7717/peerj-cs.1236/ref-17) 2022; 118
Qin (10.7717/peerj-cs.1236/ref-19) 2019; 78
Qiang (10.7717/peerj-cs.1236/ref-18) 2009; 36
Kim (10.7717/peerj-cs.1236/ref-12) 2014
References_xml – volume: 118
  start-page: 95
  issue: 1
  year: 2022
  ident: 10.7717/peerj-cs.1236/ref-17
  article-title: Machine learning in medicine: review and applicability
  publication-title: Arquivos Brasileiros de Cardiologia
  doi: 10.36660/abc.20200596
– volume: 263–266
  start-page: 1688
  year: 2013
  ident: 10.7717/peerj-cs.1236/ref-25
  article-title: Research on building a Chinese sentiment lexicon based on SO-PMI
  publication-title: Applied Mechanics and Materials
– year: 2014
  ident: 10.7717/peerj-cs.1236/ref-12
  article-title: Convolutional Neural Networks for Sentence Classification, Computation and Language
  doi: 10.48550/arXiv.1408.5882
– volume: 41
  start-page: 59
  issue: 6
  year: 2021
  ident: 10.7717/peerj-cs.1236/ref-1
  article-title: Through the looking glass: insights into visualization pedagogy through sentiment analysis of peer review text
  publication-title: IEEE Computer Graphics and Applications
  doi: 10.1109/MCG.2021.3115387
– volume: 102
  start-page: 1095
  issue: 1079
  year: 2018
  ident: 10.7717/peerj-cs.1236/ref-9
  article-title: Sentiment analysis of micro-blog integrated on explicit semantic analysis method
  publication-title: Wireless Personal Communications
  doi: 10.1007/s11277-017-5144-9
– volume: 128
  start-page: 974
  year: 2019
  ident: 10.7717/peerj-cs.1236/ref-22
  article-title: Topic-based knowledge mining of online student reviews for strategic planning in universities
  publication-title: Computers & Industrial Engineering
  doi: 10.1016/j.cie.2018.06.034
– volume: 36
  start-page: 6527
  issue: 3
  year: 2009
  ident: 10.7717/peerj-cs.1236/ref-18
  article-title: Sentiment classification of online reviews to travel destinations by supervised machine learning approaches
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2008.07.035
– volume: 26
  start-page: 39
  issue: 5
  year: 2021
  ident: 10.7717/peerj-cs.1236/ref-16
  article-title: A text content classification using LSTM for objective category classification
  publication-title: Journal of the Korea Society of Computer and Information
– volume: 12
  start-page: 526
  issue: 5
  year: 2009
  ident: 10.7717/peerj-cs.1236/ref-2
  article-title: A machine learning approach to sentiment analysisin multilingual web texts
  publication-title: Information Retrieval
  doi: 10.1007/s10791-008-9070-z
– volume: 20
  start-page: 1429
  issue: 7
  year: 2019
  ident: 10.7717/peerj-cs.1236/ref-13
  article-title: A comparison study on performance of malicious comment classification models applied with artificial neural network
  publication-title: Journal of Digital Contents Society
  doi: 10.9728/dcs.2019.20.7.1429
– volume: 28
  start-page: 501
  issue: 5
  year: 2021
  ident: 10.7717/peerj-cs.1236/ref-21
  article-title: Variable length character N-gram embedding of protein sequences for secondary structure prediction
  publication-title: Protein and Peptide Letters
  doi: 10.2174/0929866527666201103145635
– volume: 51
  start-page: 851
  issue: 3
  year: 2016
  ident: 10.7717/peerj-cs.1236/ref-7
  article-title: A semi-supervised approach to sentiment analysis using revised sentiment strength based on SentiWordNet
  publication-title: Knowledge and Information Systems
– volume: 50
  start-page: 693
  issue: 5
  year: 2014
  ident: 10.7717/peerj-cs.1236/ref-5
  article-title: Supervised sentiment analysis in Czech social media
  publication-title: Information Processing & Management
  doi: 10.1016/j.ipm.2014.05.001
– volume: 20
  start-page: 344
  issue: 2
  year: 2021
  ident: 10.7717/peerj-cs.1236/ref-20
  article-title: Towards the categorization of Brazilian financial market headlines
