Characterizing and correcting gradient errors in non-cartesian imaging: Are gradient errors linear time-invariant (LTI)?

Non‐Cartesian and rapid imaging sequences are more sensitive to scanner imperfections such as gradient delays and eddy currents. These imperfections vary between scanners and over time and can be a significant impediment to successful implementation and eventual adoption of non‐Cartesian techniques...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Magnetic resonance in medicine Ročník 62; číslo 6; s. 1466 - 1476
Hlavní autoři: Brodsky, Ethan K., Samsonov, Alexey A., Block, Walter F.
Médium: Journal Article
Jazyk:angličtina
Vydáno: Hoboken Wiley Subscription Services, Inc., A Wiley Company 01.12.2009
Témata:
ISSN:0740-3194, 1522-2594, 1522-2594
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Non‐Cartesian and rapid imaging sequences are more sensitive to scanner imperfections such as gradient delays and eddy currents. These imperfections vary between scanners and over time and can be a significant impediment to successful implementation and eventual adoption of non‐Cartesian techniques by scanner manufacturers. Differences between the k‐space trajectory desired and the trajectory actually acquired lead to misregistration and reduction in image quality. While early calibration methods required considerable scan time, more recent methods can work more quickly by making certain approximations. We examine a rapid gradient calibration procedure applied to multiecho three‐dimensional projection reconstruction (3DPR) acquisitions in which the calibration runs as part of every scan. After measuring the trajectories traversed for excitations on each of the orthogonal gradient axes, trajectories for the oblique projections actually acquired during the scan are synthesized as linear combinations of these measurements. The ability to do rapid calibration depends on the assumption that gradient errors are linear and time‐invariant (LTI). This work examines the validity of these assumptions and shows that the assumption of linearity is reasonable, but that gradient errors can vary over short time periods (due to changes in gradient coil temperature) and thus it is important to use calibration data matched to the scan data. Magn Reson Med, 2009. © 2009 Wiley‐Liss, Inc.
AbstractList Non-Cartesian and rapid imaging sequences are more sensitive to scanner imperfections such as gradient delays and eddy currents. These imperfections vary between scanners and over time and can be a significant impediment to successful implementation and eventual adoption of non-Cartesian techniques by scanner manufacturers. Differences between the k-space trajectory desired and the trajectory actually acquired lead to misregistration and reduction in image quality. While early calibration methods required considerable scan time, more recent methods can work more quickly by making certain approximations. We examine a rapid gradient calibration procedure applied to multiecho three-dimensional projection reconstruction (3DPR) acquisitions in which the calibration runs as part of every scan. After measuring the trajectories traversed for excitations on each of the orthogonal gradient axes, trajectories for the oblique projections actually acquired during the scan are synthesized as linear combinations of these measurements. The ability to do rapid calibration depends on the assumption that gradient errors are linear and time-invariant (LTI). This work examines the validity of these assumptions and shows that the assumption of linearity is reasonable, but that gradient errors can vary over short time periods (due to changes in gradient coil temperature) and thus it is important to use calibration data matched to the scan data. Magn Reson Med, 2009. [copy 2009 Wiley-Liss, Inc.
Non‐Cartesian and rapid imaging sequences are more sensitive to scanner imperfections such as gradient delays and eddy currents. These imperfections vary between scanners and over time and can be a significant impediment to successful implementation and eventual adoption of non‐Cartesian techniques by scanner manufacturers. Differences between the k ‐space trajectory desired and the trajectory actually acquired lead to misregistration and reduction in image quality. While early calibration methods required considerable scan time, more recent methods can work more quickly by making certain approximations. We examine a rapid gradient calibration procedure applied to multiecho three‐dimensional projection reconstruction (3DPR) acquisitions in which the calibration runs as part of every scan. After measuring the trajectories traversed for excitations on each of the orthogonal gradient axes, trajectories for the oblique projections actually acquired during the scan are synthesized as linear combinations of these measurements. The ability to do rapid calibration depends on the assumption that gradient errors are linear and time‐invariant (LTI). This work examines the validity of these assumptions and shows that the assumption of linearity is reasonable, but that gradient errors can vary over short time periods (due to changes in gradient coil temperature) and thus it is important to use calibration data matched to the scan data. Magn Reson Med, 2009. © 2009 Wiley‐Liss, Inc.
