Federated learning in medicine: facilitating multi-institutional collaborations without sharing patient data

Several studies underscore the potential of deep learning in identifying complex patterns, leading to diagnostic and prognostic biomarkers. Identifying sufficiently large and diverse datasets, required for training, is a significant challenge in medicine and can rarely be found in individual institu...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Scientific reports Ročník 10; číslo 1; s. 12598
Hlavní autori: Sheller, Micah J., Edwards, Brandon, Reina, G. Anthony, Martin, Jason, Pati, Sarthak, Kotrotsou, Aikaterini, Milchenko, Mikhail, Xu, Weilin, Marcus, Daniel, Colen, Rivka R., Bakas, Spyridon
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: London Nature Publishing Group UK 28.07.2020
Nature Publishing Group
Predmet:
ISSN:2045-2322, 2045-2322
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Several studies underscore the potential of deep learning in identifying complex patterns, leading to diagnostic and prognostic biomarkers. Identifying sufficiently large and diverse datasets, required for training, is a significant challenge in medicine and can rarely be found in individual institutions. Multi-institutional collaborations based on centrally-shared patient data face privacy and ownership challenges. Federated learning is a novel paradigm for data-private multi-institutional collaborations, where model-learning leverages all available data without sharing data between institutions, by distributing the model-training to the data-owners and aggregating their results. We show that federated learning among 10 institutions results in models reaching 99% of the model quality achieved with centralized data, and evaluate generalizability on data from institutions outside the federation. We further investigate the effects of data distribution across collaborating institutions on model quality and learning patterns, indicating that increased access to data through data private multi-institutional collaborations can benefit model quality more than the errors introduced by the collaborative method. Finally, we compare with other collaborative-learning approaches demonstrating the superiority of federated learning, and discuss practical implementation considerations. Clinical adoption of federated learning is expected to lead to models trained on datasets of unprecedented size, hence have a catalytic impact towards precision/personalized medicine.
AbstractList Several studies underscore the potential of deep learning in identifying complex patterns, leading to diagnostic and prognostic biomarkers. Identifying sufficiently large and diverse datasets, required for training, is a significant challenge in medicine and can rarely be found in individual institutions. Multi-institutional collaborations based on centrally-shared patient data face privacy and ownership challenges. Federated learning is a novel paradigm for data-private multi-institutional collaborations, where model-learning leverages all available data without sharing data between institutions, by distributing the model-training to the data-owners and aggregating their results. We show that federated learning among 10 institutions results in models reaching 99% of the model quality achieved with centralized data, and evaluate generalizability on data from institutions outside the federation. We further investigate the effects of data distribution across collaborating institutions on model quality and learning patterns, indicating that increased access to data through data private multi-institutional collaborations can benefit model quality more than the errors introduced by the collaborative method. Finally, we compare with other collaborative-learning approaches demonstrating the superiority of federated learning, and discuss practical implementation considerations. Clinical adoption of federated learning is expected to lead to models trained on datasets of unprecedented size, hence have a catalytic impact towards precision/personalized medicine.
Several studies underscore the potential of deep learning in identifying complex patterns, leading to diagnostic and prognostic biomarkers. Identifying sufficiently large and diverse datasets, required for training, is a significant challenge in medicine and can rarely be found in individual institutions. Multi-institutional collaborations based on centrally-shared patient data face privacy and ownership challenges. Federated learning is a novel paradigm for data-private multi-institutional collaborations, where model-learning leverages all available data without sharing data between institutions, by distributing the model-training to the data-owners and aggregating their results. We show that federated learning among 10 institutions results in models reaching 99% of the model quality achieved with centralized data, and evaluate generalizability on data from institutions outside the federation. We further investigate the effects of data distribution across collaborating institutions on model quality and learning patterns, indicating that increased access to data through data private multi-institutional collaborations can benefit model quality more than the errors introduced by the collaborative method. Finally, we compare with other collaborative-learning approaches demonstrating the superiority of federated learning, and discuss practical implementation considerations. Clinical adoption of federated learning is expected to lead to models trained on datasets of unprecedented size, hence have a catalytic impact towards precision/personalized medicine.Several studies underscore the potential of deep learning in identifying complex patterns, leading to diagnostic and prognostic biomarkers. Identifying sufficiently large and diverse datasets, required for training, is a significant challenge in medicine and can rarely be found in individual institutions. Multi-institutional collaborations based on centrally-shared patient data face privacy and ownership challenges. Federated learning is a novel paradigm for data-private multi-institutional collaborations, where model-learning leverages all available data without sharing data between institutions, by distributing the model-training to the data-owners and aggregating their results. We show that federated learning among 10 institutions results in models reaching 99% of the model quality achieved with centralized data, and evaluate generalizability on data from institutions outside the federation. We further investigate the effects of data distribution across collaborating institutions on model quality and learning patterns, indicating that increased access to data through data private multi-institutional collaborations can benefit model quality more than the errors introduced by the collaborative method. Finally, we compare with other collaborative-learning approaches demonstrating the superiority of federated learning, and discuss practical implementation considerations. Clinical adoption of federated learning is expected to lead to models trained on datasets of unprecedented size, hence have a catalytic impact towards precision/personalized medicine.
ArticleNumber 12598
Author Edwards, Brandon
Xu, Weilin
Marcus, Daniel
Martin, Jason
Colen, Rivka R.
Bakas, Spyridon
Pati, Sarthak
Milchenko, Mikhail
Kotrotsou, Aikaterini
Sheller, Micah J.
Reina, G. Anthony
Author_xml – sequence: 1
  givenname: Micah J.
  surname: Sheller
  fullname: Sheller, Micah J.
  organization: Intel Corporation
– sequence: 2
  givenname: Brandon
  surname: Edwards
  fullname: Edwards, Brandon
  organization: Intel Corporation
– sequence: 3
  givenname: G. Anthony
  surname: Reina
  fullname: Reina, G. Anthony
  organization: Intel Corporation
– sequence: 4
  givenname: Jason
  surname: Martin
  fullname: Martin, Jason
  organization: Intel Corporation
– sequence: 5
  givenname: Sarthak
  orcidid: 0000-0003-2243-8487
  surname: Pati
  fullname: Pati, Sarthak
  organization: Center for Biomedical Image Computing and Analytics (CBICA), University of Pennsylvania, Department of Radiology, Perelman School of Medicine, University of Pennsylvania
– sequence: 6
  givenname: Aikaterini
  orcidid: 0000-0002-0433-7159
  surname: Kotrotsou
  fullname: Kotrotsou, Aikaterini
  organization: Department of Diagnostic Radiology, The University of Texas MD Anderson Cancer Center, Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center
– sequence: 7
  givenname: Mikhail
  surname: Milchenko
  fullname: Milchenko, Mikhail
  organization: Department of Radiology, Washington University School of Medicine
– sequence: 8
  givenname: Weilin
  surname: Xu
  fullname: Xu, Weilin
  organization: Intel Corporation
– sequence: 9
  givenname: Daniel
  orcidid: 0000-0001-9501-8104
  surname: Marcus
  fullname: Marcus, Daniel
  organization: Department of Radiology, Washington University School of Medicine
– sequence: 10
  givenname: Rivka R.
  orcidid: 0000-0002-0882-0607
  surname: Colen
  fullname: Colen, Rivka R.
