There is no such thing as a validated prediction model

Background Clinical prediction models should be validated before implementation in clinical practice. But is favorable performance at internal validation or one external validation sufficient to claim that a prediction model works well in the intended clinical context? Main body We argue to the cont...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:BMC medicine Ročník 21; číslo 1; s. 70 - 8
Hlavní autoři: Van Calster, Ben, Steyerberg, Ewout W., Wynants, Laure, van Smeden, Maarten
Médium: Journal Article
Jazyk:angličtina
Vydáno: London BioMed Central 24.02.2023
BioMed Central Ltd
Springer Nature B.V
BMC
Témata:
ISSN:1741-7015, 1741-7015
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Background Clinical prediction models should be validated before implementation in clinical practice. But is favorable performance at internal validation or one external validation sufficient to claim that a prediction model works well in the intended clinical context? Main body We argue to the contrary because (1) patient populations vary, (2) measurement procedures vary, and (3) populations and measurements change over time. Hence, we have to expect heterogeneity in model performance between locations and settings, and across time. It follows that prediction models are never truly validated. This does not imply that validation is not important. Rather, the current focus on developing new models should shift to a focus on more extensive, well-conducted, and well-reported validation studies of promising models. Conclusion Principled validation strategies are needed to understand and quantify heterogeneity, monitor performance over time, and update prediction models when appropriate. Such strategies will help to ensure that prediction models stay up-to-date and safe to support clinical decision-making.
AbstractList Clinical prediction models should be validated before implementation in clinical practice. But is favorable performance at internal validation or one external validation sufficient to claim that a prediction model works well in the intended clinical context? We argue to the contrary because (1) patient populations vary, (2) measurement procedures vary, and (3) populations and measurements change over time. Hence, we have to expect heterogeneity in model performance between locations and settings, and across time. It follows that prediction models are never truly validated. This does not imply that validation is not important. Rather, the current focus on developing new models should shift to a focus on more extensive, well-conducted, and well-reported validation studies of promising models. Principled validation strategies are needed to understand and quantify heterogeneity, monitor performance over time, and update prediction models when appropriate. Such strategies will help to ensure that prediction models stay up-to-date and safe to support clinical decision-making.
Background Clinical prediction models should be validated before implementation in clinical practice. But is favorable performance at internal validation or one external validation sufficient to claim that a prediction model works well in the intended clinical context? Main body We argue to the contrary because (1) patient populations vary, (2) measurement procedures vary, and (3) populations and measurements change over time. Hence, we have to expect heterogeneity in model performance between locations and settings, and across time. It follows that prediction models are never truly validated. This does not imply that validation is not important. Rather, the current focus on developing new models should shift to a focus on more extensive, well-conducted, and well-reported validation studies of promising models. Conclusion Principled validation strategies are needed to understand and quantify heterogeneity, monitor performance over time, and update prediction models when appropriate. Such strategies will help to ensure that prediction models stay up-to-date and safe to support clinical decision-making. Keywords: Risk prediction models, Predictive analytics, Internal validation, External validation, Heterogeneity, Model performance, Calibration, Discrimination
Abstract Background Clinical prediction models should be validated before implementation in clinical practice. But is favorable performance at internal validation or one external validation sufficient to claim that a prediction model works well in the intended clinical context? Main body We argue to the contrary because (1) patient populations vary, (2) measurement procedures vary, and (3) populations and measurements change over time. Hence, we have to expect heterogeneity in model performance between locations and settings, and across time. It follows that prediction models are never truly validated. This does not imply that validation is not important. Rather, the current focus on developing new models should shift to a focus on more extensive, well-conducted, and well-reported validation studies of promising models. Conclusion Principled validation strategies are needed to understand and quantify heterogeneity, monitor performance over time, and update prediction models when appropriate. Such strategies will help to ensure that prediction models stay up-to-date and safe to support clinical decision-making.
Background Clinical prediction models should be validated before implementation in clinical practice. But is favorable performance at internal validation or one external validation sufficient to claim that a prediction model works well in the intended clinical context? Main body We argue to the contrary because (1) patient populations vary, (2) measurement procedures vary, and (3) populations and measurements change over time. Hence, we have to expect heterogeneity in model performance between locations and settings, and across time. It follows that prediction models are never truly validated. This does not imply that validation is not important. Rather, the current focus on developing new models should shift to a focus on more extensive, well-conducted, and well-reported validation studies of promising models. Conclusion Principled validation strategies are needed to understand and quantify heterogeneity, monitor performance over time, and update prediction models when appropriate. Such strategies will help to ensure that prediction models stay up-to-date and safe to support clinical decision-making.
Clinical prediction models should be validated before implementation in clinical practice. But is favorable performance at internal validation or one external validation sufficient to claim that a prediction model works well in the intended clinical context?BACKGROUNDClinical prediction models should be validated before implementation in clinical practice. But is favorable performance at internal validation or one external validation sufficient to claim that a prediction model works well in the intended clinical context?We argue to the contrary because (1) patient populations vary, (2) measurement procedures vary, and (3) populations and measurements change over time. Hence, we have to expect heterogeneity in model performance between locations and settings, and across time. It follows that prediction models are never truly validated. This does not imply that validation is not important. Rather, the current focus on developing new models should shift to a focus on more extensive, well-conducted, and well-reported validation studies of promising models.MAIN BODYWe argue to the contrary because (1) patient populations vary, (2) measurement procedures vary, and (3) populations and measurements change over time. Hence, we have to expect heterogeneity in model performance between locations and settings, and across time. It follows that prediction models are never truly validated. This does not imply that validation is not important. Rather, the current focus on developing new models should shift to a focus on more extensive, well-conducted, and well-reported validation studies of promising models.Principled validation strategies are needed to understand and quantify heterogeneity, monitor performance over time, and update prediction models when appropriate. Such strategies will help to ensure that prediction models stay up-to-date and safe to support clinical decision-making.CONCLUSIONPrincipled validation strategies are needed to understand and quantify heterogeneity, monitor performance over time, and update prediction models when appropriate. Such strategies will help to ensure that prediction models stay up-to-date and safe to support clinical decision-making.
