Federated learning in medicine: facilitating multi-institutional collaborations without sharing patient data
Several studies underscore the potential of deep learning in identifying complex patterns, leading to diagnostic and prognostic biomarkers. Identifying sufficiently large and diverse datasets, required for training, is a significant challenge in medicine and can rarely be found in individual institu...
Uložené v:
| Vydané v: | Scientific reports Ročník 10; číslo 1; s. 12598 |
|---|---|
| Hlavní autori: | , , , , , , , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
London
Nature Publishing Group UK
28.07.2020
Nature Publishing Group |
| Predmet: | |
| ISSN: | 2045-2322, 2045-2322 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Several studies underscore the potential of deep learning in identifying complex patterns, leading to diagnostic and prognostic biomarkers. Identifying sufficiently large and diverse datasets, required for training, is a significant challenge in medicine and can rarely be found in individual institutions. Multi-institutional collaborations based on centrally-shared patient data face privacy and ownership challenges. Federated learning is a novel paradigm for data-private multi-institutional collaborations, where model-learning leverages all available data without sharing data between institutions, by distributing the model-training to the data-owners and aggregating their results. We show that federated learning among 10 institutions results in models reaching 99% of the model quality achieved with centralized data, and evaluate generalizability on data from institutions outside the federation. We further investigate the effects of data distribution across collaborating institutions on model quality and learning patterns, indicating that increased access to data through data private multi-institutional collaborations can benefit model quality more than the errors introduced by the collaborative method. Finally, we compare with other collaborative-learning approaches demonstrating the superiority of federated learning, and discuss practical implementation considerations. Clinical adoption of federated learning is expected to lead to models trained on datasets of unprecedented size, hence have a catalytic impact towards precision/personalized medicine. |
|---|---|
| AbstractList | Several studies underscore the potential of deep learning in identifying complex patterns, leading to diagnostic and prognostic biomarkers. Identifying sufficiently large and diverse datasets, required for training, is a significant challenge in medicine and can rarely be found in individual institutions. Multi-institutional collaborations based on centrally-shared patient data face privacy and ownership challenges. Federated learning is a novel paradigm for data-private multi-institutional collaborations, where model-learning leverages all available data without sharing data between institutions, by distributing the model-training to the data-owners and aggregating their results. We show that federated learning among 10 institutions results in models reaching 99% of the model quality achieved with centralized data, and evaluate generalizability on data from institutions outside the federation. We further investigate the effects of data distribution across collaborating institutions on model quality and learning patterns, indicating that increased access to data through data private multi-institutional collaborations can benefit model quality more than the errors introduced by the collaborative method. Finally, we compare with other collaborative-learning approaches demonstrating the superiority of federated learning, and discuss practical implementation considerations. Clinical adoption of federated learning is expected to lead to models trained on datasets of unprecedented size, hence have a catalytic impact towards precision/personalized medicine. Several studies underscore the potential of deep learning in identifying complex patterns, leading to diagnostic and prognostic biomarkers. Identifying sufficiently large and diverse datasets, required for training, is a significant challenge in medicine and can rarely be found in individual institutions. Multi-institutional collaborations based on centrally-shared patient data face privacy and ownership challenges. Federated learning is a novel paradigm for data-private multi-institutional collaborations, where model-learning leverages all available data without sharing data between institutions, by distributing the model-training to the data-owners and aggregating their results. We show that federated learning among 10 institutions results in models reaching 99% of the model quality achieved with centralized data, and evaluate generalizability on data from institutions outside the federation. We further investigate the effects of data distribution across collaborating institutions on model quality and learning patterns, indicating that increased access to data through data private multi-institutional collaborations can benefit model quality more than the errors introduced by the collaborative method. Finally, we compare with other collaborative-learning approaches demonstrating the superiority of federated learning, and discuss practical implementation considerations. Clinical adoption of federated learning is expected to lead to models trained on datasets of unprecedented size, hence have a catalytic impact towards precision/personalized medicine.Several studies underscore the potential of deep learning in identifying complex patterns, leading to diagnostic and prognostic biomarkers. Identifying sufficiently large and diverse datasets, required for training, is a significant challenge in medicine and can rarely be found in individual institutions. Multi-institutional collaborations based on centrally-shared patient data face privacy and ownership challenges. Federated learning is a novel paradigm for data-private multi-institutional collaborations, where model-learning leverages all available data without sharing data between institutions, by distributing the model-training to the data-owners and aggregating their results. We show that federated learning among 10 institutions results in models reaching 99% of the model quality achieved with centralized data, and evaluate generalizability on data from institutions outside the federation. We further investigate the effects of data distribution across collaborating institutions on model quality and learning patterns, indicating that increased access to data through data private multi-institutional collaborations can benefit model quality more than the errors introduced by the collaborative method. Finally, we compare with other collaborative-learning approaches demonstrating the superiority of federated learning, and discuss practical implementation considerations. Clinical adoption of federated learning is expected to lead to models trained on datasets of unprecedented size, hence have a catalytic impact towards precision/personalized medicine. |
