The Chemical Route to a Carbon Dioxide Neutral World

Excessive CO2 emissions in the atmosphere from anthropogenic activity can be divided into point sources and diffuse sources. The capture of CO2 from flue gases of large industrial installations and its conversion into fuels and chemicals with fast catalytic processes seems technically possible. Some...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ChemSusChem Jg. 10; H. 6; S. 1039 - 1055
Hauptverfasser: Martens, Johan A., Bogaerts, Annemie, De Kimpe, Norbert, Jacobs, Pierre A., Marin, Guy B., Rabaey, Korneel, Saeys, Mark, Verhelst, Sebastian
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Germany Wiley Subscription Services, Inc 22.03.2017
Schlagworte:
ISSN:1864-5631, 1864-564X
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Excessive CO2 emissions in the atmosphere from anthropogenic activity can be divided into point sources and diffuse sources. The capture of CO2 from flue gases of large industrial installations and its conversion into fuels and chemicals with fast catalytic processes seems technically possible. Some emerging technologies are already being demonstrated on an industrial scale. Others are still being tested on a laboratory or pilot scale. These emerging chemical technologies can be implemented in a time window ranging from 5 to 20 years. The massive amounts of energy needed for capturing processes and the conversion of CO2 should come from low‐carbon energy sources, such as tidal, geothermal, and nuclear energy, but also, mainly, from the sun. Synthetic methane gas that can be formed from CO2 and hydrogen gas is an attractive renewable energy carrier with an existing distribution system. Methanol offers advantages as a liquid fuel and is also a building block for the chemical industry. CO2 emissions from diffuse sources is a difficult problem to solve, particularly for CO2 emissions from road, water, and air transport, but steady progress in the development of technology for capturing CO2 from air is being made. It is impossible to ban carbon from the entire energy supply of mankind with the current technological knowledge, but a transition to a mixed carbon–hydrogen economy can reduce net CO2 emissions and ultimately lead to a CO2‐neutral world. No time to spare: Timing in the carbon cycle suggests large‐scale chemical processes in which CO2 is chemically reduced to fuel within seconds are needed to close the carbon cycle and to avoid the emission of greenhouse gases. This type of cycle, in which CO2 is formed and converted back on the same timescale, is a sustainable solution for achieving a CO2‐neutral world.
AbstractList Excessive CO2 emissions in the atmosphere from anthropogenic activity can be divided into point sources and diffuse sources. The capture of CO2 from flue gases of large industrial installations and its conversion into fuels and chemicals with fast catalytic processes seems technically possible. Some emerging technologies are already being demonstrated on an industrial scale. Others are still being tested on a laboratory or pilot scale. These emerging chemical technologies can be implemented in a time window ranging from 5 to 20 years. The massive amounts of energy needed for capturing processes and the conversion of CO2 should come from low‐carbon energy sources, such as tidal, geothermal, and nuclear energy, but also, mainly, from the sun. Synthetic methane gas that can be formed from CO2 and hydrogen gas is an attractive renewable energy carrier with an existing distribution system. Methanol offers advantages as a liquid fuel and is also a building block for the chemical industry. CO2 emissions from diffuse sources is a difficult problem to solve, particularly for CO2 emissions from road, water, and air transport, but steady progress in the development of technology for capturing CO2 from air is being made. It is impossible to ban carbon from the entire energy supply of mankind with the current technological knowledge, but a transition to a mixed carbon–hydrogen economy can reduce net CO2 emissions and ultimately lead to a CO2‐neutral world. No time to spare: Timing in the carbon cycle suggests large‐scale chemical processes in which CO2 is chemically reduced to fuel within seconds are needed to close the carbon cycle and to avoid the emission of greenhouse gases. This type of cycle, in which CO2 is formed and converted back on the same timescale, is a sustainable solution for achieving a CO2‐neutral world.
Excessive CO emissions in the atmosphere from anthropogenic activity can be divided into point sources and diffuse sources. The capture of CO from flue gases of large industrial installations and its conversion into fuels and chemicals with fast catalytic processes seems technically possible. Some emerging technologies are already being demonstrated on an industrial scale. Others are still being tested on a laboratory or pilot scale. These emerging chemical technologies can be implemented in a time window ranging from 5 to 20 years. The massive amounts of energy needed for capturing processes and the conversion of CO should come from low-carbon energy sources, such as tidal, geothermal, and nuclear energy, but also, mainly, from the sun. Synthetic methane gas that can be formed from CO and hydrogen gas is an attractive renewable energy carrier with an existing distribution system. Methanol offers advantages as a liquid fuel and is also a building block for the chemical industry. CO emissions from diffuse sources is a difficult problem to solve, particularly for CO emissions from road, water, and air transport, but steady progress in the development of technology for capturing CO from air is being made. It is impossible to ban carbon from the entire energy supply of mankind with the current technological knowledge, but a transition to a mixed carbon-hydrogen economy can reduce net CO emissions and ultimately lead to a CO -neutral world.
Excessive CO sub(2) emissions in the atmosphere from anthropogenic activity can be divided into point sources and diffuse sources. The capture of CO sub(2) from flue gases of large industrial installations and its conversion into fuels and chemicals with fast catalytic processes seems technically possible. Some emerging technologies are already being demonstrated on an industrial scale. Others are still being tested on a laboratory or pilot scale. These emerging chemical technologies can be implemented in a time window ranging from 5 to 20years. The massive amounts of energy needed for capturing processes and the conversion of CO sub(2) should come from low-carbon energy sources, such as tidal, geothermal, and nuclear energy, but also, mainly, from the sun. Synthetic methane gas that can be formed from CO sub(2) and hydrogen gas is an attractive renewable energy carrier with an existing distribution system. Methanol offers advantages as a liquid fuel and is also a building block for the chemical industry. CO sub(2) emissions from diffuse sources is a difficult problem to solve, particularly for CO sub(2) emissions from road, water, and air transport, but steady progress in the development of technology for capturing CO sub(2) from air is being made. It is impossible to ban carbon from the entire energy supply of mankind with the current technological knowledge, but a transition to a mixed carbon-hydrogen economy can reduce net CO sub(2) emissions and ultimately lead to a CO sub(2)-neutral world. No time to spare: Timing in the carbon cycle suggests large-scale chemical processes in which CO sub(2) is chemically reduced to fuel within seconds are needed to close the carbon cycle and to avoid the emission of greenhouse gases. This type of cycle, in which CO sub(2) is formed and converted back on the same timescale, is a sustainable solution for achieving a CO sub(2)-neutral world.
Excessive CO2 emissions in the atmosphere from anthropogenic activity can be divided into point sources and diffuse sources. The capture of CO2 from flue gases of large industrial installations and its conversion into fuels and chemicals with fast catalytic processes seems technically possible. Some emerging technologies are already being demonstrated on an industrial scale. Others are still being tested on a laboratory or pilot scale. These emerging chemical technologies can be implemented in a time window ranging from 5 to 20 years. The massive amounts of energy needed for capturing processes and the conversion of CO2 should come from low-carbon energy sources, such as tidal, geothermal, and nuclear energy, but also, mainly, from the sun. Synthetic methane gas that can be formed from CO2 and hydrogen gas is an attractive renewable energy carrier with an existing distribution system. Methanol offers advantages as a liquid fuel and is also a building block for the chemical industry. CO2 emissions from diffuse sources is a difficult problem to solve, particularly for CO2 emissions from road, water, and air transport, but steady progress in the development of technology for capturing CO2 from air is being made. It is impossible to ban carbon from the entire energy supply of mankind with the current technological knowledge, but a transition to a mixed carbon-hydrogen economy can reduce net CO2 emissions and ultimately lead to a CO2 -neutral world.
Excessive CO 2 emissions in the atmosphere from anthropogenic activity can be divided into point sources and diffuse sources. The capture of CO 2 from flue gases of large industrial installations and its conversion into fuels and chemicals with fast catalytic processes seems technically possible. Some emerging technologies are already being demonstrated on an industrial scale. Others are still being tested on a laboratory or pilot scale. These emerging chemical technologies can be implemented in a time window ranging from 5 to 20 years. The massive amounts of energy needed for capturing processes and the conversion of CO 2 should come from low‐carbon energy sources, such as tidal, geothermal, and nuclear energy, but also, mainly, from the sun. Synthetic methane gas that can be formed from CO 2 and hydrogen gas is an attractive renewable energy carrier with an existing distribution system. Methanol offers advantages as a liquid fuel and is also a building block for the chemical industry. CO 2 emissions from diffuse sources is a difficult problem to solve, particularly for CO 2 emissions from road, water, and air transport, but steady progress in the development of technology for capturing CO 2 from air is being made. It is impossible to ban carbon from the entire energy supply of mankind with the current technological knowledge, but a transition to a mixed carbon–hydrogen economy can reduce net CO 2 emissions and ultimately lead to a CO 2 ‐neutral world.
Excessive CO2 emissions in the atmosphere from anthropogenic activity can be divided into point sources and diffuse sources. The capture of CO2 from flue gases of large industrial installations and its conversion into fuels and chemicals with fast catalytic processes seems technically possible. Some emerging technologies are already being demonstrated on an industrial scale. Others are still being tested on a laboratory or pilot scale. These emerging chemical technologies can be implemented in a time window ranging from 5 to 20years. The massive amounts of energy needed for capturing processes and the conversion of CO2 should come from low-carbon energy sources, such as tidal, geothermal, and nuclear energy, but also, mainly, from the sun. Synthetic methane gas that can be formed from CO2 and hydrogen gas is an attractive renewable energy carrier with an existing distribution system. Methanol offers advantages as a liquid fuel and is also a building block for the chemical industry. CO2 emissions from diffuse sources is a difficult problem to solve, particularly for CO2 emissions from road, water, and air transport, but steady progress in the development of technology for capturing CO2 from air is being made. It is impossible to ban carbon from the entire energy supply of mankind with the current technological knowledge, but a transition to a mixed carbon-hydrogen economy can reduce net CO2 emissions and ultimately lead to a CO2-neutral world.
Author Saeys, Mark
Verhelst, Sebastian
Bogaerts, Annemie
Martens, Johan A.
Marin, Guy B.
Jacobs, Pierre A.
Rabaey, Korneel
De Kimpe, Norbert
Author_xml – sequence: 1
  givenname: Johan A.
  surname: Martens
  fullname: Martens, Johan A.
  email: Johan.Martens@biw.kuleuven.be
  organization: Royal Flemish Academy of Belgium for Science and the Arts, Natural Science Class (KNW)
– sequence: 2
  givenname: Annemie
  surname: Bogaerts
  fullname: Bogaerts, Annemie
  organization: Royal Flemish Academy of Belgium for Science and the Arts, Natural Science Class (KNW)
– sequence: 3
  givenname: Norbert
  surname: De Kimpe
  fullname: De Kimpe, Norbert
  organization: Royal Flemish Academy of Belgium for Science and the Arts, Natural Science Class (KNW)
– sequence: 4
  givenname: Pierre A.
  surname: Jacobs
  fullname: Jacobs, Pierre A.
  organization: Royal Flemish Academy of Belgium for Science and the Arts, Natural Science Class (KNW)
– sequence: 5
  givenname: Guy B.
  surname: Marin
  fullname: Marin, Guy B.
  organization: Royal Flemish Academy of Belgium for Science and the Arts, Technical Science Class (KTW)
– sequence: 6
  givenname: Korneel
  surname: Rabaey
  fullname: Rabaey, Korneel
  organization: Royal Flemish Academy of Belgium for Science and the Arts, Young Academy
– sequence: 7
  givenname: Mark
  surname: Saeys
  fullname: Saeys, Mark
  organization: Ghent University
– sequence: 8
  givenname: Sebastian
  surname: Verhelst
  fullname: Verhelst, Sebastian
  organization: Ghent University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/27925436$$D View this record in MEDLINE/PubMed
BookMark eNqNkc1LHDEYxoNY_GqvHmXAi5dd33xOcpTRfoBYqJb2FrKZdzAyO9FkBrv_fWfYdQtC0VPew-_3QJ7nkOx2sUNCjinMKQA79zn7OQOqgIKkO-SAaiVmUonfu9ub031ymPMDgAKj1B7ZZ6VhUnB1QMTdPRbVPS6Dd23xIw49Fn0sXFG5tIhdcRnin1BjcYNDn0biV0xt_ZF8aFyb8dPmPSI_P1_dVV9n19-_fKsurmdeakZniNwvqFCeI0qPtEaoS9o4cK500JiaC1BaSyM5CISmdg3nUmixYIxLVvMjcrbOfUzxacDc22XIHtvWdRiHbKk2XGtlBLwD1dpIRal5BypUyRhT5YievkIf4pC68c9TIExtiinwZEMNiyXW9jGFpUsr-9LyCIg14FPMOWFjfehdH2I3dhpaS8FOY9ppTLsdc9Tmr7SX5P8KZi08hxZXb9C2ur2t_rl_AfSNrdI
CitedBy_id crossref_primary_10_1016_j_jcou_2018_02_011
crossref_primary_10_3390_f15010183
crossref_primary_10_1016_j_cej_2018_11_072
crossref_primary_10_1111_1751_7915_14321
crossref_primary_10_3390_molecules30030563
crossref_primary_10_1016_j_fuel_2022_125202
crossref_primary_10_1021_acssuschemeng_5c01336
crossref_primary_10_1088_2516_1067_ac0095
crossref_primary_10_1016_j_cej_2024_153216
crossref_primary_10_1021_acsestengg_5c00276
crossref_primary_10_1039_C9SC04591K
crossref_primary_10_1002_cctc_201901175
crossref_primary_10_1002_ghg_2185
crossref_primary_10_1002_ceat_202100534
crossref_primary_10_1016_j_cogsc_2018_12_007
crossref_primary_10_1016_j_inoche_2020_107770
crossref_primary_10_1016_j_jcou_2017_10_002
crossref_primary_10_1002_ece2_35
crossref_primary_10_1039_D5GC01906K
crossref_primary_10_1007_s11356_024_34838_x
crossref_primary_10_1016_j_cej_2020_125243
crossref_primary_10_1002_ajoc_202300097
crossref_primary_10_1016_j_renene_2023_04_049
crossref_primary_10_1039_D0CY02028A
crossref_primary_10_1002_adsc_201801281
crossref_primary_10_1016_j_proci_2020_06_375
crossref_primary_10_3390_catal15070675
crossref_primary_10_1016_j_fuel_2023_127733
crossref_primary_10_1002_cssc_201903224
crossref_primary_10_1016_j_scitotenv_2018_07_089
crossref_primary_10_1016_j_jechem_2020_01_023
crossref_primary_10_1515_psr_2017_0009
crossref_primary_10_1002_ppap_201700203
crossref_primary_10_1039_C6CS00066E
crossref_primary_10_1016_j_apcatb_2019_01_084
crossref_primary_10_1016_j_chemosphere_2023_140470
crossref_primary_10_1088_1361_6595_aa8ffb
crossref_primary_10_1016_j_cej_2021_130864
crossref_primary_10_3390_su151914486
crossref_primary_10_1039_D1CY00922B
crossref_primary_10_1016_j_jcou_2022_102062
crossref_primary_10_1016_j_jgsce_2025_205641
crossref_primary_10_1039_D4SC06376G
crossref_primary_10_1002_cite_201700145
crossref_primary_10_1016_j_cej_2018_10_133
crossref_primary_10_1016_j_decarb_2023_100018
crossref_primary_10_1016_j_enconman_2022_115882
crossref_primary_10_1016_j_rser_2019_03_022
crossref_primary_10_1016_j_jcou_2024_102822
crossref_primary_10_3390_molecules25163603
crossref_primary_10_3390_catal7090261
crossref_primary_10_1002_adma_201903796
crossref_primary_10_1016_j_jcou_2021_101635
crossref_primary_10_1016_j_jcou_2021_101877
crossref_primary_10_1007_s13399_021_01872_5
crossref_primary_10_1016_j_joule_2019_07_009
crossref_primary_10_1002_cssc_202101184
crossref_primary_10_1016_j_ijhydene_2020_02_153
crossref_primary_10_1111_1751_7915_13747
crossref_primary_10_1016_j_cej_2025_163881
crossref_primary_10_1016_j_biotechadv_2019_107467
crossref_primary_10_1016_j_jcou_2019_05_023
crossref_primary_10_1039_D1EE00532D
crossref_primary_10_1016_j_cej_2022_139460
crossref_primary_10_1038_s41467_020_20193_1
crossref_primary_10_3390_land11101722
crossref_primary_10_1016_j_biortech_2020_124289
crossref_primary_10_1016_j_fuel_2023_128913
crossref_primary_10_1038_s41467_022_28042_z
crossref_primary_10_1016_j_pecs_2018_10_001
crossref_primary_10_1038_s41929_021_00585_2
crossref_primary_10_1007_s11356_023_27825_1
crossref_primary_10_1016_j_apcatb_2021_121015
crossref_primary_10_1016_j_jechem_2017_07_006
crossref_primary_10_1016_j_jcou_2020_101216
crossref_primary_10_1002_cplu_202200324
crossref_primary_10_3390_catal11020266
crossref_primary_10_1002_cssc_201700898
crossref_primary_10_1016_j_catcom_2020_106237
crossref_primary_10_1002_adsc_201801240
crossref_primary_10_1016_j_bej_2020_107886
crossref_primary_10_1002_cctc_202400563
crossref_primary_10_1002_cplu_201800168
crossref_primary_10_1016_j_apcatb_2020_119734
crossref_primary_10_3390_en13112703
crossref_primary_10_1016_j_mcat_2018_09_003
crossref_primary_10_1021_jacs_0c08942
crossref_primary_10_1002_cctc_201800397
crossref_primary_10_1016_j_apcatb_2023_123602
crossref_primary_10_1016_j_jechem_2019_05_005
crossref_primary_10_1021_acs_iecr_5c01334
crossref_primary_10_1016_j_jclepro_2022_133030
crossref_primary_10_1016_j_cattod_2019_04_003
crossref_primary_10_1002_nadc_20214110510
crossref_primary_10_1039_C8RA07236A
crossref_primary_10_1134_S1063780X22601274
crossref_primary_10_3390_fermentation9070679
crossref_primary_10_1016_j_jcat_2022_08_036
crossref_primary_10_1016_j_copbio_2019_08_014
crossref_primary_10_61186_JCER_7_2_1
crossref_primary_10_1002_cssc_202001951
crossref_primary_10_1016_j_nbt_2019_09_004
crossref_primary_10_1007_s11783_023_1727_8
crossref_primary_10_1016_j_cogsc_2025_101003
crossref_primary_10_1002_er_8625
crossref_primary_10_1002_cctc_202200052
crossref_primary_10_1016_j_pmatsci_2024_101408
crossref_primary_10_1016_j_cej_2021_131909
crossref_primary_10_1002_cctc_202001109
crossref_primary_10_3390_pr12020303
crossref_primary_10_3390_app10031080
crossref_primary_10_3390_rs9111137
crossref_primary_10_1002_chem_202303436
crossref_primary_10_1039_D4SC02888K
crossref_primary_10_1016_j_jorganchem_2018_11_026
crossref_primary_10_1007_s11274_023_03554_y
crossref_primary_10_1016_j_biortech_2025_132280
crossref_primary_10_1016_j_catcom_2023_106674
crossref_primary_10_1134_S1070427222010013
crossref_primary_10_3389_fchem_2019_00028
crossref_primary_10_1016_j_cherd_2019_02_005
crossref_primary_10_1016_j_mencom_2023_01_001
crossref_primary_10_1016_j_cattod_2023_114477
crossref_primary_10_1146_annurev_food_111523_121717
crossref_primary_10_3390_molecules25122723
crossref_primary_10_1039_D3RA07448J
crossref_primary_10_1002_ejoc_202100409
crossref_primary_10_1016_j_jiec_2020_05_016
Cites_doi 10.1126/science.1176731
10.1016/S1464-2859(14)70082-3
10.1038/ncomms4242
10.1021/acs.chemrev.6b00173
10.1021/ja202642y
10.1039/c3ee00056g
10.1002/advs.201500260
10.1021/acs.est.5b03052
10.1038/nrmicro2422
10.1038/526628a
10.1126/science.349.6253.1158
10.1039/C3CS60424A
10.1016/j.apenergy.2014.08.011
10.1038/nature14016
10.1039/C3CS60395D
10.1016/j.cattod.2006.02.029
10.1021/cr4002758
10.1016/j.apcata.2006.05.021
10.1126/science.aah7161
10.1021/ef3012849
10.1038/nclimate2564
ContentType Journal Article
Copyright 2017 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim
2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Copyright_xml – notice: 2017 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim
– notice: 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
– notice: 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7SR
8BQ
8FD
JG9
K9.
7X8
F1W
H96
L.G
DOI 10.1002/cssc.201601051
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
ASFA: Aquatic Sciences and Fisheries Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Aquatic Science & Fisheries Abstracts (ASFA) Professional
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Materials Research Database
ProQuest Health & Medical Complete (Alumni)
Engineered Materials Abstracts
Technology Research Database
METADEX
MEDLINE - Academic
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Aquatic Science & Fisheries Abstracts (ASFA) Professional
ASFA: Aquatic Sciences and Fisheries Abstracts
DatabaseTitleList
MEDLINE
Materials Research Database
MEDLINE - Academic
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
CrossRef
Materials Research Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
Economics
EISSN 1864-564X
EndPage 1055
ExternalDocumentID 4321095357
27925436
10_1002_cssc_201601051
CSSC201601051
Genre reviewArticle
Journal Article
Review
GroupedDBID ---
05W
0R~
1OC
29B
33P
4.4
5GY
5VS
66C
77Q
8-1
A00
AAESR
AAHHS
AAHQN
AAIHA
AAMNL
AANLZ
AASGY
AAXRX
AAYCA
AAZKR
ABCUV
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADKYN
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AENEX
AEQDE
AEUYR
AFBPY
AFFPM
AFWVQ
AFZJQ
AHBTC
AHMBA
AITYG
AIURR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMYDB
AZVAB
BDRZF
BFHJK
BRXPI
CS3
DCZOG
DR2
DRFUL
DRSTM
DU5
EBD
EBS
EJD
EMOBN
F5P
G-S
HGLYW
HZ~
IX1
LATKE
LAW
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
MY~
O9-
OIG
P2W
P4E
PQQKQ
ROL
SUPJJ
SV3
W99
WBKPD
WOHZO
WXSBR
WYJ
XV2
ZZTAW
~S-
AAMMB
AAYXX
AEFGJ
AEYWJ
AGXDD
AGYGG
AIDQK
AIDYY
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7SR
8BQ
8FD
JG9
K9.
7X8
F1W
H96
L.G
ID FETCH-LOGICAL-c5821-ee3cb146c3ee5ce1de0d71fa0aa7a0f9d340688595304e0fdaf335484b22352d3
IEDL.DBID DRFUL
ISICitedReferencesCount 185
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000398182800002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1864-5631
IngestDate Fri Jul 11 15:57:54 EDT 2025
Fri Jul 11 08:08:07 EDT 2025
Sun Nov 09 12:04:26 EST 2025
Sat Nov 29 14:31:12 EST 2025
Thu Apr 03 07:09:15 EDT 2025
Sat Nov 29 07:17:40 EST 2025
Tue Nov 18 20:46:02 EST 2025
Wed Jan 22 17:06:24 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords atmospheric chemistry
sustainable chemistry
synthetic fuels
hydrogen
carbon dioxide fixation
Language English
License 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5821-ee3cb146c3ee5ce1de0d71fa0aa7a0f9d340688595304e0fdaf335484b22352d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Article-2
ObjectType-Feature-3
content type line 23
ObjectType-Review-1
OpenAccessLink https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/cssc.201601051
PMID 27925436
PQID 1880096649
PQPubID 986333
PageCount 17
ParticipantIDs proquest_miscellaneous_1893886940
proquest_miscellaneous_1888956119
proquest_miscellaneous_1846722267
proquest_journals_1880096649
pubmed_primary_27925436
crossref_citationtrail_10_1002_cssc_201601051
crossref_primary_10_1002_cssc_201601051
wiley_primary_10_1002_cssc_201601051_CSSC201601051
PublicationCentury 2000
PublicationDate March 22, 2017
PublicationDateYYYYMMDD 2017-03-22
PublicationDate_xml – month: 03
  year: 2017
  text: March 22, 2017
  day: 22
PublicationDecade 2010
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle ChemSusChem
PublicationTitleAlternate ChemSusChem
PublicationYear 2017
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2014; 5
2015; 49
2015; 5
2013; 27
2015 2015; 2 349
2009
2016; 354
2015; 517
2015; 526
2016; 116
2006; 115
2013; 6
2014; 114
2006; 310
2011; 133
2009; 325
2014; 43
2014; 135
2010; 8
e_1_2_10_22_2
e_1_2_10_23_1
e_1_2_10_24_1
e_1_2_10_21_1
e_1_2_10_22_1
e_1_2_10_42_1
e_1_2_10_20_1
e_1_2_10_41_1
e_1_2_10_40_1
e_1_2_10_1_1
e_1_2_10_2_1
e_1_2_10_4_1
e_1_2_10_18_1
e_1_2_10_3_1
e_1_2_10_6_1
e_1_2_10_16_1
e_1_2_10_39_1
e_1_2_10_5_1
e_1_2_10_17_1
e_1_2_10_38_1
e_1_2_10_8_1
e_1_2_10_14_1
e_1_2_10_37_1
e_1_2_10_7_1
e_1_2_10_15_1
e_1_2_10_36_1
e_1_2_10_12_1
e_1_2_10_35_1
e_1_2_10_9_1
e_1_2_10_13_1
e_1_2_10_34_1
e_1_2_10_10_1
e_1_2_10_33_1
e_1_2_10_11_1
e_1_2_10_32_1
e_1_2_10_31_1
e_1_2_10_30_1
Trenberth K. E. (e_1_2_10_19_1) 2009
e_1_2_10_29_1
e_1_2_10_27_1
e_1_2_10_28_1
e_1_2_10_25_1
e_1_2_10_26_1
References_xml – volume: 354
  start-page: 449
  year: 2016
  end-page: 452
  publication-title: Science
– volume: 43
  start-page: 7963
  year: 2014
  end-page: 7981
  publication-title: Chem. Soc. Rev.
– volume: 8
  start-page: 706
  year: 2010
  end-page: 716
  publication-title: Nat. Rev. Microbiol.
– volume: 325
  start-page: 1652
  year: 2009
  end-page: 1654
  publication-title: Science
– volume: 135
  start-page: 704
  year: 2014
  end-page: 720
  publication-title: Appl. Energy
– volume: 526
  start-page: 628
  year: 2015
  end-page: 630
  publication-title: Nature
– volume: 6
  start-page: 1711
  year: 2013
  end-page: 1731
  publication-title: Energy Environ. Sci.
– volume: 5
  start-page: 3242
  year: 2014
  publication-title: Nat. Commun.
– volume: 517
  start-page: 187
  year: 2015
  end-page: 190
  publication-title: Nature
– volume: 43
  start-page: 7813
  year: 2014
  end-page: 7837
  publication-title: Chem. Soc. Rev.
– volume: 115
  start-page: 2
  year: 2006
  end-page: 32
  publication-title: Catal. Today
– volume: 49
  start-page: 12576
  year: 2015
  end-page: 12584
  publication-title: Environ. Sci. Technol.
– volume: 133
  start-page: 12881
  year: 2011
  end-page: 12898
  publication-title: J. Am. Chem. Soc.
– volume: 2 349
  start-page: 1500260 1158
  year: 2015 2015
  end-page: 1160
  publication-title: Adv. Sci. Science
– volume: 5
  start-page: 329
  year: 2015
  end-page: 332
  publication-title: Nat. Clim. Change
– volume: 27
  start-page: 237
  year: 2013
  end-page: 246
  publication-title: Energy Fuels
– volume: 116
  start-page: 11840
  year: 2016
  end-page: 11876
  publication-title: Chem. Rev.
– volume: 310
  start-page: 122
  year: 2006
  end-page: 126
  publication-title: Appl. Catal. A
– start-page: 90
  year: 2009
  end-page: 323
  publication-title: Bull. Am. Meteorol. Soc.
– volume: 114
  start-page: 1709
  year: 2014
  end-page: 1742
  publication-title: Chem. Rev.
– ident: e_1_2_10_33_1
– ident: e_1_2_10_13_1
– ident: e_1_2_10_2_1
– ident: e_1_2_10_11_1
  doi: 10.1126/science.1176731
– ident: e_1_2_10_32_1
  doi: 10.1016/S1464-2859(14)70082-3
– ident: e_1_2_10_10_1
– ident: e_1_2_10_28_1
– ident: e_1_2_10_39_1
  doi: 10.1038/ncomms4242
– ident: e_1_2_10_34_1
  doi: 10.1021/acs.chemrev.6b00173
– ident: e_1_2_10_30_1
  doi: 10.1021/ja202642y
– ident: e_1_2_10_23_1
  doi: 10.1039/c3ee00056g
– ident: e_1_2_10_40_1
– ident: e_1_2_10_16_1
– ident: e_1_2_10_22_1
  doi: 10.1002/advs.201500260
– ident: e_1_2_10_8_1
– ident: e_1_2_10_26_1
– ident: e_1_2_10_12_1
  doi: 10.1021/acs.est.5b03052
– ident: e_1_2_10_20_1
– start-page: 90
  year: 2009
  ident: e_1_2_10_19_1
  publication-title: Bull. Am. Meteorol. Soc.
– ident: e_1_2_10_9_1
– ident: e_1_2_10_31_1
– ident: e_1_2_10_1_1
– ident: e_1_2_10_41_1
  doi: 10.1038/nrmicro2422
– ident: e_1_2_10_15_1
– ident: e_1_2_10_4_1
– ident: e_1_2_10_18_1
  doi: 10.1038/526628a
– ident: e_1_2_10_22_2
  doi: 10.1126/science.349.6253.1158
– ident: e_1_2_10_14_1
– ident: e_1_2_10_42_1
  doi: 10.1039/C3CS60424A
– ident: e_1_2_10_24_1
  doi: 10.1016/j.apenergy.2014.08.011
– ident: e_1_2_10_7_1
– ident: e_1_2_10_25_1
– ident: e_1_2_10_5_1
  doi: 10.1038/nature14016
– ident: e_1_2_10_6_1
– ident: e_1_2_10_17_1
– ident: e_1_2_10_37_1
  doi: 10.1039/C3CS60395D
– ident: e_1_2_10_35_1
  doi: 10.1016/j.cattod.2006.02.029
– ident: e_1_2_10_29_1
  doi: 10.1021/cr4002758
– ident: e_1_2_10_3_1
– ident: e_1_2_10_36_1
  doi: 10.1016/j.apcata.2006.05.021
– ident: e_1_2_10_38_1
  doi: 10.1126/science.aah7161
– ident: e_1_2_10_27_1
  doi: 10.1021/ef3012849
– ident: e_1_2_10_21_1
  doi: 10.1038/nclimate2564
SSID ssj0060966
Score 2.5889738
SecondaryResourceType review_article
Snippet Excessive CO2 emissions in the atmosphere from anthropogenic activity can be divided into point sources and diffuse sources. The capture of CO2 from flue gases...
Excessive CO 2 emissions in the atmosphere from anthropogenic activity can be divided into point sources and diffuse sources. The capture of CO 2 from flue...
Excessive CO emissions in the atmosphere from anthropogenic activity can be divided into point sources and diffuse sources. The capture of CO from flue gases...
Excessive CO sub(2) emissions in the atmosphere from anthropogenic activity can be divided into point sources and diffuse sources. The capture of CO sub(2)...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1039
SubjectTerms Atmosphere - chemistry
atmospheric chemistry
Carbon capture and storage
Carbon cycle
Carbon dioxide
Carbon Dioxide - chemistry
carbon dioxide fixation
Conversion
Economics
Emission
Emissions
Emissions control
Fossil Fuels
hydrogen
Hydrogen - chemistry
Methyl alcohol
Pollution sources
sustainable chemistry
synthetic fuels
Time Factors
Title The Chemical Route to a Carbon Dioxide Neutral World
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcssc.201601051
https://www.ncbi.nlm.nih.gov/pubmed/27925436
https://www.proquest.com/docview/1880096649
https://www.proquest.com/docview/1846722267
https://www.proquest.com/docview/1888956119
https://www.proquest.com/docview/1893886940
Volume 10
WOSCitedRecordID wos000398182800002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1864-564X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0060966
  issn: 1864-5631
  databaseCode: DRFUL
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3di9QwEB90T9AXvz-q5xFB8KlcmqRp8ig9Fx-ORTxP9q2k6RQWpJXtrtyff5l-6SKeoI-l05BOZia_fMxvAN46xFrqJKxUPZpYlXUZG-VUnGpZopXO6Z6s-ut5tlqZ9dp--iWLf-CHmDfcyDP6eE0O7sru9CdpqO86oiBMaEVBOdRHIhhvuoCjs8_Ly_MpGusA0fsMI6P7DiQTcSMXp4ctHE5Mv6HNQ_Dazz7LB__f74dwf0Se7P1gKo_gFjaP4W4-FXx7AiqYDJsIBBhdFUK2a5ljuduWbcPONu3VpkK2wj1tj7D-Hs5TuFx--JJ_jMeiCrGnnNgYUfoyhEcvEVOPSYW8ypLacecyx2tbSUV1aFKbSq6Q15WrpQzLGlUGIJGKSj6DRdM2-AKYq1yAGxX3tQ2iunKJyErhbY1KcXRJBPGk0cKPjONU-OJbMXAli4J0Ucy6iODdLP994Nr4o-TxNEDF6HNdQcxyNNrKRvBmfh10SEcgrsF2TzJhYgiQSGc3yRhD6b7Jje1YaYy2ikfwfDCQuctEyZgqqSMQvR385V-K_OIin59e_stHr-CeILTBZSzEMSx22z2-hjv-x27TbU_gdrY2J6NfXAOxRwpY
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1bi9UwEB5kV1hfdL1uddUIgk9l0yRNm0fp7mHF40HcXdm3kiZTOCDtci7izzfTmxzEFcTH0mlIJzPJl0nmG4C3FrGWOgk7VYd5rKq6inNlVZxqWaGR1uqOrPrrPFss8utr83m4TUi5MD0_xBRwI8_o5mtycApIn_xiDXXrNXEQJrSloCTqfRVsKRj5_umX2dV8nI51wOhdilGuux4kI3MjFye7LeyuTL_BzV302i0_swf_oeOHcH_Anux9bywP4Q42j-CgGEu-PQYVjIaNFAKMLgsh27TMssKuqrZhp8v2x9IjW-CWAiSsu4nzBK5mZ5fFeTyUVYgdZcXGiNJVYYJ0EjF1mHjkPktqy63NLK-Nl4oq0aQmlVwhr72tpQwbG1UFKJEKL5_CXtM2eATMehsAh-euNkFUe5uIrBLO1KgUR5tEEI8qLd3AOU6lL76VPVuyKEkX5aSLCN5N8jc928YfJY_HESoHr1uXxC1Hw61MBG-m10GHdAhiG2y3JBOWhgCKdHabTJ5Twm9yaztG5rk2ikfwrLeQqctEypgqqSMQnSH85V_K4uKimJ6e_8tHr-Hg_PLTvJx_WHx8AfcEYQ8uYyGOYW-z2uJLuOu-b5br1avBPX4CaVENYA
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3di9QwEB9kT9QXvz-qp0YQfCqXNmnaPErXRXFZDs-TeytpMoGFoz32Q_zzzfRLFvEE8bF0GtLJTPJLMvMbgLcG0QuVhJ2qxSKWta_jQhoZZ0rUqIUxqiOr_rbMV6vi4kKfDtGElAvT80NMB27kGd18TQ6OV86f_GINtdstcRAmtKWgJOojSZVkZnA0_7I4X47TsQoYvUsxKlTXg2RkbuTpyWELhyvTb3DzEL12y8_i3n_o-H24O2BP9r43lgdwA5uHcLscS749AhmMho0UAoyChZDtWmZYaTZ127D5uv2xdshWuKcDEtZF4jyG88WHr-XHeCirEFvKio0Rha3DBGkFYmYxcchdnnjDjckN99oJSZVoMp0JLpF7Z7wQYWMj6wAlstSJJzBr2gafATPOBMDhuPU6iCpnkjSvU6s9SsnRJBHEo0orO3COU-mLy6pnS04r0kU16SKCd5P8Vc-28UfJ43GEqsHrthVxy9FwSx3Bm-l10CFdgpgG2z3JhKUhgCKVXydTFJTwm1zbjhZFobTkETztLWTqMpEyZlKoCNLOEP7yL1V5dlZOT8__5aPXcOt0vqiWn1afX8CdlKAHF3GaHsNst9njS7hpv-_W282rwTt-At58DNs
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+Chemical+Route+to+a+Carbon+Dioxide+Neutral+World&rft.jtitle=ChemSusChem&rft.au=Martens%2C+Johan+A&rft.au=Bogaerts%2C+Annemie&rft.au=DeKimpe%2C+Norbert&rft.au=Jacobs%2C+Pierre+A&rft.date=2017-03-22&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1864-5631&rft.eissn=1864-564X&rft.volume=10&rft.issue=6&rft.spage=1039&rft_id=info:doi/10.1002%2Fcssc.201601051&rft.externalDBID=NO_FULL_TEXT&rft.externalDocID=4321095357
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1864-5631&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1864-5631&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1864-5631&client=summon