  organization: Department of Diagnostic Radiology, The University of Texas MD Anderson Cancer Center, Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Hillman Cancer Center, University of Pittsburgh Medical Center, Department of Radiology, University of Pittsburgh
– sequence: 11
  givenname: Spyridon
  orcidid: 0000-0001-8734-6482
  surname: Bakas
  fullname: Bakas, Spyridon
  email: sbakas@upenn.edu
  organization: Center for Biomedical Image Computing and Analytics (CBICA), University of Pennsylvania, Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32724046$$D View this record in MEDLINE/PubMed
BookMark eNp9UctOHDEQtCKiQIAf4IBGyiWXSfwcezhEQigkkZC4wNnyeLyskddebA8of5-eXV7hgC92u6uqH_UZ7cQUHUJHBH8jmKnvhRPRqxZT3HY9FbglH9AexVy0lFG68-q9iw5LucVwBO056T-hXUYl5Zh3eyicu9FlU93YBGdy9PGm8bFZudFbH91JszDWB19NnTOrKVTf-liqr1P1KZrQ2BSCGRJoQFyaB1-XaapNWZo8U9bw72JtRlPNAfq4MKG4w8d7H12f_7w6-91eXP76c3Z60VqhWG0p70RvuLSSMIkHtugUdD5wyy2kIOqt6JwaR8MH0lEhsVRcWGv5qKwZB7aPfmx119MAk1ion03Q6-xXJv_VyXj9fyb6pb5J91oyJbkSIPD1USCnu8mVqle-WAeDRpemoimnihMJywfolzfQ2zRlWMwGJQUTUs2o49cdPbfyZAQA6BZgcyolu8UzhGA9G663hmuoqTeGawIk9YZkN06leSof3qeyLbWsZ5tcfmn7HdY_ddHBTw
CitedBy_id crossref_primary_10_1109_JIOT_2023_3272334
crossref_primary_10_1097_PEC_0000000000003429
crossref_primary_10_1093_bjro_tzad004
crossref_primary_10_2196_47652
crossref_primary_10_1371_journal_pdig_0000074
crossref_primary_10_1016_j_jtbi_2022_111342
crossref_primary_10_1007_s11633_022_1398_0
crossref_primary_10_1016_j_engappai_2023_106371
crossref_primary_10_1016_j_iot_2022_100657
crossref_primary_10_1145_3514500
crossref_primary_10_1109_ACCESS_2022_3161132
crossref_primary_10_1038_s42256_024_00800_2
crossref_primary_10_3389_fpubh_2023_1196397
crossref_primary_10_3390_eng6090243
crossref_primary_10_1109_TNNLS_2023_3250658
crossref_primary_10_1038_s41467_025_60466_1
crossref_primary_10_1016_j_ijmedinf_2021_104658
crossref_primary_10_1038_s41598_023_34484_2
crossref_primary_10_1177_13524585241277376
crossref_primary_10_1109_TIM_2023_3345910
crossref_primary_10_1007_s00330_022_08712_8
crossref_primary_10_1016_j_asoc_2025_112747
crossref_primary_10_1051_itmconf_20257604002
crossref_primary_10_1038_s41598_024_63393_1
crossref_primary_10_1038_s41598_024_82902_w
crossref_primary_10_1158_2159_8290_CD_23_1199
crossref_primary_10_1016_j_jbi_2025_104858
crossref_primary_10_1109_TRPMS_2022_3194408
crossref_primary_10_1007_s00500_025_10508_z
crossref_primary_10_1016_j_cosrev_2023_100547
crossref_primary_10_1016_j_sysarc_2025_103338
crossref_primary_10_1109_JBHI_2022_3185418
crossref_primary_10_1007_s10916_023_01994_5
crossref_primary_10_1109_TMC_2022_3219485
crossref_primary_10_1109_COMST_2023_3330910
crossref_primary_10_1007_s00521_024_09487_3
crossref_primary_10_1038_s42256_023_00652_2
crossref_primary_10_1186_s12885_024_12456_7
crossref_primary_10_1109_TMI_2023_3239391
crossref_primary_10_3390_math13132110
crossref_primary_10_3390_diagnostics13233592
crossref_primary_10_1038_s41598_025_94680_0
crossref_primary_10_1056_NEJMra2301725
crossref_primary_10_3390_app12094336
crossref_primary_10_1007_s42979_023_02124_1
crossref_primary_10_1109_TIFS_2022_3186739
crossref_primary_10_1016_j_bspc_2023_104881
crossref_primary_10_1016_j_compbiomed_2025_111084
crossref_primary_10_2196_23454
crossref_primary_10_1016_j_knosys_2025_113662
crossref_primary_10_3390_biomedicines13081849
crossref_primary_10_48175_IJARSCT_28536
crossref_primary_10_1007_s00330_020_07417_0
crossref_primary_10_1016_j_addr_2023_114772
crossref_primary_10_1016_j_media_2024_103270
crossref_primary_10_3390_jpm13121703
crossref_primary_10_1097_CCE_0000000000001087
crossref_primary_10_1016_j_molmed_2022_11_002
crossref_primary_10_3389_fneur_2024_1394435
crossref_primary_10_1038_s41598_024_56115_0
crossref_primary_10_1016_j_bspc_2025_108032
crossref_primary_10_1016_j_comnet_2022_109048
crossref_primary_10_1016_j_ejmp_2021_02_007
crossref_primary_10_1007_s13042_023_01986_4
crossref_primary_10_1038_s41746_025_01471_y
crossref_primary_10_1109_ACCESS_2024_3468611
crossref_primary_10_1016_j_jad_2024_10_027
crossref_primary_10_1088_1361_6560_aca388
crossref_primary_10_1109_JBHI_2022_3196330
crossref_primary_10_3390_ijms222413278
crossref_primary_10_1080_00207543_2024_2432469
crossref_primary_10_1080_17434440_2025_2514764
crossref_primary_10_3389_fmed_2022_845522
crossref_primary_10_1016_j_ejrad_2024_111798
crossref_primary_10_1109_ACCESS_2022_3210702
crossref_primary_10_1109_ACCESS_2025_3549440
crossref_primary_10_1109_TMI_2022_3192483
crossref_primary_10_1080_03007995_2022_2096354
crossref_primary_10_1088_2057_1976_ad6dcd
crossref_primary_10_1148_rg_220107
crossref_primary_10_1053_j_semdp_2022_01_003
crossref_primary_10_1055_s_0041_1740564
crossref_primary_10_3390_s24216891
crossref_primary_10_53759_7669_jmc202505190
crossref_primary_10_1109_TNSM_2024_3487265
crossref_primary_10_1109_RBME_2021_3075500
crossref_primary_10_1080_1206212X_2025_2496913
crossref_primary_10_1093_neuonc_noaa160
crossref_primary_10_1007_s00261_023_03940_y
crossref_primary_10_3390_fi17070314
crossref_primary_10_1016_j_apsb_2025_09_022
crossref_primary_10_3390_cancers17071082
crossref_primary_10_1007_s11277_022_09624_y
crossref_primary_10_1177_2374289521990784
crossref_primary_10_1016_j_artmed_2023_102691
crossref_primary_10_1093_jamia_ocae259
crossref_primary_10_1007_s00247_022_05427_2
crossref_primary_10_1016_j_future_2022_02_024
crossref_primary_10_1016_j_jacep_2023_05_023
crossref_primary_10_1016_j_ebiom_2024_105006
crossref_primary_10_3389_fpsyg_2022_943198
crossref_primary_10_1016_j_canlet_2025_217881
crossref_primary_10_3390_cryst12111614
crossref_primary_10_1016_j_ejrad_2024_111457
crossref_primary_10_1057_s41271_021_00319_5
crossref_primary_10_1109_ACCESS_2023_3335245
crossref_primary_10_1186_s43556_024_00238_3
crossref_primary_10_1038_s43018_022_00416_8
crossref_primary_10_1097_RLI_0000000000001106
crossref_primary_10_3390_app13042109
crossref_primary_10_1016_j_ins_2024_120825
crossref_primary_10_1016_j_media_2022_102629
crossref_primary_10_1186_s13244_023_01601_8
crossref_primary_10_3389_fnins_2022_860208
crossref_primary_10_1109_JIOT_2024_3389593
crossref_primary_10_1080_10408363_2023_2274325
