Arabidopsis EF‐Tu receptor enhances bacterial disease resistance in transgenic wheat

Perception of pathogen (or microbe)‐associated molecular patterns (PAMPs/MAMPs) by pattern recognition receptors (PRRs) is a key component of plant innate immunity. The Arabidopsis PRR EF‐Tu receptor (EFR) recognizes the bacterial PAMP elongation factor Tu (EF‐Tu) and its derived peptide elf18. Prev...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:The New phytologist Ročník 206; číslo 2; s. 606 - 613
Hlavní autori: Schoonbeek, Henk‐jan, Wang, Hsi‐Hua, Stefanato, Francesca L, Craze, Melanie, Bowden, Sarah, Wallington, Emma, Zipfel, Cyril, Ridout, Christopher J
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: England Academic Press 01.04.2015
New Phytologist Trust
Wiley Subscription Services, Inc
Predmet:
ISSN:0028-646X, 1469-8137
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Perception of pathogen (or microbe)‐associated molecular patterns (PAMPs/MAMPs) by pattern recognition receptors (PRRs) is a key component of plant innate immunity. The Arabidopsis PRR EF‐Tu receptor (EFR) recognizes the bacterial PAMP elongation factor Tu (EF‐Tu) and its derived peptide elf18. Previous work revealed that transgenic expression of AtEFR in Solanaceae confers elf18 responsiveness and broad‐spectrum bacterial disease resistance. In this study, we developed a set of bioassays to study the activation of PAMP‐triggered immunity (PTI) in wheat. We generated transgenic wheat (Triticum aestivum) plants expressing AtEFR driven by the constitutive rice actin promoter and tested their response to elf18. We show that transgenic expression of AtEFR in wheat confers recognition of elf18, as measured by the induction of immune marker genes and callose deposition. When challenged with the cereal bacterial pathogen Pseudomonas syringae pv. oryzae, transgenic EFR wheat lines had reduced lesion size and bacterial multiplication. These results demonstrate that AtEFR can be transferred successfully from dicot to monocot species, further revealing that immune signalling pathways are conserved across these distant phyla. As novel PRRs are identified, their transfer between plant families represents a useful strategy for enhancing resistance to pathogens in crops.
AbstractList Perception of pathogen (or microbe)-associated molecular patterns (PAMPs/MAMPs) by pattern recognition receptors (PRRs) is a key component of plant innate immunity. The Arabidopsis PRR EF-Tu receptor (EFR) recognizes the bacterial PAMP elongation factor Tu (EF-Tu) and its derived peptide elf18. Previous work revealed that transgenic expression of AtEFR in Solanaceae confers elf18 responsiveness and broad-spectrum bacterial disease resistance. In this study, we developed a set of bioassays to study the activation of PAMP-triggered immunity (PTI) in wheat. We generated transgenic wheat (Triticum aestivum) plants expressing AtEFR driven by the constitutive rice actin promoter and tested their response to elf18. We show that transgenic expression of AtEFR in wheat confers recognition of elf18, as measured by the induction of immune marker genes and callose deposition. When challenged with the cereal bacterial pathogen Pseudomonas syringae pv. oryzae, transgenic EFR wheat lines had reduced lesion size and bacterial multiplication. These results demonstrate that AtEFR can be transferred successfully from dicot to monocot species, further revealing that immune signalling pathways are conserved across these distant phyla. As novel PRRs are identified, their transfer between plant families represents a useful strategy for enhancing resistance to pathogens in crops.
Perception of pathogen (or microbe)‐associated molecular patterns ( PAMP s/ MAMP s) by pattern recognition receptors ( PRR s) is a key component of plant innate immunity. The Arabidopsis PRR EF ‐Tu receptor ( EFR ) recognizes the bacterial PAMP elongation factor Tu ( EF ‐Tu) and its derived peptide elf18. Previous work revealed that transgenic expression of At EFR in Solanaceae confers elf18 responsiveness and broad‐spectrum bacterial disease resistance. In this study, we developed a set of bioassays to study the activation of PAMP ‐triggered immunity ( PTI ) in wheat. We generated transgenic wheat ( Triticum aestivum ) plants expressing At EFR driven by the constitutive rice actin promoter and tested their response to elf18. We show that transgenic expression of At EFR in wheat confers recognition of elf18, as measured by the induction of immune marker genes and callose deposition. When challenged with the cereal bacterial pathogen Pseudomonas syringae pv.  oryzae , transgenic EFR wheat lines had reduced lesion size and bacterial multiplication. These results demonstrate that At EFR can be transferred successfully from dicot to monocot species, further revealing that immune signalling pathways are conserved across these distant phyla. As novel PRR s are identified, their transfer between plant families represents a useful strategy for enhancing resistance to pathogens in crops.
Perception of pathogen (or microbe)‐associated molecular patterns (PAMPs/MAMPs) by pattern recognition receptors (PRRs) is a key component of plant innate immunity. The Arabidopsis PRR EF‐Tu receptor (EFR) recognizes the bacterial PAMP elongation factor Tu (EF‐Tu) and its derived peptide elf18. Previous work revealed that transgenic expression of AtEFR in Solanaceae confers elf18 responsiveness and broad‐spectrum bacterial disease resistance.In this study, we developed a set of bioassays to study the activation of PAMP‐triggered immunity (PTI) in wheat. We generated transgenic wheat (Triticum aestivum) plants expressing AtEFR driven by the constitutive rice actin promoter and tested their response to elf18.We show that transgenic expression of AtEFR in wheat confers recognition of elf18, as measured by the induction of immune marker genes and callose deposition. When challenged with the cereal bacterial pathogen Pseudomonas syringae pv. oryzae, transgenic EFR wheat lines had reduced lesion size and bacterial multiplication.These results demonstrate that AtEFR can be transferred successfully from dicot to monocot species, further revealing that immune signalling pathways are conserved across these distant phyla. As novel PRRs are identified, their transfer between plant families represents a useful strategy for enhancing resistance to pathogens in crops.
* Perception of pathogen (or microbe)-associated molecular patterns (PAMPs/MAMPs) by pattern recognition receptors (PRRs) is a key component of plant innate immunity. The Arabidopsis PRR EF-Tu receptor (EFR) recognizes the bacterial PAMP elongation factor Tu (EF-Tu) and its derived peptide elf18. Previous work revealed that transgenic expression of AtEFR in Solanaceae confers elf18 responsiveness and broad-spectrum bacterial disease resistance. * In this study, we developed a set of bioassays to study the activation of PAMP-triggered immunity (PTI) in wheat. We generated transgenic wheat (Triticum aestivum) plants expressing AtEFR driven by the constitutive rice actin promoter and tested their response to elf18. * We show that transgenic expression of AtEFR in wheat confers recognition of elf18, as measured by the induction of immune marker genes and callose deposition. When challenged with the cereal bacterial pathogen Pseudomonas syringae pv. oryzae, transgenic EFR wheat lines had reduced lesion size and bacterial multiplication. * These results demonstrate that AtEFR can be transferred successfully from dicot to monocot species, further revealing that immune signalling pathways are conserved across these distant phyla. As novel PRRs are identified, their transfer between plant families represents a useful strategy for enhancing resistance to pathogens in crops.
Summary Perception of pathogen (or microbe)‐associated molecular patterns (PAMPs/MAMPs) by pattern recognition receptors (PRRs) is a key component of plant innate immunity. The Arabidopsis PRR EF‐Tu receptor (EFR) recognizes the bacterial PAMP elongation factor Tu (EF‐Tu) and its derived peptide elf18. Previous work revealed that transgenic expression of AtEFR in Solanaceae confers elf18 responsiveness and broad‐spectrum bacterial disease resistance. In this study, we developed a set of bioassays to study the activation of PAMP‐triggered immunity (PTI) in wheat. We generated transgenic wheat (Triticum aestivum) plants expressing AtEFR driven by the constitutive rice actin promoter and tested their response to elf18. We show that transgenic expression of AtEFR in wheat confers recognition of elf18, as measured by the induction of immune marker genes and callose deposition. When challenged with the cereal bacterial pathogen Pseudomonas syringae pv. oryzae, transgenic EFR wheat lines had reduced lesion size and bacterial multiplication. These results demonstrate that AtEFR can be transferred successfully from dicot to monocot species, further revealing that immune signalling pathways are conserved across these distant phyla. As novel PRRs are identified, their transfer between plant families represents a useful strategy for enhancing resistance to pathogens in crops.
Perception of pathogen (or microbe)-associated molecular patterns (PAMPs/MAMPs) by pattern recognition receptors (PRRs) is a key component of plant innate immunity. The Arabidopsis PRR EF-Tu receptor (EFR) recognizes the bacterial PAMP elongation factor Tu (EF-Tu) and its derived peptide elf18. Previous work revealed that transgenic expression of AtEFR in Solanaceae confers elf18 responsiveness and broad-spectrum bacterial disease resistance. In this study, we developed a set of bioassays to study the activation of PAMP-triggered immunity (PTI) in wheat. We generated transgenic wheat (Triticum aestivum) plants expressing AtEFR driven by the constitutive rice actin promoter and tested their response to elf18. We show that transgenic expression of AtEFR in wheat confers recognition of elf18, as measured by the induction of immune marker genes and callose deposition. When challenged with the cereal bacterial pathogen Pseudomonas syringae pv. oryzae, transgenic EFR wheat lines had reduced lesion size and bacterial multiplication. These results demonstrate that AtEFR can be transferred successfully from dicot to monocot species, further revealing that immune signalling pathways are conserved across these distant phyla. As novel PRRs are identified, their transfer between plant families represents a useful strategy for enhancing resistance to pathogens in crops.
Author Craze, Melanie
Wang, Hsi‐Hua
Stefanato, Francesca L
Ridout, Christopher J
Schoonbeek, Henk‐jan
Wallington, Emma
Zipfel, Cyril
Bowden, Sarah
Author_xml – sequence: 1
  fullname: Schoonbeek, Henk‐jan
– sequence: 2
  fullname: Wang, Hsi‐Hua
– sequence: 3
  fullname: Stefanato, Francesca L
– sequence: 4
  fullname: Craze, Melanie
– sequence: 5
  fullname: Bowden, Sarah
– sequence: 6
  fullname: Wallington, Emma
– sequence: 7
  fullname: Zipfel, Cyril
– sequence: 8
  fullname: Ridout, Christopher J
BackLink https://www.ncbi.nlm.nih.gov/pubmed/25760815$$D View this record in MEDLINE/PubMed
BookMark eNqNks1u1DAURi1URKeFBS8AkdjAIu21Hf8tq6qlSBUg0SJ2luM4Mx5lnGAnGs2OR-AZeRI8zAyLCqR644XP-azrzyfoKPTBIfQSwxnO6zwMizNMKeNP0AxXXJUSU3GEZgBElrzi347RSUpLAFCMk2fomDDBQWI2Q18voql90w_Jp-Lq-tePn3dTEZ11w9jHwoWFCdalojZ2dNGbrmh8cia5zGRj3J4WPhRjNCHNXfC2WC-cGZ-jp63pknux30_R_fXV3eVNefvp_YfLi9vSMkl4SW1bcyLbuqkbZWslVEUb0hIwXEmLOaVCKRANZoQ5oBQcGEfbGqQFC1VDT9HbXe4Q---TS6Ne-WRd15ng-ilpzFXFAAtZPQKVICoJSj0CFZxyTgTL6JsH6LKfYsgza8IwVRgLtr371Z6a6pVr9BD9ysSNPvSQgfMdYGOfUnSttn40o-9DflnfaQx627TOTes_TWfj3QPjEPovdp--9p3b_B_UHz_fHIxyZyxT_gd_jeDWw2Iz9l0_z-VrAlwTzWHLv97xrem1mUef9P0XApgBYCmoEPQ3LO7QOA
CitedBy_id crossref_primary_10_1080_07060661_2017_1355850
crossref_primary_10_3389_fpls_2015_00219
crossref_primary_10_1016_j_scitotenv_2024_169920
crossref_primary_10_3389_fpls_2022_832502
crossref_primary_10_1111_tpj_13808
crossref_primary_10_12688_f1000research_20179_1
crossref_primary_10_1016_j_jprot_2021_104264
crossref_primary_10_1038_s41576_024_00793_z
crossref_primary_10_3389_fpls_2019_00417
crossref_primary_10_1163_15685411_00003048
crossref_primary_10_1080_15592324_2016_1197465
crossref_primary_10_3389_fpls_2022_1109845
crossref_primary_10_1126_science_aar6089
crossref_primary_10_1111_nph_15967
crossref_primary_10_1094_PHYTO_04_17_0130_RVW
crossref_primary_10_1002_pld3_538
crossref_primary_10_1111_nph_19111
crossref_primary_10_1111_mpp_12452
crossref_primary_10_1016_j_copbio_2021_04_006
crossref_primary_10_1038_s41467_020_15633_x
crossref_primary_10_1002_fes3_101
crossref_primary_10_1094_PHYTO_01_16_0036_FI
crossref_primary_10_1038_s41467_020_17573_y
crossref_primary_10_1007_s00425_020_03484_1
crossref_primary_10_1111_nph_13533
crossref_primary_10_1111_mpp_12781
crossref_primary_10_1111_tpj_17035
crossref_primary_10_1111_pbi_13289
crossref_primary_10_1111_mpp_12789
crossref_primary_10_1134_S2079059716050130
crossref_primary_10_1016_j_rhisph_2025_101183
crossref_primary_10_1007_s40858_019_00279_y
crossref_primary_10_1111_pbi_12999
crossref_primary_10_1186_s42483_025_00350_4
crossref_primary_10_1038_nature22009
crossref_primary_10_1111_pce_13047
crossref_primary_10_1016_j_pbi_2020_101987
crossref_primary_10_3389_fpls_2018_00867
crossref_primary_10_3390_plants11192660
crossref_primary_10_1074_jbc_REV120_010852
crossref_primary_10_1186_s42483_024_00243_y
crossref_primary_10_1038_s41438_021_00639_3
crossref_primary_10_1094_PHYTO_12_17_0424_R
crossref_primary_10_3389_fmicb_2022_912632
crossref_primary_10_1007_s11103_021_01133_z
crossref_primary_10_1111_eva_12279
crossref_primary_10_1016_j_rsci_2019_04_001
crossref_primary_10_3390_ijms20081882
crossref_primary_10_1007_s11105_024_01491_0
crossref_primary_10_1111_pbi_12804
crossref_primary_10_1111_pbi_12647
crossref_primary_10_1007_s00425_022_03951_x
crossref_primary_10_1016_j_cpb_2024_100367
crossref_primary_10_1007_s00122_017_2864_x
crossref_primary_10_1094_MPMI_06_20_0161_CR
crossref_primary_10_1146_annurev_phyto_080614_120106
crossref_primary_10_1111_mpp_70005
crossref_primary_10_1016_j_cj_2022_02_005
crossref_primary_10_1094_MPMI_12_24_0159_FI
crossref_primary_10_1016_j_molp_2020_09_018
crossref_primary_10_1007_s11738_019_2819_8
crossref_primary_10_3389_fmicb_2019_02351
crossref_primary_10_1111_nph_13906
crossref_primary_10_1007_s13580_021_00415_1
crossref_primary_10_1111_pbi_70139
crossref_primary_10_1007_s00122_024_04569_1
crossref_primary_10_1016_j_tplants_2015_06_006
crossref_primary_10_1111_nph_14144
crossref_primary_10_1111_pbi_13995
crossref_primary_10_3389_fpls_2016_01822
crossref_primary_10_1016_j_tplants_2016_08_014
crossref_primary_10_1007_s10327_018_0828_x
crossref_primary_10_1038_s41467_024_54452_2
crossref_primary_10_3389_fpls_2017_00844
crossref_primary_10_1038_nplants_2016_128
crossref_primary_10_1111_pbi_13916
crossref_primary_10_3390_ijms23084402
crossref_primary_10_3390_ijms252212048
crossref_primary_10_1007_s11427_017_9064_5
crossref_primary_10_1038_nplants_2015_140
crossref_primary_10_1002_ece3_4724
crossref_primary_10_1111_mpp_12929
crossref_primary_10_3389_fpls_2017_01783
crossref_primary_10_1016_j_chom_2025_08_015
crossref_primary_10_3389_fpls_2022_1044070
crossref_primary_10_1002_advs_202412223
crossref_primary_10_1094_MPMI_05_19_0137_R
crossref_primary_10_1094_MPMI_09_18_0263_R
crossref_primary_10_1016_j_pbi_2017_04_010
crossref_primary_10_1016_j_pbi_2017_04_011
crossref_primary_10_1111_ppa_13615
crossref_primary_10_3390_ijms20020279
crossref_primary_10_1111_nph_70313
crossref_primary_10_3390_ijms232214370
crossref_primary_10_1111_nph_14097
crossref_primary_10_1111_nph_18694
crossref_primary_10_1371_journal_pone_0290884
crossref_primary_10_1016_j_cell_2025_05_028
crossref_primary_10_3390_agronomy8080134
crossref_primary_10_1073_pnas_2319499121
crossref_primary_10_1111_pbi_13017
crossref_primary_10_3390_plants10061146
crossref_primary_10_1016_j_coviro_2017_07_030
crossref_primary_10_1111_mpp_13445
crossref_primary_10_1038_s41594_024_01440_1
crossref_primary_10_3389_fpls_2017_01642
crossref_primary_10_1016_j_pbi_2022_102209
crossref_primary_10_1146_annurev_arplant_010720_022215
crossref_primary_10_1093_plphys_kiac112
crossref_primary_10_1016_j_plantsci_2018_02_013
Cites_doi 10.1016/j.pbi.2013.07.004
10.1007/s00425-010-1215-9
10.1111/pbi.12170
10.1016/j.cub.2008.07.085
10.1073/pnas.0705147104
10.1094/MPMI-10-13-0304-R
10.1111/j.1365-3059.2009.02148.x
10.1094/MPMI-05-13-0154-FI
10.1016/j.tig.2012.10.011
10.1104/pp.108.119511
10.1016/j.it.2014.05.004
10.1093/mp/ssu003
10.1126/science.1236011
10.1016/j.cell.2006.03.037
10.1016/j.molcel.2014.03.028
10.1046/j.1365-313x.2001.01015.x
10.1111/j.1365-313X.2010.04324.x
10.1046/j.1365-313X.1999.00265.x
10.1111/j.1365-313X.1993.tb00169.x
10.1007/s11103-013-0149-6
10.1111/mpp.12138
10.1094/MPMI-21-12-1635
10.1007/BF01977351
10.1007/s00299-008-0505-1
10.1105/tpc.111.092957
10.1007/978-94-011-3937-3_5
10.1126/science.270.5243.1804
10.1094/MPMI-03-14-0068-R
10.1007/s10709-012-9645-x
10.1073/pnas.0705306104
10.1146/annurev-arplant-042811-105518
10.1016/S1097-2765(00)80265-8
10.1111/j.1365-313X.2010.04328.x
10.1111/jipb.12123
10.1093/pcp/pcs113
10.1104/pp.111.183327
10.3186/jjphytopath.51.212
10.1186/1471-2229-10-288
10.1186/1471-2164-14-166
10.7717/peerj.242
10.1094/MPMI-07-13-0201-R
10.1038/nrg2812
10.1128/AEM.71.9.5182-5191.2005
10.1073/pnas.0508882103
10.1073/pnas.1312099111
10.1371/journal.ppat.1004602
10.1111/j.1469-8137.2009.02970.x
10.1111/jipb.12306
10.1146/annurev.arplant.57.032905.105346
10.1105/tpc.104.026765
10.1101/006155
10.1038/nature05999
10.1038/nature02076
10.1105/tpc.107.056754
10.1038/nbt.1613
10.1111/nph.12592
10.1105/tpc.111.084301
10.1007/s11240-010-9825-2
10.1007/s11103-007-9173-8
ContentType Journal Article
Copyright 2015 New Phytologist Trust
2015 The Authors. New Phytologist © 2015 New Phytologist Trust
2015 The Authors. New Phytologist © 2015 New Phytologist Trust.
Copyright © 2015 New Phytologist Trust
Copyright_xml – notice: 2015 New Phytologist Trust
– notice: 2015 The Authors. New Phytologist © 2015 New Phytologist Trust
– notice: 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.
– notice: Copyright © 2015 New Phytologist Trust
DBID FBQ
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QO
7SN
8FD
C1K
F1W
FR3
H95
L.G
M7N
P64
RC3
7QL
7X8
7S9
L.6
DOI 10.1111/nph.13356
DatabaseName AGRIS
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Biotechnology Research Abstracts
Ecology Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
Bacteriology Abstracts (Microbiology B)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Genetics Abstracts
Biotechnology Research Abstracts
Technology Research Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Ecology Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Bacteriology Abstracts (Microbiology B)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList MEDLINE
CrossRef
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Genetics Abstracts

MEDLINE - Academic

AGRICOLA

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Botany
EISSN 1469-8137
EndPage 613
ExternalDocumentID 25760815
10_1111_nph_13356
NPH13356
newphytologist.206.2.606
US201500187377
Genre rapidPublication
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: ERA‐PG consortium ‘PRR‐CROP’
  funderid: BB/J004553/1
– fundername: UK Biotechnology and Biological Sciences Research Council (BBSRC)
  funderid: BB/G042960/1; BB/G024936/1; BB/G025045/1
– fundername: Biotechnology and Biological Sciences Research Council
  grantid: BB/G025045/1
– fundername: Biotechnology and Biological Sciences Research Council
  grantid: BB/J004553/1
– fundername: Biotechnology and Biological Sciences Research Council
  grantid: BB/G024960/1
– fundername: Biotechnology and Biological Sciences Research Council
  grantid: BB/G042960/1
– fundername: Biotechnology and Biological Sciences Research Council
  grantid: BB/G024936/1
GroupedDBID ---
-~X
.3N
.GA
.Y3
05W
0R~
10A
123
1OC
24P
29N
2WC
31~
33P
36B
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5HH
5LA
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
85S
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHKG
AAISJ
AAKGQ
AANLZ
AAONW
AASGY
AASVR
AAXRX
AAZKR
ABBHK
ABCQN
ABCUV
ABEFU
ABEML
ABHUG
ABLJU
ABPLY
ABPTK
ABPVW
ABTLG
ABWRO
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFS
ACNCT
ACPOU
ACQPF
ACSCC
ACSTJ
ACXBN
ACXME
ACXQS
ADAWD
ADBBV
ADDAD
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADULT
ADXAS
ADZLD
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AESBF
AEUPB
AEUQT
AEUYR
AFAZZ
AFBPY
AFEBI
AFFPM
AFGKR
AFMIJ
AFPWT
AFVGU
AFZJQ
AGJLS
AGUYK
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
AS~
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BAWUL
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CAG
CBGCD
COF
CS3
CUYZI
CWIXF
D-E
D-F
DCZOG
DEVKO
DIK
DOOOF
DPXWK
DR2
DRFUL
DRSTM
DWIUU
E3Z
EBS
ECGQY
EJD
ESX
F00
F01
F04
F5P
FBQ
FIJ
G-S
G.N
GODZA
GTFYD
H.T
H.X
HF~
HGD
HQ2
HTVGU
HZI
HZ~
IHE
IPNFZ
IX1
J0M
JAAYA
JBMMH
JBS
JEB
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSODD
JST
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LPU
LUTES
LW6
LW7
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MVM
MXFUL
MXSTM
N04
N05
N9A
NEJ
NF~
O66
O9-
OK1
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
R.K
RCA
RIG
ROL
RX1
SA0
SUPJJ
TN5
TR2
UB1
W8V
W99
WBKPD
WHG
WIH
WIK
WIN
WNSPC
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XOL
YNT
YQT
YXE
ZCG
ZZTAW
~02
~IA
~KM
~WT
79B
AAHBH
AAHQN
AAMMB
AAMNL
AAYCA
ABSQW
ABUFD
ABVKB
ABXSQ
ACHIC
AEFGJ
AEYWJ
AFWVQ
AGXDD
AGYGG
AHBTC
AHXOZ
AIDQK
AIDYY
AILXY
AITYG
ALVPJ
AQVQM
HGLYW
IPSME
O8X
OIG
ABGDZ
ADXHL
AGHNM
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QO
7SN
8FD
C1K
F1W
FR3
H95
L.G
M7N
P64
RC3
7QL
7X8
7S9
L.6
ID FETCH-LOGICAL-c5826-3cfb628fbdbd9cb97943d2f20a698c163379907d1525e0330e0ae3fb08c0c04d3
IEDL.DBID WIN
ISICitedReferencesCount 127
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000351742300016&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0028-646X
IngestDate Fri Sep 05 17:26:56 EDT 2025
Sun Nov 09 11:06:59 EST 2025
Tue Oct 07 09:43:10 EDT 2025
Mon Nov 03 00:52:34 EST 2025
Mon Jul 21 05:57:08 EDT 2025
Sat Nov 29 04:38:21 EST 2025
Tue Nov 18 21:19:28 EST 2025
Sun Sep 21 06:12:48 EDT 2025
Wed Dec 10 12:40:25 EST 2025
Wed Dec 27 19:14:27 EST 2023
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords dicotyledon-to-monocotyledon gene-transfer
bacterial halo blight
pathogen-associated molecular pattern (PAMP)/microbe-associate molecular pattern (MAMP)-triggered immunity
immune receptor signalling
transgenic wheat
pathogen recognition
durable disease resistance
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
2015 The Authors. New Phytologist © 2015 New Phytologist Trust.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5826-3cfb628fbdbd9cb97943d2f20a698c163379907d1525e0330e0ae3fb08c0c04d3
Notes http://dx.doi.org/10.1111/nph.13356
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-1087-2553
OpenAccessLink https://onlinelibrary.wiley.com/doi/pdfdirect/10.1111/nph.13356
PMID 25760815
PQID 2513911754
PQPubID 2026848
PageCount 8
ParticipantIDs proquest_miscellaneous_1694501784
proquest_miscellaneous_1680748099
proquest_miscellaneous_1676366275
proquest_journals_2513911754
pubmed_primary_25760815
crossref_citationtrail_10_1111_nph_13356
crossref_primary_10_1111_nph_13356
wiley_primary_10_1111_nph_13356_NPH13356
jstor_primary_newphytologist_206_2_606
fao_agris_US201500187377
PublicationCentury 2000
PublicationDate April 2015
PublicationDateYYYYMMDD 2015-04-01
PublicationDate_xml – month: 04
  year: 2015
  text: April 2015
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
– name: Lancaster
PublicationTitle The New phytologist
PublicationTitleAlternate New Phytol
PublicationYear 2015
Publisher Academic Press
New Phytologist Trust
Wiley Subscription Services, Inc
Publisher_xml – name: Academic Press
– name: New Phytologist Trust
– name: Wiley Subscription Services, Inc
References 2013; 29
2010; 11
2007; 104
2010; 10
2011; 157
2010; 59
2000; 5
1954; 44
2014; 27
2008; 147
1993; 2
1993; 3
2012; 53
2010; 64
2013; 14
2014; 2
2013; 16
2013; 55
2000
1999; 18
2010; 28
2008; 27
2010; 232
2014; 15
1985; 51
2008; 21
2011; 23
2005; 71
2008; 20
2007; 64
2012; 24
2014; 7
2014; 12
2014; 54
2012; 63
2006; 125
2014a; 27
2014; 201
2014b; 84
2007; 448
2011; 139
2009; 60
2008; 18
2015; 11
2009
1997
2001; 26
2013; 341
2014; 111
1995; 270
2011; 104
2003; 425
2004; 16
2014; 35
2009; 184
2014
2006; 103
e_1_2_5_27_1
e_1_2_5_25_1
e_1_2_5_48_1
e_1_2_5_23_1
e_1_2_5_46_1
e_1_2_5_21_1
e_1_2_5_44_1
e_1_2_5_29_1
e_1_2_5_61_1
e_1_2_5_63_1
e_1_2_5_42_1
e_1_2_5_15_1
e_1_2_5_38_1
e_1_2_5_17_1
e_1_2_5_36_1
e_1_2_5_59_1
e_1_2_5_9_1
e_1_2_5_11_1
e_1_2_5_34_1
e_1_2_5_57_1
e_1_2_5_7_1
e_1_2_5_13_1
e_1_2_5_32_1
e_1_2_5_55_1
e_1_2_5_5_1
e_1_2_5_3_1
King EO (e_1_2_5_24_1) 1954; 44
e_1_2_5_19_1
e_1_2_5_30_1
e_1_2_5_53_1
e_1_2_5_51_1
e_1_2_5_28_1
e_1_2_5_49_1
e_1_2_5_26_1
e_1_2_5_47_1
e_1_2_5_22_1
e_1_2_5_43_1
e_1_2_5_60_1
e_1_2_5_62_1
Risacher T (e_1_2_5_40_1) 2009
e_1_2_5_20_1
e_1_2_5_41_1
e_1_2_5_14_1
e_1_2_5_39_1
e_1_2_5_16_1
e_1_2_5_37_1
e_1_2_5_58_1
e_1_2_5_8_1
e_1_2_5_10_1
e_1_2_5_35_1
e_1_2_5_56_1
e_1_2_5_6_1
e_1_2_5_12_1
e_1_2_5_33_1
e_1_2_5_54_1
e_1_2_5_4_1
e_1_2_5_2_1
e_1_2_5_18_1
Rudolph K (e_1_2_5_45_1) 1997
e_1_2_5_31_1
e_1_2_5_52_1
e_1_2_5_50_1
References_xml – volume: 59
  start-page: 68
  year: 2010
  end-page: 75
  article-title: Reduction in susceptibility to pv. in transgenic expressing the rice gene
  publication-title: Plant Pathology
– start-page: 101
  year: 2000
  end-page: 160
– volume: 18
  start-page: 265
  year: 1999
  end-page: 276
  article-title: Plants have a sensitive perception system for the most conserved domain of bacterial flagellin
  publication-title: Plant Journal
– volume: 23
  start-page: 2440
  year: 2011
  end-page: 2455
  article-title: The leucine‐rich repeat receptor‐like kinases BAK1/SERK3 and BKK1/SERK4 are required for innate immunity to hemibiotrophic and biotrophic pathogens
  publication-title: Plant Cell
– volume: 104
  start-page: 19613
  year: 2007
  end-page: 19618
  article-title: CERK1, a LysM receptor kinase, is essential for chitin elicitor signaling in Arabidopsis
  publication-title: Proceedings of the National Academy of Sciences, USA
– volume: 21
  start-page: 1635
  year: 2008
  end-page: 1642
  article-title: Analysis of flagellin perception mediated by flg22 receptor OsFLS2 in rice
  publication-title: Molecular Plant‐Microbe Interactions
– volume: 201
  start-page: 1371
  year: 2014
  end-page: 1384
  article-title: The grapevine flagellin receptor VvFLS2 differentially recognizes flagellin‐derived epitopes from the endophytic growth‐promoting bacterium and plant pathogenic bacteria
  publication-title: New Phytologist
– volume: 11
  start-page: e1004602
  year: 2015
  article-title: The phylogenetically‐related pattern recognition receptors EFR and XA21 recruit similar immune signaling components in monocots and dicots
  publication-title: PLoS Pathogens
– volume: 24
  start-page: 322
  year: 2012
  end-page: 335
  article-title: Effector‐mediated suppression of chitin‐triggered immunity by is necessary for rice blast disease
  publication-title: Plant Cell
– start-page: 115
  year: 2009
  end-page: 124
– volume: 20
  start-page: 471
  year: 2008
  end-page: 481
  article-title: A LysM receptor‐like kinase plays a critical role in chitin signaling and fungal resistance in
  publication-title: Plant Cell
– volume: 104
  start-page: 227
  year: 2011
  end-page: 237
  article-title: Enhanced resistance against bacterial wilt in transgenic tomato ( ) lines expressing the gene
  publication-title: Plant Cell Tissue and Organ Culture
– volume: 448
  start-page: 497
  year: 2007
  end-page: 500
  article-title: A flagellin‐induced complex of the receptor FLS2 and BAK1 initiates plant defence
  publication-title: Nature
– volume: 139
  start-page: 1465
  year: 2011
  end-page: 1475
  article-title: Adaptive evolution of Xa21 homologs in Gramineae
  publication-title: Genetica
– volume: 35
  start-page: 345
  year: 2014
  end-page: 351
  article-title: Plant pattern‐recognition receptors
  publication-title: Trends in Immunology
– volume: 18
  start-page: 1396
  year: 2008
  end-page: 1401
  article-title: Negative regulation of PAMP‐triggered immunity by an E3 ubiquitin ligase triplet in
  publication-title: Current Biology
– volume: 60
  start-page: 379
  year: 2009
  end-page: 406
  article-title: A renaissance of elicitors: perception of microbe‐associated molecular patterns and danger signals by pattern‐recognition receptors
  publication-title: Annual Review of Plant Biology
– year: 2014
  article-title: Enhancement of innate immune system in monocot rice by transferring the dicotyledonous elongation factor Tu receptor EFR
  publication-title: Journal of Integrative Plant Biology
– volume: 104
  start-page: 12217
  year: 2007
  end-page: 12222
  article-title: The receptor‐like kinase SERK3/BAK1 is a central regulator of innate immunity in plants
  publication-title: Proceedings of the National Academy of Sciences, USA
– volume: 111
  start-page: E404
  year: 2014
  end-page: E413
  article-title: Chitin‐induced activation of immune signaling by the rice receptor CEBiP relies on a unique sandwich‐type dimerization
  publication-title: Proceedings of the National Academy of Sciences, USA
– volume: 27
  start-page: 113
  year: 2014
  end-page: 124
  article-title: Two distinct EF‐Tu epitopes induce immune responses in rice and
  publication-title: Molecular Plant–Microbe Interactions
– start-page: 49
  year: 1997
  end-page: 58
– volume: 2
  start-page: e242
  year: 2014
  article-title: The Ax21 protein is processed by the general secretory system and is secreted in association with outer membrane vesicles
  publication-title: PeerJ
– volume: 184
  start-page: 473
  year: 2009
  end-page: 484
  article-title: Wheat blast: histopathology and transcriptome reprogramming in response to adapted and nonadapted isolates
  publication-title: New Phytologist
– volume: 12
  start-page: 663
  year: 2014
  end-page: 673
  article-title: Transgenic expression of the rice Xa21 pattern‐recognition receptor in banana ( sp.) confers resistance to pv.
  publication-title: Plant Biotechnology Journal
– volume: 27
  start-page: 286
  year: 2014
  end-page: 295
  article-title: Methods to study PAMP‐triggered immunity in Species
  publication-title: Molecular Plant–Microbe Interactions
– volume: 15
  start-page: 427
  year: 2014
  end-page: 432
  article-title: Resistance to phytopathogens : placing plant quantitative disease resistance on the map
  publication-title: Molecular Plant Pathology
– volume: 157
  start-page: 1975
  year: 2011
  end-page: 1986
  article-title: Identification of quantitative trait loci controlling gene expression during the innate immunity response of soybean
  publication-title: Plant Physiology
– volume: 71
  start-page: 5182
  year: 2005
  end-page: 5191
  article-title: Phylogenetic characterization of virulence and resistance phenotypes of
  publication-title: Applied and Environmental Microbiology
– volume: 44
  start-page: 301
  year: 1954
  end-page: 307
  article-title: Two simple media for the demonstration of pyocyanin and fluorescein
  publication-title: Journal of Laboratory and Clinical Medicine
– volume: 16
  start-page: 3496
  year: 2004
  end-page: 3507
  article-title: The N terminus of bacterial elongation factor Tu elicits innate immunity in Arabidopsis plants
  publication-title: Plant Cell
– volume: 3
  start-page: 493
  year: 1993
  end-page: 494
  article-title: Alkali treatment for rapid preparation of plant‐material for reliable pcr analysis
  publication-title: Plant Journal
– volume: 10
  start-page: 288
  year: 2010
  article-title: , a gene homologous to rice chitin receptor , contributes to basal resistance of barley to
  publication-title: BMC Plant Biology
– volume: 26
  start-page: 217
  year: 2001
  end-page: 227
  article-title: A highly specific pathogen‐responsive promoter element from the immediate–early activated gene in
  publication-title: Plant Journal
– volume: 53
  start-page: 1696
  year: 2012
  end-page: 1706
  article-title: Functional characterization of CEBiP and CERK1 homologs in Arabidopsis and rice reveals the presence of different chitin receptor systems in plants
  publication-title: Plant and Cell Physiology
– volume: 425
  start-page: 973
  year: 2003
  end-page: 977
  article-title: SNARE‐protein‐mediated disease resistance at the plant cell wall
  publication-title: Nature
– volume: 27
  start-page: 833
  year: 2008
  end-page: 843
  article-title: Characterization of three somatic embryogenesis receptor kinase genes from wheat, Triticum aestivum
  publication-title: Plant Cell Reports
– volume: 29
  start-page: 233
  year: 2013
  end-page: 240
  article-title: Plant–pathogen interactions: disease resistance in modern agriculture
  publication-title: Trends in Genetics
– volume: 341
  start-page: 746
  year: 2013
  end-page: 751
  article-title: Pivoting the plant immune system from dissection to deployment
  publication-title: Science
– volume: 5
  start-page: 1003
  year: 2000
  end-page: 1011
  article-title: FLS2: an LRR receptor‐like kinase involved in the perception of the bacterial elicitor flagellin in
  publication-title: Molecular Cell
– volume: 147
  start-page: 802
  year: 2008
  end-page: 815
  article-title: The wheat mitogen‐activated protein kinases TaMPK3 and TaMPK6 are differentially regulated at multiple levels during compatible disease interactions with
  publication-title: Plant Physiology
– volume: 11
  start-page: 539
  year: 2010
  end-page: 548
  article-title: Plant immunity: towards an integrated view of plant–pathogen interactions
  publication-title: Nature Reviews Genetics
– volume: 103
  start-page: 11086
  year: 2006
  end-page: 11091
  article-title: Plant cells recognize chitin fragments for defense signaling through a plasma membrane receptor
  publication-title: Proceedings of the National Academy of Sciences, USA
– volume: 2
  start-page: 208
  year: 1993
  end-page: 218
  article-title: New helper plasmids for gene‐transfer to plants
  publication-title: Transgenic Research
– volume: 54
  start-page: 263
  year: 2014
  end-page: 272
  article-title: Plant PRRs and the activation of innate immune signaling
  publication-title: Molecular Cell
– year: 2014
  article-title: Transgenic expression of the dicotyledonous pattern recognition receptor EFR in rice leads to ligand‐dependent activation of defense responses
  publication-title: BioRxiv
– volume: 232
  start-page: 787
  year: 2010
  end-page: 806
  article-title: Chitooligosaccharide sensing and downstream signaling: contrasted outcomes in pathogenic and beneficial plant–microbe interactions
  publication-title: Planta
– volume: 64
  start-page: 204
  year: 2010
  end-page: 214
  article-title: Two LysM receptor molecules, CEBiP and OsCERK1, cooperatively regulate chitin elicitor signaling in rice
  publication-title: Plant Journal
– volume: 28
  start-page: 365
  year: 2010
  end-page: 369
  article-title: Interfamily transfer of a plant pattern‐recognition receptor confers broad‐spectrum bacterial resistance
  publication-title: Nature Biotechnology
– volume: 27
  start-page: 975
  year: 2014a
  end-page: 982
  article-title: Targeted gene disruption of reveals its indispen sable role in chitin perception and involvement in the peptidoglycan response and immunity in rice
  publication-title: Molecular Plant–Microbe Interactions
– volume: 51
  start-page: 212
  year: 1985
  end-page: 218
  article-title: pathovar new pathovar causal agent of bacterial halo blight of rice
  publication-title: Annals of the Phytopathological Society of Japan
– volume: 7
  start-page: 874
  year: 2014
  end-page: 892
  article-title: An XA21‐associated kinase (OsSERK2) regulates immunity mediated by the XA21 and xa3 immune receptors
  publication-title: Molecular Plant
– volume: 125
  start-page: 749
  year: 2006
  end-page: 760
  article-title: Perception of the bacterial PAMP EF‐Tu by the receptor EFR restricts ‐mediated transformation
  publication-title: Cell
– volume: 64
  start-page: 343
  year: 2010
  end-page: 354
  article-title: Perception of the chitin oligosaccharides contributes to disease resistance to blast fungus in rice
  publication-title: Plant Journal
– volume: 27
  start-page: 236
  year: 2014
  end-page: 243
  article-title: LysM effector‐mediated stealth pathogenesis subverts recognition through both CERK1 and CEBiP homologues in wheat
  publication-title: Molecular Plant‐Microbe Interactions
– volume: 16
  start-page: 496
  year: 2013
  end-page: 504
  article-title: Early signaling network in rice PRR‐mediated and R‐mediated immunity
  publication-title: Current Opinion in Plant Biology
– volume: 63
  start-page: 451
  year: 2012
  end-page: 482
  article-title: Plant innate immunity: perception of conserved microbial signatures
  publication-title: Annual Review of Plant Biology
– volume: 270
  start-page: 1804
  year: 1995
  end-page: 1806
  article-title: A receptor kinase‐like protein encoded by the rice disease resistance gene,
  publication-title: Science
– volume: 14
  start-page: 166
  year: 2013
  article-title: Comparative analysis of protein–protein interactions in the defense response of rice and wheat
  publication-title: BMC Genomics
– volume: 84
  start-page: 519
  year: 2014b
  end-page: 528
  article-title: CEBiP is the major chitin oligomer‐binding protein in rice and plays a main role in the perception of chitin oligomers
  publication-title: Plant Molecular Biology
– volume: 55
  start-page: 1271
  year: 2013
  end-page: 1286
  article-title: Receptor‐like kinases in plant innate immunity
  publication-title: Journal of Integrative Plant Biology
– volume: 64
  start-page: 539
  year: 2007
  end-page: 547
  article-title: Molecular identification and characterization of the tomato flagellin receptor LeFLS2, an orthologue of FLS2 exhibiting characteristically different perception specificities
  publication-title: Plant Molecular Biology
– ident: e_1_2_5_22_1
  doi: 10.1016/j.pbi.2013.07.004
– ident: e_1_2_5_15_1
  doi: 10.1007/s00425-010-1215-9
– ident: e_1_2_5_56_1
  doi: 10.1111/pbi.12170
– ident: e_1_2_5_57_1
  doi: 10.1016/j.cub.2008.07.085
– ident: e_1_2_5_39_1
  doi: 10.1073/pnas.0705147104
– ident: e_1_2_5_13_1
  doi: 10.1094/MPMI-10-13-0304-R
– ident: e_1_2_5_37_1
  doi: 10.1111/j.1365-3059.2009.02148.x
– ident: e_1_2_5_34_1
  doi: 10.1094/MPMI-05-13-0154-FI
– start-page: 49
  volume-title: The bacterial diseases of wheat: concepts and methods of disease management
  year: 1997
  ident: e_1_2_5_45_1
– ident: e_1_2_5_5_1
  doi: 10.1016/j.tig.2012.10.011
– ident: e_1_2_5_44_1
  doi: 10.1104/pp.108.119511
– ident: e_1_2_5_62_1
  doi: 10.1016/j.it.2014.05.004
– ident: e_1_2_5_7_1
  doi: 10.1093/mp/ssu003
– ident: e_1_2_5_10_1
  doi: 10.1126/science.1236011
– ident: e_1_2_5_63_1
  doi: 10.1016/j.cell.2006.03.037
– ident: e_1_2_5_36_1
  doi: 10.1016/j.molcel.2014.03.028
– ident: e_1_2_5_25_1
  doi: 10.1046/j.1365-313x.2001.01015.x
– ident: e_1_2_5_48_1
  doi: 10.1111/j.1365-313X.2010.04324.x
– ident: e_1_2_5_12_1
  doi: 10.1046/j.1365-313X.1999.00265.x
– ident: e_1_2_5_27_1
  doi: 10.1111/j.1365-313X.1993.tb00169.x
– ident: e_1_2_5_29_1
  doi: 10.1007/s11103-013-0149-6
– ident: e_1_2_5_42_1
  doi: 10.1111/mpp.12138
– ident: e_1_2_5_52_1
  doi: 10.1094/MPMI-21-12-1635
– ident: e_1_2_5_19_1
  doi: 10.1007/BF01977351
– ident: e_1_2_5_50_1
  doi: 10.1007/s00299-008-0505-1
– ident: e_1_2_5_38_1
  doi: 10.1105/tpc.111.092957
– start-page: 115
  volume-title: Methods in molecular biology
  year: 2009
  ident: e_1_2_5_40_1
– ident: e_1_2_5_23_1
  doi: 10.1007/978-94-011-3937-3_5
– ident: e_1_2_5_51_1
  doi: 10.1126/science.270.5243.1804
– ident: e_1_2_5_28_1
  doi: 10.1094/MPMI-03-14-0068-R
– ident: e_1_2_5_53_1
  doi: 10.1007/s10709-012-9645-x
– ident: e_1_2_5_17_1
  doi: 10.1073/pnas.0705306104
– ident: e_1_2_5_47_1
  doi: 10.1146/annurev-arplant-042811-105518
– ident: e_1_2_5_14_1
  doi: 10.1016/S1097-2765(00)80265-8
– ident: e_1_2_5_26_1
  doi: 10.1111/j.1365-313X.2010.04328.x
– ident: e_1_2_5_61_1
  doi: 10.1111/jipb.12123
– ident: e_1_2_5_49_1
  doi: 10.1093/pcp/pcs113
– ident: e_1_2_5_59_1
  doi: 10.1104/pp.111.183327
– ident: e_1_2_5_31_1
  doi: 10.3186/jjphytopath.51.212
– ident: e_1_2_5_54_1
  doi: 10.1186/1471-2229-10-288
– ident: e_1_2_5_6_1
  doi: 10.1186/1471-2164-14-166
– ident: e_1_2_5_3_1
  doi: 10.7717/peerj.242
– ident: e_1_2_5_33_1
  doi: 10.1094/MPMI-07-13-0201-R
– ident: e_1_2_5_11_1
  doi: 10.1038/nrg2812
– ident: e_1_2_5_20_1
  doi: 10.1128/AEM.71.9.5182-5191.2005
– ident: e_1_2_5_21_1
  doi: 10.1073/pnas.0508882103
– ident: e_1_2_5_16_1
  doi: 10.1073/pnas.1312099111
– ident: e_1_2_5_18_1
  doi: 10.1371/journal.ppat.1004602
– ident: e_1_2_5_58_1
  doi: 10.1111/j.1469-8137.2009.02970.x
– ident: e_1_2_5_35_1
  doi: 10.1111/jipb.12306
– ident: e_1_2_5_4_1
  doi: 10.1146/annurev.arplant.57.032905.105346
– ident: e_1_2_5_30_1
  doi: 10.1105/tpc.104.026765
– ident: e_1_2_5_46_1
  doi: 10.1101/006155
– ident: e_1_2_5_8_1
  doi: 10.1038/nature05999
– ident: e_1_2_5_9_1
  doi: 10.1038/nature02076
– ident: e_1_2_5_60_1
  doi: 10.1105/tpc.107.056754
– ident: e_1_2_5_32_1
  doi: 10.1038/nbt.1613
– ident: e_1_2_5_55_1
  doi: 10.1111/nph.12592
– ident: e_1_2_5_43_1
  doi: 10.1105/tpc.111.084301
– ident: e_1_2_5_2_1
  doi: 10.1007/s11240-010-9825-2
– ident: e_1_2_5_41_1
  doi: 10.1007/s11103-007-9173-8
– volume: 44
  start-page: 301
  year: 1954
  ident: e_1_2_5_24_1
  article-title: Two simple media for the demonstration of pyocyanin and fluorescein
  publication-title: Journal of Laboratory and Clinical Medicine
SSID ssj0009562
Score 2.5243173
Snippet Perception of pathogen (or microbe)‐associated molecular patterns (PAMPs/MAMPs) by pattern recognition receptors (PRRs) is a key component of plant innate...
Perception of pathogen (or microbe)-associated molecular patterns (PAMPs/MAMPs) by pattern recognition receptors (PRRs) is a key component of plant innate...
Summary Perception of pathogen (or microbe)‐associated molecular patterns (PAMPs/MAMPs) by pattern recognition receptors (PRRs) is a key component of plant...
Perception of pathogen (or microbe)‐associated molecular patterns ( PAMP s/ MAMP s) by pattern recognition receptors ( PRR s) is a key component of plant...
* Perception of pathogen (or microbe)-associated molecular patterns (PAMPs/MAMPs) by pattern recognition receptors (PRRs) is a key component of plant innate...
SourceID proquest
pubmed
crossref
wiley
jstor
fao
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 606
SubjectTerms Actin
Arabidopsis
Arabidopsis - genetics
Arabidopsis Proteins - genetics
Arabidopsis Proteins - metabolism
Bacteria
Bacterial diseases
bacterial halo blight
Bacterial Proteins - genetics
Bacterial Proteins - metabolism
Bio-assays
Bioassays
Biological Assay
callose
crops
dicotyledon‐to‐monocotyledon gene‐transfer
Disease Resistance
durable disease resistance
Elongation
Elongation factor EF-Tu
gene expression
Gene Expression Regulation, Plant
Genes
genetic markers
genetically modified organisms
Glucans - metabolism
immune receptor signalling
Immunity
Innate immunity
Lesions
Multiplication
Oryza - genetics
pathogen recognition
Pathogens
pathogen‐associated molecular pattern (PAMP)/microbe‐associate molecular pattern (MAMP)‐triggered immunity
Pattern recognition
Pattern recognition receptors
Peptide Elongation Factor Tu - genetics
Peptide Elongation Factor Tu - metabolism
Plant Diseases - immunology
Plant Diseases - microbiology
Plants, Genetically Modified
Pseudomonas syringae
Pseudomonas syringae - physiology
Rapid reports
Receptors
Receptors, Pattern Recognition - genetics
Receptors, Pattern Recognition - metabolism
rice
Signal Transduction
Solanaceae
Transgenic plants
transgenic wheat
Triticum - genetics
Triticum - immunology
Triticum - microbiology
Triticum aestivum
Wheat
Title Arabidopsis EF‐Tu receptor enhances bacterial disease resistance in transgenic wheat
URI https://www.jstor.org/stable/newphytologist.206.2.606
https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fnph.13356
https://www.ncbi.nlm.nih.gov/pubmed/25760815
https://www.proquest.com/docview/2513911754
https://www.proquest.com/docview/1676366275
https://www.proquest.com/docview/1680748099
https://www.proquest.com/docview/1694501784
Volume 206
WOSCitedRecordID wos000351742300016&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Free Content
  customDbUrl:
  eissn: 1469-8137
  dateEnd: 20241211
  omitProxy: false
  ssIdentifier: ssj0009562
  issn: 0028-646X
  databaseCode: WIN
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
– providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1469-8137
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009562
  issn: 0028-646X
  databaseCode: DRFUL
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB61pQcu5d0GyioghHoJcuI8bHEq0FWRqlUF3bI3K3FsuhJKVpvdIm78BH4jv4QZ56FWKhUSt0geJ9Z4ZvyN7XwD8Cq3kbAxy4Mk1VkQc0OF3CUPQitEmJWJZY5M5_wkm0zEbCZPN-Bt_y9Myw8xbLiRZ7h4TQ6eF80VJ68WF28wwUqIbjuMnVN--Ti5QribRj0Dcxqns45ViG7xDD2vrUWbNq_7S4k3wc3r6NUtP-N7_zXw-7DToU7_sDWTB7Bhqoew_a5GZPjjEZwfLvNiXtaLZt74R-PfP3-drX2MhGaBg_RNdUGW0fhFS-yM7-lOdVCmIfiJrf688le07KE9zrX_nUL8Y5iOj87eHwddvYVAJ5hlBFzbIsWpK8qilLqQxB1XRjZieSqFRuDGM1y7spJKJhnGOTMsN9wWTGimWVzyJ7BV1ZXZAz8JbZ4ILbksNUI0S1lLZFKB6ZEwMio8OOg1r3RHRk41Mb6pPilBLSmnJQ9eDqKLloHjJqE9nD6Vf8XIqKafI9rHoXKDPMs8eO3mdOiM6QpasKsOjDpSEUtVpDCP82C_n3TVOXKjEP5xSXSmsQcvhmZ0QTpXyStTrxsVphikHZH-bTLEOiQQj98mI-MEI6TAb-22RjcMmvJCRG_4hQNnW39XhZqcHruHp_8u-gzuksraG0n7sLVars1z2NaXq3mzHMFmNhMjuPPh03h6MnJu9gdEVyWK
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwEB6120r0wj80UCAghHoJysaJY0tcCnS1iGVVwW61NytxbBqpSlabXRA3HoFn5EmYyZ9aqVRI3CJ5nFjjmfE3tvMNwMvEBsKGfuJFXMdeyAwVcpfMG1ohhnEWWb8m0zmdxNOpWCzkyRa86f6Fafgh-g038ow6XpOD04b0BS8vlmevMcOK-DbshGhG0QB23n8ezScXSHd50LEw85AvWmYhusnTd760Hm3bpOwuJl4FOS8j2HoJGt36v8Hfhpst9HSPGlu5A1umuAu7b0uEhz_uwenRKknzrFxWeeUej37__DXbuBgOzRJH6ZrijMyjctOG3Rnf0x7toExFGBRb3bxw17T2oVHm2v1Ocf4-zEfHs3djry264OkIUw2PaZtynL80SzOpU0kEcllgAz_hUmhEbyzGBSzOqG6S8RnzjZ8YZlNfaF_7YcYewKAoC7MPbjS0SSS0ZDLTiNMspS6B4QJzJGFkkDpw2Kle6ZaRnApjnKsuM0EtqVpLDrzoRZcNDcdVQvs4fyr5iuFRzb8EtJlDNQdZHDvwqp7UvjPmLGjGdYlg1JEKfK4ChcmcAwfdrKvWmyuFGJBJ4jQNHXjeN6Mf0uFKUphyU6khx0hds-lfJ0PUQwJB-XUyMowwTAr81sPG6vpBU3KIEA6_cFgb199VoaYn4_rh0b-LPoMb49mniZp8mH58DHukvuaK0gEM1quNeQK7-ts6r1ZPWz_7AxhHKE4
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La9wwEB7youTSdxO3aeuWUnJx0Vq2LEEvaROT0mVZ2mzYm7BlKTEE26x3W3rrT8hvzC_pyC8SSEOhN4NGthjNjL6R5G8A3iXG5yYgiRcyFXkB1baQu6DeyHA-irLQkIZM53QcTSZ8PhfTNfjY_wvT8kMMG27WM5p4bR1cV5m55uVFdf4BM6yQrcNmEAqGbrl5-C2eja-R7jK_Z2FmAZt3zEL2Js_Q-cZ6tG6Ssr-YeBvkvIlgmyUofvB_g38I9zvo6R60tvII1nTxGLY-lQgPfz2B04NFkuZZWdV57R7FV78vT1YuhkNd4ShdXZxb86jdtGV3xvd0RzsoU1sMiq1uXrhLu_ahUebK_Wnj_FOYxUcnn4-9ruiCp0JMNTyqTMpw_tIszYRKhSWQy3zjk4QJrhC90QgXsCizdZM0oZRokmhqUsIVUSTI6DPYKMpC74IbjkwSciWoyBTiNGNTF18zjjkS18JPHdjvVS9Vx0huC2NcyD4zQS3JRksOvB1Eq5aG4zahXZw_mZxheJSz777dzLE1B2kUOfC-mdShM-YsaMZNiWDUkfQJk77EZM6BvX7WZefNtUQMSIXlNA0ceDM0ox_aw5Wk0OWqliOGkbph079LxlIPcQTld8mIIMQwyfFbO63VDYO2ySFCOPzCfmNcf1eFnEyPm4fn_y76Gu5ND2M5_jL5-gK2rfbaG0p7sLFcrPRL2FI_lnm9eNW52R9n5yfJ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Arabidopsis+EF%E2%80%90Tu+receptor+enhances+bacterial+disease+resistance+in+transgenic+wheat&rft.jtitle=The+New+phytologist&rft.au=Schoonbeek%2C+Henk%E2%80%90jan&rft.au=Wang%2C+Hsi%E2%80%90Hua&rft.au=Stefanato%2C+Francesca+L.&rft.au=Craze%2C+Melanie&rft.date=2015-04-01&rft.issn=0028-646X&rft.eissn=1469-8137&rft.volume=206&rft.issue=2&rft.spage=606&rft.epage=613&rft_id=info:doi/10.1111%2Fnph.13356&rft.externalDBID=10.1111%252Fnph.13356&rft.externalDocID=NPH13356
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0028-646X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0028-646X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0028-646X&client=summon