Non‐Cartesian and rapid imaging sequences are more sensitive to scanner imperfections such as gradient delays and eddy currents. These imperfections vary between scanners and over time and can be a significant impediment to successful implementation and eventual adoption of non‐Cartesian techniques by scanner manufacturers. Differences between the k‐space trajectory desired and the trajectory actually acquired lead to misregistration and reduction in image quality. While early calibration methods required considerable scan time, more recent methods can work more quickly by making certain approximations. We examine a rapid gradient calibration procedure applied to multiecho three‐dimensional projection reconstruction (3DPR) acquisitions in which the calibration runs as part of every scan. After measuring the trajectories traversed for excitations on each of the orthogonal gradient axes, trajectories for the oblique projections actually acquired during the scan are synthesized as linear combinations of these measurements. The ability to do rapid calibration depends on the assumption that gradient errors are linear and time‐invariant (LTI). This work examines the validity of these assumptions and shows that the assumption of linearity is reasonable, but that gradient errors can vary over short time periods (due to changes in gradient coil temperature) and thus it is important to use calibration data matched to the scan data. Magn Reson Med, 2009. © 2009 Wiley‐Liss, Inc.
Non-Cartesian and rapid imaging sequences are more sensitive to scanner imperfections such as gradient delays and eddy currents. These imperfections vary between scanners and over time and can be a significant impediment towards successful implementation and eventual adoption of non-Cartesian techniques by scanner manufacturers. Differences between the k-space trajectory desired and the trajectory actually acquired lead to misregistration and reduction in image quality. While early calibration methods required considerable scan time, more recent methods can work more quickly by making certain approximations. We examine a rapid gradient calibration procedure applied to multi-echo 3DPR acquisitions where the calibration runs as part of every scan. After measuring the trajectories traversed for excitations on each of the orthogonal gradient axes, trajectories for the oblique projections actually acquired during the scan are synthesized as linear combinations of these measurements. The ability to do rapid calibration depends on the assumption that gradient errors are linear and time-invariant. This work examines the validity of these assumptions and shows that the assumption of linearity is reasonable, but that gradient errors can vary over short time periods (due to changes in gradient coil temperature) and thus it is important to use calibration data matched to the scan data.
Non-Cartesian and rapid imaging sequences are more sensitive to scanner imperfections such as gradient delays and eddy currents. These imperfections vary between scanners and over time and can be a significant impediment to successful implementation and eventual adoption of non-Cartesian techniques by scanner manufacturers. Differences between the k-space trajectory desired and the trajectory actually acquired lead to misregistration and reduction in image quality. While early calibration methods required considerable scan time, more recent methods can work more quickly by making certain approximations. We examine a rapid gradient calibration procedure applied to multiecho three-dimensional projection reconstruction (3DPR) acquisitions in which the calibration runs as part of every scan. After measuring the trajectories traversed for excitations on each of the orthogonal gradient axes, trajectories for the oblique projections actually acquired during the scan are synthesized as linear combinations of these measurements. The ability to do rapid calibration depends on the assumption that gradient errors are linear and time-invariant (LTI). This work examines the validity of these assumptions and shows that the assumption of linearity is reasonable, but that gradient errors can vary over short time periods (due to changes in gradient coil temperature) and thus it is important to use calibration data matched to the scan data.Non-Cartesian and rapid imaging sequences are more sensitive to scanner imperfections such as gradient delays and eddy currents. These imperfections vary between scanners and over time and can be a significant impediment to successful implementation and eventual adoption of non-Cartesian techniques by scanner manufacturers. Differences between the k-space trajectory desired and the trajectory actually acquired lead to misregistration and reduction in image quality. While early calibration methods required considerable scan time, more recent methods can work more quickly by making certain approximations. We examine a rapid gradient calibration procedure applied to multiecho three-dimensional projection reconstruction (3DPR) acquisitions in which the calibration runs as part of every scan. After measuring the trajectories traversed for excitations on each of the orthogonal gradient axes, trajectories for the oblique projections actually acquired during the scan are synthesized as linear combinations of these measurements. The ability to do rapid calibration depends on the assumption that gradient errors are linear and time-invariant (LTI). This work examines the validity of these assumptions and shows that the assumption of linearity is reasonable, but that gradient errors can vary over short time periods (due to changes in gradient coil temperature) and thus it is important to use calibration data matched to the scan data.
Non-Cartesian and rapid imaging sequences are more sensitive to scanner imperfections such as gradient delays and eddy currents. These imperfections vary between scanners and over time and can be a significant impediment to successful implementation and eventual adoption of non-Cartesian techniques by scanner manufacturers. Differences between the k-space trajectory desired and the trajectory actually acquired lead to misregistration and reduction in image quality. While early calibration methods required considerable scan time, more recent methods can work more quickly by making certain approximations. We examine a rapid gradient calibration procedure applied to multiecho three-dimensional projection reconstruction (3DPR) acquisitions in which the calibration runs as part of every scan. After measuring the trajectories traversed for excitations on each of the orthogonal gradient axes, trajectories for the oblique projections actually acquired during the scan are synthesized as linear combinations of these measurements. The ability to do rapid calibration depends on the assumption that gradient errors are linear and time-invariant (LTI). This work examines the validity of these assumptions and shows that the assumption of linearity is reasonable, but that gradient errors can vary over short time periods (due to changes in gradient coil temperature) and thus it is important to use calibration data matched to the scan data.
