FiCoS: A fine-grained and coarse-grained GPU-powered deterministic simulator for biochemical networks

Mathematical models of biochemical networks can largely facilitate the comprehension of the mechanisms at the basis of cellular processes, as well as the formulation of hypotheses that can be tested by means of targeted laboratory experiments. However, two issues might hamper the achievement of frui...

Full description

Saved in:
Bibliographic Details
Published in:PLoS computational biology Vol. 17; no. 9; p. e1009410
Main Authors: Tangherloni, Andrea, Nobile, Marco S., Cazzaniga, Paolo, Capitoli, Giulia, Spolaor, Simone, Rundo, Leonardo, Mauri, Giancarlo, Besozzi, Daniela
Format: Journal Article
Language:English
Published: United States Public Library of Science 01.09.2021
Public Library of Science (PLoS)
Subjects:
ISSN:1553-7358, 1553-734X, 1553-7358
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Mathematical models of biochemical networks can largely facilitate the comprehension of the mechanisms at the basis of cellular processes, as well as the formulation of hypotheses that can be tested by means of targeted laboratory experiments. However, two issues might hamper the achievement of fruitful outcomes. On the one hand, detailed mechanistic models can involve hundreds or thousands of molecular species and their intermediate complexes, as well as hundreds or thousands of chemical reactions, a situation generally occurring in rule-based modeling. On the other hand, the computational analysis of a model typically requires the execution of a large number of simulations for its calibration, or to test the effect of perturbations. As a consequence, the computational capabilities of modern Central Processing Units can be easily overtaken, possibly making the modeling of biochemical networks a worthless or ineffective effort. To the aim of overcoming the limitations of the current state-of-the-art simulation approaches, we present in this paper FiCoS, a novel “black-box” deterministic simulator that effectively realizes both a fine-grained and a coarse-grained parallelization on Graphics Processing Units. In particular, FiCoS exploits two different integration methods, namely, the Dormand–Prince and the Radau IIA, to efficiently solve both non-stiff and stiff systems of coupled Ordinary Differential Equations. We tested the performance of FiCoS against different deterministic simulators, by considering models of increasing size and by running analyses with increasing computational demands. FiCoS was able to dramatically speedup the computations up to 855×, showing to be a promising solution for the simulation and analysis of large-scale models of complex biological processes.
AbstractList Mathematical models of biochemical networks can largely facilitate the comprehension of the mechanisms at the basis of cellular processes, as well as the formulation of hypotheses that can be tested by means of targeted laboratory experiments. However, two issues might hamper the achievement of fruitful outcomes. On the one hand, detailed mechanistic models can involve hundreds or thousands of molecular species and their intermediate complexes, as well as hundreds or thousands of chemical reactions, a situation generally occurring in rule-based modeling. On the other hand, the computational analysis of a model typically requires the execution of a large number of simulations for its calibration, or to test the effect of perturbations. As a consequence, the computational capabilities of modern Central Processing Units can be easily overtaken, possibly making the modeling of biochemical networks a worthless or ineffective effort. To the aim of overcoming the limitations of the current state-of-the-art simulation approaches, we present in this paper FiCoS, a novel "black-box" deterministic simulator that effectively realizes both a fine-grained and a coarse-grained parallelization on Graphics Processing Units. In particular, FiCoS exploits two different integration methods, namely, the Dormand-Prince and the Radau IIA, to efficiently solve both non-stiff and stiff systems of coupled Ordinary Differential Equations. We tested the performance of FiCoS against different deterministic simulators, by considering models of increasing size and by running analyses with increasing computational demands. FiCoS was able to dramatically speedup the computations up to 855×, showing to be a promising solution for the simulation and analysis of large-scale models of complex biological processes.Mathematical models of biochemical networks can largely facilitate the comprehension of the mechanisms at the basis of cellular processes, as well as the formulation of hypotheses that can be tested by means of targeted laboratory experiments. However, two issues might hamper the achievement of fruitful outcomes. On the one hand, detailed mechanistic models can involve hundreds or thousands of molecular species and their intermediate complexes, as well as hundreds or thousands of chemical reactions, a situation generally occurring in rule-based modeling. On the other hand, the computational analysis of a model typically requires the execution of a large number of simulations for its calibration, or to test the effect of perturbations. As a consequence, the computational capabilities of modern Central Processing Units can be easily overtaken, possibly making the modeling of biochemical networks a worthless or ineffective effort. To the aim of overcoming the limitations of the current state-of-the-art simulation approaches, we present in this paper FiCoS, a novel "black-box" deterministic simulator that effectively realizes both a fine-grained and a coarse-grained parallelization on Graphics Processing Units. In particular, FiCoS exploits two different integration methods, namely, the Dormand-Prince and the Radau IIA, to efficiently solve both non-stiff and stiff systems of coupled Ordinary Differential Equations. We tested the performance of FiCoS against different deterministic simulators, by considering models of increasing size and by running analyses with increasing computational demands. FiCoS was able to dramatically speedup the computations up to 855×, showing to be a promising solution for the simulation and analysis of large-scale models of complex biological processes.
Mathematical models of biochemical networks can largely facilitate the comprehension of the mechanisms at the basis of cellular processes, as well as the formulation of hypotheses that can be tested by means of targeted laboratory experiments. However, two issues might hamper the achievement of fruitful outcomes. On the one hand, detailed mechanistic models can involve hundreds or thousands of molecular species and their intermediate complexes, as well as hundreds or thousands of chemical reactions, a situation generally occurring in rule-based modeling. On the other hand, the computational analysis of a model typically requires the execution of a large number of simulations for its calibration, or to test the effect of perturbations. As a consequence, the computational capabilities of modern Central Processing Units can be easily overtaken, possibly making the modeling of biochemical networks a worthless or ineffective effort. To the aim of overcoming the limitations of the current state-of-the-art simulation approaches, we present in this paper FiCoS, a novel "black-box" deterministic simulator that effectively realizes both a fine-grained and a coarse-grained parallelization on Graphics Processing Units. In particular, FiCoS exploits two different integration methods, namely, the Dormand-Prince and the Radau IIA, to efficiently solve both non-stiff and stiff systems of coupled Ordinary Differential Equations. We tested the performance of FiCoS against different deterministic simulators, by considering models of increasing size and by running analyses with increasing computational demands. FiCoS was able to dramatically speedup the computations up to 855×, showing to be a promising solution for the simulation and analysis of large-scale models of complex biological processes.
Mathematical models of biochemical networks can largely facilitate the comprehension of the mechanisms at the basis of cellular processes, as well as the formulation of hypotheses that can be tested by means of targeted laboratory experiments. However, two issues might hamper the achievement of fruitful outcomes. On the one hand, detailed mechanistic models can involve hundreds or thousands of molecular species and their intermediate complexes, as well as hundreds or thousands of chemical reactions, a situation generally occurring in rule-based modeling. On the other hand, the computational analysis of a model typically requires the execution of a large number of simulations for its calibration, or to test the effect of perturbations. As a consequence, the computational capabilities of modern Central Processing Units can be easily overtaken, possibly making the modeling of biochemical networks a worthless or ineffective effort. To the aim of overcoming the limitations of the current state-of-the-art simulation approaches, we present in this paper FiCoS, a novel "black-box" deterministic simulator that effectively realizes both a fine-grained and a coarse-grained parallelization on Graphics Processing Units. In particular, FiCoS exploits two different integration methods, namely, the Dormand-Prince and the Radau IIA, to efficiently solve both non-stiff and stiff systems of coupled Ordinary Differential Equations. We tested the performance of FiCoS against different deterministic simulators, by considering models of increasing size and by running analyses with increasing computational demands. FiCoS was able to dramatically speedup the computations up to 855x, showing to be a promising solution for the simulation and analysis of large-scale models of complex biological processes.
Mathematical models of biochemical networks can largely facilitate the comprehension of the mechanisms at the basis of cellular processes, as well as the formulation of hypotheses that can be tested by means of targeted laboratory experiments. However, two issues might hamper the achievement of fruitful outcomes. On the one hand, detailed mechanistic models can involve hundreds or thousands of molecular species and their intermediate complexes, as well as hundreds or thousands of chemical reactions, a situation generally occurring in rule-based modeling. On the other hand, the computational analysis of a model typically requires the execution of a large number of simulations for its calibration, or to test the effect of perturbations. As a consequence, the computational capabilities of modern Central Processing Units can be easily overtaken, possibly making the modeling of biochemical networks a worthless or ineffective effort. To the aim of overcoming the limitations of the current state-of-the-art simulation approaches, we present in this paper FiCoS, a novel “black-box” deterministic simulator that effectively realizes both a fine-grained and a coarse-grained parallelization on Graphics Processing Units. In particular, FiCoS exploits two different integration methods, namely, the Dormand–Prince and the Radau IIA, to efficiently solve both non-stiff and stiff systems of coupled Ordinary Differential Equations. We tested the performance of FiCoS against different deterministic simulators, by considering models of increasing size and by running analyses with increasing computational demands. FiCoS was able to dramatically speedup the computations up to 855×, showing to be a promising solution for the simulation and analysis of large-scale models of complex biological processes. Systems Biology is an interdisciplinary research area focusing on the integration of biological data with mathematical and computational methods in order to unravel and predict the emergent behavior of complex biological systems. The ultimate goal is the understanding of the complex mechanisms at the basis of biological processes, together with the formulation of novel hypotheses that can be then tested by means of laboratory experiments. In such a context, mechanistic models can be used to describe and investigate biochemical reaction networks by taking into account all the details related to their stoichiometry and kinetics. Unfortunately, these models can be characterized by hundreds or thousands of molecular species and biochemical reactions, making their simulation unfeasible with classic simulators running on Central Processing Units (CPUs). In addition, a large number of simulations might be required to calibrate the models and/or to test the effect of perturbations. In order to overcome the limitations imposed by CPUs, Graphics Processing Units (GPUs) can be effectively used to accelerate the simulations of these models. We thus designed and developed a novel GPU-based tool, called FiCoS, to speed-up the computational analyses typically required in Systems Biology.
Audience Academic
Author Cazzaniga, Paolo
Spolaor, Simone
Mauri, Giancarlo
Capitoli, Giulia
Besozzi, Daniela
Nobile, Marco S.
Tangherloni, Andrea
Rundo, Leonardo
AuthorAffiliation 1 Department of Human and Social Sciences, University of Bergamo, Bergamo, Italy
4 Bicocca Bioinformatics Biostatistics and Bioimaging Centre (B4), University of Milano-Bicocca, Vedano al Lambro, Italy
Hebrew University of Jerusalem, ISRAEL
7 Department of Radiology, University of Cambridge, Cambridge, United Kingdom
6 Department of Informatics, Systems and Communication, University of Milano-Bicocca, Milan, Italy
5 School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
3 SYSBIO/ISBE.IT Centre of Systems Biology, Milan, Italy
2 Department of Industrial Engineering & Innovation Sciences, Eindhoven University of Technology, Eindhoven, The Netherlands
8 Cancer Research UK Cambridge Centre, University of Cambridge, Cambridge, United Kingdom
AuthorAffiliation_xml – name: 2 Department of Industrial Engineering & Innovation Sciences, Eindhoven University of Technology, Eindhoven, The Netherlands
– name: 1 Department of Human and Social Sciences, University of Bergamo, Bergamo, Italy
– name: 6 Department of Informatics, Systems and Communication, University of Milano-Bicocca, Milan, Italy
– name: 8 Cancer Research UK Cambridge Centre, University of Cambridge, Cambridge, United Kingdom
– name: 3 SYSBIO/ISBE.IT Centre of Systems Biology, Milan, Italy
– name: 5 School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
– name: 4 Bicocca Bioinformatics Biostatistics and Bioimaging Centre (B4), University of Milano-Bicocca, Vedano al Lambro, Italy
– name: 7 Department of Radiology, University of Cambridge, Cambridge, United Kingdom
– name: Hebrew University of Jerusalem, ISRAEL
Author_xml – sequence: 1
  givenname: Andrea
  orcidid: 0000-0002-5856-4453
  surname: Tangherloni
  fullname: Tangherloni, Andrea
– sequence: 2
  givenname: Marco S.
  orcidid: 0000-0002-7692-7203
  surname: Nobile
  fullname: Nobile, Marco S.
– sequence: 3
  givenname: Paolo
  orcidid: 0000-0001-7780-0434
  surname: Cazzaniga
  fullname: Cazzaniga, Paolo
– sequence: 4
  givenname: Giulia
  surname: Capitoli
  fullname: Capitoli, Giulia
– sequence: 5
  givenname: Simone
  orcidid: 0000-0002-3383-367X
  surname: Spolaor
  fullname: Spolaor, Simone
– sequence: 6
  givenname: Leonardo
  orcidid: 0000-0003-3341-5483
  surname: Rundo
  fullname: Rundo, Leonardo
– sequence: 7
  givenname: Giancarlo
  orcidid: 0000-0003-3520-4022
  surname: Mauri
  fullname: Mauri, Giancarlo
– sequence: 8
  givenname: Daniela
  orcidid: 0000-0001-5532-3059
  surname: Besozzi
  fullname: Besozzi, Daniela
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34499658$$D View this record in MEDLINE/PubMed
BookMark eNqVkl1vFCEUhiemxn7oPzA6iTd6MSsMwwBemGw2tm7SqLH2mgBz2FJnYIUZq_9e1t3WrvHGTBhODg8vnMN7XBz44KEonmI0w4Th19dhil71s7XRboYREg1GD4ojTCmpGKH84F58WByndI1QDkX7qDgkTSNES_lRAaduES7elPPSOg_VKqo8daXyXWmCiulP6uzTZbUONxBz3MEIcXDepdGZMrlh6tUYYmnz0C6YKxicUX3pYbwJ8Wt6XDy0qk_wZDefFJen774s3lfnH8-Wi_l5ZSivx0pp3nW61kzpGiEgyBCrNNIUtVpQhZgyzBJmkABlTIsFIgZqZUAjKzoryEnxfKu77kOSuw4lWWd1yltGm0wst0QX1LVcRzeo-FMG5eTvRIgrqWIuqgdpWg5NLXj-06bDVgtiCCec54VGg85ab3enTXqAzoAfo-r3RPdXvLuSq_Bd8oa1CKMs8HInEMO3CdIoB5cM9L3yEKbNvRkWBKGGZ_TFX-i_q5ttqZXKBThvQz7X5K_bPEj2j3U5P28Zo4jUguUNr_Y2ZGaEH-NKTSnJ5cXn_2A_7LPP7rfmrie3xstAswVMDClFsHcIRnLj79v65Mbfcudv8gu7sO97
Cites_doi 10.1007/s11064-006-9132-9
10.1109/CEC.2018.8477873
10.15252/msb.20199110
10.1016/S0010-4655(02)00280-1
10.1007/978-3-030-34585-3_17
10.1126/science.167.3914.63
10.1137/0904010
10.1007/s11721-007-0002-0
10.1038/nrg2509
10.1146/annurev.physchem.58.032806.104637
10.1002/9780470753767
10.1016/j.camwa.2009.12.025
10.1093/bioinformatics/btr015
10.1016/j.bpj.2009.09.064
10.1007/s11227-018-2549-5
10.1038/s41598-017-15313-9
10.1049/iet-syb:20080102
10.1186/s12859-017-1666-0
10.1371/journal.pone.0116550
10.1016/j.mbs.2009.03.002
10.1093/bioinformatics/btl485
10.1016/0021-9991(76)90041-3
10.7551/mitpress/9780262195485.001.0001
10.1016/0771-050X(80)90013-3
10.1063/1.4822377
10.1063/1.2159468
10.1007/978-3-642-18123-8_12
10.1371/journal.pcbi.1005220
10.1093/bioinformatics/btv363
10.1016/j.swevo.2017.09.001
10.1016/j.asoc.2019.105494
10.1016/j.pisc.2014.12.002
10.1038/msb.2013.1
10.1109/IISWC.2014.6983039
10.1016/j.ast.2019.105355
10.1371/journal.pone.0091963
10.1016/S0377-0427(99)00134-X
10.1371/journal.pcbi.1004012
10.1090/S0025-5718-1974-0331793-2
10.3389/fphys.2015.00042
10.1038/nature07211
10.1007/978-3-540-70529-1_94
10.1016/j.molcel.2013.01.018
10.1093/bioinformatics/btw469
10.1007/s11227-014-1208-8
10.1177/1094342009106066
10.1063/1.1627296
10.1007/BF01989751
10.1093/bioinformatics/btx420
10.1016/S0378-4754(00)00270-6
10.1063/1.2354085
10.1371/journal.pone.0037370
10.1016/j.cpc.2009.09.018
10.1371/journal.pone.0046693
10.1109/CIBCB.2015.7300288
10.1016/j.febslet.2013.06.043
10.1038/ncb1497
10.1002/kin.20369
10.1109/MCS.2009.932926
10.1016/j.csbj.2014.10.003
10.20944/preprints202012.0296.v1
10.1137/0910062
ContentType Journal Article
Copyright COPYRIGHT 2021 Public Library of Science
2021 Tangherloni et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2021 Tangherloni et al 2021 Tangherloni et al
Copyright_xml – notice: COPYRIGHT 2021 Public Library of Science
– notice: 2021 Tangherloni et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2021 Tangherloni et al 2021 Tangherloni et al
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
ISN
ISR
3V.
7QO
7QP
7TK
7TM
7X7
7XB
88E
8AL
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
HCIFZ
JQ2
K7-
K9.
LK8
M0N
M0S
M1P
M7P
P5Z
P62
P64
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
Q9U
RC3
7X8
5PM
DOA
DOI 10.1371/journal.pcbi.1009410
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Gale In Context: Canada
Gale In Context: Science
ProQuest Central (Corporate)
Biotechnology Research Abstracts
Calcium & Calcified Tissue Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Computing Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni Edition)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology Collection
Natural Science Collection
ProQuest One Community College
ProQuest Central Korea
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
ProQuest Health & Medical Complete (Alumni)
ProQuest Biological Science Collection
Computing Database
Health & Medical Collection (Alumni Edition)
Medical Database
Biological Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central Basic
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
Computer Science Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Nucleic Acids Abstracts
SciTech Premium Collection
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Advanced Technologies & Aerospace Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Genetics Abstracts
Biotechnology Research Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
ProQuest Computing
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE
Publicly Available Content Database
CrossRef




Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
DocumentTitleAlternate FiCoS: A novel GPU-powered deterministic simulator for biochemical networks
EISSN 1553-7358
ExternalDocumentID 2582586754
oai_doaj_org_article_c68e42988e454d1fb93c38388c684beb
PMC8476010
A677503297
34499658
10_1371_journal_pcbi_1009410
Genre Research Support, Non-U.S. Gov't
Journal Article
GeographicLocations Italy
GeographicLocations_xml – name: Italy
GroupedDBID ---
123
29O
2WC
53G
5VS
7X7
88E
8FE
8FG
8FH
8FI
8FJ
AAFWJ
AAKPC
AAUCC
AAWOE
AAYXX
ABDBF
ABUWG
ACCTH
ACGFO
ACIHN
ACIWK
ACPRK
ACUHS
ADBBV
AEAQA
AENEX
AEUYN
AFFHD
AFKRA
AFPKN
AFRAH
AHMBA
ALMA_UNASSIGNED_HOLDINGS
AOIJS
ARAPS
AZQEC
B0M
BAIFH
BAWUL
BBNVY
BBTPI
BCNDV
BENPR
BGLVJ
BHPHI
BPHCQ
BVXVI
BWKFM
CCPQU
CITATION
CS3
DIK
DWQXO
E3Z
EAP
EAS
EBD
EBS
EJD
EMK
EMOBN
ESX
F5P
FPL
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HMCUK
HYE
IAO
IGS
INH
INR
ISN
ISR
ITC
J9A
K6V
K7-
KQ8
LK8
M1P
M48
M7P
O5R
O5S
OK1
OVT
P2P
P62
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PV9
RNS
RPM
RZL
SV3
TR2
TUS
UKHRP
WOW
XSB
~8M
ADRAZ
ALIPV
C1A
CGR
CUY
CVF
ECM
EIF
H13
IPNFZ
NPM
RIG
WOQ
3V.
7QO
7QP
7TK
7TM
7XB
8AL
8FD
8FK
FR3
JQ2
K9.
M0N
P64
PKEHL
PQEST
PQUKI
Q9U
RC3
7X8
PUEGO
5PM
AAPBV
ABPTK
M~E
N95
UMP
ID FETCH-LOGICAL-c582t-ab8ddb2b7ab200e30c3fab0b506b95a07ac7f37c09eacc61903ce2aceb0f9df93
IEDL.DBID K7-
ISICitedReferencesCount 1
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000720144700003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1553-7358
1553-734X
IngestDate Sun May 07 16:29:13 EDT 2023
Fri Oct 03 12:46:48 EDT 2025
Tue Nov 04 01:53:05 EST 2025
Fri Sep 05 06:41:18 EDT 2025
Thu Oct 30 02:10:40 EDT 2025
Tue Nov 04 17:57:00 EST 2025
Thu Nov 13 15:07:59 EST 2025
Thu Nov 13 15:37:12 EST 2025
Mon Jul 21 06:00:43 EDT 2025
Sat Nov 29 02:42:15 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 9
Language English
License This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Creative Commons Attribution License
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c582t-ab8ddb2b7ab200e30c3fab0b506b95a07ac7f37c09eacc61903ce2aceb0f9df93
Notes new_version
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
The authors have declared that no competing interests exist.
ORCID 0000-0002-5856-4453
0000-0003-3520-4022
0000-0001-7780-0434
0000-0001-5532-3059
0000-0002-7692-7203
0000-0003-3341-5483
0000-0002-3383-367X
OpenAccessLink https://www.proquest.com/docview/2582586754?pq-origsite=%requestingapplication%
PMID 34499658
PQID 2582586754
PQPubID 1436340
ParticipantIDs plos_journals_2582586754
doaj_primary_oai_doaj_org_article_c68e42988e454d1fb93c38388c684beb
pubmedcentral_primary_oai_pubmedcentral_nih_gov_8476010
proquest_miscellaneous_2571930048
proquest_journals_2582586754
gale_infotracacademiconefile_A677503297
gale_incontextgauss_ISR_A677503297
gale_incontextgauss_ISN_A677503297
pubmed_primary_34499658
crossref_primary_10_1371_journal_pcbi_1009410
PublicationCentury 2000
PublicationDate 2021-09-01
PublicationDateYYYYMMDD 2021-09-01
PublicationDate_xml – month: 09
  year: 2021
  text: 2021-09-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: San Francisco
– name: San Francisco, CA USA
PublicationTitle PLoS computational biology
PublicationTitleAlternate PLoS Comput Biol
PublicationYear 2021
Publisher Public Library of Science
Public Library of Science (PLoS)
Publisher_xml – name: Public Library of Science
– name: Public Library of Science (PLoS)
References I Komarov (pcbi.1009410.ref023) 2012; 7
D Wilkinson (pcbi.1009410.ref009) 2009; 10
pcbi.1009410.ref026
A Saltelli (pcbi.1009410.ref055) 2010; 181
pcbi.1009410.ref066
pcbi.1009410.ref062
pcbi.1009410.ref061
LA Harris (pcbi.1009410.ref019) 2017; 33
H Li (pcbi.1009410.ref012) 2010; 24
JR Dormand (pcbi.1009410.ref028) 1980; 6
SD Cohen (pcbi.1009410.ref040) 1996; 10
M Rathinam (pcbi.1009410.ref034) 2003; 119
DJ Higham (pcbi.1009410.ref035) 1993; 33
PN Brown (pcbi.1009410.ref038) 1989; 10
A Prothero (pcbi.1009410.ref072) 1974; 28
Y Cao (pcbi.1009410.ref018) 2006; 124
MS Nobile (pcbi.1009410.ref015) 2014; 69
E Hairer (pcbi.1009410.ref032) 1999; 111
BB Aldridge (pcbi.1009410.ref005) 2006; 8
A Tangherloni (pcbi.1009410.ref007) 2019; 81
JR Cash (pcbi.1009410.ref045) 2015
pcbi.1009410.ref037
N Jamshidi (pcbi.1009410.ref048) 2010; 98
I Komarov (pcbi.1009410.ref022) 2012; 7
MS Nobile (pcbi.1009410.ref057) 2018; 39
V Chellaboina (pcbi.1009410.ref067) 2009; 29
J Martín-Vaquero (pcbi.1009410.ref071) 2010; 59
ET Somogyi (pcbi.1009410.ref039) 2015; 31
pcbi.1009410.ref074
MS Nobile (pcbi.1009410.ref017) 2014; 9
T Wuntch (pcbi.1009410.ref053) 1970; 167
Y Zhou (pcbi.1009410.ref014) 2011; 27
P Szymańska (pcbi.1009410.ref036) 2015; 10
SG Riva (pcbi.1009410.ref069) 2021
IC Chou (pcbi.1009410.ref006) 2009; 219
CF Lopez (pcbi.1009410.ref020) 2013; 9
B Drawert (pcbi.1009410.ref025) 2016; 12
R Poli (pcbi.1009410.ref058) 2007; 1
E Hairer (pcbi.1009410.ref030) 2008
J O’Brien (pcbi.1009410.ref052) 2007; 32
A Cornish-Bowden (pcbi.1009410.ref063) 2015; 4
pcbi.1009410.ref003
LA Harris (pcbi.1009410.ref011) 2006; 125
pcbi.1009410.ref002
pcbi.1009410.ref046
LA Harris (pcbi.1009410.ref047) 2016; 32
L Petzold (pcbi.1009410.ref016) 1983; 4
pcbi.1009410.ref043
A Saltelli (pcbi.1009410.ref056) 2002; 145
MS Nobile (pcbi.1009410.ref008) 2017; 18
DT Gillespie (pcbi.1009410.ref033) 2007; 58
JC Butcher (pcbi.1009410.ref044) 2008
Y Du (pcbi.1009410.ref073) 2019; 93
A Przybylski (pcbi.1009410.ref060) 2017; 7
CM Metallo (pcbi.1009410.ref050) 2013; 49
MS Nobile (pcbi.1009410.ref065) 2019; 75
B Munsky (pcbi.1009410.ref004) 2018
JR Dormand (pcbi.1009410.ref029) 1996
II Moraru (pcbi.1009410.ref042) 2008; 2
DT Gillespie (pcbi.1009410.ref013) 1976; 22
AV Hill (pcbi.1009410.ref064) 1910; 40
S Hoops (pcbi.1009410.ref041) 2006; 22
K Sumiyoshi (pcbi.1009410.ref024) 2015; 6
pcbi.1009410.ref059
E Hairer (pcbi.1009410.ref031) 2002
MR Bennett (pcbi.1009410.ref049) 2008; 454
A Tangherloni (pcbi.1009410.ref021) 2017; 18
TJ Székely (pcbi.1009410.ref010) 2014; 12
IM Sobol (pcbi.1009410.ref054) 2001; 55
Z Szallasi (pcbi.1009410.ref001) 2006
EO Voit (pcbi.1009410.ref068) 2015; 11
K Smallbone (pcbi.1009410.ref051) 2013; 587
SM Keating (pcbi.1009410.ref027) 2020; 16
H Yue (pcbi.1009410.ref070) 2008; 40
References_xml – ident: pcbi.1009410.ref043
– volume: 32
  start-page: 597
  issue: 4-5
  year: 2007
  ident: pcbi.1009410.ref052
  article-title: Kinetic parameters and lactate dehydrogenase isozyme activities support possible lactate utilization by neurons
  publication-title: Neurochem Res
  doi: 10.1007/s11064-006-9132-9
– volume-title: Solving ordinary differential equations II
  year: 2002
  ident: pcbi.1009410.ref031
– ident: pcbi.1009410.ref059
  doi: 10.1109/CEC.2018.8477873
– volume: 16
  start-page: e9110
  issue: 8
  year: 2020
  ident: pcbi.1009410.ref027
  article-title: SBML Level 3: an extensible format for the exchange and reuse of biological models
  publication-title: Mol Syst Biol
  doi: 10.15252/msb.20199110
– volume: 145
  start-page: 280
  issue: 2
  year: 2002
  ident: pcbi.1009410.ref056
  article-title: Making best use of model evaluations to compute sensitivity indices
  publication-title: Comput Phys Commun
  doi: 10.1016/S0010-4655(02)00280-1
– ident: pcbi.1009410.ref037
  doi: 10.1007/978-3-030-34585-3_17
– volume: 167
  start-page: 63
  issue: 3914
  year: 1970
  ident: pcbi.1009410.ref053
  article-title: Lactate dehydrogenase isozymes: kinetic properties at high enzyme concentrations
  publication-title: Science
  doi: 10.1126/science.167.3914.63
– volume: 4
  start-page: 136
  issue: 1
  year: 1983
  ident: pcbi.1009410.ref016
  article-title: Automatic selection of methods for solving stiff and nonstiff systems of ordinary differential equations
  publication-title: SIAM J Sci Stat Comp
  doi: 10.1137/0904010
– volume: 1
  start-page: 33
  issue: 1
  year: 2007
  ident: pcbi.1009410.ref058
  article-title: Particle swarm optimization
  publication-title: Swarm intelligence
  doi: 10.1007/s11721-007-0002-0
– volume: 10
  start-page: 122
  issue: 2
  year: 2009
  ident: pcbi.1009410.ref009
  article-title: Stochastic modelling for quantitative description of heterogeneous biological systems
  publication-title: Nat Rev Genet
  doi: 10.1038/nrg2509
– volume: 58
  start-page: 35
  year: 2007
  ident: pcbi.1009410.ref033
  article-title: Stochastic simulation of chemical kinetics
  publication-title: Annu Rev Phys Chem
  doi: 10.1146/annurev.physchem.58.032806.104637
– volume-title: Numerical methods for ordinary differential equations
  year: 2008
  ident: pcbi.1009410.ref044
  doi: 10.1002/9780470753767
– ident: pcbi.1009410.ref046
– volume: 59
  start-page: 2464
  issue: 8
  year: 2010
  ident: pcbi.1009410.ref071
  article-title: A 17th-order Radau IIA method for package RADAU. Applications in mechanical systems
  publication-title: Comput Math Appl
  doi: 10.1016/j.camwa.2009.12.025
– volume: 18
  start-page: 870
  issue: 5
  year: 2017
  ident: pcbi.1009410.ref008
  article-title: Graphics processing units in bioinformatics, computational biology and systems biology
  publication-title: Brief Bioinform
– volume: 27
  start-page: 874
  issue: 6
  year: 2011
  ident: pcbi.1009410.ref014
  article-title: GPU accelerated biochemical network simulation
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btr015
– volume: 98
  start-page: 175
  issue: 2
  year: 2010
  ident: pcbi.1009410.ref048
  article-title: Mass action stoichiometric simulation models: incorporating kinetics and regulation into stoichiometric models
  publication-title: Biophys J
  doi: 10.1016/j.bpj.2009.09.064
– volume: 75
  start-page: 7844
  issue: 12
  year: 2019
  ident: pcbi.1009410.ref065
  article-title: ginSODA: massive parallel integration of stiff ODE systems on GPUs
  publication-title: J Supercomput
  doi: 10.1007/s11227-018-2549-5
– volume: 7
  start-page: 15722
  issue: 1
  year: 2017
  ident: pcbi.1009410.ref060
  article-title: Gpufit: An open-source toolkit for GPU-accelerated curve fitting
  publication-title: Sci Rep
  doi: 10.1038/s41598-017-15313-9
– volume: 2
  start-page: 352
  issue: 5
  year: 2008
  ident: pcbi.1009410.ref042
  article-title: Virtual Cell modelling and simulation software environment
  publication-title: IET Syst Biol
  doi: 10.1049/iet-syb:20080102
– volume: 18
  start-page: 246
  issue: 1
  year: 2017
  ident: pcbi.1009410.ref021
  article-title: LASSIE: simulating large-scale models of biochemical systems on GPUs
  publication-title: BMC Bioinform
  doi: 10.1186/s12859-017-1666-0
– volume: 10
  start-page: e0116550
  issue: 3
  year: 2015
  ident: pcbi.1009410.ref036
  article-title: Computational analysis of an Autophagy/Translation switch based on mutual inhibition of MTORC1 and ULK1
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0116550
– volume: 219
  start-page: 57
  issue: 2
  year: 2009
  ident: pcbi.1009410.ref006
  article-title: Recent developments in parameter estimation and structure identification of biochemical and genomic systems
  publication-title: Math Biosci
  doi: 10.1016/j.mbs.2009.03.002
– volume: 22
  start-page: 3067
  issue: 24
  year: 2006
  ident: pcbi.1009410.ref041
  article-title: COPASI—a COmplex PAthway SImulator
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btl485
– volume: 22
  start-page: 403
  issue: 4
  year: 1976
  ident: pcbi.1009410.ref013
  article-title: A general method for numerically simulating the stochastic time evolution of coupled chemical reactions
  publication-title: J Comput Phys
  doi: 10.1016/0021-9991(76)90041-3
– volume-title: System Modeling in Cellular Biology: From Concepts to Nuts and Bolts
  year: 2006
  ident: pcbi.1009410.ref001
  doi: 10.7551/mitpress/9780262195485.001.0001
– volume: 6
  start-page: 19
  issue: 1
  year: 1980
  ident: pcbi.1009410.ref028
  article-title: A family of embedded Runge-Kutta formulae
  publication-title: J Comput Appl Math
  doi: 10.1016/0771-050X(80)90013-3
– volume: 10
  start-page: 138
  issue: 2
  year: 1996
  ident: pcbi.1009410.ref040
  article-title: CVODE, a stiff/nonstiff ODE solver in C
  publication-title: Comput Phys
  doi: 10.1063/1.4822377
– volume: 40
  start-page: 4
  year: 1910
  ident: pcbi.1009410.ref064
  article-title: The possible effects of the aggregation of the molecules of haemoglobin on its dissociation curves
  publication-title: J Physiol
– volume: 124
  start-page: 044109
  issue: 4
  year: 2006
  ident: pcbi.1009410.ref018
  article-title: Efficient step size selection for the tau-leaping simulation method
  publication-title: J Chem Phys
  doi: 10.1063/1.2159468
– volume-title: Numerical methods for differential equations: a computational approach
  year: 1996
  ident: pcbi.1009410.ref029
– ident: pcbi.1009410.ref066
  doi: 10.1007/978-3-642-18123-8_12
– volume: 12
  start-page: e1005220
  issue: 12
  year: 2016
  ident: pcbi.1009410.ref025
  article-title: Stochastic simulation service: bridging the gap between the computational expert and the biologist
  publication-title: PLoS Comput Biol
  doi: 10.1371/journal.pcbi.1005220
– volume: 31
  start-page: 3315
  issue: 20
  year: 2015
  ident: pcbi.1009410.ref039
  article-title: libRoadRunner: a high performance SBML simulation and analysis library
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btv363
– volume: 39
  start-page: 70
  year: 2018
  ident: pcbi.1009410.ref057
  article-title: Fuzzy Self-Tuning PSO: A settings-free algorithm for global optimization
  publication-title: Swarm Evol Comput
  doi: 10.1016/j.swevo.2017.09.001
– volume: 81
  start-page: 105494
  year: 2019
  ident: pcbi.1009410.ref007
  article-title: Biochemical parameter estimation vs. benchmark functions: a comparative study of optimization performance and representation design
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2019.105494
– volume-title: Solving ordinary differential equations I
  year: 2008
  ident: pcbi.1009410.ref030
– volume: 4
  start-page: 3
  year: 2015
  ident: pcbi.1009410.ref063
  article-title: One hundred years of Michaelis–Menten kinetics
  publication-title: Perspect Sci
  doi: 10.1016/j.pisc.2014.12.002
– volume: 9
  issue: 1
  year: 2013
  ident: pcbi.1009410.ref020
  article-title: Programming biological models in Python using PySB
  publication-title: Mol Syst Biol
  doi: 10.1038/msb.2013.1
– ident: pcbi.1009410.ref062
  doi: 10.1109/IISWC.2014.6983039
– volume: 93
  start-page: 105355
  year: 2019
  ident: pcbi.1009410.ref073
  article-title: A strongly S-stable low-dissipation and low-dispersion Runge-Kutta scheme for convection diffusion systems
  publication-title: Aerosp Sci Technol
  doi: 10.1016/j.ast.2019.105355
– volume: 9
  start-page: e91963
  issue: 3
  year: 2014
  ident: pcbi.1009410.ref017
  article-title: cuTauLeaping: a GPU-powered tau-leaping stochastic simulator for massive parallel analyses of biological systems
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0091963
– volume: 111
  start-page: 93
  issue: 1-2
  year: 1999
  ident: pcbi.1009410.ref032
  article-title: Stiff differential equations solved by Radau methods
  publication-title: J Comput Appl Math
  doi: 10.1016/S0377-0427(99)00134-X
– volume: 11
  start-page: e1004012
  issue: 1
  year: 2015
  ident: pcbi.1009410.ref068
  article-title: 150 years of the mass action law
  publication-title: PLoS Comput Biol
  doi: 10.1371/journal.pcbi.1004012
– volume: 28
  start-page: 145
  issue: 125
  year: 1974
  ident: pcbi.1009410.ref072
  article-title: On the stability and accuracy of one-step methods for solving stiff systems of ordinary differential equations
  publication-title: Math Comp
  doi: 10.1090/S0025-5718-1974-0331793-2
– volume: 6
  start-page: 42
  year: 2015
  ident: pcbi.1009410.ref024
  article-title: Acceleration of discrete stochastic biochemical simulation using GPGPU
  publication-title: Front Physiol
  doi: 10.3389/fphys.2015.00042
– volume: 454
  start-page: 1119
  issue: 7208
  year: 2008
  ident: pcbi.1009410.ref049
  article-title: Metabolic gene regulation in a dynamically changing environment
  publication-title: Nature
  doi: 10.1038/nature07211
– ident: pcbi.1009410.ref074
– start-page: 97
  volume-title: Encyclopedia of Applied and Computational Mathematics
  year: 2015
  ident: pcbi.1009410.ref045
  doi: 10.1007/978-3-540-70529-1_94
– volume: 49
  start-page: 388
  issue: 3
  year: 2013
  ident: pcbi.1009410.ref050
  article-title: Understanding metabolic regulation and its influence on cell physiology
  publication-title: Mol Cell
  doi: 10.1016/j.molcel.2013.01.018
– volume-title: Quantitative biology: theory, computational methods, and models
  year: 2018
  ident: pcbi.1009410.ref004
– ident: pcbi.1009410.ref002
– volume: 32
  start-page: 3366
  issue: 21
  year: 2016
  ident: pcbi.1009410.ref047
  article-title: BioNetGen 2.2: advances in rule-based modeling
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btw469
– ident: pcbi.1009410.ref061
– volume: 69
  start-page: 17
  issue: 1
  year: 2014
  ident: pcbi.1009410.ref015
  article-title: GPU-accelerated simulations of mass-action kinetics models with cupSODA
  publication-title: J Supercomput
  doi: 10.1007/s11227-014-1208-8
– volume: 24
  start-page: 107
  issue: 2
  year: 2010
  ident: pcbi.1009410.ref012
  article-title: Efficient parallelization of the stochastic simulation algorithm for chemically reacting systems on the graphics processing unit
  publication-title: Int J High Perform Comput Appl
  doi: 10.1177/1094342009106066
– volume: 119
  start-page: 12784
  issue: 24
  year: 2003
  ident: pcbi.1009410.ref034
  article-title: Stiffness in stochastic chemically reacting systems: The implicit tau-leaping method
  publication-title: J Chem Phys
  doi: 10.1063/1.1627296
– volume: 33
  start-page: 285
  issue: 2
  year: 1993
  ident: pcbi.1009410.ref035
  article-title: Stiffness of ODEs
  publication-title: BIT Numer Math
  doi: 10.1007/BF01989751
– volume: 33
  start-page: 3492
  issue: 21
  year: 2017
  ident: pcbi.1009410.ref019
  article-title: GPU-powered model analysis with PySB/cupSODA
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btx420
– volume: 55
  start-page: 271
  issue: 1-3
  year: 2001
  ident: pcbi.1009410.ref054
  article-title: Global sensitivity indices for nonlinear mathematical models and their Monte Carlo estimates
  publication-title: Math Comput Simul
  doi: 10.1016/S0378-4754(00)00270-6
– volume: 125
  start-page: 144107
  issue: 14
  year: 2006
  ident: pcbi.1009410.ref011
  article-title: A “partitioned leaping” approach for multiscale modeling of chemical reaction dynamics
  publication-title: J Chem Phys
  doi: 10.1063/1.2354085
– volume: 7
  start-page: e37370
  issue: 6
  year: 2012
  ident: pcbi.1009410.ref022
  article-title: Accelerating the Gillespie τ-leaping method using graphics processing units
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0037370
– volume: 181
  start-page: 259
  issue: 2
  year: 2010
  ident: pcbi.1009410.ref055
  article-title: Variance based sensitivity analysis of model output. Design and estimator for the total sensitivity index
  publication-title: Comput Phys Commun
  doi: 10.1016/j.cpc.2009.09.018
– volume: 7
  start-page: e46693
  issue: 11
  year: 2012
  ident: pcbi.1009410.ref023
  article-title: Accelerating the Gillespie exact stochastic simulation algorithm using hybrid parallel execution on graphics processing units
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0046693
– ident: pcbi.1009410.ref003
  doi: 10.1109/CIBCB.2015.7300288
– volume: 587
  start-page: 2832
  issue: 17
  year: 2013
  ident: pcbi.1009410.ref051
  article-title: A model of yeast glycolysis based on a consistent kinetic characterisation of all its enzymes
  publication-title: FEBS Lett
  doi: 10.1016/j.febslet.2013.06.043
– year: 2021
  ident: pcbi.1009410.ref069
  article-title: SMGen: A generator of synthetic models of biochemical reaction networks
  publication-title: bioRxiv
– volume: 8
  start-page: 1195
  issue: 11
  year: 2006
  ident: pcbi.1009410.ref005
  article-title: Physicochemical modelling of cell signalling pathways
  publication-title: Nat Cell Biol
  doi: 10.1038/ncb1497
– volume: 40
  start-page: 730
  issue: 11
  year: 2008
  ident: pcbi.1009410.ref070
  article-title: Sensitivity analysis and robust experimental design of a signal transduction pathway system
  publication-title: Int J Chem Kinet
  doi: 10.1002/kin.20369
– volume: 29
  start-page: 60
  issue: 4
  year: 2009
  ident: pcbi.1009410.ref067
  article-title: Modeling and analysis of mass-action kinetics
  publication-title: IEEE Control Syst
  doi: 10.1109/MCS.2009.932926
– volume: 12
  start-page: 14
  issue: 20–21
  year: 2014
  ident: pcbi.1009410.ref010
  article-title: Stochastic simulation in systems biology
  publication-title: Comput Struct Biotechnol J
  doi: 10.1016/j.csbj.2014.10.003
– ident: pcbi.1009410.ref026
  doi: 10.20944/preprints202012.0296.v1
– volume: 10
  start-page: 1038
  issue: 5
  year: 1989
  ident: pcbi.1009410.ref038
  article-title: VODE: A variable-coefficient ODE solver
  publication-title: SIAM J Sci Stat Comp
  doi: 10.1137/0910062
SSID ssj0035896
Score 2.3584523
Snippet Mathematical models of biochemical networks can largely facilitate the comprehension of the mechanisms at the basis of cellular processes, as well as the...
SourceID plos
doaj
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
StartPage e1009410
SubjectTerms Algorithms
Autophagy
Biochemical Phenomena
Biochemistry
Biological activity
Biological complexity
Biological models (mathematics)
Biology
Biology and Life Sciences
Calibration
Central processing units
Chemical reactions
Computational Biology
Computer and Information Sciences
Computer applications
Computer Graphics
Computer Simulation
Computer-generated environments
CPUs
Differential equations
Ecology and Environmental Sciences
Graphics processing units
Humans
Libraries
Mathematical Concepts
Mathematical models
Metabolic Networks and Pathways
Metabolism
Methods
Models, Biological
Networks
Ordinary differential equations
Parallel processing
Parameter estimation
Perturbation
Physical Sciences
Protein Biosynthesis
Research and Analysis Methods
Scale models
Simulation
Simulators
Software
Synthetic Biology
Systems Biology
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lj9MwELZQBRIXxHvDLsggJE5m0ziJY25lRYFLtWJZqTfLzyUSJFXTIu2_Z8ZJS4MWceESRfZcPDMefyOP5yPktcxd7soyZQLgJ4MTyjITrGVwOhQyK6wN2kWyCbFYVMulPD-g-sKasL49cK-4U1tWHmJmBd8id9NgJLeQVVUVTOTGG4y-gHp2yVQfg3lRRWYuJMVhgufL4dEcF9PTwUZvV9bUWCMgc3w9e3Aoxd79-wg9WX1vu5vg559VlAfH0vw-uTfgSTrr1_GA3PLNQ3KnZ5i8fkT8vD5rL97RGQ0AJ9kVEkJ4R3XjqG0hp_099PH8kq2QMg3-3VAjE5s4067-gRxf7ZoCwKWmRo6t2GSANn0NefeYXM4_fD37xAZmBWaLKtswbSrnTGaENrBLPE8tD9qkpkhLIwudCm1F4MKmEuKyhRwr5UgcZr1Jg3RB8idk0rSNPyI0k8GHqSm1BE2WnEseMlMijENen7xMCNupVq36Bhoq3qIJSDx6HSk0hRpMkZD3qP-9LLa_jgPgFGpwCvUvp0jIK7SewgYXDVbQXOlt16nPFws1KwVe3WZS_FXoy0jozSAUWrCy1cOrBVg8Ns4aSR6hq-wW1akMVF1UkJDlCTnZuc_N0y_307C58cZGN77doowAgI1RNiFPe2_bK4bnkKwCfkyIGPnhSHPjmab-FhuIAyLBPPzZ_1D1MbmbYZlPLLs7IZPNeuufk9v256bu1i_irvwFRto8CQ
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Public Library of Science (PLoS)
  dbid: FPL
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3di9QwEA9yKvjit171lCiCT9Fu0yaNb-vhqiDL4nlwbyGfdwVtl-2u4H_vTNvds8ftgy9LaWahmUwyv2Em8yPkjcp97oVImQT4ycBDOWajcwy8Q6GywrlofEc2Iefz8uxMLS4DxSsZfC4n7wedvls6W2FOX-V4o-pmxoXAEq7Z4tv25OVFqcRwPW7fP0fup-vSvzuLD5Y_m_Y6oHm1XvIfBzS797-ffp_cHaAmnfa28YDcCPVDcrsnn_zziIRZddycfKBTGgFpsnPkigiemtpT10C4e_nq8-KULZFNDZ79UD7T9XembfUL6b-aFQXsS22F9Ftd_wFa9-Xl7WNyOvv04_gLG0gXmCvKbM2MLb23mZXGwgYKPHU8GpvaIhVWFSaVxsnIpUsVHNkOwq-UI6eYCzaNykfFn5CDuqnDIaGZiiFOrDAKZi44VzxmViDCQ8qfXCSEbddCL_veGrpLsEmISXodaVSdHlSXkI-4YDtZ7IzdvQCd62GjaSfKAD62hN8i95NoFXcQhZclDOQ22IS8xuXW2PuixuKac7NpW_31ZK6nQmJWN1Nyr9D3kdDbQSg2YBbODBcaYPLYU2skeYi2tZ1UqzNQdVFCrJYn5Ghrb9cPv9oNw77HZI6pQ7NBGQnYGw_ghDztzXOnGJ5DHAvQMiFyZLgjzY1H6uqi6y0OYAVD9Gf7v_g5uZNhXU9XZ3dEDtarTXhBbrnf66pdvew25F_bzDZQ
  priority: 102
  providerName: Public Library of Science
Title FiCoS: A fine-grained and coarse-grained GPU-powered deterministic simulator for biochemical networks
URI https://www.ncbi.nlm.nih.gov/pubmed/34499658
https://www.proquest.com/docview/2582586754
https://www.proquest.com/docview/2571930048
https://pubmed.ncbi.nlm.nih.gov/PMC8476010
https://doaj.org/article/c68e42988e454d1fb93c38388c684beb
http://dx.doi.org/10.1371/journal.pcbi.1009410
Volume 17
WOSCitedRecordID wos000720144700003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1553-7358
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0035896
  issn: 1553-7358
  databaseCode: DOA
  dateStart: 20050101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 1553-7358
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0035896
  issn: 1553-7358
  databaseCode: P5Z
  dateStart: 20050601
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Biological Science Database
  customDbUrl:
  eissn: 1553-7358
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0035896
  issn: 1553-7358
  databaseCode: M7P
  dateStart: 20050601
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Computer Science Database
  customDbUrl:
  eissn: 1553-7358
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0035896
  issn: 1553-7358
  databaseCode: K7-
  dateStart: 20050601
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/compscijour
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1553-7358
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0035896
  issn: 1553-7358
  databaseCode: 7X7
  dateStart: 20050601
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1553-7358
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0035896
  issn: 1553-7358
  databaseCode: BENPR
  dateStart: 20050601
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 1553-7358
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0035896
  issn: 1553-7358
  databaseCode: PIMPY
  dateStart: 20050601
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVATS
  databaseName: Public Library of Science (PLoS) : Open Access Journals [open access]
  customDbUrl:
  eissn: 1553-7358
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0035896
  issn: 1553-7358
  databaseCode: FPL
  dateStart: 20050101
  isFulltext: true
  titleUrlDefault: http://www.plos.org/publications/
  providerName: Public Library of Science
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwELdYBxIvfMMCowoIiSezJE7imBfUTStMQBVtTCq8RLFjl0iQlKZF4r_nznG7FQ1eeLGi-B5s3_k-7PP9CHkh4iqu0jSgHNxPChZKUWmUomAdEhElSpmysmATfDLJplORuwO3zqVVrnWiVdRVq_CM_CBKIJbJwL2N38x_UESNwttVB6GxQ3bDKApRzt9zutbELMksPhdC41DO4ql7Osd4eOA49WquZI2ZAiLGN7SXTJOt4L_R04P5t7a7ygn9M5fyknEa3_7fad0ht5xb6o96ObpLrunmHrnRA1X-uk_0uD5qz177I9-AV0pniCuhK79sKl-1EBpf_Hqbn9M5Iq_Bd-VSbWwtaL-rvyNUWLvwwU_2ZY1QXbZWgd_0qejdA3I-Pv509I46gAaqYNhLWsqsqmQkeSlhs2kWKGZKGcgkSKVIyoCXihvGVSBAvSsI1QKG-GNKy8CIygj2kAyattF7xI-E0SaUaSmAFSljgplIpugNIjxQnHqErnlTzPs6HIW9jOMQv_RrVCAvC8dLjxwiAze0WEXb_mgXs8JtykKlmQZ7nEGbxFVopGAKIvYsg45YaumR58j-AutkNJiIMytXXVecnE2KUcrxBjgS_K9Ep1tELx2RaUFMVOkeP8Dksf7WFuUeytp6Ul1xISEe2V_L0NXdzzbdoCPw4qdsdLtCGg5-OiprjzzqxXWzMCyGmBfcUI_wLUHeWrntnqb-auuQg2OD4fzjfw_rCbkZYR6QzcvbJ4PlYqWfkuvq57LuFkOyw6fcttmQ7B4eT_LToT0XgXacfxjaDT3EjNwc2jz5AlT5ycf8829qOlMJ
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1bb9MwFLamAoIX7rDAgIBAPHlL4ySOkRAqg7Kqo5rYJvUt2I5dIkESmha0P8Vv5JxcuhUN3vbASxTFR1HsfD4X-_h8hDwXQRqkUeRRDu4nBQulqbJaU7AOofBDra1Ma7IJPpnE06k42CC_urMwmFbZ6cRaUaeFxjXyHT-EWCYG9zZ4U36nyBqFu6sdhUYDi7E5-QkhW_V69A7-7wvfH74_2t2jLasA1fCKBZUqTlPlKy4VIMQwTzMrladCL1IilB6XmlvGtSdAJ2mILzyGpFnaKM-K1GLxJVD5lwIWc6zVP-a00_wsjGs-MKTioZwF0_aoHuP9nRYZ26VWGWYmiADP7J4xhTVjwMou9MqvRXWe0_tn7uYZYzi88b8N401yvXW73UEzT26RDZPfJlcaIs6TO8QMs93i8JU7cC143XSGvBkmdWWeurqA0P_00YeDY1oisxzcp20qUV3r2q2yb0iFVsxdiANclSEVWV2Lwc2bVPvqLjm-kD7eI728yM0mcX1hje2rSAr49RFjgllfRejtIv1REDmEdlhIyqbOSFJvNnKIz5oxShA7SYsdh7xFwKxksUp4_aCYz5JW6SQ6ig34GzFcwyDtWyWYZjGLY2gIlFEOeYZwS7AOSI6JRjO5rKpkdDhJBhHHHW5f8L8KfVoTetkK2QJgqWV7uAM6j_XF1iQ3Edtdp6rkFJEO2eowe37z01Uz6EDc2JK5KZYowyEOQWPkkPvN9FgNDAsgpgc32yF8beKsjdx6S559qeusg-OGyxUP_v1ZT8jVvaOP-8n-aDJ-SK75mPNU5yBukd5ivjSPyGX9Y5FV88e1snDJ54ueVr8BiRqrTw
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lj9MwELZW5SEuvGEDCwQE4mSaxkkcIyFUdilURVXFslJvwXbsEgmS0LSg_Wv8Omby6G7Rwm0PXKooHkW1880rHs9HyFMRpEEaRR7lEH5S8FCaKqs1Be8QCj_U2sq0Jpvg02k8n4vZDvnVnYXBssrOJtaGOi00fiPv-yHkMjGEt0HftmURs4PR6_I7RQYp3Gnt6DQaiEzM8U9I36pX4wN41898f_T20_572jIMUA2PW1Gp4jRVvuJSAVoM8zSzUnkq9CIlQulxqbllXHsC7JOGXMNjSKCljfKsSC02YgLzfwG8cIg6NuG08wIsjGtuMKTloZwF8_bYHuODfouSF6VWGVYpiADP755yizV7wMZH9MqvRXVWAPxnHecpxzi69j8v6XVytQ3H3WGjPzfIjslvkksNQefxLWJG2X5x-NIduhaicbpAPg2TujJPXV3IZXVy693siJbIOAfXaVtiVPfAdqvsG1KkFUsX8gNXZUhRVvdocPOmBL-6TY7OZY53SC8vcrNLXF9YYwcqkgJgEDEmmPVVhFEw0iIFkUNoh4ukbPqPJPUmJIe8rVmjBHGUtDhyyBsEz0YWu4fXN4rlImmNUaKj2EAcEsNvGKQDqwTTLGZxDAOBMsohTxB6CfYHyREWC7muqmR8OE2GEcedb1_wvwp93BJ63grZAiCqZXvoAyaPfce2JHcR592kquQEnQ7Z6_B79vDjzTDYRtzwkrkp1ijDIT9BJ-WQu42qbBaGBZDrQ_jtEL6lRFsrtz2SZ1_q_usQ0OFnjHv__luPyGXQpuTDeDq5T674WApVlybukd5quTYPyEX9Y5VVy4e13XDJ5_PWqt_30bQJ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=FiCoS%3A+A+fine-grained+and+coarse-grained+GPU-powered+deterministic+simulator+for+biochemical+networks&rft.jtitle=PLoS+computational+biology&rft.au=Tangherloni%2C+Andrea&rft.au=Nobile%2C+Marco+S&rft.au=Cazzaniga%2C+Paolo&rft.au=Capitoli%2C+Giulia&rft.date=2021-09-01&rft.pub=Public+Library+of+Science&rft.issn=1553-734X&rft.eissn=1553-7358&rft.volume=17&rft.issue=9&rft.spage=e1009410&rft_id=info:doi/10.1371%2Fjournal.pcbi.1009410&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1553-7358&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1553-7358&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1553-7358&client=summon