  publication-title: IEEE Latin America Transactions
  doi: 10.1109/TLA.2022.9661475
– volume: 14
  start-page: 538
  issue: 6
  year: 2021
  ident: 10.7717/peerj-cs.1236/ref-4
  article-title: Promise and frustration machine learning in cardiology
  publication-title: Circulation-Cardiovascular Imaging
  doi: 10.1161/CIRCIMAGING.121.012838
– volume: 61
  start-page: 305
  year: 2021
  ident: 10.7717/peerj-cs.1236/ref-24
  article-title: Being unprepared: a grounded theory of the transition of asthma self-care in college students
  publication-title: Journal of Pediatric Nursing-Nursing Care of Children & Families
– volume: 80
  start-page: 13475
  issue: 9
  year: 2021
  ident: 10.7717/peerj-cs.1236/ref-3
  article-title: Generic framework for multilingual short text categorization using convolutional neural network
  publication-title: Multimedia Tools and Applications
  doi: 10.1007/s11042-020-10314-9
– volume: 37
  start-page: 501
  issue: 4
  year: 2021
  ident: 10.7717/peerj-cs.1236/ref-14
  article-title: Resistance capital: cultural activism as a gateway to college persistence for minority and first-generation students
  publication-title: Journal of Adolescent Research
  doi: 10.1177/07435584211006920
– volume: 100
  start-page: 97
  issue: 8
  year: 2016
  ident: 10.7717/peerj-cs.1236/ref-8
  article-title: SWIMS: semi-supervised subjective feature weighting and intelligent model selection for sentiment analysis
  publication-title: Knowledge-Based Systems
  doi: 10.1016/j.knosys.2016.02.011
– volume: 8
  start-page: 614
  issue: 4
  year: 2016
  ident: 10.7717/peerj-cs.1236/ref-6
  article-title: Multi-Objective Model Selection (MOMS)-based semi-supervised framework for sentiment analysis
  publication-title: Cognitive Computation
  doi: 10.1007/s12559-016-9386-8
– volume: 9
  start-page: 97457
  year: 2021
  ident: 10.7717/peerj-cs.1236/ref-11
  article-title: Ghost-UNet: an asymmetric encoder-decoder architecture for semantic segmentation from scratch
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3094925
– volume: 23
  start-page: 611
  year: 2021
  ident: 10.7717/peerj-cs.1236/ref-26
  article-title: Beyond vision: a multimodal recurrent attention convolutional neural network for unified image aesthetic prediction tasks
  publication-title: IEEE Transactions on Multimedia
  doi: 10.1109/TMM.2020.2985526
– volume: 78
  start-page: 913
  issue: 1
  year: 2019
  ident: 10.7717/peerj-cs.1236/ref-19
  article-title: Research on improved algorithm of object detection based on feature pyramid
  publication-title: Multimedia Tools and Applications
  doi: 10.1007/s11042-018-5870-3
– volume: 5
  start-page: 29
  issue: 1
  year: 2015
  ident: 10.7717/peerj-cs.1236/ref-23
  article-title: Improved semantic representations from tree-structured long short-term memory networks
  publication-title: Computer Science
– volume: 14
  start-page: 734
  issue: 3
  year: 2021
  ident: 10.7717/peerj-cs.1236/ref-10
  article-title: Using self-management and social media to increase steps in sedentary college students
  publication-title: Behavior Analysis in Practice
  doi: 10.1007/s40617-020-00445-8
– volume: 8
  start-page: 297
  issue: 2
  year: 2020
  ident: 10.7717/peerj-cs.1236/ref-15
  article-title: Analysis of automatic machine learning solution trends of startups
  publication-title: The International Journal of Advanced Culture Technology
SSID ssj0001511119
Score 2.2386298
Snippet Human behavior is greatly affected by emotions. Human behavior can be predicted by classifying emotions. Therefore, mining people’s emotional tendencies from...
Human behavior is greatly affected by emotions. Human behavior can be predicted by classifying emotions. Therefore, mining people's emotional tendencies from...
SourceID doaj
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage e1236
SubjectTerms Accuracy
Algorithms
Artificial neural networks
Bioinformatics
Classification
College students
Complexity
Convolution neural network
Data mining
Data Mining and Machine Learning
Deep learning
Depthwise separable convolution
Dictionaries
Economic development
Emotion analysis system
Emotions
Feature extraction
Human acts
Human behavior
Human-Computer Interaction
Internet
Machine learning
Neural Networks
Sentiment Analysis
Technology application
Technology utilization
Text information
Words (language)
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQxYELj_IKFGQQgguhSezE9nGpWoGEKsRLvVne8bhdtMquNrv9_XgS72ojhLj0FsVjJfaMxzPJ-PsYe-NQlzB1kAspMZfaRT_o4lVVNBBEPfVFj87_64s6P9cXF-brHtUX1YQN8MDDxB3rEpV0IUDpgwSFMcBxhZRVBdE6fUDyvoUye8nUcD6YXIEZQDVVTFmOl4ir3zl0HwhuZLQJ9Vj9f3vkvS1pXC65t_-c3Wd3U-DIJ8MLP2C3sD1k97akDDyt0YcMJ7xdXOOcU0kHp6NFPX4_dwl9hA_YzZwK3i_5rP-mgJ57XBKteoexC8GBT-fIqSI9WSYn3Mv4-HaoGu8esZ9npz9OPuWJSyGHWot1DkKiNtLHaKsEabBADWCwEkIYTyqRvsCij5YCmBjjoCpqHVAr7WrToHjMDtpFi08ZNxp0aOh3qI_hVygNMWwqAIEqNB4xY--3k2shAY0T38XcxoSDdGF7XVjoLOkiY2934ssBYeNfgh9JUzshAsbub0Rzsclc7P_MJWOvSc-WoC9aUsSl23Sd_fz9m50QY08jm0Jk7F0SCov45uDSUYU4fkLLGkkejSTj2oRx89acbPINna1UTPFqogHI2KtdM_WkercWF5soQzwENfHDZezJYH27cQslZNNUMmN6ZJejiRm3tLOrHjmcosnotcWzm5jK5-xOFSM-KmEv6yN2sF5t8AW7DdfrWbd62a_HP3cTP94
  priority: 102
  providerName: Directory of Open Access Journals
Title A novel text sentiment analysis system using improved depthwise separable convolution neural networks
URI https://www.ncbi.nlm.nih.gov/pubmed/37346624
https://www.proquest.com/docview/2776852045
https://www.proquest.com/docview/2828755441
https://pubmed.ncbi.nlm.nih.gov/PMC10280403
https://doaj.org/article/81e74affc1df4c7e800a04422c307dfe
Volume 9
WOSCitedRecordID wos000964154600002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2376-5992
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001511119
  issn: 2376-5992
  databaseCode: DOA
  dateStart: 20150101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2376-5992
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001511119
  issn: 2376-5992
  databaseCode: M~E
  dateStart: 20150101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 2376-5992
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001511119
  issn: 2376-5992
  databaseCode: P5Z
  dateStart: 20150527
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Computer Science Database
  customDbUrl:
  eissn: 2376-5992
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001511119
  issn: 2376-5992
  databaseCode: K7-
  dateStart: 20150527
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/compscijour
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2376-5992
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001511119
  issn: 2376-5992
  databaseCode: BENPR
  dateStart: 20150527
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 2376-5992
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001511119
  issn: 2376-5992
  databaseCode: PIMPY
  dateStart: 20150527
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3Pb9MwFLbYxoEL4zcZozIIwYWwJHZi54Q61IkJVlXjhwoXK3WeS6cqKU27I387fo7bLUJw4RJV9Yvq9D0_f3l5-T5CXhQgYz0pdMg4h5DLwubBwn5Kokwblk7KyLHzf_0ohkM5HucjX3BrfFvlJie6RF3WGmvkR4mwwDhF8vS3i58hqkbh01UvobFD9pAlAaUbRun3qxpLigkhb6k1hb1xOVoALC9C3bxB0pHOVuQY-__My9c2pm7T5LVd6GT_f-d_h9z2-JP224C5S25AdY_sb7QdqF_q9wn0aVVfwpxiZwjFN5ScDAAtPIkJbSmgKfbNT-nMlSagpCUsUJ29AXsKsopP5kCxsd0HOEX6TPvzVdt83jwgX04Gn9-9D70kQ6hTyVahZhxkzksL2mLNc4hAap1DwhjLS_QsLyOIHOgyOrdQCUSUSgNSyCLNM2APyW5VV_CY0FxqaTJ8qlpaFGfiHIU6hdYMhMlKgIC83nhHac9XjrIZc2XvW9CZyjlT6UahMwPycmu-aIk6_mZ4jK7eGiG_tvuiXk6VX65KxiB4YYyOS8O1AAuri4jzJNE2J5bGTu45BopCBo0KHTEt1k2jTj-dqz4K_2Q8i1hAXnkjU9uZ68K_8WCvH0m3OpaHHUu7xHV3eBNTyqeYRl0FVECebYfxTGybq6BeWxuUM0hRZi4gj9rw3V43E4xnWcIDIjuB3fljuiPV7IcjIEdQapM_O_j3vJ6QW4mFhNjjHqeHZHe1XMNTclNfrmbNskd2xFj2yN7xYDg677laiD1-EKE9nv0a9NxStuOj07PRt9-z-lR0
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1bb9MwFLbGQIIXxp3AAIO4vJAtiZ3YeUCoXKZVLRWCDe3NS-3jUlQlpWmH-FP8Rnxy6RYheNsDb1F8ktjJudk5_j5CnmYgQz3OtM84B5_LzPnBzB1FQaIti8cmqND5vwzFaCSPjtKPG-RXuxcGyypbn1g5alNoXCPfjYRLjGMET389_-4jaxT-XW0pNGq1GMDPH27KVr7qv3Pf91kU7b0_eLvvN6wCvo4lW_qacZApNy7vCDVPIQCpdQoRYyw12DluAgiqvMHq1EV7EEEsLUghszhNgLn7XiAXOZMC7Wog_NM1nRgdUFpDeQo3UdqdAyy--brcQZCTTuirGAL-jANnAmG3SPNM1Nvb-t_e1zVytcmvaa82iOtkA_IbZKvlrqCNK7tJoEfz4gRmFCtfKO7AqmgOaNaAtNAa4privoAJnVZLL2CogTmyz5fgLkHU9PEMKBbuNwZMER7UPT6vi-vLW-TwXAZ7m2zmRQ53CU2lljbBv8bGZak2TJGIVGjNQNjEAHjkZasNSjd47EgLMlNuXobKoyrlUbpUqDweeb4Wn9dAJH8TfIOqtRZC_PDqRLGYqMYdKRmC4Jm1OjSWawFu2pAFnEeRdj7fWNe5J6iYChFCcvwQk2xVlqr_-ZPqIbFRwpOAeeRFI2QL13OdNTs63PgRVKwjud2RdC5Md5tbHVaNCy3VqQJ75PG6Ga_EssAcipWTQbqGGGn0PHKnNpf1uJlgPEki7hHZMaTOi-m25NOvFcA6Jt0uuLF7_-7XI3J5_-DDUA37o8F9ciVy6S_W84fxNtlcLlbwgFzSJ8tpuXhYuQlKjs_bzn4DssKoag
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lj9MwELaWBSEuLG8CCxjE40JoEjuJc0CosFRUu6oqYNGKi0mdcSmqktK0i_hr_Dpm8uhuhOC2B25VPWnHybzsjL-PsccpKN9MUuMKKcGVKsU4mOKnwIuMFeEk8yp0_k8H8Wikjo6S8Rb71Z6FobbKNiZWgTorDO2R94IYC-OQwNN7tmmLGO8NXi2-u8QgRW9aWzqN2kT24ecPXL6VL4d7-KyfBMHg7cc379yGYcA1oRIr1wgJKpEZ1iC-kQl4oIxJIBBCJBkpKjMPvKqGsCbBzA-xFyoLKlZpmEQg8HfPsfMxrjGpnXAcfj7Z3wkpGCU1rGeMi6beAmD5zTXlCwI86aTBii3gz5xwKil2GzZPZcDBzv98766wy03dzfu1o1xlW5BfYzstpwVvQtx1Bn2eF8cw56Q-p5NZFf0BTxvwFl5DX3M6LzDls2pLBjKewYJY6UvASwhNfTIHTg39jWNzgg3Fv8_rpvvyBjs8k8neZNt5kcNtxhNllI3obXKG1av1EyIojY0RENsoA3DY89YytGlw2okuZK5xvUaGpCtD0qbUZEgOe7oRX9QAJX8TfE1mthEiXPHqi2I51U2Y0sqHWKbWGj-z0sSAy4nUkzIIDOaCzKJyj8hINSGH5PQgpum6LPXww3vdJ8KjSEaecNizRsgWqLlJm5MeOH8CG-tI7nYkMbSZ7nBrz7oJraU-MWaHPdwM05XULphDsUYZonEIiV7PYbdq19nMW8RCRlEgHaY6TtW5Md2RfPa1Al6nYhyTnrjzb70esIvoXvpgONq_yy4FWBVTm78f7rLt1XIN99gFc7yalcv7VcTg7MtZu9lvHuaxjg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+novel+text+sentiment+analysis+system+using+improved+depthwise+separable+convolution+neural+networks&rft.jtitle=PeerJ.+Computer+science&rft.au=Kong%2C+Xiaoyu&rft.au=Zhang%2C+Ke&rft.date=2023-02-15&rft.pub=PeerJ%2C+Inc&rft.eissn=2376-5992&rft_id=info:doi/10.7717%2Fpeerj-cs.1236&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2376-5992&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2376-5992&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2376-5992&client=summon