| ArticleNumber | 12598 |
| Author | Edwards, Brandon Xu, Weilin Marcus, Daniel Martin, Jason Colen, Rivka R. Bakas, Spyridon Pati, Sarthak Milchenko, Mikhail Kotrotsou, Aikaterini Sheller, Micah J. Reina, G. Anthony |
| Author_xml | – sequence: 1 givenname: Micah J. surname: Sheller fullname: Sheller, Micah J. organization: Intel Corporation – sequence: 2 givenname: Brandon surname: Edwards fullname: Edwards, Brandon organization: Intel Corporation – sequence: 3 givenname: G. Anthony surname: Reina fullname: Reina, G. Anthony organization: Intel Corporation – sequence: 4 givenname: Jason surname: Martin fullname: Martin, Jason organization: Intel Corporation – sequence: 5 givenname: Sarthak orcidid: 0000-0003-2243-8487 surname: Pati fullname: Pati, Sarthak organization: Center for Biomedical Image Computing and Analytics (CBICA), University of Pennsylvania, Department of Radiology, Perelman School of Medicine, University of Pennsylvania – sequence: 6 givenname: Aikaterini orcidid: 0000-0002-0433-7159 surname: Kotrotsou fullname: Kotrotsou, Aikaterini organization: Department of Diagnostic Radiology, The University of Texas MD Anderson Cancer Center, Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center – sequence: 7 givenname: Mikhail surname: Milchenko fullname: Milchenko, Mikhail organization: Department of Radiology, Washington University School of Medicine – sequence: 8 givenname: Weilin surname: Xu fullname: Xu, Weilin organization: Intel Corporation – sequence: 9 givenname: Daniel orcidid: 0000-0001-9501-8104 surname: Marcus fullname: Marcus, Daniel organization: Department of Radiology, Washington University School of Medicine – sequence: 10 givenname: Rivka R. orcidid: 0000-0002-0882-0607 surname: Colen fullname: Colen, Rivka R. organization: Department of Diagnostic Radiology, The University of Texas MD Anderson Cancer Center, Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Hillman Cancer Center, University of Pittsburgh Medical Center, Department of Radiology, University of Pittsburgh – sequence: 11 givenname: Spyridon orcidid: 0000-0001-8734-6482 surname: Bakas fullname: Bakas, Spyridon email: sbakas@upenn.edu organization: Center for Biomedical Image Computing and Analytics (CBICA), University of Pennsylvania, Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32724046$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9UctOHDEQtCKiQIAf4IBGyiWXSfwcezhEQigkkZC4wNnyeLyskddebA8of5-eXV7hgC92u6uqH_UZ7cQUHUJHBH8jmKnvhRPRqxZT3HY9FbglH9AexVy0lFG68-q9iw5LucVwBO056T-hXUYl5Zh3eyicu9FlU93YBGdy9PGm8bFZudFbH91JszDWB19NnTOrKVTf-liqr1P1KZrQ2BSCGRJoQFyaB1-XaapNWZo8U9bw72JtRlPNAfq4MKG4w8d7H12f_7w6-91eXP76c3Z60VqhWG0p70RvuLSSMIkHtugUdD5wyy2kIOqt6JwaR8MH0lEhsVRcWGv5qKwZB7aPfmx119MAk1ion03Q6-xXJv_VyXj9fyb6pb5J91oyJbkSIPD1USCnu8mVqle-WAeDRpemoimnihMJywfolzfQ2zRlWMwGJQUTUs2o49cdPbfyZAQA6BZgcyolu8UzhGA9G663hmuoqTeGawIk9YZkN06leSof3qeyLbWsZ5tcfmn7HdY_ddHBTw |
| CitedBy_id | crossref_primary_10_1109_JIOT_2023_3272334 crossref_primary_10_1097_PEC_0000000000003429 crossref_primary_10_1093_bjro_tzad004 crossref_primary_10_2196_47652 crossref_primary_10_1371_journal_pdig_0000074 crossref_primary_10_1016_j_jtbi_2022_111342 crossref_primary_10_1007_s11633_022_1398_0 crossref_primary_10_1016_j_engappai_2023_106371 crossref_primary_10_1016_j_iot_2022_100657 crossref_primary_10_1145_3514500 crossref_primary_10_1109_ACCESS_2022_3161132 crossref_primary_10_1038_s42256_024_00800_2 crossref_primary_10_3389_fpubh_2023_1196397 crossref_primary_10_3390_eng6090243 crossref_primary_10_1109_TNNLS_2023_3250658 crossref_primary_10_1038_s41467_025_60466_1 crossref_primary_10_1016_j_ijmedinf_2021_104658 crossref_primary_10_1038_s41598_023_34484_2 crossref_primary_10_1177_13524585241277376 crossref_primary_10_1109_TIM_2023_3345910 crossref_primary_10_1007_s00330_022_08712_8 crossref_primary_10_1016_j_asoc_2025_112747 crossref_primary_10_1051_itmconf_20257604002 crossref_primary_10_1038_s41598_024_63393_1 crossref_primary_10_1038_s41598_024_82902_w crossref_primary_10_1158_2159_8290_CD_23_1199 crossref_primary_10_1016_j_jbi_2025_104858 crossref_primary_10_1109_TRPMS_2022_3194408 crossref_primary_10_1007_s00500_025_10508_z crossref_primary_10_1016_j_cosrev_2023_100547 crossref_primary_10_1016_j_sysarc_2025_103338 crossref_primary_10_1109_JBHI_2022_3185418 crossref_primary_10_1007_s10916_023_01994_5 crossref_primary_10_1109_TMC_2022_3219485 crossref_primary_10_1109_COMST_2023_3330910 crossref_primary_10_1007_s00521_024_09487_3 crossref_primary_10_1038_s42256_023_00652_2 crossref_primary_10_1186_s12885_024_12456_7 crossref_primary_10_1109_TMI_2023_3239391 crossref_primary_10_3390_math13132110 crossref_primary_10_3390_diagnostics13233592 crossref_primary_10_1038_s41598_025_94680_0 crossref_primary_10_1056_NEJMra2301725 crossref_primary_10_3390_app12094336 crossref_primary_10_1007_s42979_023_02124_1 crossref_primary_10_1109_TIFS_2022_3186739 crossref_primary_10_1016_j_bspc_2023_104881 crossref_primary_10_1016_j_compbiomed_2025_111084 crossref_primary_10_2196_23454 crossref_primary_10_1016_j_knosys_2025_113662 crossref_primary_10_3390_biomedicines13081849 crossref_primary_10_48175_IJARSCT_28536 crossref_primary_10_1007_s00330_020_07417_0 crossref_primary_10_1016_j_addr_2023_114772 crossref_primary_10_1016_j_media_2024_103270 crossref_primary_10_3390_jpm13121703 crossref_primary_10_1097_CCE_0000000000001087 crossref_primary_10_1016_j_molmed_2022_11_002 crossref_primary_10_3389_fneur_2024_1394435 crossref_primary_10_1038_s41598_024_56115_0 crossref_primary_10_1016_j_bspc_2025_108032 crossref_primary_10_1016_j_comnet_2022_109048 crossref_primary_10_1016_j_ejmp_2021_02_007 crossref_primary_10_1007_s13042_023_01986_4 crossref_primary_10_1038_s41746_025_01471_y crossref_primary_10_1109_ACCESS_2024_3468611 crossref_primary_10_1016_j_jad_2024_10_027 crossref_primary_10_1088_1361_6560_aca388 crossref_primary_10_1109_JBHI_2022_3196330 crossref_primary_10_3390_ijms222413278 crossref_primary_10_1080_00207543_2024_2432469 crossref_primary_10_1080_17434440_2025_2514764 crossref_primary_10_3389_fmed_2022_845522 crossref_primary_10_1016_j_ejrad_2024_111798 crossref_primary_10_1109_ACCESS_2022_3210702 crossref_primary_10_1109_ACCESS_2025_3549440 crossref_primary_10_1109_TMI_2022_3192483 crossref_primary_10_1080_03007995_2022_2096354 crossref_primary_10_1088_2057_1976_ad6dcd crossref_primary_10_1148_rg_220107 crossref_primary_10_1053_j_semdp_2022_01_003 crossref_primary_10_1055_s_0041_1740564 crossref_primary_10_3390_s24216891 crossref_primary_10_53759_7669_jmc202505190 crossref_primary_10_1109_TNSM_2024_3487265 crossref_primary_10_1109_RBME_2021_3075500 crossref_primary_10_1080_1206212X_2025_2496913 crossref_primary_10_1093_neuonc_noaa160 crossref_primary_10_1007_s00261_023_03940_y crossref_primary_10_3390_fi17070314 crossref_primary_10_1016_j_apsb_2025_09_022 crossref_primary_10_3390_cancers17071082 crossref_primary_10_1007_s11277_022_09624_y crossref_primary_10_1177_2374289521990784 crossref_primary_10_1016_j_artmed_2023_102691 crossref_primary_10_1093_jamia_ocae259 crossref_primary_10_1007_s00247_022_05427_2 crossref_primary_10_1016_j_future_2022_02_024 crossref_primary_10_1016_j_jacep_2023_05_023 crossref_primary_10_1016_j_ebiom_2024_105006 crossref_primary_10_3389_fpsyg_2022_943198 crossref_primary_10_1016_j_canlet_2025_217881 crossref_primary_10_3390_cryst12111614 crossref_primary_10_1016_j_ejrad_2024_111457 crossref_primary_10_1057_s41271_021_00319_5 crossref_primary_10_1109_ACCESS_2023_3335245 crossref_primary_10_1186_s43556_024_00238_3 crossref_primary_10_1038_s43018_022_00416_8 crossref_primary_10_1097_RLI_0000000000001106 crossref_primary_10_3390_app13042109 crossref_primary_10_1016_j_ins_2024_120825 crossref_primary_10_1016_j_media_2022_102629 crossref_primary_10_1186_s13244_023_01601_8 crossref_primary_10_3389_fnins_2022_860208 crossref_primary_10_1109_JIOT_2024_3389593 crossref_primary_10_1080_10408363_2023_2274325 crossref_primary_10_3390_app122211462 crossref_primary_10_1016_j_media_2025_103497 crossref_primary_10_1016_j_compbiolchem_2025_108662 crossref_primary_10_1109_ACCESS_2022_3196391 crossref_primary_10_3390_electronics14183600 crossref_primary_10_1016_j_ejca_2022_10_020 crossref_primary_10_1016_j_iot_2024_101296 crossref_primary_10_1016_j_bjoms_2024_12_004 crossref_primary_10_1007_s10278_021_00547_x crossref_primary_10_3390_jcm13051415 crossref_primary_10_1016_j_knosys_2023_110658 crossref_primary_10_1038_s41467_024_51172_5 crossref_primary_10_3390_bioengineering10091045 crossref_primary_10_1016_j_compmedimag_2025_102593 crossref_primary_10_1016_j_jbi_2022_104073 crossref_primary_10_5306_wjco_v16_i7_107246 crossref_primary_10_3390_app14188299 crossref_primary_10_62762_TETAI_2025_222799 crossref_primary_10_1038_s41591_021_01506_3 crossref_primary_10_1109_JBHI_2023_3274498 crossref_primary_10_3389_fonc_2022_924945 crossref_primary_10_1016_j_jad_2025_120148 crossref_primary_10_1088_1361_6560_ac9449 crossref_primary_10_1007_s00259_025_07536_0 crossref_primary_10_1038_s41746_021_00431_6 crossref_primary_10_1007_s11910_021_01098_y crossref_primary_10_3389_fnins_2021_740353 crossref_primary_10_1371_journal_pdig_0000117 crossref_primary_10_3390_brainsci15060576 crossref_primary_10_1186_s12911_022_01879_6 crossref_primary_10_3389_fonc_2021_659800 crossref_primary_10_1007_s13748_025_00384_x crossref_primary_10_3390_diagnostics11020380 crossref_primary_10_1016_j_csbj_2024_03_028 crossref_primary_10_1016_j_media_2025_103759 crossref_primary_10_1016_j_jbi_2023_104485 crossref_primary_10_1016_j_bspc_2024_106068 crossref_primary_10_1016_j_healthpol_2023_104769 crossref_primary_10_3389_fpubh_2022_814163 crossref_primary_10_1016_j_iot_2025_101730 crossref_primary_10_1186_s12909_025_07483_2 crossref_primary_10_1109_TMI_2023_3263072 crossref_primary_10_1371_journal_pdig_0000101 crossref_primary_10_3390_app112311191 crossref_primary_10_3390_s25082374 crossref_primary_10_1016_j_cjca_2024_07_027 crossref_primary_10_1016_j_compbiomed_2024_108288 crossref_primary_10_1093_jamia_ocac232 crossref_primary_10_1016_j_media_2024_103209 crossref_primary_10_1109_TMI_2022_3222126 crossref_primary_10_3390_app12031709 crossref_primary_10_1109_JIOT_2024_3452549 crossref_primary_10_12968_hmed_2024_0312 crossref_primary_10_1097_SCS_0000000000007379 crossref_primary_10_1109_ACCESS_2021_3127448 crossref_primary_10_1038_s41551_022_00898_y crossref_primary_10_1093_aje_kwad040 crossref_primary_10_1016_j_media_2022_102704 crossref_primary_10_1038_s41598_023_33303_y crossref_primary_10_1109_ACCESS_2022_3202922 crossref_primary_10_48084_etasr_11030 crossref_primary_10_3390_app13020919 crossref_primary_10_1016_j_jcrc_2024_154857 crossref_primary_10_1093_jamia_ocab012 crossref_primary_10_1109_TNNLS_2021_3129371 crossref_primary_10_1109_COMST_2022_3221119 crossref_primary_10_1038_s41598_024_83972_6 crossref_primary_10_1007_s00521_023_08375_6 crossref_primary_10_1007_s11042_025_20775_5 crossref_primary_10_1007_s44250_025_00291_x crossref_primary_10_1109_TBDATA_2022_3186991 crossref_primary_10_1016_j_mcpdig_2025_100253 crossref_primary_10_1080_17445760_2024_2417875 crossref_primary_10_1109_ACCESS_2024_3372394 crossref_primary_10_1145_3744655 crossref_primary_10_1155_2020_6647562 crossref_primary_10_1038_s42256_022_00601_5 crossref_primary_10_1109_TC_2021_3135752 crossref_primary_10_3390_antibiotics14010060 crossref_primary_10_1038_s42256_022_00515_2 crossref_primary_10_1016_j_radonc_2024_110542 crossref_primary_10_1109_JIOT_2021_3115817 crossref_primary_10_26599_BDMA_2023_9020024 crossref_primary_10_1186_s40364_023_00476_7 crossref_primary_10_1109_TMC_2021_3137017 crossref_primary_10_1371_journal_pdig_0000033 crossref_primary_10_1093_intqhc_mzab010 crossref_primary_10_1111_bcpt_70104 crossref_primary_10_3390_info13050263 crossref_primary_10_38124_ijisrt_25apr626 crossref_primary_10_1109_TDSC_2021_3126323 crossref_primary_10_1017_rsm_2025_6 crossref_primary_10_2196_54263 crossref_primary_10_1227_NEU_0000000000001736 crossref_primary_10_1109_TBDATA_2024_3481952 crossref_primary_10_1016_j_compbiomed_2023_106848 crossref_primary_10_1016_j_radonc_2024_110419 crossref_primary_10_1109_TVT_2021_3065084 crossref_primary_10_2166_hydro_2024_257 crossref_primary_10_1016_j_compbiomed_2023_106603 crossref_primary_10_1007_s10791_025_09627_w crossref_primary_10_1016_j_ejrad_2025_112412 