Author Brodsky, Ethan K.
Samsonov, Alexey A.
Block, Walter F.
AuthorAffiliation 3 Department of Biomedical Engineering, University of Wisconsin – Madison, Madison, Wisconsin
1 Department of Radiology, University of Wisconsin – Madison, Madison, Wisconsin
2 Departments of Medical Physics, University of Wisconsin – Madison, Madison, Wisconsin
AuthorAffiliation_xml – name: 2 Departments of Medical Physics, University of Wisconsin – Madison, Madison, Wisconsin
– name: 1 Department of Radiology, University of Wisconsin – Madison, Madison, Wisconsin
– name: 3 Department of Biomedical Engineering, University of Wisconsin – Madison, Madison, Wisconsin
Author_xml – sequence: 1
  givenname: Ethan K.
  surname: Brodsky
  fullname: Brodsky, Ethan K.
  email: brodskye@cae.wisc.edu
  organization: Department of Radiology, University of Wisconsin-Madison, Madison, Wisconsin, USA
– sequence: 2
  givenname: Alexey A.
  surname: Samsonov
  fullname: Samsonov, Alexey A.
  organization: Department of Radiology, University of Wisconsin-Madison, Madison, Wisconsin, USA
– sequence: 3
  givenname: Walter F.
  surname: Block
  fullname: Block, Walter F.
  organization: Department of Radiology, University of Wisconsin-Madison, Madison, Wisconsin, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/19877274$$D View this record in MEDLINE/PubMed
BookMark eNqNkl1PFDEUhhuDkQW98A-YuVMuBvoxM229wOBGkGRZE4N42ZztdJfqTAdPuwj-ersu4Ff8uGlP0-d9z9v0bJGNMARHyGNGdxmlfK_HfpfzXN4jI1ZzXvJaVxtkRGVFS8F0tUm2YvxAKdVaVg_IJtNKSi6rEbkanwOCTQ79Fx8WBYS2sAOis2l1XCC03oVUOMQBY-FDkXuXFjC56CEUvodFBp8XB-h-ozsfHGCRfO9KHy4BsyIVzyanxzsvHpL7c-iie3Szb5N3h69Ox6_LyZuj4_HBpLS14rSspRZOADgGzZwBs2ym2lxa1VoQSs45pW3TzMQMdJOXSrc1bWpppdWztqJim-yvfS-Ws961NsdD6MwF5uR4bQbw5ueb4M_NYrg0XNVSKJENnt4Y4PBp6WIyvY_WdR0ENyyjUUoxqgT9H1JQVlNd_5OUQmgqOGsy-eTH-He5b38wAztrwOIQI7r5d4Sa1XSYPB3m23Rkdu8X1voEyQ-rl_vub4rPvnPXf7Y2J29PbhXlWuFjcld3CsCPppFC1ub99MiI6qw6fDmdmjPxFQ9Y3Ec
CitedBy_id crossref_primary_10_1016_j_mri_2016_04_017
crossref_primary_10_3389_fphy_2023_1124980
crossref_primary_10_1002_mrm_30149
crossref_primary_10_1002_mp_15226
crossref_primary_10_1002_nbm_4695
crossref_primary_10_1038_s41598_020_70698_4
crossref_primary_10_1002_mrm_26481
crossref_primary_10_1002_mrm_70044
crossref_primary_10_1016_j_compbiomed_2022_106117
crossref_primary_10_1002_mrm_24348
crossref_primary_10_1002_mrm_70047
crossref_primary_10_1007_s10334_019_00770_2
crossref_primary_10_1002_acm2_70247
crossref_primary_10_1002_mrm_22564
crossref_primary_10_1002_mrm_23217
crossref_primary_10_1002_jmri_27196
crossref_primary_10_1016_j_mri_2018_04_020
crossref_primary_10_4028_www_scientific_net_AMR_718_720_641
crossref_primary_10_1016_j_jmr_2021_106945
crossref_primary_10_1007_s10278_024_01171_1
crossref_primary_10_1016_j_jmr_2020_106720
crossref_primary_10_1002_mrm_28013
crossref_primary_10_1109_TBME_2019_2895091
crossref_primary_10_1002_mp_14842
crossref_primary_10_1002_mrm_30615
crossref_primary_10_1148_radiol_14131273
crossref_primary_10_1186_s12968_017_0351_9
crossref_primary_10_1002_mrm_26315
crossref_primary_10_1002_mrm_27449
crossref_primary_10_1007_s10334_024_01187_2
crossref_primary_10_1186_1532_429X_13_18
crossref_primary_10_1002_mrm_25265
crossref_primary_10_1002_mrm_24730
crossref_primary_10_1002_mrm_26797
crossref_primary_10_1186_s12968_014_0097_6
crossref_primary_10_1118_1_4738965
crossref_primary_10_1002_mrm_25507
crossref_primary_10_1118_1_4936098
crossref_primary_10_3390_ma7010001
crossref_primary_10_1016_j_mri_2021_04_013
crossref_primary_10_1109_TMI_2020_2978405
