FiCoS: A fine-grained and coarse-grained GPU-powered deterministic simulator for biochemical networks
Mathematical models of biochemical networks can largely facilitate the comprehension of the mechanisms at the basis of cellular processes, as well as the formulation of hypotheses that can be tested by means of targeted laboratory experiments. However, two issues might hamper the achievement of frui...
Saved in:
| Published in: | PLoS computational biology Vol. 17; no. 9; p. e1009410 |
|---|---|
| Main Authors: | , , , , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
United States
Public Library of Science
01.09.2021
Public Library of Science (PLoS) |
| Subjects: | |
| ISSN: | 1553-7358, 1553-734X, 1553-7358 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Mathematical models of biochemical networks can largely facilitate the comprehension of the mechanisms at the basis of cellular processes, as well as the formulation of hypotheses that can be tested by means of targeted laboratory experiments. However, two issues might hamper the achievement of fruitful outcomes. On the one hand, detailed mechanistic models can involve hundreds or thousands of molecular species and their intermediate complexes, as well as hundreds or thousands of chemical reactions, a situation generally occurring in rule-based modeling. On the other hand, the computational analysis of a model typically requires the execution of a large number of simulations for its calibration, or to test the effect of perturbations. As a consequence, the computational capabilities of modern Central Processing Units can be easily overtaken, possibly making the modeling of biochemical networks a worthless or ineffective effort. To the aim of overcoming the limitations of the current state-of-the-art simulation approaches, we present in this paper FiCoS, a novel “black-box” deterministic simulator that effectively realizes both a fine-grained and a coarse-grained parallelization on Graphics Processing Units. In particular, FiCoS exploits two different integration methods, namely, the Dormand–Prince and the Radau IIA, to efficiently solve both non-stiff and stiff systems of coupled Ordinary Differential Equations. We tested the performance of FiCoS against different deterministic simulators, by considering models of increasing size and by running analyses with increasing computational demands. FiCoS was able to dramatically speedup the computations up to 855×, showing to be a promising solution for the simulation and analysis of large-scale models of complex biological processes. |
|---|---|
| AbstractList | Mathematical models of biochemical networks can largely facilitate the comprehension of the mechanisms at the basis of cellular processes, as well as the formulation of hypotheses that can be tested by means of targeted laboratory experiments. However, two issues might hamper the achievement of fruitful outcomes. On the one hand, detailed mechanistic models can involve hundreds or thousands of molecular species and their intermediate complexes, as well as hundreds or thousands of chemical reactions, a situation generally occurring in rule-based modeling. On the other hand, the computational analysis of a model typically requires the execution of a large number of simulations for its calibration, or to test the effect of perturbations. As a consequence, the computational capabilities of modern Central Processing Units can be easily overtaken, possibly making the modeling of biochemical networks a worthless or ineffective effort. To the aim of overcoming the limitations of the current state-of-the-art simulation approaches, we present in this paper FiCoS, a novel "black-box" deterministic simulator that effectively realizes both a fine-grained and a coarse-grained parallelization on Graphics Processing Units. In particular, FiCoS exploits two different integration methods, namely, the Dormand-Prince and the Radau IIA, to efficiently solve both non-stiff and stiff systems of coupled Ordinary Differential Equations. We tested the performance of FiCoS against different deterministic simulators, by considering models of increasing size and by running analyses with increasing computational demands. FiCoS was able to dramatically speedup the computations up to 855×, showing to be a promising solution for the simulation and analysis of large-scale models of complex biological processes.Mathematical models of biochemical networks can largely facilitate the comprehension of the mechanisms at the basis of cellular processes, as well as the formulation of hypotheses that can be tested by means of targeted laboratory experiments. However, two issues might hamper the achievement of fruitful outcomes. On the one hand, detailed mechanistic models can involve hundreds or thousands of molecular species and their intermediate complexes, as well as hundreds or thousands of chemical reactions, a situation generally occurring in rule-based modeling. On the other hand, the computational analysis of a model typically requires the execution of a large number of simulations for its calibration, or to test the effect of perturbations. As a consequence, the computational capabilities of modern Central Processing Units can be easily overtaken, possibly making the modeling of biochemical networks a worthless or ineffective effort. To the aim of overcoming the limitations of the current state-of-the-art simulation approaches, we present in this paper FiCoS, a novel "black-box" deterministic simulator that effectively realizes both a fine-grained and a coarse-grained parallelization on Graphics Processing Units. In particular, FiCoS exploits two different integration methods, namely, the Dormand-Prince and the Radau IIA, to efficiently solve both non-stiff and stiff systems of coupled Ordinary Differential Equations. We tested the performance of FiCoS against different deterministic simulators, by considering models of increasing size and by running analyses with increasing computational demands. FiCoS was able to dramatically speedup the computations up to 855×, showing to be a promising solution for the simulation and analysis of large-scale models of