crossref_primary_10_3390_app122211462
crossref_primary_10_1016_j_media_2025_103497
crossref_primary_10_1016_j_compbiolchem_2025_108662
crossref_primary_10_1109_ACCESS_2022_3196391
crossref_primary_10_3390_electronics14183600
crossref_primary_10_1016_j_ejca_2022_10_020
crossref_primary_10_1016_j_iot_2024_101296
crossref_primary_10_1016_j_bjoms_2024_12_004
crossref_primary_10_1007_s10278_021_00547_x
crossref_primary_10_3390_jcm13051415
crossref_primary_10_1016_j_knosys_2023_110658
crossref_primary_10_1038_s41467_024_51172_5
crossref_primary_10_3390_bioengineering10091045
crossref_primary_10_1016_j_compmedimag_2025_102593
crossref_primary_10_1016_j_jbi_2022_104073
crossref_primary_10_5306_wjco_v16_i7_107246
crossref_primary_10_3390_app14188299
crossref_primary_10_62762_TETAI_2025_222799
crossref_primary_10_1038_s41591_021_01506_3
crossref_primary_10_1109_JBHI_2023_3274498
crossref_primary_10_3389_fonc_2022_924945
crossref_primary_10_1016_j_jad_2025_120148
crossref_primary_10_1088_1361_6560_ac9449
crossref_primary_10_1007_s00259_025_07536_0
crossref_primary_10_1038_s41746_021_00431_6
crossref_primary_10_1007_s11910_021_01098_y
crossref_primary_10_3389_fnins_2021_740353
crossref_primary_10_1371_journal_pdig_0000117
crossref_primary_10_3390_brainsci15060576
crossref_primary_10_1186_s12911_022_01879_6
crossref_primary_10_3389_fonc_2021_659800
crossref_primary_10_1007_s13748_025_00384_x
crossref_primary_10_3390_diagnostics11020380
crossref_primary_10_1016_j_csbj_2024_03_028
crossref_primary_10_1016_j_media_2025_103759
crossref_primary_10_1016_j_jbi_2023_104485
crossref_primary_10_1016_j_bspc_2024_106068
crossref_primary_10_1016_j_healthpol_2023_104769
crossref_primary_10_3389_fpubh_2022_814163
crossref_primary_10_1016_j_iot_2025_101730
crossref_primary_10_1186_s12909_025_07483_2
crossref_primary_10_1109_TMI_2023_3263072
crossref_primary_10_1371_journal_pdig_0000101
crossref_primary_10_3390_app112311191
crossref_primary_10_3390_s25082374
crossref_primary_10_1016_j_cjca_2024_07_027
crossref_primary_10_1016_j_compbiomed_2024_108288
crossref_primary_10_1093_jamia_ocac232
crossref_primary_10_1016_j_media_2024_103209
crossref_primary_10_1109_TMI_2022_3222126
crossref_primary_10_3390_app12031709
crossref_primary_10_1109_JIOT_2024_3452549
crossref_primary_10_12968_hmed_2024_0312
crossref_primary_10_1097_SCS_0000000000007379
crossref_primary_10_1109_ACCESS_2021_3127448
crossref_primary_10_1038_s41551_022_00898_y
crossref_primary_10_1093_aje_kwad040
crossref_primary_10_1016_j_media_2022_102704
crossref_primary_10_1038_s41598_023_33303_y
crossref_primary_10_1109_ACCESS_2022_3202922
crossref_primary_10_48084_etasr_11030
crossref_primary_10_3390_app13020919
crossref_primary_10_1016_j_jcrc_2024_154857
crossref_primary_10_1093_jamia_ocab012
crossref_primary_10_1109_TNNLS_2021_3129371
crossref_primary_10_1109_COMST_2022_3221119
crossref_primary_10_1038_s41598_024_83972_6
crossref_primary_10_1007_s00521_023_08375_6
crossref_primary_10_1007_s11042_025_20775_5
crossref_primary_10_1007_s44250_025_00291_x
crossref_primary_10_1109_TBDATA_2022_3186991
crossref_primary_10_1016_j_mcpdig_2025_100253
crossref_primary_10_1080_17445760_2024_2417875
crossref_primary_10_1109_ACCESS_2024_3372394
crossref_primary_10_1145_3744655
crossref_primary_10_1155_2020_6647562
crossref_primary_10_1038_s42256_022_00601_5
crossref_primary_10_1109_TC_2021_3135752
crossref_primary_10_3390_antibiotics14010060
crossref_primary_10_1038_s42256_022_00515_2
crossref_primary_10_1016_j_radonc_2024_110542
crossref_primary_10_1109_JIOT_2021_3115817
crossref_primary_10_26599_BDMA_2023_9020024
crossref_primary_10_1186_s40364_023_00476_7
crossref_primary_10_1109_TMC_2021_3137017
crossref_primary_10_1371_journal_pdig_0000033
crossref_primary_10_1093_intqhc_mzab010
crossref_primary_10_1111_bcpt_70104
crossref_primary_10_3390_info13050263
crossref_primary_10_38124_ijisrt_25apr626
crossref_primary_10_1109_TDSC_2021_3126323
crossref_primary_10_1017_rsm_2025_6
crossref_primary_10_2196_54263
crossref_primary_10_1227_NEU_0000000000001736
crossref_primary_10_1109_TBDATA_2024_3481952
crossref_primary_10_1016_j_compbiomed_2023_106848
crossref_primary_10_1016_j_radonc_2024_110419
crossref_primary_10_1109_TVT_2021_3065084
crossref_primary_10_2166_hydro_2024_257
crossref_primary_10_1016_j_compbiomed_2023_106603
crossref_primary_10_1007_s10791_025_09627_w
crossref_primary_10_1016_j_ejrad_2025_112412
crossref_primary_10_52711_2231_5659_2025_00009
crossref_primary_10_1007_s12194_024_00827_5
crossref_primary_10_1016_j_neunet_2021_11_018
crossref_primary_10_1186_s12880_024_01279_4
crossref_primary_10_1038_s41598_022_12497_7
crossref_primary_10_1016_j_media_2025_103670
crossref_primary_10_1109_TMI_2023_3234450
crossref_primary_10_1016_j_knosys_2025_114494
crossref_primary_10_1371_journal_pcbi_1012626
crossref_primary_10_1109_TSUSC_2023_3279111
crossref_primary_10_1016_j_procs_2022_09_129
crossref_primary_10_1016_j_inffus_2025_103024
crossref_primary_10_1186_s41512_025_00186_8
crossref_primary_10_1016_j_inffus_2025_103027
crossref_primary_10_1016_j_patter_2025_101236
crossref_primary_10_1016_j_artmed_2024_102936
crossref_primary_10_1038_s41746_025_01661_8
crossref_primary_10_1038_s41574_021_00543_9
crossref_primary_10_1016_j_media_2024_103121
crossref_primary_10_1109_TIFS_2025_3586491
crossref_primary_10_1038_s41467_022_33407_5
crossref_primary_10_1016_S1470_2045_24_00315_2
crossref_primary_10_1021_acsaelm_5c00567
crossref_primary_10_1016_j_xops_2025_100861
crossref_primary_10_1038_s41598_022_05539_7
crossref_primary_10_1109_TMI_2022_3233574
crossref_primary_10_1109_JIOT_2024_3407584
crossref_primary_10_1007_s13198_023_02139_0
crossref_primary_10_1080_23742917_2025_2511145
crossref_primary_10_1016_j_ogla_2024_08_004
crossref_primary_10_1145_3546872
crossref_primary_10_1109_JBHI_2022_3181823
crossref_primary_10_1007_s11227_022_04745_4
crossref_primary_10_3390_math11194189
crossref_primary_10_1016_j_measen_2024_101799
crossref_primary_10_1038_s41746_021_00489_2
crossref_primary_10_1016_j_heliyon_2024_e31000
crossref_primary_10_1007_s11042_022_12900_5
crossref_primary_10_1016_j_compbiomed_2025_110239
crossref_primary_10_1109_TKDE_2025_3580796
crossref_primary_10_1051_epjconf_202532801007
crossref_primary_10_1007_s00134_024_07745_5
crossref_primary_10_1016_j_csbj_2025_03_031
crossref_primary_10_1145_3533708
crossref_primary_10_3390_rs15143620
crossref_primary_10_1093_nargab_lqaf038
crossref_primary_10_1016_j_acra_2023_01_010
crossref_primary_10_1177_22143602241296276
crossref_primary_10_1148_radiol_2021204406
crossref_primary_10_3390_computers14040143
crossref_primary_10_1016_j_eswa_2025_127253
crossref_primary_10_1016_j_cpet_2021_06_006
crossref_primary_10_1016_j_cpet_2021_06_005
crossref_primary_10_1016_j_imavis_2025_105673
crossref_primary_10_2196_71080
crossref_primary_10_1016_j_esmorw_2025_100172
crossref_primary_10_1093_jamia_ocaa341
crossref_primary_10_1016_j_procs_2022_12_238
crossref_primary_10_1002_jmri_27863
crossref_primary_10_1002_jmri_28950
crossref_primary_10_3390_diagnostics12112835
crossref_primary_10_1007_s41666_023_00153_2
crossref_primary_10_1007_s10266_021_00615_2
crossref_primary_10_1007_s41666_023_00142_5
crossref_primary_10_1109_TRPMS_2021_3070656
crossref_primary_10_3390_biomedicines12081878
crossref_primary_10_1097_APO_0000000000000582
crossref_primary_10_3390_s23052494
crossref_primary_10_1016_j_oret_2022_02_015
crossref_primary_10_1016_j_patcog_2023_110230
crossref_primary_10_1016_j_inffus_2024_102576
crossref_primary_10_3390_s22197157
crossref_primary_10_1016_j_jid_2025_06_1288
crossref_primary_10_1088_2632_2153_ad4768
crossref_primary_10_1177_17562872221128791
crossref_primary_10_1109_TDSC_2024_3364060
crossref_primary_10_1148_radiol_232030
crossref_primary_10_4251_wjgo_v17_i5_104410
crossref_primary_10_1186_s13040_024_00379_9
crossref_primary_10_1007_s42979_025_04107_w
crossref_primary_10_1080_17460441_2021_1932812
crossref_primary_10_1038_s44172_023_00066_3
crossref_primary_10_2196_42621
crossref_primary_10_1016_j_future_2023_02_021
crossref_primary_10_1109_TDSC_2024_3380669
crossref_primary_10_1177_20552076241248922
crossref_primary_10_1016_j_ipm_2022_103167
crossref_primary_10_1111_1471_0528_18097
crossref_primary_10_1016_j_csbj_2024_08_024
crossref_primary_10_1109_TPDS_2022_3150579
crossref_primary_10_1109_ACCESS_2024_3416748
crossref_primary_10_1007_s40501_025_00359_8
crossref_primary_10_1109_ACCESS_2021_3065965
crossref_primary_10_1016_j_tbench_2025_100215
crossref_primary_10_1016_j_procs_2025_03_296
crossref_primary_10_1038_s42256_021_00337_8
crossref_primary_10_1016_j_compbiomed_2022_105277
crossref_primary_10_1016_j_neunet_2024_106409
crossref_primary_10_1088_1361_6560_ac97d9
crossref_primary_10_3390_electronics13081540
crossref_primary_10_1038_s41551_023_01056_8
crossref_primary_10_1109_ACCESS_2025_3601142
crossref_primary_10_1007_s10462_025_11311_w
crossref_primary_10_1093_neuonc_noaf118
crossref_primary_10_1007_s10844_025_00927_7
crossref_primary_10_1109_ACCESS_2023_3267964
crossref_primary_10_1109_JIOT_2021_3089713
crossref_primary_10_3390_app15158412
crossref_primary_10_1016_j_jvir_2022_06_003
crossref_primary_10_1007_s10796_021_10144_6
crossref_primary_10_1109_TNNLS_2024_3469962
crossref_primary_10_1109_ACCESS_2025_3605870
crossref_primary_10_1038_s41746_024_01132_6
crossref_primary_10_1136_bjsports_2024_108890
crossref_primary_10_61927_igmin294
crossref_primary_10_1016_j_future_2023_10_007
crossref_primary_10_1109_ACCESS_2024_3413069
crossref_primary_10_1007_s11227_025_07619_7
crossref_primary_10_1148_ryai_210290
crossref_primary_10_1007_s00521_025_11420_1
crossref_primary_10_1007_s10489_025_06627_7
crossref_primary_10_1016_j_compbiomed_2025_110547
crossref_primary_10_1093_jamia_ocac204
crossref_primary_10_4329_wjr_v14_i6_114
crossref_primary_10_3390_app14166876
crossref_primary_10_1109_JBHI_2024_3427787
crossref_primary_10_1109_TMI_2022_3221724
crossref_primary_10_3390_s25030853
crossref_primary_10_1109_TPDS_2023_3277367
crossref_primary_10_1109_JIOT_2023_3329061
crossref_primary_10_1109_TKDE_2024_3390238
crossref_primary_10_3390_bioengineering10030364
crossref_primary_10_1001_jamaophthalmol_2024_3778
crossref_primary_10_1038_s41390_025_04021_0
crossref_primary_10_3390_electronics12122703
crossref_primary_10_1109_TMC_2024_3429228
crossref_primary_10_3390_fi16100372
crossref_primary_10_1016_j_jacr_2022_03_016
crossref_primary_10_1097_ICU_0000000000000846
crossref_primary_10_1016_j_jacr_2022_03_015
crossref_primary_10_1016_j_eswa_2024_123553
crossref_primary_10_1016_j_procs_2023_01_177
crossref_primary_10_1038_s41467_021_25972_y
crossref_primary_10_1007_s11042_023_17737_0
crossref_primary_10_1016_j_jafr_2025_101895
crossref_primary_10_1177_2632010X241226887
crossref_primary_10_1016_j_eswa_2024_123799
crossref_primary_10_3390_diagnostics13091532
crossref_primary_10_1109_ACCESS_2022_3195875
crossref_primary_10_1038_s41591_021_01343_4
crossref_primary_10_1148_ryai_220082
crossref_primary_10_1186_s12903_024_03928_0
crossref_primary_10_1111_ceo_14258
crossref_primary_10_1016_j_cmpb_2025_109036
crossref_primary_10_1007_s40123_025_01209_9
crossref_primary_10_1038_s41746_022_00625_6
crossref_primary_10_1109_TCDS_2023_3239815
crossref_primary_10_1038_s41598_024_54323_2
crossref_primary_10_3390_app13021088
crossref_primary_10_1016_j_ijmedinf_2025_106046
crossref_primary_10_1016_j_compag_2021_106648
crossref_primary_10_1109_TNNLS_2022_3160699
crossref_primary_10_1016_j_jksuci_2021_05_016
crossref_primary_10_1016_j_oret_2022_03_019
crossref_primary_10_4236_jbise_2025_188024
crossref_primary_10_3390_diagnostics15080995
crossref_primary_10_1038_s41746_024_01293_4
crossref_primary_10_1016_j_ebiom_2022_104127
crossref_primary_10_32604_cmc_2023_035720
crossref_primary_10_1111_exsy_70063
crossref_primary_10_1142_S2737599425500252
crossref_primary_10_3390_healthcare11152199
crossref_primary_10_17269_s41997_025_01083_9
crossref_primary_10_1016_j_comnet_2025_111200
crossref_primary_10_1038_s41598_023_30381_w
crossref_primary_10_1016_j_csi_2023_103720
crossref_primary_10_1016_j_ibmed_2025_100251
crossref_primary_10_1038_s41467_022_34234_4
crossref_primary_10_3390_diagnostics15111418
crossref_primary_10_3390_diagnostics13193140
crossref_primary_10_1371_journal_pone_0273262
crossref_primary_10_4103_tjo_TJO_D_23_00018
crossref_primary_10_1109_TNSE_2022_3185327
crossref_primary_10_1177_20552076251361614
crossref_primary_10_1259_bjr_20220890
crossref_primary_10_1109_ACCESS_2022_3141913
crossref_primary_10_1097_RCT_0000000000001557
crossref_primary_10_1038_s42256_023_00670_0
crossref_primary_10_1007_s12265_022_10260_x
crossref_primary_10_1002_widm_1410
crossref_primary_10_5937_bnsr15_55563
crossref_primary_10_1038_s41571_025_01067_1
crossref_primary_10_1146_annurev_biodatasci_122120_124216
crossref_primary_10_3390_cancers14061369
crossref_primary_10_1109_ACCESS_2021_3124844
crossref_primary_10_32604_cmc_2024_057257
crossref_primary_10_3390_jpm15080327
crossref_primary_10_1016_j_jconrel_2021_08_030
crossref_primary_10_1055_a_2682_5167
crossref_primary_10_38124_ijisrt_25may617
crossref_primary_10_1109_ACCESS_2024_3443520
crossref_primary_10_1007_s11042_023_17202_y
crossref_primary_10_1038_s41597_022_01415_1
crossref_primary_10_1109_ACCESS_2023_3312531
crossref_primary_10_3390_life14101248
crossref_primary_10_4103_SIJM_SIJM_29_25
crossref_primary_10_1007_s11042_021_11473_z
crossref_primary_10_3390_math11102385
crossref_primary_10_7717_peerj_cs_3165
crossref_primary_10_1002_sim_10072
crossref_primary_10_3390_diagnostics15172216
crossref_primary_10_1155_2024_8138644
crossref_primary_10_2196_29812
crossref_primary_10_1145_3501296
crossref_primary_10_1007_s10586_022_03658_4
crossref_primary_10_1038_s41598_021_93030_0
crossref_primary_10_1053_j_ro_2025_06_003
crossref_primary_10_3390_healthcare11172377
crossref_primary_10_1007_s00059_024_05264_z
crossref_primary_10_1038_s44222_025_00363_w
crossref_primary_10_3390_biomedicines12122892
crossref_primary_10_1177_15353702211031547
crossref_primary_10_1016_j_knosys_2021_107261
crossref_primary_10_32604_cmes_2024_056500
crossref_primary_10_3390_metrics2020005
crossref_primary_10_2196_37437
crossref_primary_10_1016_j_cmpb_2024_108104
crossref_primary_10_1016_j_jacr_2024_11_003
crossref_primary_10_1038_s42003_021_02586_0
crossref_primary_10_1016_j_csbj_2021_05_010
crossref_primary_10_1155_2021_2979214
crossref_primary_10_1109_ACCESS_2023_3241488
crossref_primary_10_1109_ACCESS_2025_3569158
crossref_primary_10_1109_TII_2021_3113708
crossref_primary_10_1016_j_media_2022_102396
crossref_primary_10_3390_jimaging10110270
crossref_primary_10_1002_mp_18064
crossref_primary_10_3390_bioengineering10101144
crossref_primary_10_1016_j_future_2023_07_036
crossref_primary_10_3390_app142411652
crossref_primary_10_3934_energy_2025011
crossref_primary_10_1002_mp_18067
crossref_primary_10_1038_s41598_022_12833_x
crossref_primary_10_1007_s40336_022_00501_z
crossref_primary_10_1109_ACCESS_2022_3218655
crossref_primary_10_1016_j_sysarc_2022_102555
crossref_primary_10_1038_s41591_022_02155_w
crossref_primary_10_1287_mnsc_2023_00611
crossref_primary_10_1016_j_hcc_2021_100008
crossref_primary_10_1093_noajnl_vdaf142
crossref_primary_10_1177_00220345221108953
crossref_primary_10_1016_j_inffus_2024_102617
crossref_primary_10_1186_s13321_021_00555_7
crossref_primary_10_3390_s23208504
crossref_primary_10_1016_j_neucom_2024_128691
crossref_primary_10_1080_14622416_2024_2428587
crossref_primary_10_3390_biomedicines12122750
crossref_primary_10_1002_hbm_25351
crossref_primary_10_12677_mos_2025_144366
crossref_primary_10_3390_s24113481
crossref_primary_10_1109_RBME_2023_3324264
crossref_primary_10_3390_electronics11244117
crossref_primary_10_2196_37374
crossref_primary_10_3390_jsan10010017
crossref_primary_10_1007_s00330_023_09645_6
crossref_primary_10_1109_TDSC_2024_3372634
crossref_primary_10_1007_s10462_024_10900_5
crossref_primary_10_1002_mds_30327
crossref_primary_10_1109_TMI_2022_3227563
crossref_primary_10_1007_s10278_024_01020_1
crossref_primary_10_1016_j_ijmedinf_2024_105650
crossref_primary_10_1038_s44172_025_00485_4
crossref_primary_10_7759_cureus_86276
crossref_primary_10_1016_j_jhydrol_2022_128210
crossref_primary_10_1016_j_media_2023_102865
crossref_primary_10_1097_br9_0000000000000002
crossref_primary_10_1109_ACCESS_2023_3312579
crossref_primary_10_1016_j_ejrai_2025_100028
crossref_primary_10_1109_COMST_2024_3486690
crossref_primary_10_3390_brainsci14121266
crossref_primary_10_1007_s11227_023_05754_7
crossref_primary_10_1109_TIFS_2024_3451359
crossref_primary_10_1038_s41598_024_62908_0
crossref_primary_10_1177_00033197221113146
crossref_primary_10_1109_TR_2024_3402308
crossref_primary_10_1016_j_comcom_2023_05_012
crossref_primary_10_1002_widm_1443
crossref_primary_10_2196_71034
crossref_primary_10_1016_j_media_2022_102564
crossref_primary_10_1080_00207543_2022_2164628
crossref_primary_10_1109_TMI_2023_3323540
crossref_primary_10_1109_TBME_2022_3210940
crossref_primary_10_1016_j_media_2022_102680
crossref_primary_10_1049_blc2_12075
crossref_primary_10_1109_JIOT_2023_3343719
crossref_primary_10_1016_j_imu_2024_101590
crossref_primary_10_1145_3555803
crossref_primary_10_1038_s41598_024_60915_9
crossref_primary_10_1146_annurev_genom_110122_084756
crossref_primary_10_2196_36388
crossref_primary_10_1109_ACCESS_2023_3333229
crossref_primary_10_1109_JAS_2023_123123
crossref_primary_10_1038_s41571_021_00560_7
crossref_primary_10_1155_2023_9992393
crossref_primary_10_1038_s41597_024_04168_1
crossref_primary_10_1007_s00259_021_05339_7
crossref_primary_10_1007_s12170_021_00678_4
crossref_primary_10_1038_s41467_022_32020_w
crossref_primary_10_1148_radiol_232471
crossref_primary_10_1109_JIOT_2025_3558910
crossref_primary_10_1142_S1793962324400014
crossref_primary_10_1016_j_ophtha_2024_10_017
crossref_primary_10_3390_s23042112
crossref_primary_10_1016_j_compbiomed_2024_108779
crossref_primary_10_1186_s13059_023_03039_z
crossref_primary_10_1038_s41746_022_00611_y
crossref_primary_10_1093_bioadv_vbad036
crossref_primary_10_3390_app151810082
crossref_primary_10_1109_ACCESS_2024_3431885
crossref_primary_10_1111_risa_14124
Cites_doi 10.1093/jamia/ocy017
10.1016/j.jbi.2019.103138
10.1056/NEJMlim035027
10.1093/neuonc/noy020
10.1056/NEJMsb1708278
10.1016/j.ijmedinf.2018.01.007
10.1007/s10278-013-9622-7
10.1109/JPROC.2016.2615052
10.1109/TCC.2016.2617382
10.1371/journal.pmed.1002683
10.1002/hbm.20906
10.1038/sdata.2017.117
10.1016/S1364-6613(99)01294-2
10.1093/jnci/djw104
10.2307/1932409
10.1056/NEJMe1515172
10.1109/TMI.2014.2377694
10.1093/neuonc/noaa045
10.1109/TMI.2020.2986331
10.7937/K9/TCIA.2017.GJQ7R0EF
10.1007/978-3-030-11723-8_9
10.1007/978-3-030-32692-0_16
10.1007/978-3-319-57959-7_1
10.7937/K9/TCIA.2017.KLXWJJ1Q
ContentType Journal Article
Copyright The Author(s) 2020
The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2020
– notice: The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7X7
7XB
88A
88E
88I
8FE
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2P
M7P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
DOI 10.1038/s41598-020-69250-1
DatabaseName Springer Nature OA Free Journals
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Collection
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
ProQuest Health & Medical Collection
Medical Database
Science Database
Biological Science Database
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList CrossRef
Publicly Available Content Database


MEDLINE
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
Medicine
EISSN 2045-2322
ExternalDocumentID PMC7387485
32724046
10_1038_s41598_020_69250_1
Genre Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: UPMC CCSG
  grantid: P30 CA047904
– fundername: National Cancer Institute
  grantid: U24CA189523
  funderid: http://dx.doi.org/10.13039/100000054
– fundername: National Institute of Neurological Disorders and Stroke
  grantid: R01NS042645
  funderid: http://dx.doi.org/10.13039/100000065
– fundername: NCI NIH HHS
  grantid: U01 CA242871
– fundername: NCI NIH HHS
  grantid: U24 CA204854
– fundername: NINDS NIH HHS
  grantid: R01 NS042645
– fundername: NCI NIH HHS
  grantid: U24 CA189523
– fundername: NCI NIH HHS
  grantid: U24CA189523
– fundername: NINDS NIH HHS
  grantid: R01NS042645
– fundername: NCI NIH HHS
  grantid: P30 CA047904
– fundername: NIH HHS
  grantid: S10 OD023495
– fundername: ;
  grantid: U24CA189523
– fundername: ;
  grantid: R01NS042645
– fundername: ;
  grantid: P30 CA047904
GroupedDBID 0R~
3V.
4.4
53G
5VS
7X7
88A
88E
88I
8FE
8FH
8FI
8FJ
AAFWJ
AAJSJ
AAKDD
ABDBF
ABUWG
ACGFS
ACSMW
ACUHS
ADBBV
ADRAZ
AENEX
AEUYN
AFKRA
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
DWQXO
EBD
EBLON
EBS
ESX
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
KQ8
LK8
M0L
M1P
M2P
M48
M7P
M~E
NAO
OK1
PIMPY
PQQKQ
PROAC
PSQYO
RNT
RNTTT
RPM
SNYQT
UKHRP
AASML
AAYXX
AFFHD
AFPKN
CITATION
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
CGR
CUY
CVF
ECM
EIF
NPM
7XB
8FK
K9.
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
PUEGO
5PM
ID FETCH-LOGICAL-c583t-24659a47c71370b3f68529b4c4c246f689c56e8dda4b1625707845ccc4d8cadb3
IEDL.DBID BENPR
ISICitedReferencesCount 746
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000556398500021&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2045-2322
IngestDate Tue Nov 04 01:34:15 EST 2025
Fri Sep 05 09:21:51 EDT 2025
Tue Oct 07 07:54:37 EDT 2025
Mon Jul 21 05:50:56 EDT 2025
Sat Nov 29 04:02:11 EST 2025
Tue Nov 18 21:31:47 EST 2025
Fri Feb 21 02:37:01 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c583t-24659a47c71370b3f68529b4c4c246f689c56e8dda4b1625707845ccc4d8cadb3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-0433-7159
0000-0001-8734-6482
0000-0003-2243-8487
0000-0002-0882-0607
0000-0001-9501-8104
OpenAccessLink https://www.proquest.com/docview/2427535780?pq-origsite=%requestingapplication%
PMID 32724046
PQID 2427535780
PQPubID 2041939
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_7387485
proquest_miscellaneous_2428417020
proquest_journals_2427535780
pubmed_primary_32724046
crossref_primary_10_1038_s41598_020_69250_1
crossref_citationtrail_10_1038_s41598_020_69250_1
springer_journals_10_1038_s41598_020_69250_1
PublicationCentury 2000
PublicationDate 2020-07-28
PublicationDateYYYYMMDD 2020-07-28
PublicationDate_xml – month: 07
  year: 2020
  text: 2020-07-28
  day: 28
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Scientific reports
PublicationTitleAbbrev Sci Rep
PublicationTitleAlternate Sci Rep
PublicationYear 2020
Publisher Nature Publishing Group UK
Nature Publishing Group
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
References Bakas (CR5) 2017; 4
Clark (CR2) 2013; 26
CR19
CR17
CR16
Chang (CR14) 2018; 25
CR15
Davatzikos (CR3) 2020
CR36
CR35
Menze (CR4) 2015; 34
Li, Roberts, Jiang, Long (CR28) 2019; 92
CR32
CR31
CR30
Borovec (CR10) 2020
Taichman (CR26) 2016; 374
CR6
McCarthy (CR20) 2016
CR8
CR7
Rohlfing, Zahr, Sullivan, Pfefferbaum (CR33) 2010; 31
CR9
(CR11) 2018; 20
CR24
Brisimi (CR29) 2018; 112
CR23
CR22
CR21
Zech (CR1) 2018; 15
Kiley, Peatfield, Hansen, Reddington (CR27) 2017; 377
Dice (CR34) 1945; 26
Tresp (CR12) 2016; 104
Chen (CR13) 2016
French (CR18) 1999; 3
Annas (CR25) 2003; 348
69250_CR21
C Davatzikos (69250_CR3) 2020
69250_CR24
69250_CR22
69250_CR23
AM McCarthy (69250_CR20) 2016
69250_CR7
LR Dice (69250_CR34) 1945; 26
K Clark (69250_CR2) 2013; 26
69250_CR6
DB Taichman (69250_CR26) 2016; 374
R Kiley (69250_CR27) 2017; 377
69250_CR9
69250_CR8
V Tresp (69250_CR12) 2016; 104
Z Li (69250_CR28) 2019; 92
69250_CR31
69250_CR32
GJ Annas (69250_CR25) 2003; 348
69250_CR30
69250_CR35
69250_CR36
K Chang (69250_CR14) 2018; 25
69250_CR17
JR Zech (69250_CR1) 2018; 15
BH Menze (69250_CR4) 2015; 34
69250_CR15
69250_CR16
69250_CR19
S Bakas (69250_CR5) 2017; 4
J Borovec (69250_CR10) 2020
Consortium, T. G (69250_CR11) 2018; 20
M Chen (69250_CR13) 2016
TS Brisimi (69250_CR29) 2018; 112
T Rohlfing (69250_CR33) 2010; 31
RM French (69250_CR18) 1999; 3
References_xml – volume: 25
  start-page: 945
  year: 2018
  end-page: 954
  ident: CR14
  article-title: Distributed deep learning networks among institutions for medical imaging
  publication-title: J. Am. Med. Inform. Assoc.
  doi: 10.1093/jamia/ocy017
– ident: CR22
– volume: 92
  start-page: 103138
  year: 2019
  ident: CR28
  article-title: Distributed learning from multiple EHR databases: contextual embedding models for medical events
  publication-title: J. Biomed. Inform.
  doi: 10.1016/j.jbi.2019.103138
– volume: 348
  start-page: 1486
  year: 2003
  end-page: 1490
  ident: CR25
  article-title: HIPAA regulations-a new era of medical-record privacy?
