Arabidopsis EF‐Tu receptor enhances bacterial disease resistance in transgenic wheat
Perception of pathogen (or microbe)‐associated molecular patterns (PAMPs/MAMPs) by pattern recognition receptors (PRRs) is a key component of plant innate immunity. The Arabidopsis PRR EF‐Tu receptor (EFR) recognizes the bacterial PAMP elongation factor Tu (EF‐Tu) and its derived peptide elf18. Prev...
Uložené v:
| Vydané v: | The New phytologist Ročník 206; číslo 2; s. 606 - 613 |
|---|---|
| Hlavní autori: | , , , , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
England
Academic Press
01.04.2015
New Phytologist Trust Wiley Subscription Services, Inc |
| Predmet: | |
| ISSN: | 0028-646X, 1469-8137 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Perception of pathogen (or microbe)‐associated molecular patterns (PAMPs/MAMPs) by pattern recognition receptors (PRRs) is a key component of plant innate immunity. The Arabidopsis PRR EF‐Tu receptor (EFR) recognizes the bacterial PAMP elongation factor Tu (EF‐Tu) and its derived peptide elf18. Previous work revealed that transgenic expression of AtEFR in Solanaceae confers elf18 responsiveness and broad‐spectrum bacterial disease resistance. In this study, we developed a set of bioassays to study the activation of PAMP‐triggered immunity (PTI) in wheat. We generated transgenic wheat (Triticum aestivum) plants expressing AtEFR driven by the constitutive rice actin promoter and tested their response to elf18. We show that transgenic expression of AtEFR in wheat confers recognition of elf18, as measured by the induction of immune marker genes and callose deposition. When challenged with the cereal bacterial pathogen Pseudomonas syringae pv. oryzae, transgenic EFR wheat lines had reduced lesion size and bacterial multiplication. These results demonstrate that AtEFR can be transferred successfully from dicot to monocot species, further revealing that immune signalling pathways are conserved across these distant phyla. As novel PRRs are identified, their transfer between plant families represents a useful strategy for enhancing resistance to pathogens in crops. |
|---|---|
| AbstractList | Perception of pathogen (or microbe)-associated molecular patterns (PAMPs/MAMPs) by pattern recognition receptors (PRRs) is a key component of plant innate immunity. The Arabidopsis PRR EF-Tu receptor (EFR) recognizes the bacterial PAMP elongation factor Tu (EF-Tu) and its derived peptide elf18. Previous work revealed that transgenic expression of AtEFR in Solanaceae confers elf18 responsiveness and broad-spectrum bacterial disease resistance. In this study, we developed a set of bioassays to study the activation of PAMP-triggered immunity (PTI) in wheat. We generated transgenic wheat (Triticum aestivum) plants expressing AtEFR driven by the constitutive rice actin promoter and tested their response to elf18. We show that transgenic expression of AtEFR in wheat confers recognition of elf18, as measured by the induction of immune marker genes and callose deposition. When challenged with the cereal bacterial pathogen Pseudomonas syringae pv. oryzae, transgenic EFR wheat lines had reduced lesion size and bacterial multiplication. These results demonstrate that AtEFR can be transferred successfully from dicot to monocot species, further revealing that immune signalling pathways are conserved across these distant phyla. As novel PRRs are identified, their transfer between plant families represents a useful strategy for enhancing resistance to pathogens in crops. Perception of pathogen (or microbe)‐associated molecular patterns ( PAMP s/ MAMP s) by pattern recognition receptors ( PRR s) is a key component of plant innate immunity. The Arabidopsis PRR EF ‐Tu receptor ( EFR ) recognizes the bacterial PAMP elongation factor Tu ( EF ‐Tu) and its derived peptide elf18. Previous work revealed that transgenic expression of At EFR in Solanaceae confers elf18 responsiveness and broad‐spectrum bacterial disease resistance. In this study, we developed a set of bioassays to study the activation of PAMP ‐triggered immunity ( PTI ) in wheat. We generated transgenic wheat ( Triticum aestivum ) plants expressing At EFR driven by the constitutive rice actin promoter and tested their response to elf18. We show that transgenic expression of At EFR in wheat confers recognition of elf18, as measured by the induction of immune marker genes and callose deposition. When challenged with the cereal bacterial pathogen Pseudomonas syringae pv. oryzae , transgenic EFR wheat lines had reduced lesion size and bacterial multiplication. These results demonstrate that At EFR can be transferred successfully from dicot to monocot species, further revealing that immune signalling pathways are conserved across these distant phyla. As novel PRR s are identified, their transfer between plant families represents a useful strategy for enhancing resistance to pathogens in crops. Perception of pathogen (or microbe)‐associated molecular patterns (PAMPs/MAMPs) by pattern recognition receptors (PRRs) is a key component of plant innate immunity. The Arabidopsis PRR EF‐Tu receptor (EFR) recognizes the bacterial PAMP elongation factor Tu (EF‐Tu) and its derived peptide elf18. Previous work revealed that transgenic expression of AtEFR in Solanaceae confers elf18 responsiveness and broad‐spectrum bacterial disease resistance.In this study, we developed a set of bioassays to study the activation of PAMP‐triggered immunity (PTI) in wheat. We generated transgenic wheat (Triticum aestivum) plants expressing AtEFR driven by the constitutive rice actin promoter and tested their response to elf18.We show that transgenic expression of AtEFR in wheat confers recognition of elf18, as measured by the induction of immune marker genes and callose deposition. When challenged with the cereal bacterial pathogen Pseudomonas syringae pv. oryzae, transgenic EFR wheat lines had reduced lesion size and bacterial multiplication.These results demonstrate that AtEFR can be transferred successfully from dicot to monocot species, further revealing that immune signalling pathways are conserved across these distant phyla. As novel PRRs are identified, their transfer between plant families represents a useful strategy for enhancing resistance to pathogens in crops. * Perception of pathogen (or microbe)-associated molecular patterns (PAMPs/MAMPs) by pattern recognition receptors (PRRs) is a key component of plant innate immunity. The Arabidopsis PRR EF-Tu receptor (EFR) recognizes the bacterial PAMP elongation factor Tu (EF-Tu) and its derived peptide elf18. Previous work revealed that transgenic expression of AtEFR in Solanaceae confers elf18 responsiveness and broad-spectrum bacterial disease resistance. * In this study, we developed a set of bioassays to study the activation of PAMP-triggered immunity (PTI) in wheat. We generated transgenic wheat (Triticum aestivum) plants expressing AtEFR driven by the constitutive rice actin promoter and tested their response to elf18. * We show that transgenic expression of AtEFR in wheat confers recognition of elf18, as measured by the induction of immune marker genes and callose deposition. When challenged with the cereal bacterial pathogen Pseudomonas syringae pv. oryzae, transgenic EFR wheat lines had reduced lesion size and bacterial multiplication. * These results demonstrate that AtEFR can be transferred successfully from dicot to monocot species, further revealing that immune signalling pathways are conserved across these distant phyla. As novel PRRs are identified, their transfer between plant families represents a useful strategy for enhancing resistance to pathogens in crops. Summary Perception of pathogen (or microbe)‐associated molecular patterns (PAMPs/MAMPs) by pattern recognition receptors (PRRs) is a key component of plant innate immunity. The Arabidopsis PRR EF‐Tu receptor (EFR) recognizes the bacterial PAMP elongation factor Tu (EF‐Tu) and its derived peptide elf18. Previous work revealed that transgenic expression of AtEFR in Solanaceae confers elf18 responsiveness and broad‐spectrum bacterial disease resistance. In this study, we developed a set of bioassays to study the activation of PAMP‐triggered immunity (PTI) in wheat. We generated transgenic wheat (Triticum aestivum) plants expressing AtEFR driven by the constitutive rice actin promoter and tested their response to elf18. We show that transgenic expression of AtEFR in wheat confers recognition of elf18, as measured by the induction of immune marker genes and callose deposition. When challenged with the cereal bacterial pathogen Pseudomonas syringae pv. oryzae, transgenic EFR wheat lines had reduced lesion size and bacterial multiplication. These results demonstrate that AtEFR can be transferred successfully from dicot to monocot species, further revealing that immune signalling pathways are conserved across these distant phyla. As novel PRRs are identified, their transfer between plant families represents a useful strategy for enhancing resistance to pathogens in crops. Perception of pathogen (or microbe)-associated molecular patterns (PAMPs/MAMPs) by pattern recognition receptors (PRRs) is a key component of plant innate immunity. The Arabidopsis PRR EF-Tu receptor (EFR) recognizes the bacterial PAMP elongation factor Tu (EF-Tu) and its derived peptide elf18. Previous work revealed that transgenic expression of AtEFR in Solanaceae confers elf18 responsiveness and broad-spectrum bacterial disease resistance. In this study, we developed a set of bioassays to study the activation of PAMP-triggered immunity (PTI) in wheat. We generated transgenic wheat (Triticum aestivum) plants expressing AtEFR driven by the constitutive rice actin promoter and tested their response to elf18. We show that transgenic expression of AtEFR in wheat confers recognition of elf18, as measured by the induction of immune marker genes and callose deposition. When challenged with the cereal bacterial pathogen Pseudomonas syringae pv. oryzae, transgenic EFR wheat lines had reduced lesion size and bacterial multiplication. These results demonstrate that AtEFR can be transferred successfully from dicot to monocot species, further revealing that immune signalling pathways are conserved across these distant phyla. As novel PRRs are identified, their transfer between plant families represents a useful strategy for enhancing resistance to pathogens in crops. |
| Author | Craze, Melanie Wang, Hsi‐Hua Stefanato, Francesca L Ridout, Christopher J Schoonbeek, Henk‐jan Wallington, Emma Zipfel, Cyril Bowden, Sarah |
| Author_xml | – sequence: 1 fullname: Schoonbeek, Henk‐jan – sequence: 2 fullname: Wang, Hsi‐Hua – sequence: 3 fullname: Stefanato, Francesca L – sequence: 4 fullname: Craze, Melanie – sequence: 5 fullname: Bowden, Sarah – sequence: 6 fullname: Wallington, Emma – sequence: 7 fullname: Zipfel, Cyril – sequence: 8 fullname: Ridout, Christopher J |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/25760815$$D View this record in MEDLINE/PubMed |
| BookMark | eNqNks1u1DAURi1URKeFBS8AkdjAIu21Hf8tq6qlSBUg0SJ2luM4Mx5lnGAnGs2OR-AZeRI8zAyLCqR644XP-azrzyfoKPTBIfQSwxnO6zwMizNMKeNP0AxXXJUSU3GEZgBElrzi347RSUpLAFCMk2fomDDBQWI2Q18voql90w_Jp-Lq-tePn3dTEZ11w9jHwoWFCdalojZ2dNGbrmh8cia5zGRj3J4WPhRjNCHNXfC2WC-cGZ-jp63pknux30_R_fXV3eVNefvp_YfLi9vSMkl4SW1bcyLbuqkbZWslVEUb0hIwXEmLOaVCKRANZoQ5oBQcGEfbGqQFC1VDT9HbXe4Q---TS6Ne-WRd15ng-ilpzFXFAAtZPQKVICoJSj0CFZxyTgTL6JsH6LKfYsgza8IwVRgLtr371Z6a6pVr9BD9ysSNPvSQgfMdYGOfUnSttn40o-9DflnfaQx627TOTes_TWfj3QPjEPovdp--9p3b_B_UHz_fHIxyZyxT_gd_jeDWw2Iz9l0_z-VrAlwTzWHLv97xrem1mUef9P0XApgBYCmoEPQ3LO7QOA |
| CitedBy_id | crossref_primary_10_1080_07060661_2017_1355850 crossref_primary_10_3389_fpls_2015_00219 crossref_primary_10_1016_j_scitotenv_2024_169920 crossref_primary_10_3389_fpls_2022_832502 crossref_primary_10_1111_tpj_13808 crossref_primary_10_12688_f1000research_20179_1 crossref_primary_10_1016_j_jprot_2021_104264 crossref_primary_10_1038_s41576_024_00793_z crossref_primary_10_3389_fpls_2019_00417 crossref_primary_10_1163_15685411_00003048 crossref_primary_10_1080_15592324_2016_1197465 crossref_primary_10_3389_fpls_2022_1109845 crossref_primary_10_1126_science_aar6089 crossref_primary_10_1111_nph_15967 crossref_primary_10_1094_PHYTO_04_17_0130_RVW crossref_primary_10_1002_pld3_538 crossref_primary_10_1111_nph_19111 crossref_primary_10_1111_mpp_12452 crossref_primary_10_1016_j_copbio_2021_04_006 crossref_primary_10_1038_s41467_020_15633_x crossref_primary_10_1002_fes3_101 crossref_primary_10_1094_PHYTO_01_16_0036_FI crossref_primary_10_1038_s41467_020_17573_y crossref_primary_10_1007_s00425_020_03484_1 crossref_primary_10_1111_nph_13533 crossref_primary_10_1111_mpp_12781 crossref_primary_10_1111_tpj_17035 crossref_primary_10_1111_pbi_13289 crossref_primary_10_1111_mpp_12789 crossref_primary_10_1134_S2079059716050130 crossref_primary_10_1016_j_rhisph_2025_101183 crossref_primary_10_1007_s40858_019_00279_y crossref_primary_10_1111_pbi_12999 crossref_primary_10_1186_s42483_025_00350_4 crossref_primary_10_1038_nature22009 crossref_primary_10_1111_pce_13047 crossref_primary_10_1016_j_pbi_2020_101987 crossref_primary_10_3389_fpls_2018_00867 crossref_primary_10_3390_plants11192660 crossref_primary_10_1074_jbc_REV120_010852 crossref_primary_10_1186_s42483_024_00243_y crossref_primary_10_1038_s41438_021_00639_3 crossref_primary_10_1094_PHYTO_12_17_0424_R crossref_primary_10_3389_fmicb_2022_912632 crossref_primary_10_1007_s11103_021_01133_z crossref_primary_10_1111_eva_12279 crossref_primary_10_1016_j_rsci_2019_04_001 crossref_primary_10_3390_ijms20081882 crossref_primary_10_1007_s11105_024_01491_0 crossref_primary_10_1111_pbi_12804 crossref_primary_10_1111_pbi_12647 crossref_primary_10_1007_s00425_022_03951_x crossref_primary_10_1016_j_cpb_2024_100367 crossref_primary_10_1007_s00122_017_2864_x crossref_primary_10_1094_MPMI_06_20_0161_CR crossref_primary_10_1146_annurev_phyto_080614_120106 crossref_primary_10_1111_mpp_70005 crossref_primary_10_1016_j_cj_2022_02_005 crossref_primary_10_1094_MPMI_12_24_0159_FI crossref_primary_10_1016_j_molp_2020_09_018 crossref_primary_10_1007_s11738_019_2819_8 crossref_primary_10_3389_fmicb_2019_02351 crossref_primary_10_1111_nph_13906 crossref_primary_10_1007_s13580_021_00415_1 crossref_primary_10_1111_pbi_70139 crossref_primary_10_1007_s00122_024_04569_1 crossref_primary_10_1016_j_tplants_2015_06_006 crossref_primary_10_1111_nph_14144 crossref_primary_10_1111_pbi_13995 crossref_primary_10_3389_fpls_2016_01822 crossref_primary_10_1016_j_tplants_2016_08_014 crossref_primary_10_1007_s10327_018_0828_x crossref_primary_10_1038_s41467_024_54452_2 crossref_primary_10_3389_fpls_2017_00844 crossref_primary_10_1038_nplants_2016_128 crossref_primary_10_1111_pbi_13916 crossref_primary_10_3390_ijms23084402 crossref_primary_10_3390_ijms252212048 crossref_primary_10_1007_s11427_017_9064_5 crossref_primary_10_1038_nplants_2015_140 crossref_primary_10_1002_ece3_4724 crossref_primary_10_1111_mpp_12929 crossref_primary_10_3389_fpls_2017_01783 crossref_primary_10_1016_j_chom_2025_08_015 crossref_primary_10_3389_fpls_2022_1044070 crossref_primary_10_1002_advs_202412223 crossref_primary_10_1094_MPMI_05_19_0137_R crossref_primary_10_1094_MPMI_09_18_0263_R crossref_primary_10_1016_j_pbi_2017_04_010 crossref_primary_10_1016_j_pbi_2017_04_011 crossref_primary_10_1111_ppa_13615 crossref_primary_10_3390_ijms20020279 crossref_primary_10_1111_nph_70313 crossref_primary_10_3390_ijms232214370 crossref_primary_10_1111_nph_14097 crossref_primary_10_1111_nph_18694 crossref_primary_10_1371_journal_pone_0290884 crossref_primary_10_1016_j_cell_2025_05_028 crossref_primary_10_3390_agronomy8080134 crossref_primary_10_1073_pnas_2319499121 crossref_primary_10_1111_pbi_13017 crossref_primary_10_3390_plants10061146 crossref_primary_10_1016_j_coviro_2017_07_030 crossref_primary_10_1111_mpp_13445 crossref_primary_10_1038_s41594_024_01440_1 crossref_primary_10_3389_fpls_2017_01642 crossref_primary_10_1016_j_pbi_2022_102209 crossref_primary_10_1146_annurev_arplant_010720_022215 crossref_primary_10_1093_plphys_kiac112 crossref_primary_10_1016_j_plantsci_2018_02_013 |
| Cites_doi | 10.1016/j.pbi.2013.07.004 10.1007/s00425-010-1215-9 10.1111/pbi.12170 10.1016/j.cub.2008.07.085 10.1073/pnas.0705147104 10.1094/MPMI-10-13-0304-R 10.1111/j.1365-3059.2009.02148.x 10.1094/MPMI-05-13-0154-FI 10.1016/j.tig.2012.10.011 10.1104/pp.108.119511 10.1016/j.it.2014.05.004 10.1093/mp/ssu003 10.1126/science.1236011 10.1016/j.cell.2006.03.037 10.1016/j.molcel.2014.03.028 10.1046/j.1365-313x.2001.01015.x 10.1111/j.1365-313X.2010.04324.x 10.1046/j.1365-313X.1999.00265.x 10.1111/j.1365-313X.1993.tb00169.x 10.1007/s11103-013-0149-6 10.1111/mpp.12138 10.1094/MPMI-21-12-1635 10.1007/BF01977351 10.1007/s00299-008-0505-1 10.1105/tpc.111.092957 10.1007/978-94-011-3937-3_5 10.1126/science.270.5243.1804 10.1094/MPMI-03-14-0068-R 10.1007/s10709-012-9645-x 10.1073/pnas.0705306104 10.1146/annurev-arplant-042811-105518 10.1016/S1097-2765(00)80265-8 10.1111/j.1365-313X.2010.04328.x 10.1111/jipb.12123 10.1093/pcp/pcs113 10.1104/pp.111.183327 10.3186/jjphytopath.51.212 10.1186/1471-2229-10-288 10.1186/1471-2164-14-166 10.7717/peerj.242 10.1094/MPMI-07-13-0201-R 10.1038/nrg2812 10.1128/AEM.71.9.5182-5191.2005 10.1073/pnas.0508882103 10.1073/pnas.1312099111 10.1371/journal.ppat.1004602 10.1111/j.1469-8137.2009.02970.x 10.1111/jipb.12306 10.1146/annurev.arplant.57.032905.105346 10.1105/tpc.104.026765 10.1101/006155 10.1038/nature05999 10.1038/nature02076 10.1105/tpc.107.056754 10.1038/nbt.1613 10.1111/nph.12592 10.1105/tpc.111.084301 10.1007/s11240-010-9825-2 10.1007/s11103-007-9173-8 |
| ContentType | Journal Article |
| Copyright | 2015 New Phytologist Trust 2015 The Authors. New Phytologist © 2015 New Phytologist Trust 2015 The Authors. New Phytologist © 2015 New Phytologist Trust. Copyright © 2015 New Phytologist Trust |
| Copyright_xml | – notice: 2015 New Phytologist Trust – notice: 2015 The Authors. New Phytologist © 2015 New Phytologist Trust – notice: 2015 The Authors. New Phytologist © 2015 New Phytologist Trust. – notice: Copyright © 2015 New Phytologist Trust |
| DBID | FBQ AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QO 7SN 8FD C1K F1W FR3 H95 L.G M7N P64 RC3 7QL 7X8 7S9 L.6 |
| DOI | 10.1111/nph.13356 |
| DatabaseName | AGRIS CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Biotechnology Research Abstracts Ecology Abstracts Technology Research Database Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources Aquatic Science & Fisheries Abstracts (ASFA) Professional Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts Bacteriology Abstracts (Microbiology B) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Aquatic Science & Fisheries Abstracts (ASFA) Professional Genetics Abstracts Biotechnology Research Abstracts Technology Research Database Algology Mycology and Protozoology Abstracts (Microbiology C) ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Ecology Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Bacteriology Abstracts (Microbiology B) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | MEDLINE CrossRef Aquatic Science & Fisheries Abstracts (ASFA) Professional Genetics Abstracts MEDLINE - Academic AGRICOLA |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Botany |
| EISSN | 1469-8137 |
| EndPage | 613 |
| ExternalDocumentID | 25760815 10_1111_nph_13356 NPH13356 newphytologist.206.2.606 US201500187377 |
| Genre | rapidPublication Research Support, Non-U.S. Gov't Journal Article |
| GrantInformation_xml | – fundername: ERA‐PG consortium ‘PRR‐CROP’ funderid: BB/J004553/1 – fundername: UK Biotechnology and Biological Sciences Research Council (BBSRC) funderid: BB/G042960/1; BB/G024936/1; BB/G025045/1 – fundername: Biotechnology and Biological Sciences Research Council grantid: BB/G025045/1 – fundername: Biotechnology and Biological Sciences Research Council grantid: BB/J004553/1 – fundername: Biotechnology and Biological Sciences Research Council grantid: BB/G024960/1 – fundername: Biotechnology and Biological Sciences Research Council grantid: BB/G042960/1 – fundername: Biotechnology and Biological Sciences Research Council grantid: BB/G024936/1 |
| GroupedDBID | --- -~X .3N .GA .Y3 05W 0R~ 10A 123 1OC 24P 29N 2WC 31~ 33P 36B 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5HH 5LA 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 85S 8UM 930 A03 AAESR AAEVG AAHHS AAHKG AAISJ AAKGQ AANLZ AAONW AASGY AASVR AAXRX AAZKR ABBHK ABCQN ABCUV ABEFU ABEML ABHUG ABLJU ABPLY ABPTK ABPVW ABTLG ABWRO ACAHQ ACCFJ ACCZN ACFBH ACGFS ACNCT ACPOU ACQPF ACSCC ACSTJ ACXBN ACXME ACXQS ADAWD ADBBV ADDAD ADEOM ADIZJ ADKYN ADMGS ADOZA ADULT ADXAS ADZLD ADZMN AEEZP AEIGN AEIMD AENEX AEQDE AESBF AEUPB AEUQT AEUYR AFAZZ AFBPY AFEBI AFFPM AFGKR AFMIJ AFPWT AFVGU AFZJQ AGJLS AGUYK AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB AS~ ATUGU AUFTA AZBYB AZVAB BAFTC BAWUL BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CAG CBGCD COF CS3 CUYZI CWIXF D-E D-F DCZOG DEVKO DIK DOOOF DPXWK DR2 DRFUL DRSTM DWIUU E3Z EBS ECGQY EJD ESX F00 F01 F04 F5P FBQ FIJ G-S G.N GODZA GTFYD H.T H.X HF~ HGD HQ2 HTVGU HZI HZ~ IHE IPNFZ IX1 J0M JAAYA JBMMH JBS JEB JENOY JHFFW JKQEH JLS JLXEF JPM JSODD JST K48 LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LPU LUTES LW6 LW7 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MVM MXFUL MXSTM N04 N05 N9A NEJ NF~ O66 O9- OK1 P2P P2W P2X P4D Q.N Q11 QB0 R.K RCA RIG ROL RX1 SA0 SUPJJ TN5 TR2 UB1 W8V W99 WBKPD WHG WIH WIK WIN WNSPC WOHZO WQJ WRC WXSBR WYISQ XG1 XOL YNT YQT YXE ZCG ZZTAW ~02 ~IA ~KM ~WT 79B AAHBH AAHQN AAMMB AAMNL AAYCA ABSQW ABUFD ABVKB ABXSQ ACHIC AEFGJ AEYWJ AFWVQ AGXDD AGYGG AHBTC AHXOZ AIDQK AIDYY AILXY AITYG ALVPJ AQVQM HGLYW IPSME O8X OIG ABGDZ ADXHL AGHNM AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QO 7SN 8FD C1K F1W FR3 H95 L.G M7N P64 RC3 7QL 7X8 7S9 L.6 |
| ID | FETCH-LOGICAL-c5826-3cfb628fbdbd9cb97943d2f20a698c163379907d1525e0330e0ae3fb08c0c04d3 |
| IEDL.DBID | WIN |
| ISICitedReferencesCount | 127 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000351742300016&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0028-646X |
| IngestDate | Fri Sep 05 17:26:56 EDT 2025 Sun Nov 09 11:06:59 EST 2025 Tue Oct 07 09:43:10 EDT 2025 Mon Nov 03 00:52:34 EST 2025 Mon Jul 21 05:57:08 EDT 2025 Sat Nov 29 04:38:21 EST 2025 Tue Nov 18 21:19:28 EST 2025 Sun Sep 21 06:12:48 EDT 2025 Wed Dec 10 12:40:25 EST 2025 Wed Dec 27 19:14:27 EST 2023 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Keywords | dicotyledon-to-monocotyledon gene-transfer bacterial halo blight pathogen-associated molecular pattern (PAMP)/microbe-associate molecular pattern (MAMP)-triggered immunity immune receptor signalling transgenic wheat pathogen recognition durable disease resistance |
| Language | English |
| License | http://onlinelibrary.wiley.com/termsAndConditions#vor 2015 The Authors. New Phytologist © 2015 New Phytologist Trust. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c5826-3cfb628fbdbd9cb97943d2f20a698c163379907d1525e0330e0ae3fb08c0c04d3 |
| Notes | http://dx.doi.org/10.1111/nph.13356 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0002-1087-2553 |
| OpenAccessLink | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1111/nph.13356 |
| PMID | 25760815 |
| PQID | 2513911754 |
| PQPubID | 2026848 |
| PageCount | 8 |
| ParticipantIDs | proquest_miscellaneous_1694501784 proquest_miscellaneous_1680748099 proquest_miscellaneous_1676366275 proquest_journals_2513911754 pubmed_primary_25760815 crossref_citationtrail_10_1111_nph_13356 crossref_primary_10_1111_nph_13356 wiley_primary_10_1111_nph_13356_NPH13356 jstor_primary_newphytologist_206_2_606 fao_agris_US201500187377 |
| PublicationCentury | 2000 |
| PublicationDate | April 2015 |
| PublicationDateYYYYMMDD | 2015-04-01 |
| PublicationDate_xml | – month: 04 year: 2015 text: April 2015 |
| PublicationDecade | 2010 |
| PublicationPlace | England |
| PublicationPlace_xml | – name: England – name: Lancaster |
| PublicationTitle | The New phytologist |
| PublicationTitleAlternate | New Phytol |
| PublicationYear | 2015 |
| Publisher | Academic Press New Phytologist Trust Wiley Subscription Services, Inc |
| Publisher_xml | – name: Academic Press – name: New Phytologist Trust – name: Wiley Subscription Services, Inc |
| References | 2013; 29 2010; 11 2007; 104 2010; 10 2011; 157 2010; 59 2000; 5 1954; 44 2014; 27 2008; 147 1993; 2 1993; 3 2012; 53 2010; 64 2013; 14 2014; 2 2013; 16 2013; 55 2000 1999; 18 2010; 28 2008; 27 2010; 232 2014; 15 1985; 51 2008; 21 2011; 23 2005; 71 2008; 20 2007; 64 2012; 24 2014; 7 2014; 12 2014; 54 2012; 63 2006; 125 2014a; 27 2014; 201 2014b; 84 2007; 448 2011; 139 2009; 60 2008; 18 2015; 11 2009 1997 2001; 26 2013; 341 2014; 111 1995; 270 2011; 104 2003; 425 2004; 16 2014; 35 2009; 184 2014 2006; 103 e_1_2_5_27_1 e_1_2_5_25_1 e_1_2_5_48_1 e_1_2_5_23_1 e_1_2_5_46_1 e_1_2_5_21_1 e_1_2_5_44_1 e_1_2_5_29_1 e_1_2_5_61_1 e_1_2_5_63_1 e_1_2_5_42_1 e_1_2_5_15_1 e_1_2_5_38_1 e_1_2_5_17_1 e_1_2_5_36_1 e_1_2_5_59_1 e_1_2_5_9_1 e_1_2_5_11_1 e_1_2_5_34_1 e_1_2_5_57_1 e_1_2_5_7_1 e_1_2_5_13_1 e_1_2_5_32_1 e_1_2_5_55_1 e_1_2_5_5_1 e_1_2_5_3_1 King EO (e_1_2_5_24_1) 1954; 44 e_1_2_5_19_1 e_1_2_5_30_1 e_1_2_5_53_1 e_1_2_5_51_1 e_1_2_5_28_1 e_1_2_5_49_1 e_1_2_5_26_1 e_1_2_5_47_1 e_1_2_5_22_1 e_1_2_5_43_1 e_1_2_5_60_1 e_1_2_5_62_1 Risacher T (e_1_2_5_40_1) 2009 e_1_2_5_20_1 e_1_2_5_41_1 e_1_2_5_14_1 e_1_2_5_39_1 e_1_2_5_16_1 e_1_2_5_37_1 e_1_2_5_58_1 e_1_2_5_8_1 e_1_2_5_10_1 e_1_2_5_35_1 e_1_2_5_56_1 e_1_2_5_6_1 e_1_2_5_12_1 e_1_2_5_33_1 e_1_2_5_54_1 e_1_2_5_4_1 e_1_2_5_2_1 e_1_2_5_18_1 Rudolph K (e_1_2_5_45_1) 1997 e_1_2_5_31_1 e_1_2_5_52_1 e_1_2_5_50_1 |
| References_xml | – volume: 59 start-page: 68 year: 2010 end-page: 75 article-title: Reduction in susceptibility to pv. in transgenic expressing the rice gene publication-title: Plant Pathology – start-page: 101 year: 2000 end-page: 160 – volume: 18 start-page: 265 year: 1999 end-page: 276 article-title: Plants have a sensitive perception system for the most conserved domain of bacterial flagellin publication-title: Plant Journal – volume: 23 start-page: 2440 year: 2011 end-page: 2455 article-title: The leucine‐rich repeat receptor‐like kinases BAK1/SERK3 and BKK1/SERK4 are required for innate immunity to hemibiotrophic and biotrophic pathogens publication-title: Plant Cell – volume: 104 start-page: 19613 year: 2007 end-page: 19618 article-title: CERK1, a LysM receptor kinase, is essential for chitin elicitor signaling in Arabidopsis publication-title: Proceedings of the National Academy of Sciences, USA – volume: 21 start-page: 1635 year: 2008 end-page: 1642 article-title: Analysis of flagellin perception mediated by flg22 receptor OsFLS2 in rice publication-title: Molecular Plant‐Microbe Interactions – volume: 201 start-page: 1371 year: 2014 end-page: 1384 article-title: The grapevine flagellin receptor VvFLS2 differentially recognizes flagellin‐derived epitopes from the endophytic growth‐promoting bacterium and plant pathogenic bacteria publication-title: New Phytologist – volume: 11 start-page: e1004602 year: 2015 article-title: The phylogenetically‐related pattern recognition receptors EFR and XA21 recruit similar immune signaling components in monocots and dicots publication-title: PLoS Pathogens – volume: 24 start-page: 322 year: 2012 end-page: 335 article-title: Effector‐mediated suppression of chitin‐triggered immunity by is necessary for rice blast disease publication-title: Plant Cell – start-page: 115 year: 2009 end-page: 124 – volume: 20 start-page: 471 year: 2008 end-page: 481 article-title: A LysM receptor‐like kinase plays a critical role in chitin signaling and fungal resistance in publication-title: Plant Cell – volume: 104 start-page: 227 year: 2011 end-page: 237 article-title: Enhanced resistance against bacterial wilt in transgenic tomato ( ) lines expressing the gene publication-title: Plant Cell Tissue and Organ Culture – volume: 448 start-page: 497 year: 2007 end-page: 500 article-title: A flagellin‐induced complex of the receptor FLS2 and BAK1 initiates plant defence publication-title: Nature – volume: 139 start-page: 1465 year: 2011 end-page: 1475 article-title: Adaptive evolution of Xa21 homologs in Gramineae publication-title: Genetica – volume: 35 start-page: 345 year: 2014 end-page: 351 article-title: Plant pattern‐recognition receptors publication-title: Trends in Immunology – volume: 18 start-page: 1396 year: 2008 end-page: 1401 article-title: Negative regulation of PAMP‐triggered immunity by an E3 ubiquitin ligase triplet in publication-title: Current Biology – volume: 60 start-page: 379 year: 2009 end-page: 406 article-title: A renaissance of elicitors: perception of microbe‐associated molecular patterns and danger signals by pattern‐recognition receptors publication-title: Annual Review of Plant Biology – year: 2014 article-title: Enhancement of innate immune system in monocot rice by transferring the dicotyledonous elongation factor Tu receptor EFR publication-title: Journal of Integrative Plant Biology – volume: 104 start-page: 12217 year: 2007 end-page: 12222 article-title: The receptor‐like kinase SERK3/BAK1 is a central regulator of innate immunity in plants publication-title: Proceedings of the National Academy of Sciences, USA – volume: 111 start-page: E404 year: 2014 end-page: E413 article-title: Chitin‐induced activation of immune signaling by the rice receptor CEBiP relies on a unique sandwich‐type dimerization publication-title: Proceedings of the National Academy of Sciences, USA – volume: 27 start-page: 113 year: 2014 end-page: 124 article-title: Two distinct EF‐Tu epitopes induce immune responses in rice and publication-title: Molecular Plant–Microbe Interactions – start-page: 49 year: 1997 end-page: 58 – volume: 2 start-page: e242 year: 2014 article-title: The Ax21 protein is processed by the general secretory system and is secreted in association with outer membrane vesicles publication-title: PeerJ – volume: 184 start-page: 473 year: 2009 end-page: 484 article-title: Wheat blast: histopathology and transcriptome reprogramming in response to adapted and nonadapted isolates publication-title: New Phytologist – volume: 12 start-page: 663 year: 2014 end-page: 673 article-title: Transgenic expression of the rice Xa21 pattern‐recognition receptor in banana ( sp.) confers resistance to pv. publication-title: Plant Biotechnology Journal – volume: 27 start-page: 286 year: 2014 end-page: 295 article-title: Methods to study PAMP‐triggered immunity in Species publication-title: Molecular Plant–Microbe Interactions – volume: 15 start-page: 427 year: 2014 end-page: 432 article-title: Resistance to phytopathogens : placing plant quantitative disease resistance on the map publication-title: Molecular Plant Pathology – volume: 157 start-page: 1975 year: 2011 end-page: 1986 article-title: Identification of quantitative trait loci controlling gene expression during the innate immunity response of soybean publication-title: Plant Physiology – volume: 71 start-page: 5182 year: 2005 end-page: 5191 article-title: Phylogenetic characterization of virulence and resistance phenotypes of publication-title: Applied and Environmental Microbiology – volume: 44 start-page: 301 year: 1954 end-page: 307 article-title: Two simple media for the demonstration of pyocyanin and fluorescein publication-title: Journal of Laboratory and Clinical Medicine – volume: 16 start-page: 3496 year: 2004 end-page: 3507 article-title: The N terminus of bacterial elongation factor Tu elicits innate immunity in Arabidopsis plants publication-title: Plant Cell – volume: 3 start-page: 493 year: 1993 end-page: 494 article-title: Alkali treatment for rapid preparation of plant‐material for reliable pcr analysis publication-title: Plant Journal – volume: 10 start-page: 288 year: 2010 article-title: , a gene homologous to rice chitin receptor , contributes to basal resistance of barley to publication-title: BMC Plant Biology – volume: 26 start-page: 217 year: 2001 end-page: 227 article-title: A highly specific pathogen‐responsive promoter element from the immediate–early activated gene in publication-title: Plant Journal – volume: 53 start-page: 1696 year: 2012 end-page: 1706 article-title: Functional characterization of CEBiP and CERK1 homologs in Arabidopsis and rice reveals the presence of different chitin receptor systems in plants publication-title: Plant and Cell Physiology – volume: 425 start-page: 973 year: 2003 end-page: 977 article-title: SNARE‐protein‐mediated disease resistance at the plant cell wall publication-title: Nature – volume: 27 start-page: 833 year: 2008 end-page: 843 article-title: Characterization of three somatic embryogenesis receptor kinase genes from wheat, Triticum aestivum publication-title: Plant Cell Reports – volume: 29 start-page: 233 year: 2013 end-page: 240 article-title: Plant–pathogen interactions: disease resistance in modern agriculture publication-title: Trends in Genetics – volume: 341 start-page: 746 year: 2013 end-page: 751 article-title: Pivoting the plant immune system from dissection to deployment publication-title: Science – volume: 5 start-page: 1003 year: 2000 end-page: 1011 article-title: FLS2: an LRR receptor‐like kinase involved in the perception of the bacterial elicitor flagellin in publication-title: Molecular Cell – volume: 147 start-page: 802 year: 2008 end-page: 815 article-title: The wheat mitogen‐activated protein kinases TaMPK3 and TaMPK6 are differentially regulated at multiple levels during compatible disease interactions with publication-title: Plant Physiology – volume: 11 start-page: 539 year: 2010 end-page: 548 article-title: Plant immunity: towards an integrated view of plant–pathogen interactions publication-title: Nature Reviews Genetics – volume: 103 start-page: 11086 year: 2006 end-page: 11091 article-title: Plant cells recognize chitin fragments for defense signaling through a plasma membrane receptor publication-title: Proceedings of the National Academy of Sciences, USA – volume: 2 start-page: 208 year: 1993 end-page: 218 article-title: New helper plasmids for gene‐transfer to plants publication-title: Transgenic Research – volume: 54 start-page: 263 year: 2014 end-page: 272 article-title: Plant PRRs and the activation of innate immune signaling publication-title: Molecular Cell – year: 2014 article-title: Transgenic expression of the dicotyledonous pattern recognition receptor EFR in rice leads to ligand‐dependent activation of defense responses publication-title: BioRxiv – volume: 232 start-page: 787 year: 2010 end-page: 806 article-title: Chitooligosaccharide sensing and downstream signaling: contrasted outcomes in pathogenic and beneficial plant–microbe interactions publication-title: Planta – volume: 64 start-page: 204 year: 2010 end-page: 214 article-title: Two LysM receptor molecules, CEBiP and OsCERK1, cooperatively regulate chitin elicitor signaling in rice publication-title: Plant Journal – volume: 28 start-page: 365 year: 2010 end-page: 369 article-title: Interfamily transfer of a plant pattern‐recognition receptor confers broad‐spectrum bacterial resistance publication-title: Nature Biotechnology – volume: 27 start-page: 975 year: 2014a end-page: 982 article-title: Targeted gene disruption of reveals its indispen sable role in chitin perception and involvement in the peptidoglycan response and immunity in rice publication-title: Molecular Plant–Microbe Interactions – volume: 51 start-page: 212 year: 1985 end-page: 218 article-title: pathovar new pathovar causal agent of bacterial halo blight of rice publication-title: Annals of the Phytopathological Society of Japan – volume: 7 start-page: 874 year: 2014 end-page: 892 article-title: An XA21‐associated kinase (OsSERK2) regulates immunity mediated by the XA21 and xa3 immune receptors publication-title: Molecular Plant – volume: 125 start-page: 749 year: 2006 end-page: 760 article-title: Perception of the bacterial PAMP EF‐Tu by the receptor EFR restricts ‐mediated transformation publication-title: Cell – volume: 64 start-page: 343 year: 2010 end-page: 354 article-title: Perception of the chitin oligosaccharides contributes to disease resistance to blast fungus in rice publication-title: Plant Journal – volume: 27 start-page: 236 year: 2014 end-page: 243 article-title: LysM effector‐mediated stealth pathogenesis subverts recognition through both CERK1 and CEBiP homologues in wheat publication-title: Molecular Plant‐Microbe Interactions – volume: 16 start-page: 496 year: 2013 end-page: 504 article-title: Early signaling network in rice PRR‐mediated and R‐mediated immunity publication-title: Current Opinion in Plant Biology – volume: 63 start-page: 451 year: 2012 end-page: 482 article-title: Plant innate immunity: perception of conserved microbial signatures publication-title: Annual Review of Plant Biology – volume: 270 start-page: 1804 year: 1995 end-page: 1806 article-title: A receptor kinase‐like protein encoded by the rice disease resistance gene, publication-title: Science – volume: 14 start-page: 166 year: 2013 article-title: Comparative analysis of protein–protein interactions in the defense response of rice and wheat publication-title: BMC Genomics – volume: 84 start-page: 519 year: 2014b end-page: 528 article-title: CEBiP is the major chitin oligomer‐binding protein in rice and plays a main role in the perception of chitin oligomers publication-title: Plant Molecular Biology – volume: 55 start-page: 1271 year: 2013 end-page: 1286 article-title: Receptor‐like kinases in plant innate immunity publication-title: Journal of Integrative Plant Biology – volume: 64 start-page: 539 year: 2007 end-page: 547 article-title: Molecular identification and characterization of the tomato flagellin receptor LeFLS2, an orthologue of FLS2 exhibiting characteristically different perception specificities publication-title: Plant Molecular Biology – ident: e_1_2_5_22_1 doi: 10.1016/j.pbi.2013.07.004 – ident: e_1_2_5_15_1 doi: 10.1007/s00425-010-1215-9 – ident: e_1_2_5_56_1 doi: 10.1111/pbi.12170 – ident: e_1_2_5_57_1 doi: 10.1016/j.cub.2008.07.085 – ident: e_1_2_5_39_1 doi: 10.1073/pnas.0705147104 – ident: e_1_2_5_13_1 doi: 10.1094/MPMI-10-13-0304-R – ident: e_1_2_5_37_1 doi: 10.1111/j.1365-3059.2009.02148.x – ident: e_1_2_5_34_1 doi: 10.1094/MPMI-05-13-0154-FI – start-page: 49 volume-title: The bacterial diseases of wheat: concepts and methods of disease management year: 1997 ident: e_1_2_5_45_1 – ident: e_1_2_5_5_1 doi: 10.1016/j.tig.2012.10.011 – ident: e_1_2_5_44_1 doi: 10.1104/pp.108.119511 – ident: e_1_2_5_62_1 doi: 10.1016/j.it.2014.05.004 – ident: e_1_2_5_7_1 doi: 10.1093/mp/ssu003 – ident: e_1_2_5_10_1 doi: 10.1126/science.1236011 – ident: e_1_2_5_63_1 doi: 10.1016/j.cell.2006.03.037 – ident: e_1_2_5_36_1 doi: 10.1016/j.molcel.2014.03.028 – ident: e_1_2_5_25_1 doi: 10.1046/j.1365-313x.2001.01015.x – ident: e_1_2_5_48_1 doi: 10.1111/j.1365-313X.2010.04324.x – ident: e_1_2_5_12_1 doi: 10.1046/j.1365-313X.1999.00265.x – ident: e_1_2_5_27_1 doi: 10.1111/j.1365-313X.1993.tb00169.x – ident: e_1_2_5_29_1 doi: 10.1007/s11103-013-0149-6 – ident: e_1_2_5_42_1 doi: 10.1111/mpp.12138 – ident: e_1_2_5_52_1 doi: 10.1094/MPMI-21-12-1635 – ident: e_1_2_5_19_1 doi: 10.1007/BF01977351 – ident: e_1_2_5_50_1 doi: 10.1007/s00299-008-0505-1 – ident: e_1_2_5_38_1 doi: 10.1105/tpc.111.092957 – start-page: 115 volume-title: Methods in molecular biology year: 2009 ident: e_1_2_5_40_1 – ident: e_1_2_5_23_1 doi: 10.1007/978-94-011-3937-3_5 – ident: e_1_2_5_51_1 doi: 10.1126/science.270.5243.1804 – ident: e_1_2_5_28_1 doi: 10.1094/MPMI-03-14-0068-R – ident: e_1_2_5_53_1 doi: 10.1007/s10709-012-9645-x – ident: e_1_2_5_17_1 doi: 10.1073/pnas.0705306104 – ident: e_1_2_5_47_1 doi: 10.1146/annurev-arplant-042811-105518 – ident: e_1_2_5_14_1 doi: 10.1016/S1097-2765(00)80265-8 – ident: e_1_2_5_26_1 doi: 10.1111/j.1365-313X.2010.04328.x – ident: e_1_2_5_61_1 doi: 10.1111/jipb.12123 – ident: e_1_2_5_49_1 doi: 10.1093/pcp/pcs113 – ident: e_1_2_5_59_1 doi: 10.1104/pp.111.183327 – ident: e_1_2_5_31_1 doi: 10.3186/jjphytopath.51.212 – ident: e_1_2_5_54_1 doi: 10.1186/1471-2229-10-288 – ident: e_1_2_5_6_1 doi: 10.1186/1471-2164-14-166 – ident: e_1_2_5_3_1 doi: 10.7717/peerj.242 – ident: e_1_2_5_33_1 doi: 10.1094/MPMI-07-13-0201-R – ident: e_1_2_5_11_1 doi: 10.1038/nrg2812 – ident: e_1_2_5_20_1 doi: 10.1128/AEM.71.9.5182-5191.2005 – ident: e_1_2_5_21_1 doi: 10.1073/pnas.0508882103 – ident: e_1_2_5_16_1 doi: 10.1073/pnas.1312099111 – ident: e_1_2_5_18_1 doi: 10.1371/journal.ppat.1004602 – ident: e_1_2_5_58_1 doi: 10.1111/j.1469-8137.2009.02970.x – ident: e_1_2_5_35_1 doi: 10.1111/jipb.12306 – ident: e_1_2_5_4_1 doi: 10.1146/annurev.arplant.57.032905.105346 – ident: e_1_2_5_30_1 doi: 10.1105/tpc.104.026765 – ident: e_1_2_5_46_1 doi: 10.1101/006155 – ident: e_1_2_5_8_1 doi: 10.1038/nature05999 – ident: e_1_2_5_9_1 doi: 10.1038/nature02076 – ident: e_1_2_5_60_1 doi: 10.1105/tpc.107.056754 – ident: e_1_2_5_32_1 doi: 10.1038/nbt.1613 – ident: e_1_2_5_55_1 doi: 10.1111/nph.12592 – ident: e_1_2_5_43_1 doi: 10.1105/tpc.111.084301 – ident: e_1_2_5_2_1 doi: 10.1007/s11240-010-9825-2 – ident: e_1_2_5_41_1 doi: 10.1007/s11103-007-9173-8 – volume: 44 start-page: 301 year: 1954 ident: e_1_2_5_24_1 article-title: Two simple media for the demonstration of pyocyanin and fluorescein publication-title: Journal of Laboratory and Clinical Medicine |
| SSID | ssj0009562 |
| Score | 2.5243173 |
| Snippet | Perception of pathogen (or microbe)‐associated molecular patterns (PAMPs/MAMPs) by pattern recognition receptors (PRRs) is a key component of plant innate... Perception of pathogen (or microbe)-associated molecular patterns (PAMPs/MAMPs) by pattern recognition receptors (PRRs) is a key component of plant innate... Summary Perception of pathogen (or microbe)‐associated molecular patterns (PAMPs/MAMPs) by pattern recognition receptors (PRRs) is a key component of plant... Perception of pathogen (or microbe)‐associated molecular patterns ( PAMP s/ MAMP s) by pattern recognition receptors ( PRR s) is a key component of plant... * Perception of pathogen (or microbe)-associated molecular patterns (PAMPs/MAMPs) by pattern recognition receptors (PRRs) is a key component of plant innate... |
| SourceID | proquest pubmed crossref wiley jstor fao |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 606 |
| SubjectTerms | Actin Arabidopsis Arabidopsis - genetics Arabidopsis Proteins - genetics Arabidopsis Proteins - metabolism Bacteria Bacterial diseases bacterial halo blight Bacterial Proteins - genetics Bacterial Proteins - metabolism Bio-assays Bioassays Biological Assay callose crops dicotyledon‐to‐monocotyledon gene‐transfer Disease Resistance durable disease resistance Elongation Elongation factor EF-Tu gene expression Gene Expression Regulation, Plant Genes genetic markers genetically modified organisms Glucans - metabolism immune receptor signalling Immunity Innate immunity Lesions Multiplication Oryza - genetics pathogen recognition Pathogens pathogen‐associated molecular pattern (PAMP)/microbe‐associate molecular pattern (MAMP)‐triggered immunity Pattern recognition Pattern recognition receptors Peptide Elongation Factor Tu - genetics Peptide Elongation Factor Tu - metabolism Plant Diseases - immunology Plant Diseases - microbiology Plants, Genetically Modified Pseudomonas syringae Pseudomonas syringae - physiology Rapid reports Receptors Receptors, Pattern Recognition - genetics Receptors, Pattern Recognition - metabolism rice Signal Transduction Solanaceae Transgenic plants transgenic wheat Triticum - genetics Triticum - immunology Triticum - microbiology Triticum aestivum Wheat |
| Title | Arabidopsis EF‐Tu receptor enhances bacterial disease resistance in transgenic wheat |
| URI | https://www.jstor.org/stable/newphytologist.206.2.606 https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fnph.13356 https://www.ncbi.nlm.nih.gov/pubmed/25760815 https://www.proquest.com/docview/2513911754 https://www.proquest.com/docview/1676366275 https://www.proquest.com/docview/1680748099 https://www.proquest.com/docview/1694501784 |
| Volume | 206 |
| WOSCitedRecordID | wos000351742300016&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library Free Content customDbUrl: eissn: 1469-8137 dateEnd: 20241211 omitProxy: false ssIdentifier: ssj0009562 issn: 0028-646X databaseCode: WIN dateStart: 19970101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell – providerCode: PRVWIB databaseName: Wiley Online Library Full Collection 2020 customDbUrl: eissn: 1469-8137 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0009562 issn: 0028-646X databaseCode: DRFUL dateStart: 19970101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB61pQcu5d0GyioghHoJcuI8bHEq0FWRqlUF3bI3K3FsuhJKVpvdIm78BH4jv4QZ56FWKhUSt0geJ9Z4ZvyN7XwD8Cq3kbAxy4Mk1VkQc0OF3CUPQitEmJWJZY5M5_wkm0zEbCZPN-Bt_y9Myw8xbLiRZ7h4TQ6eF80VJ68WF28wwUqIbjuMnVN--Ti5QribRj0Dcxqns45ViG7xDD2vrUWbNq_7S4k3wc3r6NUtP-N7_zXw-7DToU7_sDWTB7Bhqoew_a5GZPjjEZwfLvNiXtaLZt74R-PfP3-drX2MhGaBg_RNdUGW0fhFS-yM7-lOdVCmIfiJrf688le07KE9zrX_nUL8Y5iOj87eHwddvYVAJ5hlBFzbIsWpK8qilLqQxB1XRjZieSqFRuDGM1y7spJKJhnGOTMsN9wWTGimWVzyJ7BV1ZXZAz8JbZ4ILbksNUI0S1lLZFKB6ZEwMio8OOg1r3RHRk41Mb6pPilBLSmnJQ9eDqKLloHjJqE9nD6Vf8XIqKafI9rHoXKDPMs8eO3mdOiM6QpasKsOjDpSEUtVpDCP82C_n3TVOXKjEP5xSXSmsQcvhmZ0QTpXyStTrxsVphikHZH-bTLEOiQQj98mI-MEI6TAb-22RjcMmvJCRG_4hQNnW39XhZqcHruHp_8u-gzuksraG0n7sLVars1z2NaXq3mzHMFmNhMjuPPh03h6MnJu9gdEVyWK |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwEB6120r0wj80UCAghHoJysaJY0tcCnS1iGVVwW61NytxbBqpSlabXRA3HoFn5EmYyZ9aqVRI3CJ5nFjjmfE3tvMNwMvEBsKGfuJFXMdeyAwVcpfMG1ohhnEWWb8m0zmdxNOpWCzkyRa86f6Fafgh-g038ow6XpOD04b0BS8vlmevMcOK-DbshGhG0QB23n8ezScXSHd50LEw85AvWmYhusnTd760Hm3bpOwuJl4FOS8j2HoJGt36v8Hfhpst9HSPGlu5A1umuAu7b0uEhz_uwenRKknzrFxWeeUej37__DXbuBgOzRJH6ZrijMyjctOG3Rnf0x7toExFGBRb3bxw17T2oVHm2v1Ocf4-zEfHs3djry264OkIUw2PaZtynL80SzOpU0kEcllgAz_hUmhEbyzGBSzOqG6S8RnzjZ8YZlNfaF_7YcYewKAoC7MPbjS0SSS0ZDLTiNMspS6B4QJzJGFkkDpw2Kle6ZaRnApjnKsuM0EtqVpLDrzoRZcNDcdVQvs4fyr5iuFRzb8EtJlDNQdZHDvwqp7UvjPmLGjGdYlg1JEKfK4ChcmcAwfdrKvWmyuFGJBJ4jQNHXjeN6Mf0uFKUphyU6khx0hds-lfJ0PUQwJB-XUyMowwTAr81sPG6vpBU3KIEA6_cFgb199VoaYn4_rh0b-LPoMb49mniZp8mH58DHukvuaK0gEM1quNeQK7-ts6r1ZPWz_7AxhHKE4 |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La9wwEB7youTSdxO3aeuWUnJx0Vq2LEEvaROT0mVZ2mzYm7BlKTEE26x3W3rrT8hvzC_pyC8SSEOhN4NGthjNjL6R5G8A3iXG5yYgiRcyFXkB1baQu6DeyHA-irLQkIZM53QcTSZ8PhfTNfjY_wvT8kMMG27WM5p4bR1cV5m55uVFdf4BM6yQrcNmEAqGbrl5-C2eja-R7jK_Z2FmAZt3zEL2Js_Q-cZ6tG6Ssr-YeBvkvIlgmyUofvB_g38I9zvo6R60tvII1nTxGLY-lQgPfz2B04NFkuZZWdV57R7FV78vT1YuhkNd4ShdXZxb86jdtGV3xvd0RzsoU1sMiq1uXrhLu_ahUebK_Wnj_FOYxUcnn4-9ruiCp0JMNTyqTMpw_tIszYRKhSWQy3zjk4QJrhC90QgXsCizdZM0oZRokmhqUsIVUSTI6DPYKMpC74IbjkwSciWoyBTiNGNTF18zjjkS18JPHdjvVS9Vx0huC2NcyD4zQS3JRksOvB1Eq5aG4zahXZw_mZxheJSz777dzLE1B2kUOfC-mdShM-YsaMZNiWDUkfQJk77EZM6BvX7WZefNtUQMSIXlNA0ceDM0ox_aw5Wk0OWqliOGkbph079LxlIPcQTld8mIIMQwyfFbO63VDYO2ySFCOPzCfmNcf1eFnEyPm4fn_y76Gu5ND2M5_jL5-gK2rfbaG0p7sLFcrPRL2FI_lnm9eNW52R9n5yfJ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Arabidopsis+EF%E2%80%90Tu+receptor+enhances+bacterial+disease+resistance+in+transgenic+wheat&rft.jtitle=The+New+phytologist&rft.au=Schoonbeek%2C+Henk%E2%80%90jan&rft.au=Wang%2C+Hsi%E2%80%90Hua&rft.au=Stefanato%2C+Francesca+L.&rft.au=Craze%2C+Melanie&rft.date=2015-04-01&rft.issn=0028-646X&rft.eissn=1469-8137&rft.volume=206&rft.issue=2&rft.spage=606&rft.epage=613&rft_id=info:doi/10.1111%2Fnph.13356&rft.externalDBID=10.1111%252Fnph.13356&rft.externalDocID=NPH13356 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0028-646X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0028-646X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0028-646X&client=summon |