complex biological processes. Mathematical models of biochemical networks can largely facilitate the comprehension of the mechanisms at the basis of cellular processes, as well as the formulation of hypotheses that can be tested by means of targeted laboratory experiments. However, two issues might hamper the achievement of fruitful outcomes. On the one hand, detailed mechanistic models can involve hundreds or thousands of molecular species and their intermediate complexes, as well as hundreds or thousands of chemical reactions, a situation generally occurring in rule-based modeling. On the other hand, the computational analysis of a model typically requires the execution of a large number of simulations for its calibration, or to test the effect of perturbations. As a consequence, the computational capabilities of modern Central Processing Units can be easily overtaken, possibly making the modeling of biochemical networks a worthless or ineffective effort. To the aim of overcoming the limitations of the current state-of-the-art simulation approaches, we present in this paper FiCoS, a novel "black-box" deterministic simulator that effectively realizes both a fine-grained and a coarse-grained parallelization on Graphics Processing Units. In particular, FiCoS exploits two different integration methods, namely, the Dormand-Prince and the Radau IIA, to efficiently solve both non-stiff and stiff systems of coupled Ordinary Differential Equations. We tested the performance of FiCoS against different deterministic simulators, by considering models of increasing size and by running analyses with increasing computational demands. FiCoS was able to dramatically speedup the computations up to 855×, showing to be a promising solution for the simulation and analysis of large-scale models of complex biological processes. Mathematical models of biochemical networks can largely facilitate the comprehension of the mechanisms at the basis of cellular processes, as well as the formulation of hypotheses that can be tested by means of targeted laboratory experiments. However, two issues might hamper the achievement of fruitful outcomes. On the one hand, detailed mechanistic models can involve hundreds or thousands of molecular species and their intermediate complexes, as well as hundreds or thousands of chemical reactions, a situation generally occurring in rule-based modeling. On the other hand, the computational analysis of a model typically requires the execution of a large number of simulations for its calibration, or to test the effect of perturbations. As a consequence, the computational capabilities of modern Central Processing Units can be easily overtaken, possibly making the modeling of biochemical networks a worthless or ineffective effort. To the aim of overcoming the limitations of the current state-of-the-art simulation approaches, we present in this paper FiCoS, a novel "black-box" deterministic simulator that effectively realizes both a fine-grained and a coarse-grained parallelization on Graphics Processing Units. In particular, FiCoS exploits two different integration methods, namely, the Dormand-Prince and the Radau IIA, to efficiently solve both non-stiff and stiff systems of coupled Ordinary Differential Equations. We tested the performance of FiCoS against different deterministic simulators, by considering models of increasing size and by running analyses with increasing computational demands. FiCoS was able to dramatically speedup the computations up to 855x, showing to be a promising solution for the simulation and analysis of large-scale models of complex biological processes. Mathematical models of biochemical networks can largely facilitate the comprehension of the mechanisms at the basis of cellular processes, as well as the formulation of hypotheses that can be tested by means of targeted laboratory experiments. However, two issues might hamper the achievement of fruitful outcomes. On the one hand, detailed mechanistic models can involve hundreds or thousands of molecular species and their intermediate complexes, as well as hundreds or thousands of chemical reactions, a situation generally occurring in rule-based modeling. On the other hand, the computational analysis of a model typically requires the execution of a large number of simulations for its calibration, or to test the effect of perturbations. As a consequence, the computational capabilities of modern Central Processing Units can be easily overtaken, possibly making the modeling of biochemical networks a worthless or ineffective effort. To the aim of overcoming the limitations of the current state-of-the-art simulation approaches, we present in this paper FiCoS, a novel “black-box” deterministic simulator that effectively realizes both a fine-grained and a coarse-grained parallelization on Graphics Processing Units. In particular, FiCoS exploits two different integration methods, namely, the Dormand–Prince and the Radau IIA, to efficiently solve both non-stiff and stiff systems of coupled Ordinary Differential Equations. We tested the performance of FiCoS against different deterministic simulators, by considering models of increasing size and by running analyses with increasing computational demands. FiCoS was able to dramatically speedup the computations up to 855×, showing to be a promising solution for the simulation and analysis of large-scale models of complex biological processes. Systems Biology is an interdisciplinary research area focusing on the integration of biological data with mathematical and computational methods in order to unravel and predict the emergent behavior of complex biological systems. The ultimate goal is the understanding of the complex mechanisms at the basis of biological processes, together with the formulation of novel hypotheses that can be then tested by means of laboratory experiments. In such a context, mechanistic models can be used to describe and investigate biochemical reaction networks by taking into account all the details related to their stoichiometry and kinetics. Unfortunately, these models can be characterized by hundreds or thousands of molecular species and biochemical reactions, making their simulation unfeasible with classic simulators running on Central Processing Units (CPUs). In addition, a large number of simulations might be required to calibrate the models and/or to test the effect of perturbations. In order to overcome the limitations imposed by CPUs, Graphics Processing Units (GPUs) can be effectively used to accelerate the simulations of these models. We thus designed and developed a novel GPU-based tool, called FiCoS, to speed-up the computational analyses typically required in Systems Biology. |
| Audience | Academic |
| Author | Cazzaniga, Paolo Spolaor, Simone Mauri, Giancarlo Capitoli, Giulia Besozzi, Daniela Nobile, Marco S. Tangherloni, Andrea Rundo, Leonardo |
| AuthorAffiliation | 1 Department of Human and Social Sciences, University of Bergamo, Bergamo, Italy 4 Bicocca Bioinformatics Biostatistics and Bioimaging Centre (B4), University of Milano-Bicocca, Vedano al Lambro, Italy Hebrew University of Jerusalem, ISRAEL 7 Department of Radiology, University of Cambridge, Cambridge, United Kingdom 6 Department of Informatics, Systems and Communication, University of Milano-Bicocca, Milan, Italy 5 School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy 3 SYSBIO/ISBE.IT Centre of Systems Biology, Milan, Italy 2 Department of Industrial Engineering & Innovation Sciences, Eindhoven University of Technology, Eindhoven, The Netherlands 8 Cancer Research UK Cambridge Centre, University of Cambridge, Cambridge, United Kingdom |
| AuthorAffiliation_xml | – name: 2 Department of Industrial Engineering & Innovation Sciences, Eindhoven University of Technology, Eindhoven, The Netherlands – name: 1 Department of Human and Social Sciences, University of Bergamo, Bergamo, Italy – name: 6 Department of Informatics, Systems and Communication, University of Milano-Bicocca, Milan, Italy – name: 8 Cancer Research UK Cambridge Centre, University of Cambridge, Cambridge, United Kingdom – name: 3 SYSBIO/ISBE.IT Centre of Systems Biology, Milan, Italy – name: 5 School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy – name: 4 Bicocca Bioinformatics Biostatistics and Bioimaging Centre (B4), University of Milano-Bicocca, Vedano al Lambro, Italy – name: 7 Department of Radiology, University of Cambridge, Cambridge, United Kingdom – name: Hebrew University of Jerusalem, ISRAEL |
| Author_xml | – sequence: 1 givenname: Andrea orcidid: 0000-0002-5856-4453 surname: Tangherloni fullname: Tangherloni, Andrea – sequence: 2 givenname: Marco S. orcidid: 0000-0002-7692-7203 surname: Nobile fullname: Nobile, Marco S. – sequence: 3 givenname: Paolo orcidid: 0000-0001-7780-0434 surname: Cazzaniga fullname: Cazzaniga, Paolo – sequence: 4 givenname: Giulia surname: Capitoli fullname: Capitoli, Giulia – sequence: 5 givenname: Simone orcidid: 0000-0002-3383-367X surname: Spolaor fullname: Spolaor, Simone – sequence: 6 givenname: Leonardo orcidid: 0000-0003-3341-5483 surname: Rundo fullname: Rundo, Leonardo – sequence: 7 givenname: Giancarlo orcidid: 0000-0003-3520-4022 surname: Mauri fullname: Mauri, Giancarlo – sequence: 8 givenname: Daniela orcidid: 0000-0001-5532-3059 surname: Besozzi fullname: Besozzi, Daniela |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/34499658$$D View this record in MEDLINE/PubMed |
| BookMark | eNqVkl1vFCEUhiemxn7oPzA6iTd6MSsMwwBemGw2tm7SqLH2mgBz2FJnYIUZq_9e1t3WrvHGTBhODg8vnMN7XBz44KEonmI0w4Th19dhil71s7XRboYREg1GD4ojTCmpGKH84F58WByndI1QDkX7qDgkTSNES_lRAaduES7elPPSOg_VKqo8daXyXWmCiulP6uzTZbUONxBz3MEIcXDepdGZMrlh6tUYYmnz0C6YKxicUX3pYbwJ8Wt6XDy0qk_wZDefFJen774s3lfnH8-Wi_l5ZSivx0pp3nW61kzpGiEgyBCrNNIUtVpQhZgyzBJmkABlTIsFIgZqZUAjKzoryEnxfKu77kOSuw4lWWd1yltGm0wst0QX1LVcRzeo-FMG5eTvRIgrqWIuqgdpWg5NLXj-06bDVgtiCCec54VGg85ab3enTXqAzoAfo-r3RPdXvLuSq_Bd8oa1CKMs8HInEMO3CdIoB5cM9L3yEKbNvRkWBKGGZ_TFX-i_q5ttqZXKBThvQz7X5K_bPEj2j3U5P28Zo4jUguUNr_Y2ZGaEH-NKTSnJ5cXn_2A_7LPP7rfmrie3xstAswVMDClFsHcIRnLj79v65Mbfcudv8gu7sO97 |
| Cites_doi | 10.1007/s11064-006-9132-9 10.1109/CEC.2018.8477873 10.15252/msb.20199110 10.1016/S0010-4655(02)00280-1 10.1007/978-3-030-34585-3_17 10.1126/science.167.3914.63 10.1137/0904010 10.1007/s11721-007-0002-0 10.1038/nrg2509 10.1146/annurev.physchem.58.032806.104637 10.1002/9780470753767 10.1016/j.camwa.2009.12.025 10.1093/bioinformatics/btr015 10.1016/j.bpj.2009.09.064 10.1007/s11227-018-2549-5 10.1038/s41598-017-15313-9 10.1049/iet-syb:20080102 10.1186/s12859-017-1666-0 10.1371/journal.pone.0116550 10.1016/j.mbs.2009.03.002 10.1093/bioinformatics/btl485 10.1016/0021-9991(76)90041-3 10.7551/mitpress/9780262195485.001.0001 10.1016/0771-050X(80)90013-3 10.1063/1.4822377 10.1063/1.2159468 10.1007/978-3-642-18123-8_12 10.1371/journal.pcbi.1005220 10.1093/bioinformatics/btv363 10.1016/j.swevo.2017.09.001 10.1016/j.asoc.2019.105494 10.1016/j.pisc.2014.12.002 10.1038/msb.2013.1 10.1109/IISWC.2014.6983039 10.1016/j.ast.2019.105355 10.1371/journal.pone.0091963 10.1016/S0377-0427(99)00134-X 10.1371/journal.pcbi.1004012 10.1090/S0025-5718-1974-0331793-2 10.3389/fphys.2015.00042 10.1038/nature07211 10.1007/978-3-540-70529-1_94 10.1016/j.molcel.2013.01.018 10.1093/bioinformatics/btw469 10.1007/s11227-014-1208-8 10.1177/1094342009106066 10.1063/1.1627296 10.1007/BF01989751 10.1093/bioinformatics/btx420 10.1016/S0378-4754(00)00270-6 10.1063/1.2354085 10.1371/journal.pone.0037370 10.1016/j.cpc.2009.09.018 10.1371/journal.pone.0046693 10.1109/CIBCB.2015.7300288 10.1016/j.febslet.2013.06.043 10.1038/ncb1497 10.1002/kin.20369 10.1109/MCS.2009.932926 10.1016/j.csbj.2014.10.003 10.20944/preprints202012.0296.v1 10.1137/0910062 |
| ContentType | Journal Article |
| Copyright | COPYRIGHT 2021 Public Library of Science 2021 Tangherloni et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2021 Tangherloni et al 2021 Tangherloni et al |
| Copyright_xml | – notice: COPYRIGHT 2021 Public Library of Science – notice: 2021 Tangherloni et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2021 Tangherloni et al 2021 Tangherloni et al |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM ISN ISR 3V. 7QO 7QP 7TK 7TM 7X7 7XB 88E 8AL 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ HCIFZ JQ2 K7- K9. LK8 M0N M0S M1P M7P P5Z P62 P64 PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI Q9U RC3 7X8 5PM DOA |
| DOI | 10.1371/journal.pcbi.1009410 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Gale In Context: Canada Gale In Context: Science ProQuest Central (Corporate) Biotechnology Research Abstracts Calcium & Calcified Tissue Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Computing Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni Edition) ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Technology Collection Natural Science Collection ProQuest One Community College ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database ProQuest Health & Medical Complete (Alumni) ProQuest Biological Science Collection Computing Database Health & Medical Collection (Alumni Edition) Medical Database Biological Science Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central Basic Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database Computer Science Database ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Nucleic Acids Abstracts SciTech Premium Collection ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) Advanced Technologies & Aerospace Collection ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Central ProQuest Health & Medical Research Collection Genetics Abstracts Biotechnology Research Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea ProQuest Computing ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic MEDLINE Publicly Available Content Database CrossRef |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Biology |
| DocumentTitleAlternate | FiCoS: A novel GPU-powered deterministic simulator for biochemical networks |
| EISSN | 1553-7358 |
| ExternalDocumentID | 2582586754 oai_doaj_org_article_c68e42988e454d1fb93c38388c684beb PMC8476010 A677503297 34499658 10_1371_journal_pcbi_1009410 |
| Genre | Research Support, Non-U.S. Gov't Journal Article |
| GeographicLocations | Italy |
| GeographicLocations_xml | – name: Italy |
| GroupedDBID | --- 123 29O 2WC 53G 5VS 7X7 88E 8FE 8FG 8FH 8FI 8FJ AAFWJ AAKPC AAUCC AAWOE AAYXX ABDBF ABUWG ACCTH ACGFO ACIHN ACIWK ACPRK ACUHS ADBBV AEAQA AENEX AEUYN AFFHD AFKRA AFPKN AFRAH AHMBA ALMA_UNASSIGNED_HOLDINGS AOIJS ARAPS AZQEC B0M BAIFH BAWUL BBNVY BBTPI BCNDV BENPR BGLVJ BHPHI BPHCQ BVXVI BWKFM CCPQU CITATION CS3 DIK DWQXO E3Z EAP EAS EBD EBS EJD EMK EMOBN ESX F5P FPL FYUFA GNUQQ GROUPED_DOAJ GX1 HCIFZ HMCUK HYE IAO IGS INH INR ISN ISR ITC J9A K6V K7- KQ8 LK8 M1P M48 M7P O5R O5S OK1 OVT P2P P62 PHGZM PHGZT PIMPY PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO PV9 RNS RPM RZL SV3 TR2 TUS UKHRP WOW XSB ~8M ADRAZ ALIPV C1A CGR CUY CVF ECM EIF H13 IPNFZ NPM RIG WOQ 3V. 7QO 7QP 7TK 7TM 7XB 8AL 8FD 8FK FR3 JQ2 K9. M0N P64 PKEHL PQEST PQUKI Q9U RC3 7X8 PUEGO 5PM AAPBV ABPTK M~E N95 UMP |
| ID | FETCH-LOGICAL-c582t-ab8ddb2b7ab200e30c3fab0b506b95a07ac7f37c09eacc61903ce2aceb0f9df93 |
| IEDL.DBID | K7- |
| ISICitedReferencesCount | 1 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000720144700003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1553-7358 1553-734X |
| IngestDate | Sun May 07 16:29:13 EDT 2023 Fri Oct 03 12:46:48 EDT 2025 Tue Nov 04 01:53:05 EST 2025 Fri Sep 05 06:41:18 EDT 2025 Thu Oct 30 02:10:40 EDT 2025 Tue Nov 04 17:57:00 EST 2025 Thu Nov 13 15:07:59 EST 2025 Thu Nov 13 15:37:12 EST 2025 Mon Jul 21 06:00:43 EDT 2025 Sat Nov 29 02:42:15 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 9 |
| Language | English |
| License | This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Creative Commons Attribution License |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c582t-ab8ddb2b7ab200e30c3fab0b506b95a07ac7f37c09eacc61903ce2aceb0f9df93 |
| Notes | new_version ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 The authors have declared that no competing interests exist. |
| ORCID | 0000-0002-5856-4453 0000-0003-3520-4022 0000-0001-7780-0434 0000-0001-5532-3059 0000-0002-7692-7203 0000-0003-3341-5483 0000-0002-3383-367X |
| OpenAccessLink | https://www.proquest.com/docview/2582586754?pq-origsite=%requestingapplication% |
| PMID | 34499658 |
| PQID | 2582586754 |
| PQPubID | 1436340 |
| ParticipantIDs | plos_journals_2582586754 doaj_primary_oai_doaj_org_article_c68e42988e454d1fb93c38388c684beb pubmedcentral_primary_oai_pubmedcentral_nih_gov_8476010 proquest_miscellaneous_2571930048 proquest_journals_2582586754 gale_infotracacademiconefile_A677503297 gale_incontextgauss_ISR_A677503297 gale_incontextgauss_ISN_A677503297 pubmed_primary_34499658 crossref_primary_10_1371_journal_pcbi_1009410 |
| PublicationCentury | 2000 |
| PublicationDate | 2021-09-01 |
| PublicationDateYYYYMMDD | 2021-09-01 |
| PublicationDate_xml | – month: 09 year: 2021 text: 2021-09-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States – name: San Francisco – name: San Francisco, CA USA |
| PublicationTitle | PLoS computational biology |
| PublicationTitleAlternate | PLoS Comput Biol |
| PublicationYear | 2021 |
| Publisher | Public Library of Science Public Library of Science (PLoS) |
| Publisher_xml | – name: Public Library of Science – name: Public Library of Science (PLoS) |
| References | I Komarov (pcbi.1009410.ref023) 2012; 7 D Wilkinson (pcbi.1009410.ref009) 2009; 10 pcbi.1009410.ref026 A Saltelli (pcbi.1009410.ref055) 2010; 181 pcbi.1009410.ref066 pcbi.1009410.ref062 pcbi.1009410.ref061 LA Harris (pcbi.1009410.ref019) 2017; 33 H Li (pcbi.1009410.ref012) 2010; 24 JR Dormand (pcbi.1009410.ref028) 1980; 6 SD Cohen (pcbi.1009410.ref040) 1996; 10 M Rathinam (pcbi.1009410.ref034) 2003; 119 DJ Higham (pcbi.1009410.ref035) 1993; 33 PN Brown (pcbi.1009410.ref038) 1989; 10 A Prothero (pcbi.1009410.ref072) 1974; 28 Y Cao (pcbi.1009410.ref018) 2006; 124 MS Nobile (pcbi.1009410.ref015) 2014; 69 E Hairer (pcbi.1009410.ref032) 1999; 111 BB Aldridge (pcbi.1009410.ref005) 2006; 8 A Tangherloni (pcbi.1009410.ref007) 2019; 81 JR Cash (pcbi.1009410.ref045) 2015 pcbi.1009410.ref037 N Jamshidi (pcbi.1009410.ref048) 2010; 98 I Komarov (pcbi.1009410.ref022) 2012; 7 MS Nobile (pcbi.1009410.ref057) 2018; 39 V Chellaboina (pcbi.1009410.ref067) 2009; 29 J Martín-Vaquero (pcbi.1009410.ref071) 2010; 59 ET Somogyi (pcbi.1009410.ref039) 2015; 31 pcbi.1009410.ref074 MS Nobile (pcbi.1009410.ref017) 2014; 9 T Wuntch (pcbi.1009410.ref053) 1970; 167 Y Zhou (pcbi.1009410.ref014) 2011; 27 P Szymańska (pcbi.1009410.ref036) 2015; 10 SG Riva (pcbi.1009410.ref069) 2021 IC Chou (pcbi.1009410.ref006) 2009; 219 CF Lopez (pcbi.1009410.ref020) 2013; 9 B Drawert (pcbi.1009410.ref025) 2016; 12 R Poli (pcbi.1009410.ref058) 2007; 1 E Hairer (pcbi.1009410.ref030) 2008 J O’Brien (pcbi.1009410.ref052) 2007; 32 A Cornish-Bowden (pcbi.1009410.ref063) 2015; 4 pcbi.1009410.ref003 LA Harris (pcbi.1009410.ref011) 2006; 125 pcbi.1009410.ref002 pcbi.1009410.ref046 LA Harris (pcbi.1009410.ref047) 2016; 32 L Petzold (pcbi.1009410.ref016) 1983; 4 pcbi.1009410.ref043 A Saltelli (pcbi.1009410.ref056) 2002; 145 MS Nobile (pcbi.1009410.ref008) 2017; 18 DT Gillespie (pcbi.1009410.ref033) 2007; 58 JC Butcher (pcbi.1009410.ref044) 2008 Y Du (pcbi.1009410.ref073) 2019; 93 A Przybylski (pcbi.1009410.ref060) 2017; 7 CM Metallo (pcbi.1009410.ref050) 2013; 49 MS Nobile (pcbi.1009410.ref065) 2019; 75 B Munsky (pcbi.1009410.ref004) 2018 JR Dormand (pcbi.1009410.ref029) 1996 II Moraru (pcbi.1009410.ref042) 2008; 2 DT Gillespie (pcbi.1009410.ref013) 1976; 22 AV Hill (pcbi.1009410.ref064) 1910; 40 S Hoops (pcbi.1009410.ref041) 2006; 22 K Sumiyoshi (pcbi.1009410.ref024) 2015; 6 pcbi.1009410.ref059 E Hairer (pcbi.1009410.ref031) 2002 MR Bennett (pcbi.1009410.ref049) 2008; 454 A Tangherloni (pcbi.1009410.ref021) 2017; 18 TJ Székely (pcbi.1009410.ref010) 2014; 12 IM Sobol (pcbi.1009410.ref054) 2001; 55 Z Szallasi (pcbi.1009410.ref001) 2006 EO Voit (pcbi.1009410.ref068) 2015; 11 K Smallbone (pcbi.1009410.ref051) 2013; 587 SM Keating (pcbi.1009410.ref027) 2020; 16 H Yue (pcbi.1009410.ref070) 2008; 40 |
| References_xml | – ident: pcbi.1009410.ref043 – volume: 32 start-page: 597 issue: 4-5 year: 2007 ident: pcbi.1009410.ref052 article-title: Kinetic parameters and lactate dehydrogenase isozyme activities support possible lactate utilization by neurons publication-title: Neurochem Res doi: 10.1007/s11064-006-9132-9 – volume-title: Solving ordinary differential equations II year: 2002 ident: pcbi.1009410.ref031 – ident: pcbi.1009410.ref059 doi: 10.1109/CEC.2018.8477873 – volume: 16 start-page: e9110 issue: 8 year: 2020 ident: pcbi.1009410.ref027 article-title: SBML Level 3: an extensible format for the exchange and reuse of biological models publication-title: Mol Syst Biol doi: 10.15252/msb.20199110 – volume: 145 start-page: 280 issue: 2 year: 2002 ident: pcbi.1009410.ref056 article-title: Making best use of model evaluations to compute sensitivity indices publication-title: Comput Phys Commun doi: 10.1016/S0010-4655(02)00280-1 – ident: pcbi.1009410.ref037 doi: 10.1007/978-3-030-34585-3_17 – volume: 167 start-page: 63 issue: 3914 year: 1970 ident: pcbi.1009410.ref053 article-title: Lactate dehydrogenase isozymes: kinetic properties at high enzyme concentrations publication-title: Science doi: 10.1126/science.167.3914.63 – volume: 4 start-page: 136 issue: 1 year: 1983 ident: pcbi.1009410.ref016 article-title: Automatic selection of methods for solving stiff and nonstiff systems of ordinary differential equations publication-title: SIAM J Sci Stat Comp doi: 10.1137/0904010 – volume: 1 start-page: 33 issue: 1 year: 2007 ident: pcbi.1009410.ref058 article-title: Particle swarm optimization publication-title: Swarm intelligence doi: 10.1007/s11721-007-0002-0 – volume: 10 start-page: 122 issue: 2 year: 2009 ident: pcbi.1009410.ref009 article-title: Stochastic modelling for quantitative description of heterogeneous biological systems publication-title: Nat Rev Genet doi: 10.1038/nrg2509 – volume: 58 start-page: 35 year: 2007 ident: pcbi.1009410.ref033 article-title: Stochastic simulation of chemical kinetics publication-title: Annu Rev Phys Chem doi: 10.1146/annurev.physchem.58.032806.104637 – volume-title: Numerical methods for ordinary differential equations year: 2008 ident: pcbi.1009410.ref044 doi: 10.1002/9780470753767 – ident: pcbi.1009410.ref046 – volume: 59 start-page: 2464 issue: 8 year: 2010 ident: pcbi.1009410.ref071 article-title: A 17th-order Radau IIA method for package RADAU. Applications in mechanical systems publication-title: Comput Math Appl doi: 10.1016/j.camwa.2009.12.025 – volume: 18 start-page: 870 issue: 5 year: 2017 ident: pcbi.1009410.ref008 article-title: Graphics processing units in bioinformatics, computational biology and systems biology publication-title: Brief Bioinform – volume: 27 start-page: 874 issue: 6 year: 2011 ident: pcbi.1009410.ref014 article-title: GPU accelerated biochemical network simulation publication-title: Bioinformatics doi: 10.1093/bioinformatics/btr015 – volume: 98 start-page: 175 issue: 2 year: 2010 ident: pcbi.1009410.ref048 article-title: Mass action stoichiometric simulation models: incorporating kinetics and regulation into stoichiometric models publication-title: Biophys J doi: 10.1016/j.bpj.2009.09.064 – volume: 75 start-page: 7844 issue: 12 year: 2019 ident: pcbi.1009410.ref065 article-title: ginSODA: massive parallel integration of stiff ODE systems on GPUs publication-title: J Supercomput doi: 10.1007/s11227-018-2549-5 – volume: 7 start-page: 15722 issue: 1 year: 2017 ident: pcbi.1009410.ref060 article-title: Gpufit: An open-source toolkit for GPU-accelerated curve fitting publication-title: Sci Rep doi: 10.1038/s41598-017-15313-9 – volume: 2 start-page: 352 issue: 5 year: 2008 ident: pcbi.1009410.ref042 article-title: Virtual Cell modelling and simulation software environment publication-title: IET Syst Biol doi: 10.1049/iet-syb:20080102 – volume: 18 start-page: 246 issue: 1 year: 2017 ident: pcbi.1009410.ref021 article-title: LASSIE: simulating large-scale models of biochemical systems on GPUs publication-title: BMC Bioinform doi: 10.1186/s12859-017-1666-0 – volume: 10 start-page: e0116550 issue: 3 year: 2015 ident: pcbi.1009410.ref036 article-title: Computational analysis of an Autophagy/Translation switch based on mutual inhibition of MTORC1 and ULK1 publication-title: PLoS One doi: 10.1371/journal.pone.0116550 – volume: 219 start-page: 57 issue: 2 year: 2009 ident: pcbi.1009410.ref006 article-title: Recent developments in parameter estimation and structure identification of biochemical and genomic systems publication-title: Math Biosci doi: 10.1016/j.mbs.2009.03.002 – volume: 22 start-page: 3067 issue: 24 year: 2006 ident: pcbi.1009410.ref041 article-title: COPASI—a COmplex PAthway SImulator publication-title: Bioinformatics doi: 10.1093/bioinformatics/btl485 – volume: 22 start-page: 403 issue: 4 year: 1976 ident: pcbi.1009410.ref013 article-title: A general method for numerically simulating the stochastic time evolution of coupled chemical reactions publication-title: J Comput Phys doi: 10.1016/0021-9991(76)90041-3 – volume-title: System Modeling in Cellular Biology: From Concepts to Nuts and Bolts year: 2006 ident: pcbi.1009410.ref001 doi: 10.7551/mitpress/9780262195485.001.0001 – volume: 6 start-page: 19 issue: 1 year: 1980 ident: pcbi.1009410.ref028 article-title: A family of embedded Runge-Kutta formulae publication-title: J Comput Appl Math doi: 10.1016/0771-050X(80)90013-3 – volume: 10 start-page: 138 issue: 2 year: 1996 ident: pcbi.1009410.ref040 article-title: CVODE, a stiff/nonstiff ODE solver in C publication-title: Comput Phys doi: 10.1063/1.4822377 – volume: 40 start-page: 4 year: 1910 ident: pcbi.1009410.ref064 article-title: The possible effects of the aggregation of the molecules of haemoglobin on its dissociation curves publication-title: J Physiol – volume: 124 start-page: 044109 issue: 4 year: 2006 ident: pcbi.1009410.ref018 article-title: Efficient step size selection for the tau-leaping simulation method publication-title: J Chem Phys doi: 10.1063/1.2159468 – volume-title: Numerical methods for differential equations: a computational approach year: 1996 ident: pcbi.1009410.ref029 – ident: pcbi.1009410.ref066 doi: 10.1007/978-3-642-18123-8_12 – volume: 12 start-page: e1005220 issue: 12 year: 2016 ident: pcbi.1009410.ref025 article-title: Stochastic simulation service: bridging the gap between the computational expert and the biologist publication-title: PLoS Comput Biol doi: 10.1371/journal.pcbi.1005220 – volume: 31 start-page: 3315 issue: 20 year: 2015 ident: pcbi.1009410.ref039 article-title: libRoadRunner: a high performance SBML simulation and analysis library publication-title: Bioinformatics doi: 10.1093/bioinformatics/btv363 – volume: 39 start-page: 70 year: 2018 ident: pcbi.1009410.ref057 article-title: Fuzzy Self-Tuning PSO: A settings-free algorithm for global optimization publication-title: Swarm Evol Comput doi: 10.1016/j.swevo.2017.09.001 – volume: 81 start-page: 105494 year: 2019 ident: pcbi.1009410.ref007 article-title: Biochemical parameter estimation vs. benchmark functions: a comparative study of optimization performance and representation design publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2019.105494 – volume-title: Solving ordinary differential equations I year: 2008 ident: pcbi.1009410.ref030 – volume: 4 start-page: 3 year: 2015 ident: pcbi.1009410.ref063 article-title: One hundred years of Michaelis–Menten kinetics publication-title: Perspect Sci doi: 10.1016/j.pisc.2014.12.002 – volume: 9 issue: 1 year: 2013 ident: pcbi.1009410.ref020 article-title: Programming biological models in Python using PySB publication-title: Mol Syst Biol doi: 10.1038/msb.2013.1 – ident: pcbi.1009410.ref062 doi: 10.1109/IISWC.2014.6983039 – volume: 93 start-page: 105355 year: 2019 ident: pcbi.1009410.ref073 article-title: A strongly S-stable low-dissipation and low-dispersion Runge-Kutta scheme for convection diffusion systems publication-title: Aerosp Sci Technol doi: 10.1016/j.ast.2019.105355 – volume: 9 start-page: e91963 issue: 3 year: 2014 ident: pcbi.1009410.ref017 article-title: cuTauLeaping: a GPU-powered tau-leaping stochastic simulator for massive parallel analyses of biological systems publication-title: PLoS One doi: 10.1371/journal.pone.0091963 – volume: 111 start-page: 93 issue: 1-2 year: 1999 ident: pcbi.1009410.ref032 article-title: Stiff differential equations solved by Radau methods publication-title: J Comput Appl Math doi: 10.1016/S0377-0427(99)00134-X – volume: 11 start-page: e1004012 issue: 1 year: 2015 ident: pcbi.1009410.ref068 article-title: 150 years of the mass action law publication-title: PLoS Comput Biol doi: 10.1371/journal.pcbi.1004012 – volume: 28 start-page: 145 issue: 125 year: 1974 ident: pcbi.1009410.ref072 article-title: On the stability and accuracy of one-step methods for solving stiff systems of ordinary differential equations publication-title: Math Comp doi: 10.1090/S0025-5718-1974-0331793-2 – volume: 6 start-page: 42 year: 2015 ident: pcbi.1009410.ref024 article-title: Acceleration of discrete stochastic biochemical simulation using GPGPU publication-title: Front Physiol doi: 10.3389/fphys.2015.00042 – volume: 454 start-page: 1119 issue: 7208 year: 2008 ident: pcbi.1009410.ref049 article-title: Metabolic gene regulation in a dynamically changing environment publication-title: Nature doi: 10.1038/nature07211 – ident: pcbi.1009410.ref074 – start-page: 97 volume-title: Encyclopedia of Applied and Computational Mathematics year: 2015 ident: pcbi.1009410.ref045 doi: 10.1007/978-3-540-70529-1_94 – volume: 49 start-page: 388 issue: 3 year: 2013 ident: pcbi.1009410.ref050 article-title: Understanding metabolic regulation and its influence on cell physiology publication-title: Mol Cell doi: 10.1016/j.molcel.2013.01.018 – volume-title: Quantitative biology: theory, computational methods, and models year: 2018 ident: pcbi.1009410.ref004 – ident: pcbi.1009410.ref002 – volume: 32 start-page: 3366 issue: 21 year: 2016 ident: pcbi.1009410.ref047 article-title: BioNetGen 2.2: advances in rule-based modeling publication-title: Bioinformatics doi: 10.1093/bioinformatics/btw469 – ident: pcbi.1009410.ref061 – volume: 69 start-page: 17 issue: 1 year: 2014 ident: pcbi.1009410.ref015 article-title: GPU-accelerated simulations of mass-action kinetics models with cupSODA publication-title: J Supercomput doi: 10.1007/s11227-014-1208-8 – volume: 24 start-page: 107 issue: 2 year: 2010 ident: pcbi.1009410.ref012 article-title: Efficient parallelization of the stochastic simulation algorithm for chemically reacting systems on the graphics processing unit publication-title: Int J High Perform Comput Appl doi: 10.1177/1094342009106066 – volume: 119 start-page: 12784 issue: 24 year: 2003 ident: pcbi.1009410.ref034 article-title: Stiffness in stochastic chemically reacting systems: The implicit tau-leaping method publication-title: J Chem Phys doi: 10.1063/1.1627296 – volume: 33 start-page: 285 issue: 2 year: 1993 ident: pcbi.1009410.ref035 article-title: Stiffness of ODEs publication-title: BIT Numer Math doi: 10.1007/BF01989751 – volume: 33 start-page: 3492 issue: 21 year: 2017 ident: pcbi.1009410.ref019 article-title: GPU-powered model analysis with PySB/cupSODA publication-title: Bioinformatics doi: 10.1093/bioinformatics/btx420 – volume: 55 start-page: 271 issue: 1-3 year: 2001 ident: pcbi.1009410.ref054 article-title: Global sensitivity indices for nonlinear mathematical models and their Monte Carlo estimates publication-title: Math Comput Simul doi: 10.1016/S0378-4754(00)00270-6 – volume: 125 start-page: 144107 issue: 14 year: 2006 ident: pcbi.1009410.ref011 article-title: A “partitioned leaping” approach for multiscale modeling of chemical reaction dynamics publication-title: J Chem Phys doi: 10.1063/1.2354085 – volume: 7 start-page: e37370 issue: 6 year: 2012 ident: pcbi.1009410.ref022 article-title: Accelerating the Gillespie τ-leaping method using graphics processing units publication-title: PLoS One doi: 10.1371/journal.pone.0037370 – volume: 181 start-page: 259 issue: 2 year: 2010 ident: pcbi.1009410.ref055 article-title: Variance based sensitivity analysis of model output. Design and estimator for the total sensitivity index publication-title: Comput Phys Commun doi: 10.1016/j.cpc.2009.09.018 – volume: 7 start-page: e46693 issue: 11 year: 2012 ident: pcbi.1009410.ref023 article-title: Accelerating the Gillespie exact stochastic simulation algorithm using hybrid parallel execution on graphics processing units publication-title: PLoS One doi: 10.1371/journal.pone.0046693 – ident: pcbi.1009410.ref003 doi: 10.1109/CIBCB.2015.7300288 – volume: 587 start-page: 2832 issue: 17 year: 2013 ident: pcbi.1009410.ref051 article-title: A model of yeast glycolysis based on a consistent kinetic characterisation of all its enzymes publication-title: FEBS Lett doi: 10.1016/j.febslet.2013.06.043 – year: 2021 ident: pcbi.1009410.ref069 article-title: SMGen: A generator of synthetic models of biochemical reaction networks publication-title: bioRxiv – volume: 8 start-page: 1195 issue: 11 year: 2006 ident: pcbi.1009410.ref005 article-title: Physicochemical modelling of cell signalling pathways publication-title: Nat Cell Biol doi: 10.1038/ncb1497 – volume: 40 start-page: 730 issue: 11 year: 2008 ident: pcbi.1009410.ref070 article-title: Sensitivity analysis and robust experimental design of a signal transduction pathway system publication-title: Int J Chem Kinet doi: 10.1002/kin.20369 – volume: 29 start-page: 60 issue: 4 year: 2009 ident: pcbi.1009410.ref067 article-title: Modeling and analysis of mass-action kinetics publication-title: IEEE Control Syst doi: 10.1109/MCS.2009.932926 – volume: 12 start-page: 14 issue: 20–21 year: 2014 ident: pcbi.1009410.ref010 article-title: Stochastic simulation in systems biology publication-title: Comput Struct Biotechnol J doi: 10.1016/j.csbj.2014.10.003 – ident: pcbi.1009410.ref026 doi: 10.20944/preprints202012.0296.v1 – volume: 10 start-page: 1038 issue: 5 year: 1989 ident: pcbi.1009410.ref038 article-title: VODE: A variable-coefficient ODE solver publication-title: SIAM J Sci Stat Comp doi: 10.1137/0910062 |
| SSID | ssj0035896 |
| Score | 2.3584523 |
| Snippet | Mathematical models of biochemical networks can largely facilitate the comprehension of the mechanisms at the basis of cellular processes, as well as the... |
| SourceID | plos doaj pubmedcentral proquest gale pubmed crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database |
| StartPage | e1009410 |
| SubjectTerms | Algorithms Autophagy Biochemical Phenomena Biochemistry Biological activity Biological complexity Biological models (mathematics) Biology Biology and Life Sciences Calibration Central processing units Chemical reactions Computational Biology Computer and Information Sciences Computer applications Computer Graphics Computer Simulation Computer-generated environments CPUs Differential equations Ecology and Environmental Sciences Graphics processing units Humans Libraries Mathematical Concepts Mathematical models Metabolic Networks and Pathways Metabolism Methods Models, Biological Networks Ordinary differential equations Parallel processing Parameter estimation Perturbation Physical Sciences Protein Biosynthesis Research and Analysis Methods Scale models Simulation Simulators Software Synthetic Biology Systems Biology |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lj9MwELZQBRIXxHvDLsggJE5m0ziJY25lRYFLtWJZqTfLzyUSJFXTIu2_Z8ZJS4MWceESRfZcPDMefyOP5yPktcxd7soyZQLgJ4MTyjITrGVwOhQyK6wN2kWyCbFYVMulPD-g-sKasL49cK-4U1tWHmJmBd8id9NgJLeQVVUVTOTGG4y-gHp2yVQfg3lRRWYuJMVhgufL4dEcF9PTwUZvV9bUWCMgc3w9e3Aoxd79-wg9WX1vu5vg559VlAfH0vw-uTfgSTrr1_GA3PLNQ3KnZ5i8fkT8vD5rL97RGQ0AJ9kVEkJ4R3XjqG0hp_099PH8kq2QMg3-3VAjE5s4067-gRxf7ZoCwKWmRo6t2GSANn0NefeYXM4_fD37xAZmBWaLKtswbSrnTGaENrBLPE8tD9qkpkhLIwudCm1F4MKmEuKyhRwr5UgcZr1Jg3RB8idk0rSNPyI0k8GHqSm1BE2WnEseMlMijENen7xMCNupVq36Bhoq3qIJSDx6HSk0hRpMkZD3qP-9LLa_jgPgFGpwCvUvp0jIK7SewgYXDVbQXOlt16nPFws1KwVe3WZS_FXoy0jozSAUWrCy1cOrBVg8Ns4aSR6hq-wW1akMVF1UkJDlCTnZuc_N0y_307C58cZGN77doowAgI1RNiFPe2_bK4bnkKwCfkyIGPnhSHPjmab-FhuIAyLBPPzZ_1D1MbmbYZlPLLs7IZPNeuufk9v256bu1i_irvwFRto8CQ priority: 102 providerName: Directory of Open Access Journals – databaseName: Public Library of Science (PLoS) dbid: FPL link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3di9QwEA9yKvjit171lCiCT9Fu0yaNb-vhqiDL4nlwbyGfdwVtl-2u4H_vTNvds8ftgy9LaWahmUwyv2Em8yPkjcp97oVImQT4ycBDOWajcwy8Q6GywrlofEc2Iefz8uxMLS4DxSsZfC4n7wedvls6W2FOX-V4o-pmxoXAEq7Z4tv25OVFqcRwPW7fP0fup-vSvzuLD5Y_m_Y6oHm1XvIfBzS797-ffp_cHaAmnfa28YDcCPVDcrsnn_zziIRZddycfKBTGgFpsnPkigiemtpT10C4e_nq8-KULZFNDZ79UD7T9XembfUL6b-aFQXsS22F9Ftd_wFa9-Xl7WNyOvv04_gLG0gXmCvKbM2MLb23mZXGwgYKPHU8GpvaIhVWFSaVxsnIpUsVHNkOwq-UI6eYCzaNykfFn5CDuqnDIaGZiiFOrDAKZi44VzxmViDCQ8qfXCSEbddCL_veGrpLsEmISXodaVSdHlSXkI-4YDtZ7IzdvQCd62GjaSfKAD62hN8i95NoFXcQhZclDOQ22IS8xuXW2PuixuKac7NpW_31ZK6nQmJWN1Nyr9D3kdDbQSg2YBbODBcaYPLYU2skeYi2tZ1UqzNQdVFCrJYn5Ghrb9cPv9oNw77HZI6pQ7NBGQnYGw_ghDztzXOnGJ5DHAvQMiFyZLgjzY1H6uqi6y0OYAVD9Gf7v_g5uZNhXU9XZ3dEDtarTXhBbrnf66pdvew25F_bzDZQ priority: 102 providerName: Public Library of Science |