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMlim035027
– volume: 20
  start-page: 873
  year: 2018
  end-page: 884
  ident: CR11
  article-title: Glioma through the looking GLASS: molecular evolution of diffuse gliomas and the Glioma Longitudinal Analysis Consortium
  publication-title: Neuro-Oncology
  doi: 10.1093/neuonc/noy020
– volume: 377
  start-page: 1990
  year: 2017
  end-page: 1992
  ident: CR27
  article-title: Data sharing from clinical trials—a research funder’s perspective
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMsb1708278
– ident: CR16
– ident: CR30
– volume: 112
  start-page: 59
  year: 2018
  end-page: 67
  ident: CR29
  article-title: Federated learning of predictive models from federated electronic health records
  publication-title: Int. J. Med. Inform.
  doi: 10.1016/j.ijmedinf.2018.01.007
– volume: 26
  start-page: 1045
  year: 2013
  end-page: 1057
  ident: CR2
  article-title: The cancer imaging archive (TCIA): maintaining and operating a public information repository
  publication-title: J. Digit. Imaging
  doi: 10.1007/s10278-013-9622-7
– ident: CR35
– ident: CR6
– ident: CR8
– volume: 104
  start-page: 2180
  year: 2016
  end-page: 2206
  ident: CR12
  article-title: Going digital: a survey on digitalization and large-scale data analytics in healthcare
  publication-title: Proc. IEEE
  doi: 10.1109/JPROC.2016.2615052
– ident: CR23
– year: 2016
  ident: CR13
  article-title: Privacy protection and intrusion avoidance for cloudlet-based medical data sharing
  publication-title: IEEE Trans. Cloud Comput.
  doi: 10.1109/TCC.2016.2617382
– volume: 15
  start-page: e1002683
  year: 2018
  ident: CR1
  article-title: Variable generalization performance of a deep learning model to detect pneumonia in chest radiographs: a cross-sectional study
  publication-title: PLOS Med.
  doi: 10.1371/journal.pmed.1002683
– ident: CR21
– volume: 31
  start-page: 798
  year: 2010
  end-page: 819
  ident: CR33
  article-title: The SRI24 multichannel atlas of normal adult human brain structure
  publication-title: Hum. Brain Mapp.
  doi: 10.1002/hbm.20906
– ident: CR19
– volume: 4
  start-page: 170117
  year: 2017
  ident: CR5
  article-title: Advancing the cancer genome atlas glioma MRI collections with expert segmentation labels and radiomic features
  publication-title: Nat. Sci. Data
  doi: 10.1038/sdata.2017.117
– volume: 3
  start-page: 128
  year: 1999
  end-page: 135
  ident: CR18
  article-title: Catastrophic forgetting in connectionist networks
  publication-title: Trends Cogn. Sci.
  doi: 10.1016/S1364-6613(99)01294-2
– ident: CR15
– year: 2016
  ident: CR20
  article-title: Racial differences in quantitative measures of area and volumetric breast density
  publication-title: JNCI J. Natl. Cancer Inst.
  doi: 10.1093/jnci/djw104
– volume: 26
  start-page: 297
  year: 1945
  end-page: 302
  ident: CR34
  article-title: Measures of the amount of ecologic association between species
  publication-title: Ecology
  doi: 10.2307/1932409
– ident: CR17
– ident: CR31
– ident: CR9
– volume: 374
  start-page: 384
  year: 2016
  end-page: 386
  ident: CR26
  article-title: Sharing clinical trial data—a proposal from the international committee of medical journal editors
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMe1515172
– ident: CR32
– ident: CR36
– ident: CR7
– volume: 34
  start-page: 1993
  year: 2015
  end-page: 2024
  ident: CR4
  article-title: The multimodal brain tumor image segmentation benchmark (BRATS)
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2014.2377694
– ident: CR24
– year: 2020
  ident: CR3
  article-title: AI-based prognostic imaging biomarkers for precision neurooncology: the ReSPOND consortium
  publication-title: Neuro Oncol.
  doi: 10.1093/neuonc/noaa045
– year: 2020
  ident: CR10
  article-title: ANHIR: automatic non-rigid histological image registration challenge
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2020.2986331
– ident: 69250_CR7
– ident: 69250_CR22
  doi: 10.7937/K9/TCIA.2017.GJQ7R0EF
– ident: 69250_CR9
– ident: 69250_CR16
– year: 2016
  ident: 69250_CR20
  publication-title: JNCI J. Natl. Cancer Inst.
  doi: 10.1093/jnci/djw104
– volume: 26
  start-page: 297
  year: 1945
  ident: 69250_CR34
  publication-title: Ecology
  doi: 10.2307/1932409
– volume: 92
  start-page: 103138
  year: 2019
  ident: 69250_CR28
  publication-title: J. Biomed. Inform.
  doi: 10.1016/j.jbi.2019.103138
– ident: 69250_CR31
– ident: 69250_CR15
  doi: 10.1007/978-3-030-11723-8_9
– year: 2020
  ident: 69250_CR3
  publication-title: Neuro Oncol.
  doi: 10.1093/neuonc/noaa045
– volume: 34
  start-page: 1993
  year: 2015
  ident: 69250_CR4
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2014.2377694
– ident: 69250_CR35
– volume: 31
  start-page: 798
  year: 2010
  ident: 69250_CR33
  publication-title: Hum. Brain Mapp.
  doi: 10.1002/hbm.20906
– volume: 348
  start-page: 1486
  year: 2003
  ident: 69250_CR25
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMlim035027
– year: 2020
  ident: 69250_CR10
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2020.2986331
– volume: 3
  start-page: 128
  year: 1999
  ident: 69250_CR18
  publication-title: Trends Cogn. Sci.
  doi: 10.1016/S1364-6613(99)01294-2
– ident: 69250_CR23
  doi: 10.1007/978-3-030-32692-0_16
– volume: 4
  start-page: 170117
  year: 2017
  ident: 69250_CR5
  publication-title: Nat. Sci. Data
  doi: 10.1038/sdata.2017.117
– volume: 374
  start-page: 384
  year: 2016
  ident: 69250_CR26
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMe1515172
– volume: 20
  start-page: 873
  year: 2018
  ident: 69250_CR11
  publication-title: Neuro-Oncology
  doi: 10.1093/neuonc/noy020
– ident: 69250_CR6
– ident: 69250_CR8
– volume: 25
  start-page: 945
  year: 2018
  ident: 69250_CR14
  publication-title: J. Am. Med. Inform. Assoc.
  doi: 10.1093/jamia/ocy017
– ident: 69250_CR24
  doi: 10.1007/978-3-319-57959-7_1
– ident: 69250_CR30
– volume: 26
  start-page: 1045
  year: 2013
  ident: 69250_CR2
  publication-title: J. Digit. Imaging
  doi: 10.1007/s10278-013-9622-7
– volume: 15
  start-page: e1002683
  year: 2018
  ident: 69250_CR1
  publication-title: PLOS Med.
  doi: 10.1371/journal.pmed.1002683
– ident: 69250_CR32
– ident: 69250_CR17
– volume: 112
  start-page: 59
  year: 2018
  ident: 69250_CR29
  publication-title: Int. J. Med. Inform.
  doi: 10.1016/j.ijmedinf.2018.01.007
– ident: 69250_CR19
– ident: 69250_CR36
– ident: 69250_CR21
  doi: 10.7937/K9/TCIA.2017.KLXWJJ1Q
– volume: 104
  start-page: 2180
  year: 2016
  ident: 69250_CR12
  publication-title: Proc. IEEE
  doi: 10.1109/JPROC.2016.2615052
– year: 2016
  ident: 69250_CR13
  publication-title: IEEE Trans. Cloud Comput.
  doi: 10.1109/TCC.2016.2617382
– volume: 377
  start-page: 1990
  year: 2017
  ident: 69250_CR27
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMsb1708278
SSID ssj0000529419
Score 2.7246554
Snippet Several studies underscore the potential of deep learning in identifying complex patterns, leading to diagnostic and prognostic biomarkers. Identifying...
SourceID pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 12598
SubjectTerms 631/67
631/67/1922
639/166/985
639/705/1042
639/705/1046
692/700
692/700/1421
692/700/1421/65
Collaboration
Humanities and Social Sciences
Humans
Information Dissemination
Institutions
Interinstitutional Relations
Learning
Medicine
multidisciplinary
Patients
Precision medicine
Privacy
Science
Science (multidisciplinary)
Training
Title Federated learning in medicine: facilitating multi-institutional collaborations without sharing patient data
URI https://link.springer.com/article/10.1038/s41598-020-69250-1
https://www.ncbi.nlm.nih.gov/pubmed/32724046
https://www.proquest.com/docview/2427535780
https://www.proquest.com/docview/2428417020
https://pubmed.ncbi.nlm.nih.gov/PMC7387485
Volume 10
WOSCitedRecordID wos000556398500021&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals (WRLC)
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: DOA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: M~E
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Biological Science Database
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: M7P
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: 7X7
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: BENPR
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: PIMPY
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Science Database
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: M2P
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/sciencejournals
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3di9QwEB-8XQVf_NarnksE3zRcP9Im9UVUblHwliIK61PJV-8Wju553T3wv3eSpj3Ww3vxJVAm_UhnkpnMTH4D8BqVso6ZUlQpmVImjcUp1WS0iZUyjRBI8geFv_LFQiyXZRUcbl1IqxzWRL9Qm7V2PvJDVCVoWaN8xe_Pf1FXNcpFV0MJjT2YOqQyNoHpx6NF9W30srg4FkvKcFomzsRhhxrLnSpzu6YS9T9NdjXSNTPzerbkXyFTr4nm9_93DA_gXrBByYdeaB7CLds-gjt9Vcrfj-Fs7gAm0AY1JNSUOCGrlgxR-HekkTpgeyPFZyTSVcg58I5FsiNcHXG-3vV2Q7pT6UZEApYrcdmpT-DH_Oj7p880FGWgOhfZhqasyEvJuMbdLY9V1hQC_7Fimmkk4VWp88IKYyRTSeFq5HGB8qA1M0JLo7KnMGnXrd0H4g79ciZZbrhiuRUl09Yh6pmUayUbG0EyMKbWAbHcFc44q33kPBN1z8wamVl7ZtZJBG_Ge857vI4bex8MjKrD3O3qKy5F8Gok46xzoRTZ2vXW9xEs4fioCJ714jG-Lks5mkmsiIDvCM7YwSF671La1alH9uaZ4EzkEbwdROzqs_49iuc3j-IF3E2duMecpuIAJpuLrX0Jt_XlZtVdzGCPL7lvxSzMnpl3TGB7nFau5dhOqy_H1c8_aJcnjw
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Jb9QwFH4qBQQX9iVQwEhwAqtZnNhBQggBo1YdRhyKNLfgLXSkKlOaGVD_FL-R95xkqqGitx44Rs9ZnvO9xfZbAF6gUbaxMIYbo1MutPMoUnXG69gYVyuFpJAoPJaTiZpOyy8b8HvIhaGwykEnBkXt5pb2yLfRlKBnjfiK3x394NQ1ik5XhxYaHSz2_MkvXLK1b3c_4v99maajT_sfdnjfVYDbXGULnooiL7WQFpdnMjZZXag8LY2wwiIJr0qbF145p4VJCmryJhUyZK1wympnMnzuJbiMelxSCJmcytWeDp2aiaTsc3PiTG23aB8ph43WaCV6GzxZt39nnNqzsZl_HdAGuze6-b_N2C240XvY7H0nErdhwzd34GrXc_PkLhyOqHwGetiO9R0zvrNZw4YYgzes1ravXI6UEG_JZ31ERdg2ZWui0zLayZ4vF6w90DSDrK9Uyyj29h58vRBW78NmM2_8Q2CU0iyFFrmTRuRelcJ6qhfoUmmNrn0EyQCEyvb12KktyGEV4gIyVXXgqRA8VQBPlUTwanXPUVeN5NzRWwMwql4ztdUpKiJ4viKjTqGDIt34-TKMUSKR-KgIHnRwXL0uSyU6gaKIQK4BdTWA6pWvU5rZQahbLjMlhcojeD1A-vSz_s3Fo_O5eAbXdvY_j6vx7mTvMVxPSdRiyVO1BZuL46V_Alfsz8WsPX4aZJXBt4uG-h9gk3uW
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Jb9QwFH4qZREX9iVQwEhwAmsSx4kdJIQQZUTVMpoDSL0Fb6EjVZnSzID61_h1PDvOVENFbz1wjJ6z2PneYr8N4AUqZZNyranWilGurEOWanLapFrbRkokhUThPTGZyP39aroBv4dcGB9WOcjEIKjt3Pgz8hGqErSsEV_pqIlhEdPt8bujH9R3kPKe1qGdRg-RXXfyC7dv3dudbfzXLxkbf_zy4RONHQaoKWS-oIyXRaW4MLhVE6nOm1IWrNLccIMkvKpMUTppreI6K33DNyFxcsZwK42yOsfnXoLLgheF567PbLo63_EeNJ5VMU8nzeWoQ13p89n8fq1Cy4Nm67rwjIF7Nk7zL2dt0IHjm__z6t2CG9HyJu97VrkNG669A1f7Xpwnd-Fw7MtqoOVtSeyk8Z3MWjLEHrwhjTKxojlSQhwmncVIi3CcStZYqiP-hHu-XJDuQPnVJLGCLfExuffg64VM9T5stvPWPQTiU50FV7ywQvPCyYob5-sIWiaMVo1LIBtAUZtYp923CzmsQ7xALuseSDUCqQ5AqrMEXq3uOeqrlJw7emsASR0lVlefIiSB5ysyyhrvQFKtmy_DGMkzgY9K4EEPzdXrcibQOORlAmINtKsBvo75OqWdHYR65iKXgssigdcDvE8_69-zeHT-LJ7BNUR4vbcz2X0M15nnulRQJrdgc3G8dE_givm5mHXHTwPbEvh20Uj_A7UehGM
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Federated+learning+in+medicine%3A+facilitating+multi-institutional+collaborations+without+sharing+patient+data&rft.jtitle=Scientific+reports&rft.au=Sheller%2C+Micah+J.&rft.au=Edwards%2C+Brandon&rft.au=Reina%2C+G.+Anthony&rft.au=Martin%2C+Jason&rft.date=2020-07-28&rft.issn=2045-2322&rft.eissn=2045-2322&rft.volume=10&rft.issue=1&rft_id=info:doi/10.1038%2Fs41598-020-69250-1&rft.externalDBID=n%2Fa&rft.externalDocID=10_1038_s41598_020_69250_1
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon