The Chemical Route to a Carbon Dioxide Neutral World
Excessive CO2 emissions in the atmosphere from anthropogenic activity can be divided into point sources and diffuse sources. The capture of CO2 from flue gases of large industrial installations and its conversion into fuels and chemicals with fast catalytic processes seems technically possible. Some...
Gespeichert in:
| Veröffentlicht in: | ChemSusChem Jg. 10; H. 6; S. 1039 - 1055 |
|---|---|
| Hauptverfasser: | , , , , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Germany
Wiley Subscription Services, Inc
22.03.2017
|
| Schlagworte: | |
| ISSN: | 1864-5631, 1864-564X |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Excessive CO2 emissions in the atmosphere from anthropogenic activity can be divided into point sources and diffuse sources. The capture of CO2 from flue gases of large industrial installations and its conversion into fuels and chemicals with fast catalytic processes seems technically possible. Some emerging technologies are already being demonstrated on an industrial scale. Others are still being tested on a laboratory or pilot scale. These emerging chemical technologies can be implemented in a time window ranging from 5 to 20 years. The massive amounts of energy needed for capturing processes and the conversion of CO2 should come from low‐carbon energy sources, such as tidal, geothermal, and nuclear energy, but also, mainly, from the sun. Synthetic methane gas that can be formed from CO2 and hydrogen gas is an attractive renewable energy carrier with an existing distribution system. Methanol offers advantages as a liquid fuel and is also a building block for the chemical industry. CO2 emissions from diffuse sources is a difficult problem to solve, particularly for CO2 emissions from road, water, and air transport, but steady progress in the development of technology for capturing CO2 from air is being made. It is impossible to ban carbon from the entire energy supply of mankind with the current technological knowledge, but a transition to a mixed carbon–hydrogen economy can reduce net CO2 emissions and ultimately lead to a CO2‐neutral world.
No time to spare: Timing in the carbon cycle suggests large‐scale chemical processes in which CO2 is chemically reduced to fuel within seconds are needed to close the carbon cycle and to avoid the emission of greenhouse gases. This type of cycle, in which CO2 is formed and converted back on the same timescale, is a sustainable solution for achieving a CO2‐neutral world. |
|---|---|
| AbstractList | Excessive CO2 emissions in the atmosphere from anthropogenic activity can be divided into point sources and diffuse sources. The capture of CO2 from flue gases of large industrial installations and its conversion into fuels and chemicals with fast catalytic processes seems technically possible. Some emerging technologies are already being demonstrated on an industrial scale. Others are still being tested on a laboratory or pilot scale. These emerging chemical technologies can be implemented in a time window ranging from 5 to 20 years. The massive amounts of energy needed for capturing processes and the conversion of CO2 should come from low‐carbon energy sources, such as tidal, geothermal, and nuclear energy, but also, mainly, from the sun. Synthetic methane gas that can be formed from CO2 and hydrogen gas is an attractive renewable energy carrier with an existing distribution system. Methanol offers advantages as a liquid fuel and is also a building block for the chemical industry. CO2 emissions from diffuse sources is a difficult problem to solve, particularly for CO2 emissions from road, water, and air transport, but steady progress in the development of technology for capturing CO2 from air is being made. It is impossible to ban carbon from the entire energy supply of mankind with the current technological knowledge, but a transition to a mixed carbon–hydrogen economy can reduce net CO2 emissions and ultimately lead to a CO2‐neutral world.
No time to spare: Timing in the carbon cycle suggests large‐scale chemical processes in which CO2 is chemically reduced to fuel within seconds are needed to close the carbon cycle and to avoid the emission of greenhouse gases. This type of cycle, in which CO2 is formed and converted back on the same timescale, is a sustainable solution for achieving a CO2‐neutral world. Excessive CO emissions in the atmosphere from anthropogenic activity can be divided into point sources and diffuse sources. The capture of CO from flue gases of large industrial installations and its conversion into fuels and chemicals with fast catalytic processes seems technically possible. Some emerging technologies are already being demonstrated on an industrial scale. Others are still being tested on a laboratory or pilot scale. These emerging chemical technologies can be implemented in a time window ranging from 5 to 20 years. The massive amounts of energy needed for capturing processes and the conversion of CO should come from low-carbon energy sources, such as tidal, geothermal, and nuclear energy, but also, mainly, from the sun. Synthetic methane gas that can be formed from CO and hydrogen gas is an attractive renewable energy carrier with an existing distribution system. Methanol offers advantages as a liquid fuel and is also a building block for the chemical industry. CO emissions from diffuse sources is a difficult problem to solve, particularly for CO emissions from road, water, and air transport, but steady progress in the development of technology for capturing CO from air is being made. It is impossible to ban carbon from the entire energy supply of mankind with the current technological knowledge, but a transition to a mixed carbon-hydrogen economy can reduce net CO emissions and ultimately lead to a CO -neutral world. Excessive CO sub(2) emissions in the atmosphere from anthropogenic activity can be divided into point sources and diffuse sources. The capture of CO sub(2) from flue gases of large industrial installations and its conversion into fuels and chemicals with fast catalytic processes seems technically possible. Some emerging technologies are already being demonstrated on an industrial scale. Others are still being tested on a laboratory or pilot scale. These emerging chemical technologies can be implemented in a time window ranging from 5 to 20years. The massive amounts of energy needed for capturing processes and the conversion of CO sub(2) should come from low-carbon energy sources, such as tidal, geothermal, and nuclear energy, but also, mainly, from the sun. Synthetic methane gas that can be formed from CO sub(2) and hydrogen gas is an attractive renewable energy carrier with an existing distribution system. Methanol offers advantages as a liquid fuel and is also a building block for the chemical industry. CO sub(2) emissions from diffuse sources is a difficult problem to solve, particularly for CO sub(2) emissions from road, water, and air transport, but steady progress in the development of technology for capturing CO sub(2) from air is being made. It is impossible to ban carbon from the entire energy supply of mankind with the current technological knowledge, but a transition to a mixed carbon-hydrogen economy can reduce net CO sub(2) emissions and ultimately lead to a CO sub(2)-neutral world. No time to spare: Timing in the carbon cycle suggests large-scale chemical processes in which CO sub(2) is chemically reduced to fuel within seconds are needed to close the carbon cycle and to avoid the emission of greenhouse gases. This type of cycle, in which CO sub(2) is formed and converted back on the same timescale, is a sustainable solution for achieving a CO sub(2)-neutral world. Excessive CO2 emissions in the atmosphere from anthropogenic activity can be divided into point sources and diffuse sources. The capture of CO2 from flue gases of large industrial installations and its conversion into fuels and chemicals with fast catalytic processes seems technically possible. Some emerging technologies are already being demonstrated on an industrial scale. Others are still being tested on a laboratory or pilot scale. These emerging chemical technologies can be implemented in a time window ranging from 5 to 20 years. The massive amounts of energy needed for capturing processes and the conversion of CO2 should come from low-carbon energy sources, such as tidal, geothermal, and nuclear energy, but also, mainly, from the sun. Synthetic methane gas that can be formed from CO2 and hydrogen gas is an attractive renewable energy carrier with an existing distribution system. Methanol offers advantages as a liquid fuel and is also a building block for the chemical industry. CO2 emissions from diffuse sources is a difficult problem to solve, particularly for CO2 emissions from road, water, and air transport, but steady progress in the development of technology for capturing CO2 from air is being made. It is impossible to ban carbon from the entire energy supply of mankind with the current technological knowledge, but a transition to a mixed carbon-hydrogen economy can reduce net CO2 emissions and ultimately lead to a CO2 -neutral world. Excessive CO 2 emissions in the atmosphere from anthropogenic activity can be divided into point sources and diffuse sources. The capture of CO 2 from flue gases of large industrial installations and its conversion into fuels and chemicals with fast catalytic processes seems technically possible. Some emerging technologies are already being demonstrated on an industrial scale. Others are still being tested on a laboratory or pilot scale. These emerging chemical technologies can be implemented in a time window ranging from 5 to 20 years. The massive amounts of energy needed for capturing processes and the conversion of CO 2 should come from low‐carbon energy sources, such as tidal, geothermal, and nuclear energy, but also, mainly, from the sun. Synthetic methane gas that can be formed from CO 2 and hydrogen gas is an attractive renewable energy carrier with an existing distribution system. Methanol offers advantages as a liquid fuel and is also a building block for the chemical industry. CO 2 emissions from diffuse sources is a difficult problem to solve, particularly for CO 2 emissions from road, water, and air transport, but steady progress in the development of technology for capturing CO 2 from air is being made. It is impossible to ban carbon from the entire energy supply of mankind with the current technological knowledge, but a transition to a mixed carbon–hydrogen economy can reduce net CO 2 emissions and ultimately lead to a CO 2 ‐neutral world. Excessive CO2 emissions in the atmosphere from anthropogenic activity can be divided into point sources and diffuse sources. The capture of CO2 from flue gases of large industrial installations and its conversion into fuels and chemicals with fast catalytic processes seems technically possible. Some emerging technologies are already being demonstrated on an industrial scale. Others are still being tested on a laboratory or pilot scale. These emerging chemical technologies can be implemented in a time window ranging from 5 to 20years. The massive amounts of energy needed for capturing processes and the conversion of CO2 should come from low-carbon energy sources, such as tidal, geothermal, and nuclear energy, but also, mainly, from the sun. Synthetic methane gas that can be formed from CO2 and hydrogen gas is an attractive renewable energy carrier with an existing distribution system. Methanol offers advantages as a liquid fuel and is also a building block for the chemical industry. CO2 emissions from diffuse sources is a difficult problem to solve, particularly for CO2 emissions from road, water, and air transport, but steady progress in the development of technology for capturing CO2 from air is being made. It is impossible to ban carbon from the entire energy supply of mankind with the current technological knowledge, but a transition to a mixed carbon-hydrogen economy can reduce net CO2 emissions and ultimately lead to a CO2-neutral world. |
| Author | Saeys, Mark Verhelst, Sebastian Bogaerts, Annemie Martens, Johan A. Marin, Guy B. Jacobs, Pierre A. Rabaey, Korneel De Kimpe, Norbert |
| Author_xml | – sequence: 1 givenname: Johan A. surname: Martens fullname: Martens, Johan A. email: Johan.Martens@biw.kuleuven.be organization: Royal Flemish Academy of Belgium for Science and the Arts, Natural Science Class (KNW) – sequence: 2 givenname: Annemie surname: Bogaerts fullname: Bogaerts, Annemie organization: Royal Flemish Academy of Belgium for Science and the Arts, Natural Science Class (KNW) – sequence: 3 givenname: Norbert surname: De Kimpe fullname: De Kimpe, Norbert organization: Royal Flemish Academy of Belgium for Science and the Arts, Natural Science Class (KNW) – sequence: 4 givenname: Pierre A. surname: Jacobs fullname: Jacobs, Pierre A. organization: Royal Flemish Academy of Belgium for Science and the Arts, Natural Science Class (KNW) – sequence: 5 givenname: Guy B. surname: Marin fullname: Marin, Guy B. organization: Royal Flemish Academy of Belgium for Science and the Arts, Technical Science Class (KTW) – sequence: 6 givenname: Korneel surname: Rabaey fullname: Rabaey, Korneel organization: Royal Flemish Academy of Belgium for Science and the Arts, Young Academy – sequence: 7 givenname: Mark surname: Saeys fullname: Saeys, Mark organization: Ghent University – sequence: 8 givenname: Sebastian surname: Verhelst fullname: Verhelst, Sebastian organization: Ghent University |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/27925436$$D View this record in MEDLINE/PubMed |
| BookMark | eNqNkc1LHDEYxoNY_GqvHmXAi5dd33xOcpTRfoBYqJb2FrKZdzAyO9FkBrv_fWfYdQtC0VPew-_3QJ7nkOx2sUNCjinMKQA79zn7OQOqgIKkO-SAaiVmUonfu9ub031ymPMDgAKj1B7ZZ6VhUnB1QMTdPRbVPS6Dd23xIw49Fn0sXFG5tIhdcRnin1BjcYNDn0biV0xt_ZF8aFyb8dPmPSI_P1_dVV9n19-_fKsurmdeakZniNwvqFCeI0qPtEaoS9o4cK500JiaC1BaSyM5CISmdg3nUmixYIxLVvMjcrbOfUzxacDc22XIHtvWdRiHbKk2XGtlBLwD1dpIRal5BypUyRhT5YievkIf4pC68c9TIExtiinwZEMNiyXW9jGFpUsr-9LyCIg14FPMOWFjfehdH2I3dhpaS8FOY9ppTLsdc9Tmr7SX5P8KZi08hxZXb9C2ur2t_rl_AfSNrdI |
| CitedBy_id | crossref_primary_10_1016_j_jcou_2018_02_011 crossref_primary_10_3390_f15010183 crossref_primary_10_1016_j_cej_2018_11_072 crossref_primary_10_1111_1751_7915_14321 crossref_primary_10_3390_molecules30030563 crossref_primary_10_1016_j_fuel_2022_125202 crossref_primary_10_1021_acssuschemeng_5c01336 crossref_primary_10_1088_2516_1067_ac0095 crossref_primary_10_1016_j_cej_2024_153216 crossref_primary_10_1021_acsestengg_5c00276 crossref_primary_10_1039_C9SC04591K crossref_primary_10_1002_cctc_201901175 crossref_primary_10_1002_ghg_2185 crossref_primary_10_1002_ceat_202100534 crossref_primary_10_1016_j_cogsc_2018_12_007 crossref_primary_10_1016_j_inoche_2020_107770 crossref_primary_10_1016_j_jcou_2017_10_002 crossref_primary_10_1002_ece2_35 crossref_primary_10_1039_D5GC01906K crossref_primary_10_1007_s11356_024_34838_x crossref_primary_10_1016_j_cej_2020_125243 crossref_primary_10_1002_ajoc_202300097 crossref_primary_10_1016_j_renene_2023_04_049 crossref_primary_10_1039_D0CY02028A crossref_primary_10_1002_adsc_201801281 crossref_primary_10_1016_j_proci_2020_06_375 crossref_primary_10_3390_catal15070675 crossref_primary_10_1016_j_fuel_2023_127733 crossref_primary_10_1002_cssc_201903224 crossref_primary_10_1016_j_scitotenv_2018_07_089 crossref_primary_10_1016_j_jechem_2020_01_023 crossref_primary_10_1515_psr_2017_0009 crossref_primary_10_1002_ppap_201700203 crossref_primary_10_1039_C6CS00066E crossref_primary_10_1016_j_apcatb_2019_01_084 crossref_primary_10_1016_j_chemosphere_2023_140470 crossref_primary_10_1088_1361_6595_aa8ffb crossref_primary_10_1016_j_cej_2021_130864 crossref_primary_10_3390_su151914486 crossref_primary_10_1039_D1CY00922B crossref_primary_10_1016_j_jcou_2022_102062 crossref_primary_10_1016_j_jgsce_2025_205641 crossref_primary_10_1039_D4SC06376G crossref_primary_10_1002_cite_201700145 crossref_primary_10_1016_j_cej_2018_10_133 crossref_primary_10_1016_j_decarb_2023_100018 crossref_primary_10_1016_j_enconman_2022_115882 crossref_primary_10_1016_j_rser_2019_03_022 crossref_primary_10_1016_j_jcou_2024_102822 crossref_primary_10_3390_molecules25163603 crossref_primary_10_3390_catal7090261 crossref_primary_10_1002_adma_201903796 crossref_primary_10_1016_j_jcou_2021_101635 crossref_primary_10_1016_j_jcou_2021_101877 crossref_primary_10_1007_s13399_021_01872_5 crossref_primary_10_1016_j_joule_2019_07_009 crossref_primary_10_1002_cssc_202101184 crossref_primary_10_1016_j_ijhydene_2020_02_153 crossref_primary_10_1111_1751_7915_13747 crossref_primary_10_1016_j_cej_2025_163881 crossref_primary_10_1016_j_biotechadv_2019_107467 crossref_primary_10_1016_j_jcou_2019_05_023 crossref_primary_10_1039_D1EE00532D crossref_primary_10_1016_j_cej_2022_139460 crossref_primary_10_1038_s41467_020_20193_1 crossref_primary_10_3390_land11101722 crossref_primary_10_1016_j_biortech_2020_124289 crossref_primary_10_1016_j_fuel_2023_128913 crossref_primary_10_1038_s41467_022_28042_z crossref_primary_10_1016_j_pecs_2018_10_001 crossref_primary_10_1038_s41929_021_00585_2 crossref_primary_10_1007_s11356_023_27825_1 crossref_primary_10_1016_j_apcatb_2021_121015 crossref_primary_10_1016_j_jechem_2017_07_006 crossref_primary_10_1016_j_jcou_2020_101216 crossref_primary_10_1002_cplu_202200324 crossref_primary_10_3390_catal11020266 crossref_primary_10_1002_cssc_201700898 crossref_primary_10_1016_j_catcom_2020_106237 crossref_primary_10_1002_adsc_201801240 crossref_primary_10_1016_j_bej_2020_107886 crossref_primary_10_1002_cctc_202400563 crossref_primary_10_1002_cplu_201800168 crossref_primary_10_1016_j_apcatb_2020_119734 crossref_primary_10_3390_en13112703 crossref_primary_10_1016_j_mcat_2018_09_003 crossref_primary_10_1021_jacs_0c08942 crossref_primary_10_1002_cctc_201800397 crossref_primary_10_1016_j_apcatb_2023_123602 crossref_primary_10_1016_j_jechem_2019_05_005 crossref_primary_10_1021_acs_iecr_5c01334 crossref_primary_10_1016_j_jclepro_2022_133030 crossref_primary_10_1016_j_cattod_2019_04_003 crossref_primary_10_1002_nadc_20214110510 crossref_primary_10_1039_C8RA07236A crossref_primary_10_1134_S1063780X22601274 crossref_primary_10_3390_fermentation9070679 crossref_primary_10_1016_j_jcat_2022_08_036 crossref_primary_10_1016_j_copbio_2019_08_014 crossref_primary_10_61186_JCER_7_2_1 crossref_primary_10_1002_cssc_202001951 crossref_primary_10_1016_j_nbt_2019_09_004 crossref_primary_10_1007_s11783_023_1727_8 crossref_primary_10_1016_j_cogsc_2025_101003 crossref_primary_10_1002_er_8625 crossref_primary_10_1002_cctc_202200052 crossref_primary_10_1016_j_pmatsci_2024_101408 crossref_primary_10_1016_j_cej_2021_131909 crossref_primary_10_1002_cctc_202001109 crossref_primary_10_3390_pr12020303 crossref_primary_10_3390_app10031080 crossref_primary_10_3390_rs9111137 crossref_primary_10_1002_chem_202303436 crossref_primary_10_1039_D4SC02888K crossref_primary_10_1016_j_jorganchem_2018_11_026 crossref_primary_10_1007_s11274_023_03554_y crossref_primary_10_1016_j_biortech_2025_132280 crossref_primary_10_1016_j_catcom_2023_106674 crossref_primary_10_1134_S1070427222010013 crossref_primary_10_3389_fchem_2019_00028 crossref_primary_10_1016_j_cherd_2019_02_005 crossref_primary_10_1016_j_mencom_2023_01_001 crossref_primary_10_1016_j_cattod_2023_114477 crossref_primary_10_1146_annurev_food_111523_121717 crossref_primary_10_3390_molecules25122723 crossref_primary_10_1039_D3RA07448J crossref_primary_10_1002_ejoc_202100409 crossref_primary_10_1016_j_jiec_2020_05_016 |
| Cites_doi | 10.1126/science.1176731 10.1016/S1464-2859(14)70082-3 10.1038/ncomms4242 10.1021/acs.chemrev.6b00173 10.1021/ja202642y 10.1039/c3ee00056g 10.1002/advs.201500260 10.1021/acs.est.5b03052 10.1038/nrmicro2422 10.1038/526628a 10.1126/science.349.6253.1158 10.1039/C3CS60424A 10.1016/j.apenergy.2014.08.011 10.1038/nature14016 10.1039/C3CS60395D 10.1016/j.cattod.2006.02.029 10.1021/cr4002758 10.1016/j.apcata.2006.05.021 10.1126/science.aah7161 10.1021/ef3012849 10.1038/nclimate2564 |
| ContentType | Journal Article |
| Copyright | 2017 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim |
| Copyright_xml | – notice: 2017 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim – notice: 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. – notice: 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7SR 8BQ 8FD JG9 K9. 7X8 F1W H96 L.G |
| DOI | 10.1002/cssc.201601051 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic ASFA: Aquatic Sciences and Fisheries Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Aquatic Science & Fisheries Abstracts (ASFA) Professional |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Materials Research Database ProQuest Health & Medical Complete (Alumni) Engineered Materials Abstracts Technology Research Database METADEX MEDLINE - Academic Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Aquatic Science & Fisheries Abstracts (ASFA) Professional ASFA: Aquatic Sciences and Fisheries Abstracts |
| DatabaseTitleList | MEDLINE Materials Research Database MEDLINE - Academic Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources CrossRef Materials Research Database |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Chemistry Economics |
| EISSN | 1864-564X |
| EndPage | 1055 |
| ExternalDocumentID | 4321095357 27925436 10_1002_cssc_201601051 CSSC201601051 |
| Genre | reviewArticle Journal Article Review |
| GroupedDBID | --- 05W 0R~ 1OC 29B 33P 4.4 5GY 5VS 66C 77Q 8-1 A00 AAESR AAHHS AAHQN AAIHA AAMNL AANLZ AASGY AAXRX AAYCA AAZKR ABCUV ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACXBN ACXQS ADKYN ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AENEX AEQDE AEUYR AFBPY AFFPM AFWVQ AFZJQ AHBTC AHMBA AITYG AIURR AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMYDB AZVAB BDRZF BFHJK BRXPI CS3 DCZOG DR2 DRFUL DRSTM DU5 EBD EBS EJD EMOBN F5P G-S HGLYW HZ~ IX1 LATKE LAW LEEKS LITHE LOXES LUTES LYRES MEWTI MY~ O9- OIG P2W P4E PQQKQ ROL SUPJJ SV3 W99 WBKPD WOHZO WXSBR WYJ XV2 ZZTAW ~S- AAMMB AAYXX AEFGJ AEYWJ AGXDD AGYGG AIDQK AIDYY CITATION CGR CUY CVF ECM EIF NPM 7SR 8BQ 8FD JG9 K9. 7X8 F1W H96 L.G |
| ID | FETCH-LOGICAL-c5821-ee3cb146c3ee5ce1de0d71fa0aa7a0f9d340688595304e0fdaf335484b22352d3 |
| IEDL.DBID | DRFUL |
| ISICitedReferencesCount | 185 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000398182800002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1864-5631 |
| IngestDate | Fri Jul 11 15:57:54 EDT 2025 Fri Jul 11 08:08:07 EDT 2025 Sun Nov 09 12:04:26 EST 2025 Sat Nov 29 14:31:12 EST 2025 Thu Apr 03 07:09:15 EDT 2025 Sat Nov 29 07:17:40 EST 2025 Tue Nov 18 20:46:02 EST 2025 Wed Jan 22 17:06:24 EST 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 6 |
| Keywords | atmospheric chemistry sustainable chemistry synthetic fuels hydrogen carbon dioxide fixation |
| Language | English |
| License | 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c5821-ee3cb146c3ee5ce1de0d71fa0aa7a0f9d340688595304e0fdaf335484b22352d3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Article-2 ObjectType-Feature-3 content type line 23 ObjectType-Review-1 |
| OpenAccessLink | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/cssc.201601051 |
| PMID | 27925436 |
| PQID | 1880096649 |
| PQPubID | 986333 |
| PageCount | 17 |
| ParticipantIDs | proquest_miscellaneous_1893886940 proquest_miscellaneous_1888956119 proquest_miscellaneous_1846722267 proquest_journals_1880096649 pubmed_primary_27925436 crossref_citationtrail_10_1002_cssc_201601051 crossref_primary_10_1002_cssc_201601051 wiley_primary_10_1002_cssc_201601051_CSSC201601051 |
| PublicationCentury | 2000 |
| PublicationDate | March 22, 2017 |
| PublicationDateYYYYMMDD | 2017-03-22 |
| PublicationDate_xml | – month: 03 year: 2017 text: March 22, 2017 day: 22 |
| PublicationDecade | 2010 |
| PublicationPlace | Germany |
| PublicationPlace_xml | – name: Germany – name: Weinheim |
| PublicationTitle | ChemSusChem |
| PublicationTitleAlternate | ChemSusChem |
| PublicationYear | 2017 |
| Publisher | Wiley Subscription Services, Inc |
| Publisher_xml | – name: Wiley Subscription Services, Inc |
| References | 2014; 5 2015; 49 2015; 5 2013; 27 2015 2015; 2 349 2009 2016; 354 2015; 517 2015; 526 2016; 116 2006; 115 2013; 6 2014; 114 2006; 310 2011; 133 2009; 325 2014; 43 2014; 135 2010; 8 e_1_2_10_22_2 e_1_2_10_23_1 e_1_2_10_24_1 e_1_2_10_21_1 e_1_2_10_22_1 e_1_2_10_42_1 e_1_2_10_20_1 e_1_2_10_41_1 e_1_2_10_40_1 e_1_2_10_1_1 e_1_2_10_2_1 e_1_2_10_4_1 e_1_2_10_18_1 e_1_2_10_3_1 e_1_2_10_6_1 e_1_2_10_16_1 e_1_2_10_39_1 e_1_2_10_5_1 e_1_2_10_17_1 e_1_2_10_38_1 e_1_2_10_8_1 e_1_2_10_14_1 e_1_2_10_37_1 e_1_2_10_7_1 e_1_2_10_15_1 e_1_2_10_36_1 e_1_2_10_12_1 e_1_2_10_35_1 e_1_2_10_9_1 e_1_2_10_13_1 e_1_2_10_34_1 e_1_2_10_10_1 e_1_2_10_33_1 e_1_2_10_11_1 e_1_2_10_32_1 e_1_2_10_31_1 e_1_2_10_30_1 Trenberth K. E. (e_1_2_10_19_1) 2009 e_1_2_10_29_1 e_1_2_10_27_1 e_1_2_10_28_1 e_1_2_10_25_1 e_1_2_10_26_1 |
| References_xml | – volume: 354 start-page: 449 year: 2016 end-page: 452 publication-title: Science – volume: 43 start-page: 7963 year: 2014 end-page: 7981 publication-title: Chem. Soc. Rev. – volume: 8 start-page: 706 year: 2010 end-page: 716 publication-title: Nat. Rev. Microbiol. – volume: 325 start-page: 1652 year: 2009 end-page: 1654 publication-title: Science – volume: 135 start-page: 704 year: 2014 end-page: 720 publication-title: Appl. Energy – volume: 526 start-page: 628 year: 2015 end-page: 630 publication-title: Nature – volume: 6 start-page: 1711 year: 2013 end-page: 1731 publication-title: Energy Environ. Sci. – volume: 5 start-page: 3242 year: 2014 publication-title: Nat. Commun. – volume: 517 start-page: 187 year: 2015 end-page: 190 publication-title: Nature – volume: 43 start-page: 7813 year: 2014 end-page: 7837 publication-title: Chem. Soc. Rev. – volume: 115 start-page: 2 year: 2006 end-page: 32 publication-title: Catal. Today – volume: 49 start-page: 12576 year: 2015 end-page: 12584 publication-title: Environ. Sci. Technol. – volume: 133 start-page: 12881 year: 2011 end-page: 12898 publication-title: J. Am. Chem. Soc. – volume: 2 349 start-page: 1500260 1158 year: 2015 2015 end-page: 1160 publication-title: Adv. Sci. Science – volume: 5 start-page: 329 year: 2015 end-page: 332 publication-title: Nat. Clim. Change – volume: 27 start-page: 237 year: 2013 end-page: 246 publication-title: Energy Fuels – volume: 116 start-page: 11840 year: 2016 end-page: 11876 publication-title: Chem. Rev. – volume: 310 start-page: 122 year: 2006 end-page: 126 publication-title: Appl. Catal. A – start-page: 90 year: 2009 end-page: 323 publication-title: Bull. Am. Meteorol. Soc. – volume: 114 start-page: 1709 year: 2014 end-page: 1742 publication-title: Chem. Rev. – ident: e_1_2_10_33_1 – ident: e_1_2_10_13_1 – ident: e_1_2_10_2_1 – ident: e_1_2_10_11_1 doi: 10.1126/science.1176731 – ident: e_1_2_10_32_1 doi: 10.1016/S1464-2859(14)70082-3 – ident: e_1_2_10_10_1 – ident: e_1_2_10_28_1 – ident: e_1_2_10_39_1 doi: 10.1038/ncomms4242 – ident: e_1_2_10_34_1 doi: 10.1021/acs.chemrev.6b00173 – ident: e_1_2_10_30_1 doi: 10.1021/ja202642y – ident: e_1_2_10_23_1 doi: 10.1039/c3ee00056g – ident: e_1_2_10_40_1 – ident: e_1_2_10_16_1 – ident: e_1_2_10_22_1 doi: 10.1002/advs.201500260 – ident: e_1_2_10_8_1 – ident: e_1_2_10_26_1 – ident: e_1_2_10_12_1 doi: 10.1021/acs.est.5b03052 – ident: e_1_2_10_20_1 – start-page: 90 year: 2009 ident: e_1_2_10_19_1 publication-title: Bull. Am. Meteorol. Soc. – ident: e_1_2_10_9_1 – ident: e_1_2_10_31_1 – ident: e_1_2_10_1_1 – ident: e_1_2_10_41_1 doi: 10.1038/nrmicro2422 – ident: e_1_2_10_15_1 – ident: e_1_2_10_4_1 – ident: e_1_2_10_18_1 doi: 10.1038/526628a – ident: e_1_2_10_22_2 doi: 10.1126/science.349.6253.1158 – ident: e_1_2_10_14_1 – ident: e_1_2_10_42_1 doi: 10.1039/C3CS60424A – ident: e_1_2_10_24_1 doi: 10.1016/j.apenergy.2014.08.011 – ident: e_1_2_10_7_1 – ident: e_1_2_10_25_1 – ident: e_1_2_10_5_1 doi: 10.1038/nature14016 – ident: e_1_2_10_6_1 – ident: e_1_2_10_17_1 – ident: e_1_2_10_37_1 doi: 10.1039/C3CS60395D – ident: e_1_2_10_35_1 doi: 10.1016/j.cattod.2006.02.029 – ident: e_1_2_10_29_1 doi: 10.1021/cr4002758 – ident: e_1_2_10_3_1 – ident: e_1_2_10_36_1 doi: 10.1016/j.apcata.2006.05.021 – ident: e_1_2_10_38_1 doi: 10.1126/science.aah7161 – ident: e_1_2_10_27_1 doi: 10.1021/ef3012849 – ident: e_1_2_10_21_1 doi: 10.1038/nclimate2564 |
| SSID | ssj0060966 |
| Score | 2.5889738 |
| SecondaryResourceType | review_article |
| Snippet | Excessive CO2 emissions in the atmosphere from anthropogenic activity can be divided into point sources and diffuse sources. The capture of CO2 from flue gases... Excessive CO 2 emissions in the atmosphere from anthropogenic activity can be divided into point sources and diffuse sources. The capture of CO 2 from flue... Excessive CO emissions in the atmosphere from anthropogenic activity can be divided into point sources and diffuse sources. The capture of CO from flue gases... Excessive CO sub(2) emissions in the atmosphere from anthropogenic activity can be divided into point sources and diffuse sources. The capture of CO sub(2)... |
| SourceID | proquest pubmed crossref wiley |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 1039 |
| SubjectTerms | Atmosphere - chemistry atmospheric chemistry Carbon capture and storage Carbon cycle Carbon dioxide Carbon Dioxide - chemistry carbon dioxide fixation Conversion Economics Emission Emissions Emissions control Fossil Fuels hydrogen Hydrogen - chemistry Methyl alcohol Pollution sources sustainable chemistry synthetic fuels Time Factors |
| Title | The Chemical Route to a Carbon Dioxide Neutral World |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcssc.201601051 https://www.ncbi.nlm.nih.gov/pubmed/27925436 https://www.proquest.com/docview/1880096649 https://www.proquest.com/docview/1846722267 https://www.proquest.com/docview/1888956119 https://www.proquest.com/docview/1893886940 |
| Volume | 10 |
| WOSCitedRecordID | wos000398182800002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library Full Collection 2020 customDbUrl: eissn: 1864-564X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0060966 issn: 1864-5631 databaseCode: DRFUL dateStart: 20080101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3di9QwEB90T9AXvz-q5xFB8KlcmqRp8ig9Fx-ORTxP9q2k6RQWpJXtrtyff5l-6SKeoI-l05BOZia_fMxvAN46xFrqJKxUPZpYlXUZG-VUnGpZopXO6Z6s-ut5tlqZ9dp--iWLf-CHmDfcyDP6eE0O7sru9CdpqO86oiBMaEVBOdRHIhhvuoCjs8_Ly_MpGusA0fsMI6P7DiQTcSMXp4ctHE5Mv6HNQ_Dazz7LB__f74dwf0Se7P1gKo_gFjaP4W4-FXx7AiqYDJsIBBhdFUK2a5ljuduWbcPONu3VpkK2wj1tj7D-Hs5TuFx--JJ_jMeiCrGnnNgYUfoyhEcvEVOPSYW8ypLacecyx2tbSUV1aFKbSq6Q15WrpQzLGlUGIJGKSj6DRdM2-AKYq1yAGxX3tQ2iunKJyErhbY1KcXRJBPGk0cKPjONU-OJbMXAli4J0Ucy6iODdLP994Nr4o-TxNEDF6HNdQcxyNNrKRvBmfh10SEcgrsF2TzJhYgiQSGc3yRhD6b7Jje1YaYy2ikfwfDCQuctEyZgqqSMQvR385V-K_OIin59e_stHr-CeILTBZSzEMSx22z2-hjv-x27TbU_gdrY2J6NfXAOxRwpY |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1bi9UwEB5kV1hfdL1uddUIgk9l0yRNm0fp7mHF40HcXdm3kiZTOCDtci7izzfTmxzEFcTH0mlIJzPJl0nmG4C3FrGWOgk7VYd5rKq6inNlVZxqWaGR1uqOrPrrPFss8utr83m4TUi5MD0_xBRwI8_o5mtycApIn_xiDXXrNXEQJrSloCTqfRVsKRj5_umX2dV8nI51wOhdilGuux4kI3MjFye7LeyuTL_BzV302i0_swf_oeOHcH_Anux9bywP4Q42j-CgGEu-PQYVjIaNFAKMLgsh27TMssKuqrZhp8v2x9IjW-CWAiSsu4nzBK5mZ5fFeTyUVYgdZcXGiNJVYYJ0EjF1mHjkPktqy63NLK-Nl4oq0aQmlVwhr72tpQwbG1UFKJEKL5_CXtM2eATMehsAh-euNkFUe5uIrBLO1KgUR5tEEI8qLd3AOU6lL76VPVuyKEkX5aSLCN5N8jc928YfJY_HESoHr1uXxC1Hw61MBG-m10GHdAhiG2y3JBOWhgCKdHabTJ5Twm9yaztG5rk2ikfwrLeQqctEypgqqSMQnSH85V_K4uKimJ6e_8tHr-Hg_PLTvJx_WHx8AfcEYQ8uYyGOYW-z2uJLuOu-b5br1avBPX4CaVENYA |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3di9QwEB9kT9QXvz-qp0YQfCqXNmnaPErXRXFZDs-TeytpMoGFoz32Q_zzzfRLFvEE8bF0GtLJTPJLMvMbgLcG0QuVhJ2qxSKWta_jQhoZZ0rUqIUxqiOr_rbMV6vi4kKfDtGElAvT80NMB27kGd18TQ6OV86f_GINtdstcRAmtKWgJOojSZVkZnA0_7I4X47TsQoYvUsxKlTXg2RkbuTpyWELhyvTb3DzEL12y8_i3n_o-H24O2BP9r43lgdwA5uHcLscS749AhmMho0UAoyChZDtWmZYaTZ127D5uv2xdshWuKcDEtZF4jyG88WHr-XHeCirEFvKio0Rha3DBGkFYmYxcchdnnjDjckN99oJSZVoMp0JLpF7Z7wQYWMj6wAlstSJJzBr2gafATPOBMDhuPU6iCpnkjSvU6s9SsnRJBHEo0orO3COU-mLy6pnS04r0kU16SKCd5P8Vc-28UfJ43GEqsHrthVxy9FwSx3Bm-l10CFdgpgG2z3JhKUhgCKVXydTFJTwm1zbjhZFobTkETztLWTqMpEyZlKoCNLOEP7yL1V5dlZOT8__5aPXcOt0vqiWn1afX8CdlKAHF3GaHsNst9njS7hpv-_W282rwTt-At58DNs |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+Chemical+Route+to+a+Carbon+Dioxide+Neutral+World&rft.jtitle=ChemSusChem&rft.au=Martens%2C+Johan+A&rft.au=Bogaerts%2C+Annemie&rft.au=DeKimpe%2C+Norbert&rft.au=Jacobs%2C+Pierre+A&rft.date=2017-03-22&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1864-5631&rft.eissn=1864-564X&rft.volume=10&rft.issue=6&rft.spage=1039&rft_id=info:doi/10.1002%2Fcssc.201601051&rft.externalDBID=NO_FULL_TEXT&rft.externalDocID=4321095357 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1864-5631&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1864-5631&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1864-5631&client=summon |