| Title | FiCoS: A fine-grained and coarse-grained GPU-powered deterministic simulator for biochemical networks |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/34499658 https://www.proquest.com/docview/2582586754 https://www.proquest.com/docview/2571930048 https://pubmed.ncbi.nlm.nih.gov/PMC8476010 https://doaj.org/article/c68e42988e454d1fb93c38388c684beb http://dx.doi.org/10.1371/journal.pcbi.1009410 |
| Volume | 17 |
| WOSCitedRecordID | wos000720144700003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1553-7358 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0035896 issn: 1553-7358 databaseCode: DOA dateStart: 20050101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVPQU databaseName: Advanced Technologies & Aerospace Database customDbUrl: eissn: 1553-7358 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0035896 issn: 1553-7358 databaseCode: P5Z dateStart: 20050601 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: Biological Science Database customDbUrl: eissn: 1553-7358 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0035896 issn: 1553-7358 databaseCode: M7P dateStart: 20050601 isFulltext: true titleUrlDefault: http://search.proquest.com/biologicalscijournals providerName: ProQuest – providerCode: PRVPQU databaseName: Computer Science Database customDbUrl: eissn: 1553-7358 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0035896 issn: 1553-7358 databaseCode: K7- dateStart: 20050601 isFulltext: true titleUrlDefault: http://search.proquest.com/compscijour providerName: ProQuest – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1553-7358 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0035896 issn: 1553-7358 databaseCode: 7X7 dateStart: 20050601 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1553-7358 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0035896 issn: 1553-7358 databaseCode: BENPR dateStart: 20050601 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 1553-7358 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0035896 issn: 1553-7358 databaseCode: PIMPY dateStart: 20050601 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest – providerCode: PRVATS databaseName: Public Library of Science (PLoS) : Open Access Journals [open access] customDbUrl: eissn: 1553-7358 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0035896 issn: 1553-7358 databaseCode: FPL dateStart: 20050101 isFulltext: true titleUrlDefault: http://www.plos.org/publications/ providerName: Public Library of Science |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwELdYBxIvfMMCowoIiSezJE7imBfUTStMQBVtTCq8RLFjl0iQlKZF4r_nznG7FQ1eeLGi-B5s3_k-7PP9CHkh4iqu0jSgHNxPChZKUWmUomAdEhElSpmysmATfDLJplORuwO3zqVVrnWiVdRVq_CM_CBKIJbJwL2N38x_UESNwttVB6GxQ3bDKApRzt9zutbELMksPhdC41DO4ql7Osd4eOA49WquZI2ZAiLGN7SXTJOt4L_R04P5t7a7ygn9M5fyknEa3_7fad0ht5xb6o96ObpLrunmHrnRA1X-uk_0uD5qz177I9-AV0pniCuhK79sKl-1EBpf_Hqbn9M5Iq_Bd-VSbWwtaL-rvyNUWLvwwU_2ZY1QXbZWgd_0qejdA3I-Pv509I46gAaqYNhLWsqsqmQkeSlhs2kWKGZKGcgkSKVIyoCXihvGVSBAvSsI1QKG-GNKy8CIygj2kAyattF7xI-E0SaUaSmAFSljgplIpugNIjxQnHqErnlTzPs6HIW9jOMQv_RrVCAvC8dLjxwiAze0WEXb_mgXs8JtykKlmQZ7nEGbxFVopGAKIvYsg45YaumR58j-AutkNJiIMytXXVecnE2KUcrxBjgS_K9Ep1tELx2RaUFMVOkeP8Dksf7WFuUeytp6Ul1xISEe2V_L0NXdzzbdoCPw4qdsdLtCGg5-OiprjzzqxXWzMCyGmBfcUI_wLUHeWrntnqb-auuQg2OD4fzjfw_rCbkZYR6QzcvbJ4PlYqWfkuvq57LuFkOyw6fcttmQ7B4eT_LToT0XgXacfxjaDT3EjNwc2jz5AlT5ycf8829qOlMJ |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1bb9MwFLamAoIX7rDAgIBAPHlL4ySOkRAqg7Kqo5rYJvUt2I5dIkESmha0P8Vv5JxcuhUN3vbASxTFR1HsfD4X-_h8hDwXQRqkUeRRDu4nBQulqbJaU7AOofBDra1Ma7IJPpnE06k42CC_urMwmFbZ6cRaUaeFxjXyHT-EWCYG9zZ4U36nyBqFu6sdhUYDi7E5-QkhW_V69A7-7wvfH74_2t2jLasA1fCKBZUqTlPlKy4VIMQwTzMrladCL1IilB6XmlvGtSdAJ2mILzyGpFnaKM-K1GLxJVD5lwIWc6zVP-a00_wsjGs-MKTioZwF0_aoHuP9nRYZ26VWGWYmiADP7J4xhTVjwMou9MqvRXWe0_tn7uYZYzi88b8N401yvXW73UEzT26RDZPfJlcaIs6TO8QMs93i8JU7cC143XSGvBkmdWWeurqA0P_00YeDY1oisxzcp20qUV3r2q2yb0iFVsxdiANclSEVWV2Lwc2bVPvqLjm-kD7eI728yM0mcX1hje2rSAr49RFjgllfRejtIv1REDmEdlhIyqbOSFJvNnKIz5oxShA7SYsdh7xFwKxksUp4_aCYz5JW6SQ6ig34GzFcwyDtWyWYZjGLY2gIlFEOeYZwS7AOSI6JRjO5rKpkdDhJBhHHHW5f8L8KfVoTetkK2QJgqWV7uAM6j_XF1iQ3Edtdp6rkFJEO2eowe37z01Uz6EDc2JK5KZYowyEOQWPkkPvN9FgNDAsgpgc32yF8beKsjdx6S559qeusg-OGyxUP_v1ZT8jVvaOP-8n-aDJ-SK75mPNU5yBukd5ivjSPyGX9Y5FV88e1snDJ54ueVr8BiRqrTw |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lj9MwELZW5SEuvGEDCwQE4mSaxkkcIyFUdilURVXFslJvwXbsEgmS0LSg_Wv8Omby6G7Rwm0PXKooHkW1880rHs9HyFMRpEEaRR7lEH5S8FCaKqs1Be8QCj_U2sq0Jpvg02k8n4vZDvnVnYXBssrOJtaGOi00fiPv-yHkMjGEt0HftmURs4PR6_I7RQYp3Gnt6DQaiEzM8U9I36pX4wN41898f_T20_572jIMUA2PW1Gp4jRVvuJSAVoM8zSzUnkq9CIlQulxqbllXHsC7JOGXMNjSKCljfKsSC02YgLzfwG8cIg6NuG08wIsjGtuMKTloZwF8_bYHuODfouSF6VWGVYpiADP755yizV7wMZH9MqvRXVWAPxnHecpxzi69j8v6XVytQ3H3WGjPzfIjslvkksNQefxLWJG2X5x-NIduhaicbpAPg2TujJPXV3IZXVy693siJbIOAfXaVtiVPfAdqvsG1KkFUsX8gNXZUhRVvdocPOmBL-6TY7OZY53SC8vcrNLXF9YYwcqkgJgEDEmmPVVhFEw0iIFkUNoh4ukbPqPJPUmJIe8rVmjBHGUtDhyyBsEz0YWu4fXN4rlImmNUaKj2EAcEsNvGKQDqwTTLGZxDAOBMsohTxB6CfYHyREWC7muqmR8OE2GEcedb1_wvwp93BJ63grZAiCqZXvoAyaPfce2JHcR592kquQEnQ7Z6_B79vDjzTDYRtzwkrkp1ijDIT9BJ-WQu42qbBaGBZDrQ_jtEL6lRFsrtz2SZ1_q_usQ0OFnjHv__luPyGXQpuTDeDq5T674WApVlybukd5quTYPyEX9Y5VVy4e13XDJ5_PWqt_30bQJ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=FiCoS%3A+A+fine-grained+and+coarse-grained+GPU-powered+deterministic+simulator+for+biochemical+networks&rft.jtitle=PLoS+computational+biology&rft.au=Tangherloni%2C+Andrea&rft.au=Nobile%2C+Marco+S&rft.au=Cazzaniga%2C+Paolo&rft.au=Capitoli%2C+Giulia&rft.date=2021-09-01&rft.pub=Public+Library+of+Science&rft.issn=1553-734X&rft.eissn=1553-7358&rft.volume=17&rft.issue=9&rft.spage=e1009410&rft_id=info:doi/10.1371%2Fjournal.pcbi.1009410&rft.externalDBID=HAS_PDF_LINK |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1553-7358&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1553-7358&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1553-7358&client=summon |