Clinical prediction models should be validated before implementation in clinical practice. But is favorable performance at internal validation or one external validation sufficient to claim that a prediction model works well in the intended clinical context? Principled validation strategies are needed to understand and quantify heterogeneity, monitor performance over time, and update prediction models when appropriate. Such strategies will help to ensure that prediction models stay up-to-date and safe to support clinical decision-making.
BackgroundClinical prediction models should be validated before implementation in clinical practice. But is favorable performance at internal validation or one external validation sufficient to claim that a prediction model works well in the intended clinical context?Main bodyWe argue to the contrary because (1) patient populations vary, (2) measurement procedures vary, and (3) populations and measurements change over time. Hence, we have to expect heterogeneity in model performance between locations and settings, and across time. It follows that prediction models are never truly validated. This does not imply that validation is not important. Rather, the current focus on developing new models should shift to a focus on more extensive, well-conducted, and well-reported validation studies of promising models.ConclusionPrincipled validation strategies are needed to understand and quantify heterogeneity, monitor performance over time, and update prediction models when appropriate. Such strategies will help to ensure that prediction models stay up-to-date and safe to support clinical decision-making.
ArticleNumber 70
Audience Academic
Author van Smeden, Maarten
Van Calster, Ben
Steyerberg, Ewout W.
Wynants, Laure
Author_xml – sequence: 1
  givenname: Ben
  orcidid: 0000-0003-1613-7450
  surname: Van Calster
  fullname: Van Calster, Ben
  organization: Department of Development and Regeneration, KU Leuven, EPI-Center, KU Leuven, Department of Biomedical Data Sciences, Leiden University Medical Center
– sequence: 2
  givenname: Ewout W.
  orcidid: 0000-0002-7787-0122
  surname: Steyerberg
  fullname: Steyerberg, Ewout W.
  organization: Department of Development and Regeneration, KU Leuven
– sequence: 3
  givenname: Laure
  orcidid: 0000-0002-3037-122X
  surname: Wynants
  fullname: Wynants, Laure
  organization: Department of Development and Regeneration, KU Leuven, EPI-Center, KU Leuven, Department of Epidemiology, CAPHRI Care and Public Health Research Institute, Maastricht University
– sequence: 4
  givenname: Maarten
  orcidid: 0000-0002-5529-1541
  surname: van Smeden
  fullname: van Smeden, Maarten
  email: M.vanSmeden@umcutrecht.nl
  organization: Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36829188$$D View this record in MEDLINE/PubMed
BookMark eNp9kstq3TAQhkVJaS7tC3RRDIXSjVPdLMnLEHoJBLpJ10KWRsc62NapZDfk7asTp7lRghASw_f_MxrNMTqY4gQIvSf4lBAlvmRCWyJqTFnZUrb19St0RCQntcSkOXh0P0THOW8xpo2U_A06ZEIVqVJHSFz1kKAKuZpilRfbV3Mfpk1lcmWqP2YIzszgql0CF-wc4lSN0cHwFr32Zsjw7u48Qb--fb06_1Ff_vx-cX52WdtGsbkWnlrSYNtgkNKCAmaoYdw1zBslDaWNosyTjnHZOqeMdxKgFRYTQQQTkp2gi9XXRbPVuxRGk250NEHfBmLaaJPmYAfQvjVCcNJJTxnv2rbtGqU4MCe8kNLz4vV59dql-HuBPOsxZAvDYCaIS9ZUKowlV4IV9OMzdBuXNJWX7inFJRcNfaA2puQPk49zMnZvqs8kU43CBKtCnf6HKsvBGGz5UR9K_Ing0yNBD2aY-xyHZd_9_BT8cFfl0o3g7tvz73cLQFfApphzAn-PEKz3I6TXEdJlhPTtCOnrIlLPRDbMZp-81B2Gl6VsleaSZ9pAemjbC6q_OZnVWA
CitedBy_id crossref_primary_10_1186_s42466_024_00338_z
crossref_primary_10_1186_s12911_024_02830_7
crossref_primary_10_1186_s12913_024_11715_4
crossref_primary_10_1097_JS9_0000000000002279
crossref_primary_10_1245_s10434_024_16698_4
crossref_primary_10_1016_j_jclinepi_2024_111636
crossref_primary_10_1371_journal_pone_0310712
crossref_primary_10_1016_j_bja_2024_09_003
crossref_primary_10_1016_j_jpi_2023_100347
crossref_primary_10_1007_s00210_024_03095_7
crossref_primary_10_1016_j_jpi_2023_100348
crossref_primary_10_1038_s41746_023_00832_9
crossref_primary_10_1227_neu_0000000000003275
crossref_primary_10_1186_s12916_023_03048_6
crossref_primary_10_1097_CCM_0000000000006441
crossref_primary_10_2196_51409
crossref_primary_10_1016_j_bpsc_2025_03_006
crossref_primary_10_1038_s41416_024_02578_x
crossref_primary_10_1371_journal_pone_0314526
crossref_primary_10_1186_s13613_024_01330_1
crossref_primary_10_1371_journal_pone_0310321
crossref_primary_10_26833_ijeg_1710723
crossref_primary_10_1186_s41512_025_00199_3
crossref_primary_10_1093_jrsssc_qlae070
crossref_primary_10_1186_s12890_024_03233_0
crossref_primary_10_1007_s00068_023_02351_4
crossref_primary_10_1089_wound_2024_0069
crossref_primary_10_3348_kjr_2024_0144
crossref_primary_10_1111_eci_70002
crossref_primary_10_2196_65994
crossref_primary_10_1136_bmj_2023_078276
crossref_primary_10_1111_cdoe_12942
crossref_primary_10_1186_s12916_025_03994_3
crossref_primary_10_35401_2541_9897_2025_10_2_40_46
crossref_primary_10_1016_j_resplu_2023_100435
crossref_primary_10_1038_s41746_024_01037_4
crossref_primary_10_1002_sim_70011
crossref_primary_10_1093_ejendo_lvaf171
crossref_primary_10_1136_bmjebm_2025_113730
crossref_primary_10_1007_s10067_025_07328_9
crossref_primary_10_1186_s12544_024_00704_7
crossref_primary_10_1016_j_jvs_2023_12_023
crossref_primary_10_1093_eurheartj_ehad727
crossref_primary_10_1136_bmjopen_2022_070559
crossref_primary_10_1001_jamanetworkopen_2023_35377
crossref_primary_10_1136_bmjgh_2024_017582
crossref_primary_10_2196_57035
crossref_primary_10_1007_s00134_024_07738_4
crossref_primary_10_1007_s00068_023_02354_1
crossref_primary_10_1371_journal_pgph_0004606
crossref_primary_10_1016_j_ijmedinf_2024_105700
crossref_primary_10_1016_j_trre_2025_100934
crossref_primary_10_1186_s12959_024_00603_w
crossref_primary_10_1093_jnci_djad202
crossref_primary_10_1136_bmj_2023_074819
crossref_primary_10_1093_humrep_deaf013
crossref_primary_10_1007_s10753_024_02185_1
crossref_primary_10_1038_s41746_025_01587_1
crossref_primary_10_3389_fped_2025_1636580
crossref_primary_10_3389_fonc_2023_1139902
crossref_primary_10_1016_j_landig_2025_100880
crossref_primary_10_1001_jamanetworkopen_2024_55475
crossref_primary_10_1186_s41512_024_00182_4
crossref_primary_10_1371_journal_pmed_1004540
crossref_primary_10_3748_wjg_v31_i18_106670
crossref_primary_10_1016_j_rpth_2024_102480
crossref_primary_10_1016_j_jclinepi_2024_111433
crossref_primary_10_1155_jdr_8830658
crossref_primary_10_1016_j_semperi_2025_152054
crossref_primary_10_1186_s12967_024_05005_0
crossref_primary_10_1016_j_compbiomed_2025_109710
crossref_primary_10_30944_20117582_2813
crossref_primary_10_1016_j_jcyt_2025_07_002
crossref_primary_10_1097_TA_0000000000004385
crossref_primary_10_1038_s41467_024_52618_6
crossref_primary_10_1007_s10461_025_04814_8
crossref_primary_10_1038_s41591_023_02540_z
crossref_primary_10_1136_bmjmed_2023_000817
crossref_primary_10_7326_M23_0949
crossref_primary_10_1136_bmj_2023_074820
crossref_primary_10_1016_j_bas_2025_104208
crossref_primary_10_1093_humrep_dead165
crossref_primary_10_1016_j_jclinepi_2024_111387
crossref_primary_10_1186_s12877_024_05044_8
crossref_primary_10_1186_s12913_024_11936_7
crossref_primary_10_1213_ANE_0000000000007463
crossref_primary_10_1186_s12879_024_10319_x
crossref_primary_10_1213_ANE_0000000000007464
crossref_primary_10_1093_eurjpc_zwae354
crossref_primary_10_1016_j_jdent_2025_105867
crossref_primary_10_1097_JS9_0000000000000979
crossref_primary_10_12968_hmed_2024_0781
crossref_primary_10_1186_s12874_024_02280_9
crossref_primary_10_1093_ndt_gfae050
crossref_primary_10_1016_j_ijrobp_2025_07_1445
crossref_primary_10_1186_s12933_024_02443_4
crossref_primary_10_1245_s10434_024_14997_4
crossref_primary_10_1007_s00420_025_02129_8
crossref_primary_10_3390_v15081735
crossref_primary_10_1038_s43856_025_00965_w
crossref_primary_10_1186_s41512_025_00186_8
crossref_primary_10_1038_s41746_025_01479_4
crossref_primary_10_1016_j_ijmedinf_2024_105631
crossref_primary_10_1002_cam4_7253
crossref_primary_10_3233_CBM_230360
crossref_primary_10_1016_j_brat_2023_104443
crossref_primary_10_1016_j_spinee_2025_01_014
crossref_primary_10_1016_j_chiabu_2024_106799
crossref_primary_10_1093_ejendo_lvae166
crossref_primary_10_2196_47833
crossref_primary_10_1002_uog_27515
crossref_primary_10_1016_j_ebiom_2023_104823
crossref_primary_10_1016_j_compbiomed_2024_108014
crossref_primary_10_1093_eurjpc_zwae096
crossref_primary_10_1016_j_jtha_2025_06_026
crossref_primary_10_1016_j_ijmedinf_2025_105884
crossref_primary_10_1053_j_gastro_2025_05_012
crossref_primary_10_1016_j_blre_2024_101170
crossref_primary_10_1093_jamia_ocae036
crossref_primary_10_2112_JCOASTRES_D_24_00072_1
crossref_primary_10_1136_bmj_2023_078378
crossref_primary_10_1186_s12883_024_03546_x
crossref_primary_10_1186_s41512_023_00161_1
Cites_doi 10.1186/1471-2288-13-128
10.1016/j.jclinepi.2019.11.001
10.1016/j.jclinepi.2014.11.010
10.1515/cclm-2015-1142
10.1093/jamia/ocz145
10.1016/j.jclinepi.2015.04.005
10.1136/bmjopen-2017-019223
10.1503/cmaj.091430
10.1016/S2589-7500(20)30186-2
10.1186/s12916-019-1466-7
10.1093/jamia/ocz130
10.1186/s41512-019-0046-9
10.1038/s41467-022-29437-8
10.1016/j.jhealeco.2014.11.003
10.1136/bmj-2022-071018
10.1093/qjmed/hcg027
10.1016/S0895-4356(01)00341-9
10.1177/0962280216668555
10.1136/bmj-2021-069881
10.1186/s41512-020-00077-0
10.1177/0962280218785504
10.7326/M14-0698
10.1136/bmj-2022-071058
10.1016/j.annemergmed.2011.01.020
10.1136/emermed-2021-212224
10.1136/bmj.m2614
10.1016/j.jclinepi.2015.12.005
10.1161/CIRCOUTCOMES.121.008487
10.1002/sim.9025
10.1136/bmj.i3140
10.1093/ejcts/ezs584
10.1186/s12874-022-01801-8
10.1016/S2352-3026(18)30220-5
10.1148/radiol.2020201940
10.1002/sim.6787
10.1016/j.jbi.2020.103611
10.1002/sim.5732
10.1016/S1474-4422(19)30232-7
10.1017/S1481803500013336
10.1136/bmj.b605
10.1002/(SICI)1097-0258(20000229)19:4<453::AID-SIM350>3.0.CO;2-5
10.1093/jamia/ocx030
10.7326/0003-4819-130-6-199903160-00016
10.1016/j.jclinepi.2016.05.007
10.1186/s41512-020-00090-3
10.1002/sim.8183
10.1055/s-0037-1613830
10.1186/s41512-017-0012-3
10.1038/s41746-019-0105-1
10.1002/sim.8296
10.1177/0272989X14547233
10.1016/j.jclinepi.2021.03.025
10.1136/bmj.k1479
ContentType Journal Article
Copyright The Author(s) 2023
2023. The Author(s).
COPYRIGHT 2023 BioMed Central Ltd.
2023. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2023
– notice: 2023. The Author(s).
– notice: COPYRIGHT 2023 BioMed Central Ltd.
– notice: 2023. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
NPM
3V.
7QL
7U9
7X7
7XB
88E
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
C1K
CCPQU
COVID
DWQXO
FYUFA
GHDGH
H94
K9.
M0S
M1P
M7N
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
7X8
DOA
DOI 10.1186/s12916-023-02779-w
DatabaseName Springer Nature OA Free Journals
CrossRef
PubMed
ProQuest Central (Corporate)
Bacteriology Abstracts (Microbiology B)
Virology and AIDS Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
Environmental Sciences and Pollution Management
ProQuest One
Coronavirus Research Database
ProQuest Central Korea
Proquest Health Research Premium Collection
Health Research Premium Collection (Alumni)
AIDS and Cancer Research Abstracts
ProQuest Health & Medical Complete (Alumni)
ProQuest Health & Medical Collection
Medical Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest Central
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
Health & Medical Research Collection
AIDS and Cancer Research Abstracts
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Virology and AIDS Abstracts
ProQuest One Academic Eastern Edition
Coronavirus Research Database
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList PubMed



MEDLINE - Academic


Publicly Available Content Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: PIMPY
  name: ProQuest Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1741-7015
EndPage 8
ExternalDocumentID oai_doaj_org_article_f9a6641b7f234b999b5884e3d6f677f4
A738580108
36829188
10_1186_s12916_023_02779_w
Genre Research Support, Non-U.S. Gov't
Journal Article
GeographicLocations Netherlands
GeographicLocations_xml – name: Netherlands
GrantInformation_xml – fundername: Fonds Wetenschappelijk Onderzoek
  grantid: G097322N
  funderid: http://dx.doi.org/10.13039/501100003130
– fundername: Fonds Wetenschappelijk Onderzoek
  grantid: G097322N
GroupedDBID ---
0R~
23N
2WC
4.4
53G
5GY
5VS
6J9
6PF
7X7
88E
8FI
8FJ
AAFWJ
AAJSJ
AASML
AAWTL
ABDBF
ABUWG
ACGFO
ACGFS
ACIHN
ACPRK
ACUHS
ADBBV
ADRAZ
ADUKV
AEAQA
AENEX
AFKRA
AFPKN
AFRAH
AHBYD
AHMBA
AHYZX
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AOIJS
BAPOH
BAWUL
BCNDV
BENPR
BFQNJ
BMC
BPHCQ
BVXVI
C6C
CCPQU
CS3
DIK
DU5
E3Z
EAD
EAP
EAS
EBD
EBLON
EBS
EMB
EMK
EMOBN
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
HMCUK
HYE
IAO
IHR
IHW
INH
INR
ITC
KQ8
M1P
M48
MK0
M~E
O5R
O5S
OK1
OVT
P2P
PGMZT
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQQKQ
PROAC
PSQYO
PUEGO
RBZ
RNS
ROL
RPM
RSV
SMD
SOJ
SV3
TR2
TUS
UKHRP
WOQ
WOW
XSB
AAYXX
AFFHD
CITATION
ALIPV
NPM
3V.
7QL
7U9
7XB
8FK
AZQEC
C1K
COVID
DWQXO
H94
K9.
M7N
PKEHL
PQEST
PQUKI
PRINS
7X8
ID FETCH-LOGICAL-c583t-6f2c150c50e77ce8e3a2a34d53fa87a225823f1b3479dd8afd7ee96c016163673
IEDL.DBID 7X7
ISICitedReferencesCount 144
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000939497700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1741-7015
IngestDate Tue Oct 14 18:52:38 EDT 2025
Thu Sep 04 19:03:19 EDT 2025
Wed Oct 08 14:11:02 EDT 2025
Tue Nov 11 10:03:39 EST 2025
Tue Nov 04 18:06:19 EST 2025
Thu May 22 21:24:23 EDT 2025
Mon Jul 21 05:54:00 EDT 2025
Sat Nov 29 04:08:29 EST 2025
Tue Nov 18 20:37:30 EST 2025
Sat Sep 06 07:24:53 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Heterogeneity
Model performance
Discrimination
External validation
Risk prediction models
Calibration
Internal validation
Predictive analytics
Language English
License 2023. The Author(s).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c583t-6f2c150c50e77ce8e3a2a34d53fa87a225823f1b3479dd8afd7ee96c016163673
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-7787-0122
0000-0002-3037-122X
0000-0003-1613-7450
0000-0002-5529-1541
OpenAccessLink https://www.proquest.com/docview/2788474652?pq-origsite=%requestingapplication%
PMID 36829188
PQID 2788474652
PQPubID 42775
PageCount 8
ParticipantIDs doaj_primary_oai_doaj_org_article_f9a6641b7f234b999b5884e3d6f677f4
proquest_miscellaneous_2780074863
proquest_journals_2788474652
gale_infotracmisc_A738580108
gale_infotracacademiconefile_A738580108
gale_healthsolutions_A738580108
pubmed_primary_36829188
crossref_primary_10_1186_s12916_023_02779_w
crossref_citationtrail_10_1186_s12916_023_02779_w
springer_journals_10_1186_s12916_023_02779_w
PublicationCentury 2000
PublicationDate 2023-02-24
PublicationDateYYYYMMDD 2023-02-24
PublicationDate_xml – month: 02
  year: 2023
  text: 2023-02-24
  day: 24
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle BMC medicine
PublicationTitleAbbrev BMC Med
PublicationTitleAlternate BMC Med
PublicationYear 2023
Publisher BioMed Central
BioMed Central Ltd
Springer Nature B.V
BMC
Publisher_xml – name: BioMed Central
– name: BioMed Central Ltd
– name: Springer Nature B.V
– name: BMC
References EW Steyerberg (2779_CR39) 2019; 38
AC Justice (2779_CR5) 1999; 130
SE Davis (2779_CR35) 2017; 24
PC Austin (2779_CR43) 2016; 79
RD Riley (2779_CR48) 2021; 40
PC Austin (2779_CR44) 2017; 1
D Agniel (2779_CR18) 2018; 360
TPA Debray (2779_CR51) 2023; 380
EW Steyerberg (2779_CR8) 2019; 18
EW Steyerberg (2779_CR4) 2001; 54
T Takada (2779_CR46) 2021; 137
K Luijken (2779_CR19) 2019; 38
VMT De Jong (2779_CR14) 2022; 378
MAE Binuya (2779_CR53) 2022; 22
E White (2779_CR16) 2011; 163
KGM Moons (2779_CR50) 2015; 162
ER Berndt (2779_CR17) 2015; 40
C Reynard (2779_CR29) 2022
SE Davis (2779_CR31) 2020; 112
TPA Debray (2779_CR40) 2013; 32
PS Wells (2779_CR22) 2000; 83
TPA Debray (2779_CR41) 2019; 28
B Van Calster (2779_CR3) 2019; 26
S Iles (2779_CR24) 2003; 96
TPA Debray (2779_CR52) 2023; 380
L Wynants (2779_CR45) 2019; 3
B Van Calster (2779_CR55) 2016; 74
MC Lenert (2779_CR33) 2019; 26
H Lindroth (2779_CR25) 2018; 8
L Wynants (2779_CR42) 2018; 27
FM Fesmire (2779_CR23) 2011; 57
D Kim (2779_CR26) 2022; 13
MA Badgeley (2779_CR21) 2019; 2
GL Hickey (2779_CR36) 2013; 43
GS Collins (2779_CR49) 2015; 68
B Van Calster (2779_CR13) 2020; 370
DG Altman (2779_CR1) 2009; 338
RD Riley (2779_CR10) 2016; 353
G Cook (2779_CR37) 2019; 6
GS Collins (2779_CR54) 2016; 35
L Wynants (2779_CR27) 2013; 13
JH Min (2779_CR28) 2020; 297
EW Steyerberg (2779_CR2) 2016; 69
J Futoma (2779_CR7) 2020; 2
K Luijken (2779_CR20) 2020; 119
B Van Calster (2779_CR11) 2015; 35
G Gulati (2779_CR12) 2022; 15
B Nestor (2779_CR30) 2019; 106
S Ferraro (2779_CR15) 2016; 54
J Fan (2779_CR38) 2006; 8
DA Jenkins (2779_CR32) 2021; 5
DG Altman (2779_CR6) 2000; 19
IG Stiell (2779_CR47) 2010; 182
B Van Calster (2779_CR9) 2019; 17
RHH Groenwold (2779_CR34) 2020; 4
References_xml – volume: 13
  start-page: 128
  year: 2013
  ident: 2779_CR27
  publication-title: BMC Med Res Methodol
  doi: 10.1186/1471-2288-13-128
– volume: 119
  start-page: 7
  year: 2020
  ident: 2779_CR20
  publication-title: J Clin Epidemiol
  doi: 10.1016/j.jclinepi.2019.11.001
– volume: 68
  start-page: 134
  year: 2015
  ident: 2779_CR49
  publication-title: J Clin Epidemiol
  doi: 10.1016/j.jclinepi.2014.11.010
– volume: 54
  start-page: 1635
  year: 2016
  ident: 2779_CR15
  publication-title: Clin Chem Lab Med
  doi: 10.1515/cclm-2015-1142
– volume: 26
  start-page: 1645
  year: 2019
  ident: 2779_CR33
  publication-title: J Am Med Inform Assoc.
  doi: 10.1093/jamia/ocz145
– volume: 69
  start-page: 245
  year: 2016
  ident: 2779_CR2
  publication-title: J Clin Epidemiol
  doi: 10.1016/j.jclinepi.2015.04.005
– volume: 8
  start-page: e019223
  year: 2018
  ident: 2779_CR25
  publication-title: BMJ Open
  doi: 10.1136/bmjopen-2017-019223
– volume: 182
  start-page: 1173
  year: 2010
  ident: 2779_CR47
  publication-title: CMAJ
  doi: 10.1503/cmaj.091430
– volume: 2
  start-page: e489
  year: 2020
  ident: 2779_CR7
  publication-title: Lancet Digit Health
  doi: 10.1016/S2589-7500(20)30186-2
– volume: 17
  start-page: 230
  year: 2019
  ident: 2779_CR9
  publication-title: BMC Med
  doi: 10.1186/s12916-019-1466-7
– volume: 26
  start-page: 1651
  year: 2019
  ident: 2779_CR3
  publication-title: J Am Med Inform Assoc.
  doi: 10.1093/jamia/ocz130
– volume: 3
  start-page: 6
  year: 2019
  ident: 2779_CR45
  publication-title: Diagn Progn Res
  doi: 10.1186/s41512-019-0046-9
– volume: 13
  start-page: 1867
  year: 2022
  ident: 2779_CR26
  publication-title: Nat Commun
  doi: 10.1038/s41467-022-29437-8
– volume: 40
  start-page: 26
  year: 2015
  ident: 2779_CR17
  publication-title: J Health Econ
  doi: 10.1016/j.jhealeco.2014.11.003
– volume: 380
  start-page: e071018
  year: 2023
  ident: 2779_CR51
  publication-title: BMJ
  doi: 10.1136/bmj-2022-071018
– volume: 96
  start-page: 211
  year: 2003
  ident: 2779_CR24
  publication-title: QJM
  doi: 10.1093/qjmed/hcg027
– volume: 54
  start-page: 774
  year: 2001
  ident: 2779_CR4
  publication-title: J Clin Epidemiol
  doi: 10.1016/S0895-4356(01)00341-9
– volume: 27
  start-page: 1723
  year: 2018
  ident: 2779_CR42
  publication-title: Stat Methods Med Res
  doi: 10.1177/0962280216668555
– volume: 378
  start-page: e069881
  year: 2022
  ident: 2779_CR14
  publication-title: BMJ
  doi: 10.1136/bmj-2021-069881
– volume: 4
  start-page: 8
  year: 2020
  ident: 2779_CR34
  publication-title: Diagn Progn Res
  doi: 10.1186/s41512-020-00077-0
– volume: 28
  start-page: 2768
  year: 2019
  ident: 2779_CR41
  publication-title: Stat Methods Med Res
  doi: 10.1177/0962280218785504
– volume: 162
  start-page: W1
  year: 2015
  ident: 2779_CR50
  publication-title: Ann Intern Med
  doi: 10.7326/M14-0698
– volume: 380
  start-page: e071058
  year: 2023
  ident: 2779_CR52
  publication-title: BMJ
  doi: 10.1136/bmj-2022-071058
– volume: 57
  start-page: 628
  year: 2011
  ident: 2779_CR23
  publication-title: Ann Emerg Med
  doi: 10.1016/j.annemergmed.2011.01.020
– year: 2022
  ident: 2779_CR29
  publication-title: Emerg Med J
  doi: 10.1136/emermed-2021-212224
– volume: 370
  start-page: m2614
  year: 2020
  ident: 2779_CR13
  publication-title: BMJ
  doi: 10.1136/bmj.m2614
– volume: 74
  start-page: 167
  year: 2016
  ident: 2779_CR55
  publication-title: J Clin Epidemiol
  doi: 10.1016/j.jclinepi.2015.12.005
– volume: 15
  start-page: e008487
  year: 2022
  ident: 2779_CR12
  publication-title: Circ Cardiovasc Qual Outcomes
  doi: 10.1161/CIRCOUTCOMES.121.008487
– volume: 40
  start-page: 4230
  year: 2021
  ident: 2779_CR48
  publication-title: Stat Med
  doi: 10.1002/sim.9025
– volume: 106
  start-page: 1
  year: 2019
  ident: 2779_CR30
  publication-title: Proc Mach Learn Res
– volume: 353
  start-page: i3140
  year: 2016
  ident: 2779_CR10
  publication-title: BMJ
  doi: 10.1136/bmj.i3140
– volume: 43
  start-page: 1146
  year: 2013
  ident: 2779_CR36
  publication-title: Eur J Cardiothorac Surg
  doi: 10.1093/ejcts/ezs584
– volume: 22
  start-page: 316
  year: 2022
  ident: 2779_CR53
  publication-title: BMC Med Res Methodol
  doi: 10.1186/s12874-022-01801-8
– volume: 163
  start-page: 143
  year: 2011
  ident: 2779_CR16
  publication-title: IARC Sci Publ
– volume: 6
  start-page: e154
  year: 2019
  ident: 2779_CR37
  publication-title: Lancet Haematol
  doi: 10.1016/S2352-3026(18)30220-5
– volume: 297
  start-page: 573
  year: 2020
  ident: 2779_CR28
  publication-title: Radiology
  doi: 10.1148/radiol.2020201940
– volume: 35
  start-page: 214
  year: 2016
  ident: 2779_CR54
  publication-title: Stat Med
  doi: 10.1002/sim.6787
– volume: 112
  start-page: 103611
  year: 2020
  ident: 2779_CR31
  publication-title: J Biomed Inform
  doi: 10.1016/j.jbi.2020.103611
– volume: 32
  start-page: 3158
  year: 2013
  ident: 2779_CR40
  publication-title: Stat Med
  doi: 10.1002/sim.5732
– volume: 18
  start-page: 923
  year: 2019
  ident: 2779_CR8
  publication-title: Lancet Neurol
  doi: 10.1016/S1474-4422(19)30232-7
– volume: 8
  start-page: 19
  year: 2006
  ident: 2779_CR38
  publication-title: CJEM
  doi: 10.1017/S1481803500013336
– volume: 338
  start-page: b605
  year: 2009
  ident: 2779_CR1
  publication-title: BMJ
  doi: 10.1136/bmj.b605
– volume: 19
  start-page: 453
  year: 2000
  ident: 2779_CR6
  publication-title: Stat Med
  doi: 10.1002/(SICI)1097-0258(20000229)19:4<453::AID-SIM350>3.0.CO;2-5
– volume: 24
  start-page: 1052
  year: 2017
  ident: 2779_CR35
  publication-title: J Am Med Inform Assoc
  doi: 10.1093/jamia/ocx030
– volume: 130
  start-page: 515
  year: 1999
  ident: 2779_CR5
  publication-title: Ann Intern Med
  doi: 10.7326/0003-4819-130-6-199903160-00016
– volume: 79
  start-page: 76
  year: 2016
  ident: 2779_CR43
  publication-title: J Clin Epidemiol
  doi: 10.1016/j.jclinepi.2016.05.007
– volume: 5
  start-page: 1
  year: 2021
  ident: 2779_CR32
  publication-title: Diagn Progn Res
  doi: 10.1186/s41512-020-00090-3
– volume: 38
  start-page: 3444
  year: 2019
  ident: 2779_CR19
  publication-title: Stat Med
  doi: 10.1002/sim.8183
– volume: 83
  start-page: 416
  year: 2000
  ident: 2779_CR22
  publication-title: Thromb Haemostat
  doi: 10.1055/s-0037-1613830
– volume: 1
  start-page: 12
  year: 2017
  ident: 2779_CR44
  publication-title: Diagn Progn Res
  doi: 10.1186/s41512-017-0012-3
– volume: 2
  start-page: 31
  year: 2019
  ident: 2779_CR21
  publication-title: npj Digit Med.
  doi: 10.1038/s41746-019-0105-1
– volume: 38
  start-page: 4290
  year: 2019
  ident: 2779_CR39
  publication-title: Stat Med
  doi: 10.1002/sim.8296
– volume: 35
  start-page: 162
  year: 2015
  ident: 2779_CR11
  publication-title: Med Decis Making
  doi: 10.1177/0272989X14547233
– volume: 137
  start-page: 83
  year: 2021
  ident: 2779_CR46
  publication-title: J Clin Epidemiol
  doi: 10.1016/j.jclinepi.2021.03.025
– volume: 360
  start-page: k1479
  year: 2018
  ident: 2779_CR18
  publication-title: BMJ
  doi: 10.1136/bmj.k1479
SSID ssj0025774
Score 2.664989
Snippet Background Clinical prediction models should be validated before implementation in clinical practice. But is favorable performance at internal validation or...
Clinical prediction models should be validated before implementation in clinical practice. But is favorable performance at internal validation or one external...
Background Clinical prediction models should be validated before implementation in clinical practice. But is favorable performance at internal validation or...
BackgroundClinical prediction models should be validated before implementation in clinical practice. But is favorable performance at internal validation or one...
Abstract Background Clinical prediction models should be validated before implementation in clinical practice. But is favorable performance at internal...
SourceID doaj
proquest
gale
pubmed
crossref
springer
SourceType Open Website
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 70
SubjectTerms Biomarkers
Biomedicine
Calibration
Clinical medicine
Datasets
Decision making
Delirium
Estimates
External validation
Fractures
Health aspects
Health risk assessment
Heterogeneity
Hospitals
Internal validation
Medicine
Medicine & Public Health
Methods
Model performance
Mortality
Oncology
Opinion
Ovarian cancer
Patients
Populations
Practice
Prediction models
Predictive analytics
Pulmonary embolisms
Risk prediction models
Scanners
Variables
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB6hqkJcUMszUMBISBzA6saOHzkWRMUBKg6AerNsxxYroWy12W3_Ph47CV0QcOEajy3nG09mJvZ8BnhRN84p5Sy1UbS0sVJTl_wMdV6EBbeiXeRC2q8f1NmZPj9vP1276gvPhBV64ALccWytlE3tVGS8cSmccVhaGXgno1QqZibQhWqnZGpMtUSKaqYSGS2Ph-TVajxsW_YsW3q144YyW__v3-RrTumXXdLsfE4P4PYYNZKTMttDuBH6O3Dz47gvfhdk0vY6kOVA-hUZtv4b2eCfJWIHYklaS0vM6ztyscYeqAqSb8C5B19O331--56ONyJQLzTfUBmZTxGcF4uglA86cMssbzrBo9XKJtvUjMfaYXlo12kbOxVCKz3GdZJLxe_DXr_qw0MgmiXd6VB7FgXC24bYIbmcwuLc2KoK6gkg40e6cLy14rvJaYOWpoBqEqgmg2quKng197koZBl_lX6DuM-SSHSdHyT1m1H95l_qr-AZas2UqtHZXM1JZulJyaau4GWWQINNL-DtWHeQYEDqqx3Jox3JZGh-t3laGWY09MEwlaajGilYBc_nZuyJh9f6sNpmGYzUtOQVPCgran5pLnXCRafBX09L7Ofgf8bu0f_A7jHcYsUkKGuOYG-z3oYnsO8vN8th_TQb1A_U1hzZ
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: SpringerLINK Contemporary 1997-Present
  dbid: RSV
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR3LbtQwcAQFIS68oYECRkLiABYbO37kWBAVB6iQgKo3y3bsshLKVslu-_t4nAcsLwmu8YzlzMMz4_GMAZ6WlXNKOUttFDWtrNTUJTtDnRdhwa2oF7mQ9uidOjzUx8f1h7EorJ9uu08pybxTZ7XW8mWfLFOJF2aHvGNNzy_CJYHdZjBG_3g0h1kieTRTecxv8bZMUO7U_-t-_INB-ilDmg3PwfX_W_INuDY6mmR_kIybcCG0t-DK-zGVfhtkEpAukGVP2hXpN_4LWeNhFLE9sSSJ3xKPAhpy2iEGco_kR3PuwOeDN59ev6XjIwrUC83XVEbmk9PnxSIo5YMO3DLLq0bwaLWySZ0147F0WFHaNNrGRoVQS4-uoORS8buw067asAtEs8RuHUrPoqhKp-oQG-xHp7CeN9aqgHKiq_Fjh3F86OKryZGGlmYgiEkEMZkg5ryA5zPO6dBf46_Qr5BdMyT2xs4fVt2JGVXNxNpKieuLjFcuOcAOi3EDb2SUSsWqgMfIbDMUms4abvZzY58Un-oCnmUI1PH0A96OpQqJDNgtawtybwsy6abfHp4Eyox7Q2-YSstRlRSsgCfzMGLifbc2rDYZBp07LXkB9wZBnH-aS53ootPkLyap-z75n2l3_9_AH8BVNgguZdUe7Ky7TXgIl_3Zetl3j7LGfQNFTiJA
  priority: 102
  providerName: Springer Nature
Title There is no such thing as a validated prediction model
URI https://link.springer.com/article/10.1186/s12916-023-02779-w
https://www.ncbi.nlm.nih.gov/pubmed/36829188
https://www.proquest.com/docview/2788474652
https://www.proquest.com/docview/2780074863
https://doaj.org/article/f9a6641b7f234b999b5884e3d6f677f4
Volume 21
WOSCitedRecordID wos000939497700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVADU
  databaseName: BioMed Central
  customDbUrl:
  eissn: 1741-7015
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0025774
  issn: 1741-7015
  databaseCode: RBZ
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: https://www.biomedcentral.com/search/
  providerName: BioMedCentral
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1741-7015
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0025774
  issn: 1741-7015
  databaseCode: DOA
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1741-7015
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0025774
  issn: 1741-7015
  databaseCode: M~E
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1741-7015
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0025774
  issn: 1741-7015
  databaseCode: 7X7
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1741-7015
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0025774
  issn: 1741-7015
  databaseCode: BENPR
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Publicly Available Content Database
  customDbUrl:
  eissn: 1741-7015
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0025774
  issn: 1741-7015
  databaseCode: PIMPY
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1741-7015
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0025774
  issn: 1741-7015
  databaseCode: RSV
  dateStart: 20031201
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwELdgQ2gvfH8ERjESEg9grbET23lCG9oEEquqAVN5shzHhkpTU5KW_fv4HCelIPbCS6Qk58jx_c53PvvuEHqZZmUpRKmJdnlBMs0lKb2eIaXJ7ZjpvBiHQNrzj2IykbNZMY0OtzYeq-znxDBRV7UBH_kB9Wu1TGQ8p2-XPwhUjYLd1VhC4zrahbLZgHMx2yy4cm_b9IEykh-0XrelcOS227ksyOWWMgo5-_-emX9TTX_slQYVdHL7fzt_B92Kxic-7NByF12zi3vo5mncXr-PuAdNY_G8xYsat2vzHa_AQYV1izX2kJyDe6DCywZaAEdxKKTzAH05Of787j2JhRWIySVbEe6o8YagycdWCGOlZZpqllU5c1oK7UVcUubSEqJMq0pqVwlrC27APOSMC_YQ7SzqhX2MsKQeAtKmhro8S0tRWFdBjjoBMb6uEAlK-xFWJmYdh-IXFyqsPiRXHVeU54oKXFGXCXo9tFl2OTeupD4Cxg2UkC87PKibbyqKn3KF5hz65yjLSm8UlxCga1nFHRfCZQl6DmxXXfDpIPXqMCT78WtWmaBXgQLk3v-A0TF8wQ8DZNDaotzfovTyarZf9xhRcb5o1QYgCXoxvIaWcAZuYet1oAGDT3KWoEcdJIefZlz6cZH-4296jG4-_u-xe3J1X56iPdpJC6HZPtpZNWv7DN0wP1fzthkFWQtXOUK7R8eT6dkouDT83fTD6fSrvzv7dP4LnfExmg
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LbxMxEB6VFAEX3o-FQo0E4gCrZu1d23tAqIVWrZpGFSqoN-P12hAJJSGbEPGn-I14vI8SEL31wHU9trz2Ny_bMwPwLEmLQohCx9pleZxqLuPC65m4MJntM53l_RBI-3EghkN5epofr8HPNhYGn1W2MjEI6nJi8Ix8i3pfLRUpz-ib6bcYq0bh7WpbQqOGxaH9sfQuW_X64J3f3-eU7u2evN2Pm6oCsckkm8fcUeOtIJP1rRDGSss01SwtM-a0FNrjW1LmkgJDLMtSalcKa3Nu0DbijAvmx70E6ynzc-nB-s7u8Ph95-Jl3ppqQ3Mk36q8Nk3wkW99V5rHyxX1F6oE_K0LflOGf9zOBqW3d-N_W66bcL0xr8l2zQ-3YM2Ob8OVo-YBwR3gni1mlowqMp6QamG-kDkewRFdEU08043wAKQk0xn2QMySUCroLny4kFnfg954MrYPgEjqQS5tYqjL0qQQuXUlZuETGMXschFB0u6oMk1edSzv8VUF_0pyVaNAeRSogAK1jOBl12daZxU5l3oHgdJRYkbw8GEy-6waAaNcrjnH-TnK0sKb_QWGIFtWcseFcGkEmwgzVYfXdnJNbYd0Rt4rlxG8CBQo2fwPGN0EaPhlwBxhK5QbK5ReIpnV5haTqpGIlToDZARPu2bsia_8xnayCDRo0krOIrhfs0D304xLvy7SD_6q5Ymzwf-9dg_Pn8smXN0_ORqowcHw8BFcozWnxjTdgN58trCP4bL5Ph9VsycNpxP4dNHc8gsENIjh
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5BQVUvlFdLaKFGQuIAUTd2YjvH0rICUVYVj6o3y3FsWAllV0mW_n08zoMuLwlxjceWM57xzNjzjQGeJmlRCFHoWLssj1PNZVx4OxMXJrMTprN8EoC056diNpMXF_nZFRR_yHYfriQ7TANWaaraw2XpOhWX_LDxVirB5NnuDjKPL6_DjdRHMpjU9f7D-RhyZd67GaAyv-23Zo5C1f5f9-Yrxumn29JghKbb_z_923Crd0DJUScxd-Care7C5rv-iv0ecC84tSXzhlQL0qzMF9LiIRXRDdHEi-UcjwhKsqyxB64qCY_p3IdP01cfj1_H_eMKsckka2PuqPHOoMkmVghjpWWaapaWGXNaCu3VXFLmkgKRpmUptSuFtTk36CJyxgXbgY1qUdkHQCT1YiBtYqjL0qQQuXUl1qkTiPN1uYggGXisTF95HB_A-KpCBCK56hiiPENUYIi6jOD52GfZ1d34K_VLXLqREmtmhw-L-rPqVVC5XHOO83OUpYV3jAsE6VpWcseFcGkEB7jwqgOgjpqvjkLBHx-3ygieBQrUff8DRvcQBs8GrKK1Rrm_Rul11qw3D8Kl-j2jUVT46YiUZzSCJ2Mz9sQ8uMouVoEGnT7JWQS7nVCOP8249HyRfvAXgwT-GPzPvHv4b-QHsHl2MlWnb2Zv92CLdjIc03QfNtp6ZR_BTfOtnTf146CI3wHRoi4I
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=There+is+no+such+thing+as+a+validated+prediction+model&rft.jtitle=BMC+medicine&rft.au=Van+Calster%2C+Ben&rft.au=Steyerberg%2C+Ewout+W&rft.au=Wynants%2C+Laure&rft.au=van+Smeden%2C+Maarten&rft.date=2023-02-24&rft.pub=BioMed+Central+Ltd&rft.issn=1741-7015&rft.eissn=1741-7015&rft.volume=21&rft.issue=1&rft_id=info:doi/10.1186%2Fs12916-023-02779-w&rft.externalDocID=A738580108
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1741-7015&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1741-7015&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1741-7015&client=summon