crossref_primary_10_52711_2231_5659_2025_00009 crossref_primary_10_1007_s12194_024_00827_5 crossref_primary_10_1016_j_neunet_2021_11_018 crossref_primary_10_1186_s12880_024_01279_4 crossref_primary_10_1038_s41598_022_12497_7 crossref_primary_10_1016_j_media_2025_103670 crossref_primary_10_1109_TMI_2023_3234450 crossref_primary_10_1016_j_knosys_2025_114494 crossref_primary_10_1371_journal_pcbi_1012626 crossref_primary_10_1109_TSUSC_2023_3279111 crossref_primary_10_1016_j_procs_2022_09_129 crossref_primary_10_1016_j_inffus_2025_103024 crossref_primary_10_1186_s41512_025_00186_8 crossref_primary_10_1016_j_inffus_2025_103027 crossref_primary_10_1016_j_patter_2025_101236 crossref_primary_10_1016_j_artmed_2024_102936 crossref_primary_10_1038_s41746_025_01661_8 crossref_primary_10_1038_s41574_021_00543_9 crossref_primary_10_1016_j_media_2024_103121 crossref_primary_10_1109_TIFS_2025_3586491 crossref_primary_10_1038_s41467_022_33407_5 crossref_primary_10_1016_S1470_2045_24_00315_2 crossref_primary_10_1021_acsaelm_5c00567 crossref_primary_10_1016_j_xops_2025_100861 crossref_primary_10_1038_s41598_022_05539_7 crossref_primary_10_1109_TMI_2022_3233574 crossref_primary_10_1109_JIOT_2024_3407584 crossref_primary_10_1007_s13198_023_02139_0 crossref_primary_10_1080_23742917_2025_2511145 crossref_primary_10_1016_j_ogla_2024_08_004 crossref_primary_10_1145_3546872 crossref_primary_10_1109_JBHI_2022_3181823 crossref_primary_10_1007_s11227_022_04745_4 crossref_primary_10_3390_math11194189 crossref_primary_10_1016_j_measen_2024_101799 crossref_primary_10_1038_s41746_021_00489_2 crossref_primary_10_1016_j_heliyon_2024_e31000 crossref_primary_10_1007_s11042_022_12900_5 crossref_primary_10_1016_j_compbiomed_2025_110239 crossref_primary_10_1109_TKDE_2025_3580796 crossref_primary_10_1051_epjconf_202532801007 crossref_primary_10_1007_s00134_024_07745_5 crossref_primary_10_1016_j_csbj_2025_03_031 crossref_primary_10_1145_3533708 crossref_primary_10_3390_rs15143620 crossref_primary_10_1093_nargab_lqaf038 crossref_primary_10_1016_j_acra_2023_01_010 crossref_primary_10_1177_22143602241296276 crossref_primary_10_1148_radiol_2021204406 crossref_primary_10_3390_computers14040143 crossref_primary_10_1016_j_eswa_2025_127253 crossref_primary_10_1016_j_cpet_2021_06_006 crossref_primary_10_1016_j_cpet_2021_06_005 crossref_primary_10_1016_j_imavis_2025_105673 crossref_primary_10_2196_71080 crossref_primary_10_1016_j_esmorw_2025_100172 crossref_primary_10_1093_jamia_ocaa341 crossref_primary_10_1016_j_procs_2022_12_238 crossref_primary_10_1002_jmri_27863 crossref_primary_10_1002_jmri_28950 crossref_primary_10_3390_diagnostics12112835 crossref_primary_10_1007_s41666_023_00153_2 crossref_primary_10_1007_s10266_021_00615_2 crossref_primary_10_1007_s41666_023_00142_5 crossref_primary_10_1109_TRPMS_2021_3070656 crossref_primary_10_3390_biomedicines12081878 crossref_primary_10_1097_APO_0000000000000582 crossref_primary_10_3390_s23052494 crossref_primary_10_1016_j_oret_2022_02_015 crossref_primary_10_1016_j_patcog_2023_110230 crossref_primary_10_1016_j_inffus_2024_102576 crossref_primary_10_3390_s22197157 crossref_primary_10_1016_j_jid_2025_06_1288 crossref_primary_10_1088_2632_2153_ad4768 crossref_primary_10_1177_17562872221128791 crossref_primary_10_1109_TDSC_2024_3364060 crossref_primary_10_1148_radiol_232030 crossref_primary_10_4251_wjgo_v17_i5_104410 crossref_primary_10_1186_s13040_024_00379_9 crossref_primary_10_1007_s42979_025_04107_w crossref_primary_10_1080_17460441_2021_1932812 crossref_primary_10_1038_s44172_023_00066_3 crossref_primary_10_2196_42621 crossref_primary_10_1016_j_future_2023_02_021 crossref_primary_10_1109_TDSC_2024_3380669 crossref_primary_10_1177_20552076241248922 crossref_primary_10_1016_j_ipm_2022_103167 crossref_primary_10_1111_1471_0528_18097 crossref_primary_10_1016_j_csbj_2024_08_024 crossref_primary_10_1109_TPDS_2022_3150579 crossref_primary_10_1109_ACCESS_2024_3416748 crossref_primary_10_1007_s40501_025_00359_8 crossref_primary_10_1109_ACCESS_2021_3065965 crossref_primary_10_1016_j_tbench_2025_100215 crossref_primary_10_1016_j_procs_2025_03_296 crossref_primary_10_1038_s42256_021_00337_8 crossref_primary_10_1016_j_compbiomed_2022_105277 crossref_primary_10_1016_j_neunet_2024_106409 crossref_primary_10_1088_1361_6560_ac97d9 crossref_primary_10_3390_electronics13081540 crossref_primary_10_1038_s41551_023_01056_8 crossref_primary_10_1109_ACCESS_2025_3601142 crossref_primary_10_1007_s10462_025_11311_w crossref_primary_10_1093_neuonc_noaf118 crossref_primary_10_1007_s10844_025_00927_7 crossref_primary_10_1109_ACCESS_2023_3267964 crossref_primary_10_1109_JIOT_2021_3089713 crossref_primary_10_3390_app15158412 crossref_primary_10_1016_j_jvir_2022_06_003 crossref_primary_10_1007_s10796_021_10144_6 crossref_primary_10_1109_TNNLS_2024_3469962 crossref_primary_10_1109_ACCESS_2025_3605870 crossref_primary_10_1038_s41746_024_01132_6 crossref_primary_10_1136_bjsports_2024_108890 crossref_primary_10_61927_igmin294 crossref_primary_10_1016_j_future_2023_10_007 crossref_primary_10_1109_ACCESS_2024_3413069 crossref_primary_10_1007_s11227_025_07619_7 crossref_primary_10_1148_ryai_210290 crossref_primary_10_1007_s00521_025_11420_1 crossref_primary_10_1007_s10489_025_06627_7 crossref_primary_10_1016_j_compbiomed_2025_110547 crossref_primary_10_1093_jamia_ocac204 crossref_primary_10_4329_wjr_v14_i6_114 crossref_primary_10_3390_app14166876 crossref_primary_10_1109_JBHI_2024_3427787 crossref_primary_10_1109_TMI_2022_3221724 crossref_primary_10_3390_s25030853 crossref_primary_10_1109_TPDS_2023_3277367 crossref_primary_10_1109_JIOT_2023_3329061 crossref_primary_10_1109_TKDE_2024_3390238 crossref_primary_10_3390_bioengineering10030364 crossref_primary_10_1001_jamaophthalmol_2024_3778 crossref_primary_10_1038_s41390_025_04021_0 crossref_primary_10_3390_electronics12122703 crossref_primary_10_1109_TMC_2024_3429228 crossref_primary_10_3390_fi16100372 crossref_primary_10_1016_j_jacr_2022_03_016 crossref_primary_10_1097_ICU_0000000000000846 crossref_primary_10_1016_j_jacr_2022_03_015 crossref_primary_10_1016_j_eswa_2024_123553 crossref_primary_10_1016_j_procs_2023_01_177 crossref_primary_10_1038_s41467_021_25972_y crossref_primary_10_1007_s11042_023_17737_0 crossref_primary_10_1016_j_jafr_2025_101895 crossref_primary_10_1177_2632010X241226887 crossref_primary_10_1016_j_eswa_2024_123799 crossref_primary_10_3390_diagnostics13091532 crossref_primary_10_1109_ACCESS_2022_3195875 crossref_primary_10_1038_s41591_021_01343_4 crossref_primary_10_1148_ryai_220082 crossref_primary_10_1186_s12903_024_03928_0 crossref_primary_10_1111_ceo_14258 crossref_primary_10_1016_j_cmpb_2025_109036 crossref_primary_10_1007_s40123_025_01209_9 crossref_primary_10_1038_s41746_022_00625_6 crossref_primary_10_1109_TCDS_2023_3239815 crossref_primary_10_1038_s41598_024_54323_2 crossref_primary_10_3390_app13021088 crossref_primary_10_1016_j_ijmedinf_2025_106046 crossref_primary_10_1016_j_compag_2021_106648 crossref_primary_10_1109_TNNLS_2022_3160699 crossref_primary_10_1016_j_jksuci_2021_05_016 crossref_primary_10_1016_j_oret_2022_03_019 crossref_primary_10_4236_jbise_2025_188024 crossref_primary_10_3390_diagnostics15080995 crossref_primary_10_1038_s41746_024_01293_4 crossref_primary_10_1016_j_ebiom_2022_104127 crossref_primary_10_32604_cmc_2023_035720 crossref_primary_10_1111_exsy_70063 crossref_primary_10_1142_S2737599425500252 crossref_primary_10_3390_healthcare11152199 crossref_primary_10_17269_s41997_025_01083_9 crossref_primary_10_1016_j_comnet_2025_111200 crossref_primary_10_1038_s41598_023_30381_w crossref_primary_10_1016_j_csi_2023_103720 crossref_primary_10_1016_j_ibmed_2025_100251 crossref_primary_10_1038_s41467_022_34234_4 crossref_primary_10_3390_diagnostics15111418 crossref_primary_10_3390_diagnostics13193140 crossref_primary_10_1371_journal_pone_0273262 crossref_primary_10_4103_tjo_TJO_D_23_00018 crossref_primary_10_1109_TNSE_2022_3185327 crossref_primary_10_1177_20552076251361614 crossref_primary_10_1259_bjr_20220890 crossref_primary_10_1109_ACCESS_2022_3141913 crossref_primary_10_1097_RCT_0000000000001557 crossref_primary_10_1038_s42256_023_00670_0 crossref_primary_10_1007_s12265_022_10260_x crossref_primary_10_1002_widm_1410 crossref_primary_10_5937_bnsr15_55563 crossref_primary_10_1038_s41571_025_01067_1 crossref_primary_10_1146_annurev_biodatasci_122120_124216 crossref_primary_10_3390_cancers14061369 crossref_primary_10_1109_ACCESS_2021_3124844 crossref_primary_10_32604_cmc_2024_057257 crossref_primary_10_3390_jpm15080327 crossref_primary_10_1016_j_jconrel_2021_08_030 crossref_primary_10_1055_a_2682_5167 crossref_primary_10_38124_ijisrt_25may617 crossref_primary_10_1109_ACCESS_2024_3443520 crossref_primary_10_1007_s11042_023_17202_y crossref_primary_10_1038_s41597_022_01415_1 crossref_primary_10_1109_ACCESS_2023_3312531 crossref_primary_10_3390_life14101248 crossref_primary_10_4103_SIJM_SIJM_29_25 crossref_primary_10_1007_s11042_021_11473_z crossref_primary_10_3390_math11102385 crossref_primary_10_7717_peerj_cs_3165 crossref_primary_10_1002_sim_10072 crossref_primary_10_3390_diagnostics15172216 crossref_primary_10_1155_2024_8138644 crossref_primary_10_2196_29812 crossref_primary_10_1145_3501296 crossref_primary_10_1007_s10586_022_03658_4 crossref_primary_10_1038_s41598_021_93030_0 crossref_primary_10_1053_j_ro_2025_06_003 crossref_primary_10_3390_healthcare11172377 crossref_primary_10_1007_s00059_024_05264_z crossref_primary_10_1038_s44222_025_00363_w crossref_primary_10_3390_biomedicines12122892 crossref_primary_10_1177_15353702211031547 crossref_primary_10_1016_j_knosys_2021_107261 crossref_primary_10_32604_cmes_2024_056500 crossref_primary_10_3390_metrics2020005 crossref_primary_10_2196_37437 crossref_primary_10_1016_j_cmpb_2024_108104 crossref_primary_10_1016_j_jacr_2024_11_003 crossref_primary_10_1038_s42003_021_02586_0 crossref_primary_10_1016_j_csbj_2021_05_010 crossref_primary_10_1155_2021_2979214 crossref_primary_10_1109_ACCESS_2023_3241488 crossref_primary_10_1109_ACCESS_2025_3569158 crossref_primary_10_1109_TII_2021_3113708 crossref_primary_10_1016_j_media_2022_102396 crossref_primary_10_3390_jimaging10110270 crossref_primary_10_1002_mp_18064 crossref_primary_10_3390_bioengineering10101144 crossref_primary_10_1016_j_future_2023_07_036 crossref_primary_10_3390_app142411652 crossref_primary_10_3934_energy_2025011 crossref_primary_10_1002_mp_18067 crossref_primary_10_1038_s41598_022_12833_x crossref_primary_10_1007_s40336_022_00501_z crossref_primary_10_1109_ACCESS_2022_3218655 crossref_primary_10_1016_j_sysarc_2022_102555 crossref_primary_10_1038_s41591_022_02155_w crossref_primary_10_1287_mnsc_2023_00611 crossref_primary_10_1016_j_hcc_2021_100008 crossref_primary_10_1093_noajnl_vdaf142 crossref_primary_10_1177_00220345221108953 crossref_primary_10_1016_j_inffus_2024_102617 crossref_primary_10_1186_s13321_021_00555_7 crossref_primary_10_3390_s23208504 crossref_primary_10_1016_j_neucom_2024_128691 crossref_primary_10_1080_14622416_2024_2428587 crossref_primary_10_3390_biomedicines12122750 crossref_primary_10_1002_hbm_25351 crossref_primary_10_12677_mos_2025_144366 crossref_primary_10_3390_s24113481 crossref_primary_10_1109_RBME_2023_3324264 crossref_primary_10_3390_electronics11244117 crossref_primary_10_2196_37374 crossref_primary_10_3390_jsan10010017 crossref_primary_10_1007_s00330_023_09645_6 crossref_primary_10_1109_TDSC_2024_3372634 crossref_primary_10_1007_s10462_024_10900_5 crossref_primary_10_1002_mds_30327 crossref_primary_10_1109_TMI_2022_3227563 crossref_primary_10_1007_s10278_024_01020_1 crossref_primary_10_1016_j_ijmedinf_2024_105650 crossref_primary_10_1038_s44172_025_00485_4 crossref_primary_10_7759_cureus_86276 crossref_primary_10_1016_j_jhydrol_2022_128210 crossref_primary_10_1016_j_media_2023_102865 crossref_primary_10_1097_br9_0000000000000002 crossref_primary_10_1109_ACCESS_2023_3312579 crossref_primary_10_1016_j_ejrai_2025_100028 crossref_primary_10_1109_COMST_2024_3486690 crossref_primary_10_3390_brainsci14121266 crossref_primary_10_1007_s11227_023_05754_7 crossref_primary_10_1109_TIFS_2024_3451359 crossref_primary_10_1038_s41598_024_62908_0 crossref_primary_10_1177_00033197221113146 crossref_primary_10_1109_TR_2024_3402308 crossref_primary_10_1016_j_comcom_2023_05_012 crossref_primary_10_1002_widm_1443 crossref_primary_10_2196_71034 crossref_primary_10_1016_j_media_2022_102564 crossref_primary_10_1080_00207543_2022_2164628 crossref_primary_10_1109_TMI_2023_3323540 crossref_primary_10_1109_TBME_2022_3210940 crossref_primary_10_1016_j_media_2022_102680 crossref_primary_10_1049_blc2_12075 crossref_primary_10_1109_JIOT_2023_3343719 crossref_primary_10_1016_j_imu_2024_101590 crossref_primary_10_1145_3555803 crossref_primary_10_1038_s41598_024_60915_9 crossref_primary_10_1146_annurev_genom_110122_084756 crossref_primary_10_2196_36388 crossref_primary_10_1109_ACCESS_2023_3333229 crossref_primary_10_1109_JAS_2023_123123 crossref_primary_10_1038_s41571_021_00560_7 crossref_primary_10_1155_2023_9992393 crossref_primary_10_1038_s41597_024_04168_1 crossref_primary_10_1007_s00259_021_05339_7 crossref_primary_10_1007_s12170_021_00678_4 crossref_primary_10_1038_s41467_022_32020_w crossref_primary_10_1148_radiol_232471 crossref_primary_10_1109_JIOT_2025_3558910 crossref_primary_10_1142_S1793962324400014 crossref_primary_10_1016_j_ophtha_2024_10_017 crossref_primary_10_3390_s23042112 crossref_primary_10_1016_j_compbiomed_2024_108779 crossref_primary_10_1186_s13059_023_03039_z crossref_primary_10_1038_s41746_022_00611_y crossref_primary_10_1093_bioadv_vbad036 crossref_primary_10_3390_app151810082 crossref_primary_10_1109_ACCESS_2024_3431885 crossref_primary_10_1111_risa_14124 |
| Cites_doi | 10.1093/jamia/ocy017 10.1016/j.jbi.2019.103138 10.1056/NEJMlim035027 10.1093/neuonc/noy020 10.1056/NEJMsb1708278 10.1016/j.ijmedinf.2018.01.007 10.1007/s10278-013-9622-7 10.1109/JPROC.2016.2615052 10.1109/TCC.2016.2617382 10.1371/journal.pmed.1002683 10.1002/hbm.20906 10.1038/sdata.2017.117 10.1016/S1364-6613(99)01294-2 10.1093/jnci/djw104 10.2307/1932409 10.1056/NEJMe1515172 10.1109/TMI.2014.2377694 10.1093/neuonc/noaa045 10.1109/TMI.2020.2986331 10.7937/K9/TCIA.2017.GJQ7R0EF 10.1007/978-3-030-11723-8_9 10.1007/978-3-030-32692-0_16 10.1007/978-3-319-57959-7_1 10.7937/K9/TCIA.2017.KLXWJJ1Q |
| ContentType | Journal Article |
| Copyright | The Author(s) 2020 The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: The Author(s) 2020 – notice: The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | C6C AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7X7 7XB 88A 88E 88I 8FE 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M2P M7P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 5PM |
| DOI | 10.1038/s41598-020-69250-1 |
| DatabaseName | Springer Nature OA Free Journals CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Collection ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One ProQuest Central Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection Medical Database Science Database Biological Science Database ProQuest Central Premium ProQuest One Academic (New) ProQuest Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Central China ProQuest Biology Journals (Alumni Edition) ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | CrossRef Publicly Available Content Database MEDLINE MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Biology Medicine |
| EISSN | 2045-2322 |
| ExternalDocumentID | PMC7387485 32724046 10_1038_s41598_020_69250_1 |
| Genre | Journal Article Research Support, N.I.H., Extramural |
| GrantInformation_xml | – fundername: UPMC CCSG grantid: P30 CA047904 – fundername: National Cancer Institute grantid: U24CA189523 funderid: http://dx.doi.org/10.13039/100000054 – fundername: National Institute of Neurological Disorders and Stroke grantid: R01NS042645 funderid: http://dx.doi.org/10.13039/100000065 – fundername: NCI NIH HHS grantid: U01 CA242871 – fundername: NCI NIH HHS grantid: U24 CA204854 – fundername: NINDS NIH HHS grantid: R01 NS042645 – fundername: NCI NIH HHS grantid: U24 CA189523 – fundername: NCI NIH HHS grantid: U24CA189523 – fundername: NINDS NIH HHS grantid: R01NS042645 – fundername: NCI NIH HHS grantid: P30 CA047904 – fundername: NIH HHS grantid: S10 OD023495 – fundername: ; grantid: U24CA189523 – fundername: ; grantid: R01NS042645 – fundername: ; grantid: P30 CA047904 |
| GroupedDBID | 0R~ 3V. 4.4 53G 5VS 7X7 88A 88E 88I 8FE 8FH 8FI 8FJ AAFWJ AAJSJ AAKDD ABDBF ABUWG ACGFS ACSMW ACUHS ADBBV ADRAZ AENEX AEUYN AFKRA AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS AZQEC BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ BVXVI C6C CCPQU DIK DWQXO EBD EBLON EBS ESX FYUFA GNUQQ GROUPED_DOAJ GX1 HCIFZ HH5 HMCUK HYE KQ8 LK8 M0L M1P M2P M48 M7P M~E NAO OK1 PIMPY PQQKQ PROAC PSQYO RNT RNTTT RPM SNYQT UKHRP AASML AAYXX AFFHD AFPKN CITATION PHGZM PHGZT PJZUB PPXIY PQGLB CGR CUY CVF ECM EIF NPM 7XB 8FK K9. PKEHL PQEST PQUKI PRINS Q9U 7X8 PUEGO 5PM |
| ID | FETCH-LOGICAL-c583t-24659a47c71370b3f68529b4c4c246f689c56e8dda4b1625707845ccc4d8cadb3 |
| IEDL.DBID | BENPR |
| ISICitedReferencesCount | 746 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000556398500021&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2045-2322 |
| IngestDate | Tue Nov 04 01:34:15 EST 2025 Fri Sep 05 09:21:51 EDT 2025 Tue Oct 07 07:54:37 EDT 2025 Mon Jul 21 05:50:56 EDT 2025 Sat Nov 29 04:02:11 EST 2025 Tue Nov 18 21:31:47 EST 2025 Fri Feb 21 02:37:01 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Language | English |
| License | Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c583t-24659a47c71370b3f68529b4c4c246f689c56e8dda4b1625707845ccc4d8cadb3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0002-0433-7159 0000-0001-8734-6482 0000-0003-2243-8487 0000-0002-0882-0607 0000-0001-9501-8104 |
| OpenAccessLink | https://www.proquest.com/docview/2427535780?pq-origsite=%requestingapplication% |
| PMID | 32724046 |
| PQID | 2427535780 |
| PQPubID | 2041939 |
| ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_7387485 proquest_miscellaneous_2428417020 proquest_journals_2427535780 pubmed_primary_32724046 crossref_primary_10_1038_s41598_020_69250_1 crossref_citationtrail_10_1038_s41598_020_69250_1 springer_journals_10_1038_s41598_020_69250_1 |
| PublicationCentury | 2000 |
| PublicationDate | 2020-07-28 |
| PublicationDateYYYYMMDD | 2020-07-28 |
| PublicationDate_xml | – month: 07 year: 2020 text: 2020-07-28 day: 28 |
| PublicationDecade | 2020 |
| PublicationPlace | London |
| PublicationPlace_xml | – name: London – name: England |
| PublicationTitle | Scientific reports |
| PublicationTitleAbbrev | Sci Rep |
| PublicationTitleAlternate | Sci Rep |
| PublicationYear | 2020 |
| Publisher | Nature Publishing Group UK Nature Publishing Group |
| Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group |
| References | Bakas (CR5) 2017; 4 Clark (CR2) 2013; 26 CR19 CR17 CR16 Chang (CR14) 2018; 25 CR15 Davatzikos (CR3) 2020 CR36 CR35 Menze (CR4) 2015; 34 Li, Roberts, Jiang, Long (CR28) 2019; 92 CR32 CR31 CR30 Borovec (CR10) 2020 Taichman (CR26) 2016; 374 CR6 McCarthy (CR20) 2016 CR8 CR7 Rohlfing, Zahr, Sullivan, Pfefferbaum (CR33) 2010; 31 CR9 (CR11) 2018; 20 CR24 Brisimi (CR29) 2018; 112 CR23 CR22 CR21 Zech (CR1) 2018; 15 Kiley, Peatfield, Hansen, Reddington (CR27) 2017; 377 Dice (CR34) 1945; 26 Tresp (CR12) 2016; 104 Chen (CR13) 2016 French (CR18) 1999; 3 Annas (CR25) 2003; 348 69250_CR21 C Davatzikos (69250_CR3) 2020 69250_CR24 69250_CR22 69250_CR23 AM McCarthy (69250_CR20) 2016 69250_CR7 LR Dice (69250_CR34) 1945; 26 K Clark (69250_CR2) 2013; 26 69250_CR6 DB Taichman (69250_CR26) 2016; 374 R Kiley (69250_CR27) 2017; 377 69250_CR9 69250_CR8 V Tresp (69250_CR12) 2016; 104 Z Li (69250_CR28) 2019; 92 69250_CR31 69250_CR32 GJ Annas (69250_CR25) 2003; 348 69250_CR30 69250_CR35 69250_CR36 K Chang (69250_CR14) 2018; 25 69250_CR17 JR Zech (69250_CR1) 2018; 15 BH Menze (69250_CR4) 2015; 34 69250_CR15 69250_CR16 69250_CR19 S Bakas (69250_CR5) 2017; 4 J Borovec (69250_CR10) 2020 Consortium, T. G (69250_CR11) 2018; 20 M Chen (69250_CR13) 2016 TS Brisimi (69250_CR29) 2018; 112 T Rohlfing (69250_CR33) 2010; 31 RM French (69250_CR18) 1999; 3 |
| References_xml | – volume: 25 start-page: 945 year: 2018 end-page: 954 ident: CR14 article-title: Distributed deep learning networks among institutions for medical imaging publication-title: J. Am. Med. Inform. Assoc. doi: 10.1093/jamia/ocy017 – ident: CR22 – volume: 92 start-page: 103138 year: 2019 ident: CR28 article-title: Distributed learning from multiple EHR databases: contextual embedding models for medical events publication-title: J. Biomed. Inform. doi: 10.1016/j.jbi.2019.103138 – volume: 348 start-page: 1486 year: 2003 end-page: 1490 ident: CR25 article-title: HIPAA regulations-a new era of medical-record privacy? publication-title: N. Engl. J. Med. doi: 10.1056/NEJMlim035027 – volume: 20 start-page: 873 year: 2018 end-page: 884 ident: CR11 article-title: Glioma through the looking GLASS: molecular evolution of diffuse gliomas and the Glioma Longitudinal Analysis Consortium publication-title: Neuro-Oncology doi: 10.1093/neuonc/noy020 – volume: 377 start-page: 1990 year: 2017 end-page: 1992 ident: CR27 article-title: Data sharing from clinical trials—a research funder’s perspective publication-title: N. Engl. J. Med. doi: 10.1056/NEJMsb1708278 – ident: CR16 – ident: CR30 – volume: 112 start-page: 59 year: 2018 end-page: 67 ident: CR29 article-title: Federated learning of predictive models from federated electronic health records publication-title: Int. J. Med. Inform. doi: 10.1016/j.ijmedinf.2018.01.007 – volume: 26 start-page: 1045 year: 2013 end-page: 1057 ident: CR2 article-title: The cancer imaging archive (TCIA): maintaining and operating a public information repository publication-title: J. Digit. Imaging doi: 10.1007/s10278-013-9622-7 – ident: CR35 – ident: CR6 – ident: CR8 – volume: 104 start-page: 2180 year: 2016 end-page: 2206 ident: CR12 article-title: Going digital: a survey on digitalization and large-scale data analytics in healthcare publication-title: Proc. IEEE doi: 10.1109/JPROC.2016.2615052 – ident: CR23 – year: 2016 ident: CR13 article-title: Privacy protection and intrusion avoidance for cloudlet-based medical data sharing publication-title: IEEE Trans. Cloud Comput. doi: 10.1109/TCC.2016.2617382 – volume: 15 start-page: e1002683 year: 2018 ident: CR1 article-title: Variable generalization performance of a deep learning model to detect pneumonia in chest radiographs: a cross-sectional study publication-title: PLOS Med. doi: 10.1371/journal.pmed.1002683 – ident: CR21 – volume: 31 start-page: 798 year: 2010 end-page: 819 ident: CR33 article-title: The SRI24 multichannel atlas of normal adult human brain structure publication-title: Hum. Brain Mapp. doi: 10.1002/hbm.20906 – ident: CR19 – volume: 4 start-page: 170117 year: 2017 ident: CR5 article-title: Advancing the cancer genome atlas glioma MRI collections with expert segmentation labels and radiomic features publication-title: Nat. Sci. Data doi: 10.1038/sdata.2017.117 – volume: 3 start-page: 128 year: 1999 end-page: 135 ident: CR18 article-title: Catastrophic forgetting in connectionist networks publication-title: Trends Cogn. Sci. doi: 10.1016/S1364-6613(99)01294-2 – ident: CR15 – year: 2016 ident: CR20 article-title: Racial differences in quantitative measures of area and volumetric breast density publication-title: JNCI J. Natl. Cancer Inst. doi: 10.1093/jnci/djw104 – volume: 26 start-page: 297 year: 1945 end-page: 302 ident: CR34 article-title: Measures of the amount of ecologic association between species publication-title: Ecology doi: 10.2307/1932409 – ident: CR17 – ident: CR31 – ident: CR9 – volume: 374 start-page: 384 year: 2016 end-page: 386 ident: CR26 article-title: Sharing clinical trial data—a proposal from the international committee of medical journal editors publication-title: N. Engl. J. Med. doi: 10.1056/NEJMe1515172 – ident: CR32 – ident: CR36 – ident: CR7 – volume: 34 start-page: 1993 year: 2015 end-page: 2024 ident: CR4 article-title: The multimodal brain tumor image segmentation benchmark (BRATS) publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2014.2377694 – ident: CR24 – year: 2020 ident: CR3 article-title: AI-based prognostic imaging biomarkers for precision neurooncology: the ReSPOND consortium publication-title: Neuro Oncol. doi: 10.1093/neuonc/noaa045 – year: 2020 ident: CR10 article-title: ANHIR: automatic non-rigid histological image registration challenge publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2020.2986331 – ident: 69250_CR7 – ident: 69250_CR22 doi: 10.7937/K9/TCIA.2017.GJQ7R0EF – ident: 69250_CR9 – ident: 69250_CR16 – year: 2016 ident: 69250_CR20 publication-title: JNCI J. Natl. Cancer Inst. doi: 10.1093/jnci/djw104 – volume: 26 start-page: 297 year: 1945 ident: 69250_CR34 publication-title: Ecology doi: 10.2307/1932409 – volume: 92 start-page: 103138 year: 2019 ident: 69250_CR28 publication-title: J. Biomed. Inform. doi: 10.1016/j.jbi.2019.103138 – ident: 69250_CR31 – ident: 69250_CR15 doi: 10.1007/978-3-030-11723-8_9 – year: 2020 ident: 69250_CR3 publication-title: Neuro Oncol. doi: 10.1093/neuonc/noaa045 – volume: 34 start-page: 1993 year: 2015 ident: 69250_CR4 publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2014.2377694 – ident: 69250_CR35 – volume: 31 start-page: 798 year: 2010 ident: 69250_CR33 publication-title: Hum. Brain Mapp. doi: 10.1002/hbm.20906 – volume: 348 start-page: 1486 year: 2003 ident: 69250_CR25 publication-title: N. Engl. J. Med. doi: 10.1056/NEJMlim035027 – year: 2020 ident: 69250_CR10 publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2020.2986331 – volume: 3 start-page: 128 year: 1999 ident: 69250_CR18 publication-title: Trends Cogn. Sci. doi: 10.1016/S1364-6613(99)01294-2 – ident: 69250_CR23 doi: 10.1007/978-3-030-32692-0_16 – volume: 4 start-page: 170117 year: 2017 ident: 69250_CR5 publication-title: Nat. Sci. Data doi: 10.1038/sdata.2017.117 – volume: 374 start-page: 384 year: 2016 ident: 69250_CR26 publication-title: N. Engl. J. Med. doi: 10.1056/NEJMe1515172 – volume: 20 start-page: 873 year: 2018 ident: 69250_CR11 publication-title: Neuro-Oncology doi: 10.1093/neuonc/noy020 – ident: 69250_CR6 – ident: 69250_CR8 – volume: 25 start-page: 945 year: 2018 ident: 69250_CR14 publication-title: J. Am. Med. Inform. Assoc. doi: 10.1093/jamia/ocy017 – ident: 69250_CR24 doi: 10.1007/978-3-319-57959-7_1 – ident: 69250_CR30 – volume: 26 start-page: 1045 year: 2013 ident: 69250_CR2 publication-title: J. Digit. Imaging doi: 10.1007/s10278-013-9622-7 – volume: 15 start-page: e1002683 year: 2018 ident: 69250_CR1 publication-title: PLOS Med. doi: 10.1371/journal.pmed.1002683 – ident: 69250_CR32 – ident: 69250_CR17 – volume: 112 start-page: 59 year: 2018 ident: 69250_CR29 publication-title: Int. J. Med. Inform. doi: 10.1016/j.ijmedinf.2018.01.007 – ident: 69250_CR19 – ident: 69250_CR36 – ident: 69250_CR21 doi: 10.7937/K9/TCIA.2017.KLXWJJ1Q – volume: 104 start-page: 2180 year: 2016 ident: 69250_CR12 publication-title: Proc. IEEE doi: 10.1109/JPROC.2016.2615052 – year: 2016 ident: 69250_CR13 publication-title: IEEE Trans. Cloud Comput. doi: 10.1109/TCC.2016.2617382 – volume: 377 start-page: 1990 year: 2017 ident: 69250_CR27 publication-title: N. Engl. J. Med. doi: 10.1056/NEJMsb1708278 |
| SSID | ssj0000529419 |
| Score | 2.7246554 |
| Snippet | Several studies underscore the potential of deep learning in identifying complex patterns, leading to diagnostic and prognostic biomarkers. Identifying... |
| SourceID | pubmedcentral proquest pubmed crossref springer |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 12598 |
| SubjectTerms | 631/67 631/67/1922 639/166/985 639/705/1042 639/705/1046 692/700 692/700/1421 692/700/1421/65 Collaboration Humanities and Social Sciences Humans Information Dissemination Institutions Interinstitutional Relations Learning Medicine multidisciplinary Patients Precision medicine Privacy Science Science (multidisciplinary) Training |
| Title | Federated learning in medicine: facilitating multi-institutional collaborations without sharing patient data |
| URI | https://link.springer.com/article/10.1038/s41598-020-69250-1 https://www.ncbi.nlm.nih.gov/pubmed/32724046 https://www.proquest.com/docview/2427535780 https://www.proquest.com/docview/2428417020 https://pubmed.ncbi.nlm.nih.gov/PMC7387485 |
| Volume | 10 |
| WOSCitedRecordID | wos000556398500021&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals (WRLC) customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: DOA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: M~E dateStart: 20110101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Biological Science Database customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: M7P dateStart: 20110101 isFulltext: true titleUrlDefault: http://search.proquest.com/biologicalscijournals providerName: ProQuest – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: 7X7 dateStart: 20110101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: BENPR dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: PIMPY dateStart: 20110101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest – providerCode: PRVPQU databaseName: Science Database customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: M2P dateStart: 20110101 isFulltext: true titleUrlDefault: https://search.proquest.com/sciencejournals providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3di9QwEB-8XQVf_NarnksE3zRcP9Im9UVUblHwliIK61PJV-8Wju553T3wv3eSpj3Ww3vxJVAm_UhnkpnMTH4D8BqVso6ZUlQpmVImjcUp1WS0iZUyjRBI8geFv_LFQiyXZRUcbl1IqxzWRL9Qm7V2PvJDVCVoWaN8xe_Pf1FXNcpFV0MJjT2YOqQyNoHpx6NF9W30srg4FkvKcFomzsRhhxrLnSpzu6YS9T9NdjXSNTPzerbkXyFTr4nm9_93DA_gXrBByYdeaB7CLds-gjt9Vcrfj-Fs7gAm0AY1JNSUOCGrlgxR-HekkTpgeyPFZyTSVcg58I5FsiNcHXG-3vV2Q7pT6UZEApYrcdmpT-DH_Oj7p880FGWgOhfZhqasyEvJuMbdLY9V1hQC_7Fimmkk4VWp88IKYyRTSeFq5HGB8qA1M0JLo7KnMGnXrd0H4g79ciZZbrhiuRUl09Yh6pmUayUbG0EyMKbWAbHcFc44q33kPBN1z8wamVl7ZtZJBG_Ge857vI4bex8MjKrD3O3qKy5F8Gok46xzoRTZ2vXW9xEs4fioCJ714jG-Lks5mkmsiIDvCM7YwSF671La1alH9uaZ4EzkEbwdROzqs_49iuc3j-IF3E2duMecpuIAJpuLrX0Jt_XlZtVdzGCPL7lvxSzMnpl3TGB7nFau5dhOqy_H1c8_aJcnjw |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Jb9QwFH4qBQQX9iVQwEhwAqtZnNhBQggBo1YdRhyKNLfgLXSkKlOaGVD_FL-R95xkqqGitx44Rs9ZnvO9xfZbAF6gUbaxMIYbo1MutPMoUnXG69gYVyuFpJAoPJaTiZpOyy8b8HvIhaGwykEnBkXt5pb2yLfRlKBnjfiK3x394NQ1ik5XhxYaHSz2_MkvXLK1b3c_4v99maajT_sfdnjfVYDbXGULnooiL7WQFpdnMjZZXag8LY2wwiIJr0qbF145p4VJCmryJhUyZK1wympnMnzuJbiMelxSCJmcytWeDp2aiaTsc3PiTG23aB8ph43WaCV6GzxZt39nnNqzsZl_HdAGuze6-b_N2C240XvY7H0nErdhwzd34GrXc_PkLhyOqHwGetiO9R0zvrNZw4YYgzes1ravXI6UEG_JZ31ERdg2ZWui0zLayZ4vF6w90DSDrK9Uyyj29h58vRBW78NmM2_8Q2CU0iyFFrmTRuRelcJ6qhfoUmmNrn0EyQCEyvb12KktyGEV4gIyVXXgqRA8VQBPlUTwanXPUVeN5NzRWwMwql4ztdUpKiJ4viKjTqGDIt34-TKMUSKR-KgIHnRwXL0uSyU6gaKIQK4BdTWA6pWvU5rZQahbLjMlhcojeD1A-vSz_s3Fo_O5eAbXdvY_j6vx7mTvMVxPSdRiyVO1BZuL46V_Alfsz8WsPX4aZJXBt4uG-h9gk3uW |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Jb9QwFH4qZREX9iVQwEhwAmsSx4kdJIQQZUTVMpoDSL0Fb6EjVZnSzID61_h1PDvOVENFbz1wjJ6z2PneYr8N4AUqZZNyranWilGurEOWanLapFrbRkokhUThPTGZyP39aroBv4dcGB9WOcjEIKjt3Pgz8hGqErSsEV_pqIlhEdPt8bujH9R3kPKe1qGdRg-RXXfyC7dv3dudbfzXLxkbf_zy4RONHQaoKWS-oIyXRaW4MLhVE6nOm1IWrNLccIMkvKpMUTppreI6K33DNyFxcsZwK42yOsfnXoLLgheF567PbLo63_EeNJ5VMU8nzeWoQ13p89n8fq1Cy4Nm67rwjIF7Nk7zL2dt0IHjm__z6t2CG9HyJu97VrkNG669A1f7Xpwnd-Fw7MtqoOVtSeyk8Z3MWjLEHrwhjTKxojlSQhwmncVIi3CcStZYqiP-hHu-XJDuQPnVJLGCLfExuffg64VM9T5stvPWPQTiU50FV7ywQvPCyYob5-sIWiaMVo1LIBtAUZtYp923CzmsQ7xALuseSDUCqQ5AqrMEXq3uOeqrlJw7emsASR0lVlefIiSB5ysyyhrvQFKtmy_DGMkzgY9K4EEPzdXrcibQOORlAmINtKsBvo75OqWdHYR65iKXgssigdcDvE8_69-zeHT-LJ7BNUR4vbcz2X0M15nnulRQJrdgc3G8dE_givm5mHXHTwPbEvh20Uj_A7UehGM |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Federated+learning+in+medicine%3A+facilitating+multi-institutional+collaborations+without+sharing+patient+data&rft.jtitle=Scientific+reports&rft.au=Sheller%2C+Micah+J.&rft.au=Edwards%2C+Brandon&rft.au=Reina%2C+G.+Anthony&rft.au=Martin%2C+Jason&rft.date=2020-07-28&rft.issn=2045-2322&rft.eissn=2045-2322&rft.volume=10&rft.issue=1&rft_id=info:doi/10.1038%2Fs41598-020-69250-1&rft.externalDBID=n%2Fa&rft.externalDocID=10_1038_s41598_020_69250_1 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon |