Functional plasticity of a peroxidase allows evolution of diverse disulfide-reducing pathways

In Escherichia coli, the glutathione/glutaredoxin and thioredoxin pathways are essential for the reduction of cytoplasmic protein disulfide bonds, including those formed in the essential enzyme ribonucleotide reductase during its action on substrates. Double mutants lacking thioredoxin reductase (tr...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Proceedings of the National Academy of Sciences - PNAS Ročník 105; číslo 18; s. 6735
Hlavní autoři: Faulkner, Melinda J, Veeravalli, Karthik, Gon, Stéphanie, Georgiou, George, Beckwith, Jon
Médium: Journal Article
Jazyk:angličtina
Vydáno: United States 06.05.2008
Témata:
ISSN:1091-6490, 1091-6490
On-line přístup:Zjistit podrobnosti o přístupu
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract In Escherichia coli, the glutathione/glutaredoxin and thioredoxin pathways are essential for the reduction of cytoplasmic protein disulfide bonds, including those formed in the essential enzyme ribonucleotide reductase during its action on substrates. Double mutants lacking thioredoxin reductase (trxB) and glutathione reductase (gor) or glutathione biosynthesis (gshA) cannot grow. Growth of Deltagor DeltatrxB strains is restored by a mutant (ahpC*) of the peroxiredoxin AhpC, converting it to a disulfide reductase that generates reduced glutathione. Here, we show that ahpC* also restores growth to a DeltagshB DeltatrxB strain, which lacks glutathione and accumulates only its precursor gamma-glutamylcysteine (gamma-GC). It suppresses this strain by allowing accumulation of reduced gamma-GC, which can substitute for glutathione. Surprisingly, new ahpC suppressor mutations arose in a DeltagshA DeltatrxB strain lacking both glutathione and gamma-GC, a strain that ahpC* does not suppress. Some of these mutant AhpC proteins channel electrons into the disulfide-reducing pathways via either the thioredoxins or the glutaredoxins without, evidently, the intermediary of glutathione. Our results provide insights into the physiological functioning of the glutathione pathway and reveal surprising plasticity of a peroxidase because different mutant versions of AhpC can channel electrons into the disulfide-reducing pathways by at least four distinct routes. Despite the reductase activity of mutant AhpCs, these various suppressor strains exhibit an oxidizing cytoplasm and accumulate correctly folded disulfide-bonded proteins in their cytoplasm. Proteins most effectively oxidized vary between strains, potentially providing useful tools for expressing different disulfide-bonded proteins.
AbstractList In Escherichia coli, the glutathione/glutaredoxin and thioredoxin pathways are essential for the reduction of cytoplasmic protein disulfide bonds, including those formed in the essential enzyme ribonucleotide reductase during its action on substrates. Double mutants lacking thioredoxin reductase (trxB) and glutathione reductase (gor) or glutathione biosynthesis (gshA) cannot grow. Growth of Deltagor DeltatrxB strains is restored by a mutant (ahpC*) of the peroxiredoxin AhpC, converting it to a disulfide reductase that generates reduced glutathione. Here, we show that ahpC* also restores growth to a DeltagshB DeltatrxB strain, which lacks glutathione and accumulates only its precursor gamma-glutamylcysteine (gamma-GC). It suppresses this strain by allowing accumulation of reduced gamma-GC, which can substitute for glutathione. Surprisingly, new ahpC suppressor mutations arose in a DeltagshA DeltatrxB strain lacking both glutathione and gamma-GC, a strain that ahpC* does not suppress. Some of these mutant AhpC proteins channel electrons into the disulfide-reducing pathways via either the thioredoxins or the glutaredoxins without, evidently, the intermediary of glutathione. Our results provide insights into the physiological functioning of the glutathione pathway and reveal surprising plasticity of a peroxidase because different mutant versions of AhpC can channel electrons into the disulfide-reducing pathways by at least four distinct routes. Despite the reductase activity of mutant AhpCs, these various suppressor strains exhibit an oxidizing cytoplasm and accumulate correctly folded disulfide-bonded proteins in their cytoplasm. Proteins most effectively oxidized vary between strains, potentially providing useful tools for expressing different disulfide-bonded proteins.
In Escherichia coli, the glutathione/glutaredoxin and thioredoxin pathways are essential for the reduction of cytoplasmic protein disulfide bonds, including those formed in the essential enzyme ribonucleotide reductase during its action on substrates. Double mutants lacking thioredoxin reductase (trxB) and glutathione reductase (gor) or glutathione biosynthesis (gshA) cannot grow. Growth of Deltagor DeltatrxB strains is restored by a mutant (ahpC*) of the peroxiredoxin AhpC, converting it to a disulfide reductase that generates reduced glutathione. Here, we show that ahpC* also restores growth to a DeltagshB DeltatrxB strain, which lacks glutathione and accumulates only its precursor gamma-glutamylcysteine (gamma-GC). It suppresses this strain by allowing accumulation of reduced gamma-GC, which can substitute for glutathione. Surprisingly, new ahpC suppressor mutations arose in a DeltagshA DeltatrxB strain lacking both glutathione and gamma-GC, a strain that ahpC* does not suppress. Some of these mutant AhpC proteins channel electrons into the disulfide-reducing pathways via either the thioredoxins or the glutaredoxins without, evidently, the intermediary of glutathione. Our results provide insights into the physiological functioning of the glutathione pathway and reveal surprising plasticity of a peroxidase because different mutant versions of AhpC can channel electrons into the disulfide-reducing pathways by at least four distinct routes. Despite the reductase activity of mutant AhpCs, these various suppressor strains exhibit an oxidizing cytoplasm and accumulate correctly folded disulfide-bonded proteins in their cytoplasm. Proteins most effectively oxidized vary between strains, potentially providing useful tools for expressing different disulfide-bonded proteins.In Escherichia coli, the glutathione/glutaredoxin and thioredoxin pathways are essential for the reduction of cytoplasmic protein disulfide bonds, including those formed in the essential enzyme ribonucleotide reductase during its action on substrates. Double mutants lacking thioredoxin reductase (trxB) and glutathione reductase (gor) or glutathione biosynthesis (gshA) cannot grow. Growth of Deltagor DeltatrxB strains is restored by a mutant (ahpC*) of the peroxiredoxin AhpC, converting it to a disulfide reductase that generates reduced glutathione. Here, we show that ahpC* also restores growth to a DeltagshB DeltatrxB strain, which lacks glutathione and accumulates only its precursor gamma-glutamylcysteine (gamma-GC). It suppresses this strain by allowing accumulation of reduced gamma-GC, which can substitute for glutathione. Surprisingly, new ahpC suppressor mutations arose in a DeltagshA DeltatrxB strain lacking both glutathione and gamma-GC, a strain that ahpC* does not suppress. Some of these mutant AhpC proteins channel electrons into the disulfide-reducing pathways via either the thioredoxins or the glutaredoxins without, evidently, the intermediary of glutathione. Our results provide insights into the physiological functioning of the glutathione pathway and reveal surprising plasticity of a peroxidase because different mutant versions of AhpC can channel electrons into the disulfide-reducing pathways by at least four distinct routes. Despite the reductase activity of mutant AhpCs, these various suppressor strains exhibit an oxidizing cytoplasm and accumulate correctly folded disulfide-bonded proteins in their cytoplasm. Proteins most effectively oxidized vary between strains, potentially providing useful tools for expressing different disulfide-bonded proteins.
Author Gon, Stéphanie
Georgiou, George
Faulkner, Melinda J
Veeravalli, Karthik
Beckwith, Jon
Author_xml – sequence: 1
  givenname: Melinda J
  surname: Faulkner
  fullname: Faulkner, Melinda J
  organization: Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, MA 02115, USA
– sequence: 2
  givenname: Karthik
  surname: Veeravalli
  fullname: Veeravalli, Karthik
– sequence: 3
  givenname: Stéphanie
  surname: Gon
  fullname: Gon, Stéphanie
– sequence: 4
  givenname: George
  surname: Georgiou
  fullname: Georgiou, George
– sequence: 5
  givenname: Jon
  surname: Beckwith
  fullname: Beckwith, Jon
BackLink https://www.ncbi.nlm.nih.gov/pubmed/18456836$$D View this record in MEDLINE/PubMed
BookMark eNpNkE1LAzEYhINU7IeevcmevG3NRzfJHqVYFQpe9CjLu8kbjaSbdbPb2n9vxQqeZmAeBmamZNTEBgm5ZHTOqBI3bQNpTjVlpZaMFidkwmjJcrko6eifH5NpSh-U0rLQ9IyMmV4UUgs5Ia-roTG9jw2ErA2Qem98v8-iyyBrsYtf3kLCDEKIu5ThNobhh_4BrN9id8isT0Nw3mLeoR2Mb96yFvr3HezTOTl1EBJeHHVGXlZ3z8uHfP10_7i8Xeem0KLPgVMrrON1rdXCoOOiNqKujbamKNEZrrRWErQDUOIwSjC0DmulVGE4csln5Pq3t-3i54CprzY-GQwBGoxDqmTJSqm5OoBXR3CoN2irtvMb6PbV3yH8G6E5Z9Q
CitedBy_id crossref_primary_10_1186_1475_2859_8_50
crossref_primary_10_1074_jbc_M114_553735
crossref_primary_10_1186_1475_2859_9_67
crossref_primary_10_1128_JB_00344_09
crossref_primary_10_3390_ijms21030990
crossref_primary_10_1002_bit_25309
crossref_primary_10_1042_BST20120252
crossref_primary_10_1186_1475_2859_10_32
crossref_primary_10_1111_j_1462_2920_2012_02835_x
crossref_primary_10_1186_s12934_014_0186_0
crossref_primary_10_1073_pnas_1105429108
crossref_primary_10_3389_fmicb_2021_626874
crossref_primary_10_1002_biot_201000335
crossref_primary_10_1016_j_ymben_2010_11_002
crossref_primary_10_1007_s10529_013_1180_z
crossref_primary_10_1002_btpr_1858
crossref_primary_10_1007_s00253_023_12888_4
crossref_primary_10_4014_jmb_2311_11025
crossref_primary_10_1186_1475_2859_12_37
crossref_primary_10_1186_1475_2859_10_1
crossref_primary_10_3389_fmicb_2021_675729
crossref_primary_10_1007_s00018_012_1092_4
crossref_primary_10_1074_jbc_RA120_014010
crossref_primary_10_1186_1475_2859_11_56
crossref_primary_10_1146_annurev_genet_102108_134201
crossref_primary_10_1590_s2175_97902019000317861
crossref_primary_10_1074_jbc_X800017200
crossref_primary_10_1038_nchembio_499
crossref_primary_10_1128_JB_01574_12
ContentType Journal Article
DBID CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1073/pnas.0801986105
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod no_fulltext_linktorsrc
Discipline Sciences (General)
EISSN 1091-6490
ExternalDocumentID 18456836
Genre Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIGMS NIH HHS
  grantid: R01 GM041883
– fundername: NIGMS NIH HHS
  grantid: GM041883
– fundername: NIGMS NIH HHS
  grantid: R01 GM055090
– fundername: NIGMS NIH HHS
  grantid: GM055090
GroupedDBID ---
-DZ
-~X
.55
0R~
123
29P
2AX
2FS
2WC
4.4
53G
5RE
5VS
85S
AACGO
AAFWJ
AANCE
AAYJJ
ABBHK
ABOCM
ABPLY
ABPPZ
ABTLG
ABXSQ
ABZEH
ACGOD
ACHIC
ACIWK
ACNCT
ACPRK
ADQXQ
ADULT
AENEX
AEUPB
AEXZC
AFFNX
AFOSN
AFRAH
ALMA_UNASSIGNED_HOLDINGS
AQVQM
AS~
BKOMP
CGR
CS3
CUY
CVF
D0L
DCCCD
DIK
DU5
E3Z
EBS
ECM
EIF
EJD
F5P
FRP
GX1
H13
HH5
HQ3
HTVGU
HYE
IPSME
JAAYA
JBMMH
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSG
JST
KQ8
L7B
LU7
MVM
N9A
NPM
N~3
O9-
OK1
P-O
PNE
PQQKQ
R.V
RHI
RNA
RNS
RPM
RXW
SA0
SJN
TAE
TN5
UKR
W8F
WH7
WOQ
WOW
X7M
XSW
Y6R
YBH
YKV
YSK
ZCA
~02
~KM
7X8
ADXHL
ID FETCH-LOGICAL-c583t-a20d3df2bb874cef23bc3bbc8dc59efc278876a8faa7310931edfeb7775c2e262
IEDL.DBID 7X8
ISICitedReferencesCount 38
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000255841600041&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1091-6490
IngestDate Fri Sep 05 09:52:05 EDT 2025
Thu Apr 03 07:06:25 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 18
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c583t-a20d3df2bb874cef23bc3bbc8dc59efc278876a8faa7310931edfeb7775c2e262
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink http://doi.org/10.1073/pnas.0801986105
PMID 18456836
PQID 69196827
PQPubID 23479
ParticipantIDs proquest_miscellaneous_69196827
pubmed_primary_18456836
PublicationCentury 2000
PublicationDate 2008-05-06
PublicationDateYYYYMMDD 2008-05-06
PublicationDate_xml – month: 05
  year: 2008
  text: 2008-05-06
  day: 06
PublicationDecade 2000
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Proceedings of the National Academy of Sciences - PNAS
PublicationTitleAlternate Proc Natl Acad Sci U S A
PublicationYear 2008
References 10633106 - J Bacteriol. 2000 Feb;182(3):723-7
15123823 - Proc Natl Acad Sci U S A. 2004 May 11;101(19):7439-44
11676610 - Protein Expr Purif. 2001 Nov;23(2):338-47
8662189 - Curr Genet. 1996 May;29(6):511-5
16495946 - Nature. 2006 Apr 20;440(7087):1078-82
2857165 - J Bacteriol. 1985 Jan;161(1):438-41
16482221 - EMBO J. 2006 Mar 8;25(5):1137-47
9835579 - Appl Environ Microbiol. 1998 Dec;64(12):4891-6
15518547 - Biochemistry. 2004 Nov 9;43(44):13981-95
9724776 - Proc Natl Acad Sci U S A. 1998 Sep 1;95(18):10751-6
11588261 - Science. 2001 Oct 5;294(5540):158-60
9755155 - EMBO J. 1998 Oct 1;17(19):5543-50
10570136 - Proc Natl Acad Sci U S A. 1999 Nov 23;96(24):13703-8
15581580 - Arch Biochem Biophys. 2005 Jan 1;433(1):240-54
18391948 - Nat Chem Biol. 2008 May;4(5):290-4
16771667 - Antioxid Redox Signal. 2006 May-Jun;8(5-6):753-62
9188456 - J Biol Chem. 1997 Jun 20;272(25):15661-7
18206967 - Mol Cell. 2008 Jan 18;29(1):36-45
References_xml – reference: 15581580 - Arch Biochem Biophys. 2005 Jan 1;433(1):240-54
– reference: 8662189 - Curr Genet. 1996 May;29(6):511-5
– reference: 9724776 - Proc Natl Acad Sci U S A. 1998 Sep 1;95(18):10751-6
– reference: 9835579 - Appl Environ Microbiol. 1998 Dec;64(12):4891-6
– reference: 10633106 - J Bacteriol. 2000 Feb;182(3):723-7
– reference: 18206967 - Mol Cell. 2008 Jan 18;29(1):36-45
– reference: 16495946 - Nature. 2006 Apr 20;440(7087):1078-82
– reference: 9755155 - EMBO J. 1998 Oct 1;17(19):5543-50
– reference: 11588261 - Science. 2001 Oct 5;294(5540):158-60
– reference: 16482221 - EMBO J. 2006 Mar 8;25(5):1137-47
– reference: 16771667 - Antioxid Redox Signal. 2006 May-Jun;8(5-6):753-62
– reference: 10570136 - Proc Natl Acad Sci U S A. 1999 Nov 23;96(24):13703-8
– reference: 11676610 - Protein Expr Purif. 2001 Nov;23(2):338-47
– reference: 15123823 - Proc Natl Acad Sci U S A. 2004 May 11;101(19):7439-44
– reference: 18391948 - Nat Chem Biol. 2008 May;4(5):290-4
– reference: 9188456 - J Biol Chem. 1997 Jun 20;272(25):15661-7
– reference: 2857165 - J Bacteriol. 1985 Jan;161(1):438-41
– reference: 15518547 - Biochemistry. 2004 Nov 9;43(44):13981-95
SSID ssj0009580
Score 2.0955124
Snippet In Escherichia coli, the glutathione/glutaredoxin and thioredoxin pathways are essential for the reduction of cytoplasmic protein disulfide bonds, including...
SourceID proquest
pubmed
SourceType Aggregation Database
Index Database
StartPage 6735
SubjectTerms Alkaline Phosphatase - metabolism
Biological Evolution
Chromatography, High Pressure Liquid
Cysteine - metabolism
Cytoplasm - enzymology
Dipeptides - analysis
Disulfides - metabolism
Escherichia coli - enzymology
Escherichia coli Proteins - metabolism
Glutaredoxins - metabolism
Kinetics
Mutation - genetics
NADH, NADPH Oxidoreductases - metabolism
Oxidation-Reduction
Peroxidase - metabolism
Suppression, Genetic
Thioredoxins - metabolism
Title Functional plasticity of a peroxidase allows evolution of diverse disulfide-reducing pathways
URI https://www.ncbi.nlm.nih.gov/pubmed/18456836
https://www.proquest.com/docview/69196827
Volume 105
WOSCitedRecordID wos000255841600041&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV27TsMwFLUKZWAByrM8PTDAYBrsxHYkJIQQFQtVB5C6oMqxr6VKKAlNH_TvsfOQWBADS7wkkmUf-x77npyL0GWkjPC-YUQllpIQmCUKuCEQSwmGe4NzUxabEIOBHI3iYQvdNf_CeFllsyeWG7XJtL8j7_HYYUVScZ9_El8zyudW6wIaa6jNHJHxmBYj-cNyV1ZeBK4nPIyDxthHsF6equLGcSV34nb0IfqdXZZRpr_9v_7toK2aXeKHCg4d1IJ0F3Xq9Vvgq9pk-noPvfddQKvuAXHuGLQXV89WOLNYYe8d_jUxLr5hn5ZfFhgWNUL9C6aUcoBri_mHnRggU-__6mIg9vWNl2pV7KO3_tPr4zOpSy0QHUk2I4oGhhlLk0SKUIOlLNEsSbQ0OorBaupFh1xJq5TwXqLsFoyFRAgRaQqU0wO0nmYpHCGsQxqoUIQGwiQU1CiQpiQSlhvh2HEXXTQDOHZQ9vkJlUI2L8bNEHbRYTUH47xy3Bi7Y2jEJePHf357gjYrRUdEAn6K2tYtYjhDG3oxmxTT8xIh7jkYvnwD7sLJjw
linkProvider ProQuest
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Functional+plasticity+of+a+peroxidase+allows+evolution+of+diverse+disulfide-reducing+pathways&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Faulkner%2C+Melinda+J&rft.au=Veeravalli%2C+Karthik&rft.au=Gon%2C+St%C3%A9phanie&rft.au=Georgiou%2C+George&rft.date=2008-05-06&rft.issn=1091-6490&rft.eissn=1091-6490&rft.volume=105&rft.issue=18&rft.spage=6735&rft_id=info:doi/10.1073%2Fpnas.0801986105&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1091-6490&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1091-6490&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1091-6490&client=summon