crossref_primary_10_1137_16M1059205
crossref_primary_10_1186_1532_429X_14_72
crossref_primary_10_1016_j_mri_2020_06_016
crossref_primary_10_1016_j_jmr_2025_107951
crossref_primary_10_1088_1361_6560_abc04f
crossref_primary_10_1002_mrm_22741
crossref_primary_10_1002_mrm_28566
crossref_primary_10_1002_cmr_a_20194
crossref_primary_10_1002_mrm_26863
crossref_primary_10_1007_s11307_019_01345_2
crossref_primary_10_1109_TMI_2014_2326864
crossref_primary_10_1118_1_4921418
crossref_primary_10_1007_s10334_023_01138_3
crossref_primary_10_1016_j_mri_2016_10_012
crossref_primary_10_1109_TMI_2012_2226050
crossref_primary_10_1002_mrm_28272
crossref_primary_10_1002_mrm_27383
crossref_primary_10_1002_mrm_25841
crossref_primary_10_1088_1361_6560_acc003
crossref_primary_10_1016_j_mri_2025_110367
crossref_primary_10_1002_mrm_26531
crossref_primary_10_1002_mrm_26499
crossref_primary_10_1016_j_mri_2015_01_005
crossref_primary_10_1002_jmri_27122
crossref_primary_10_1002_mrm_25648
Cites_doi 10.1002/mrm.1910390507
10.1016/0022-2364(90)90133-T
10.1002/(SICI)1522-2594(199901)41:1<87::AID-MRM13>3.0.CO;2-X
10.1002/mrm.21092
10.1006/jmre.1998.1396
10.1118/1.596012
10.1016/S0730-725X(97)00014-3
10.1002/mrm.10501
10.1088/0022-3735/20/4/014
10.1002/mrm.1910380318
10.1002/mrm.10212
10.1002/mrm.1910320308
10.1016/0022-2364(90)90365-G
10.1002/mrm.20389
10.1002/mrm.1910340323
ContentType Journal Article
Copyright Copyright © 2009 Wiley‐Liss, Inc.
(c) 2009 Wiley-Liss, Inc.
Copyright_xml – notice: Copyright © 2009 Wiley‐Liss, Inc.
– notice: (c) 2009 Wiley-Liss, Inc.
DBID BSCLL
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7QO
8FD
FR3
P64
5PM
DOI 10.1002/mrm.22100
DatabaseName Istex
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
Biotechnology Research Abstracts
Technology Research Database
Engineering Research Database
Biotechnology and BioEngineering Abstracts
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
Engineering Research Database
Biotechnology Research Abstracts
Technology Research Database
Biotechnology and BioEngineering Abstracts
DatabaseTitleList Engineering Research Database
CrossRef


MEDLINE - Academic
Engineering Research Database
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Physics
EISSN 1522-2594
EndPage 1476
ExternalDocumentID PMC2857383
19877274
10_1002_mrm_22100
MRM22100
ark_67375_WNG_34V4FBNN_V
Genre article
Research Support, Non-U.S. Gov't
Evaluation Study
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: National Institutes of Health/National Institute of Neurological Disorders and Stroke (NIH/NINDS)
  funderid: R01NS065034
– fundername: GE Healthcare
– fundername: National Cancer Institute (NCI)
  funderid: 1R01CA116380
– fundername: NIAMS NIH HHS
  grantid: U01 AR059514
– fundername: NINDS NIH HHS
  grantid: R01 NS065034
– fundername: NINDS NIH HHS
  grantid: R01NS065034
– fundername: NCI NIH HHS
  grantid: R01 CA116380
– fundername: NCI NIH HHS
  grantid: 1R01CA116380
GroupedDBID ---
-DZ
.3N
.55
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
31~
33P
3O-
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
53G
5GY
5RE
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A01
A03
AAESR
AAEVG
AAHQN
AAIPD
AAMMB
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDPE
ABEML
ABIJN
ABJNI
ABLJU
ABPVW
ABQWH
ABXGK
ACAHQ
ACBWZ
ACCZN
ACFBH
ACGFO
ACGFS
ACGOF
ACIWK
ACMXC
ACPOU
ACPRK
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADBTR
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEFGJ
AEGXH
AEIGN
AEIMD
AENEX
AEUYR
AEYWJ
AFBPY
AFFNX
AFFPM
AFGKR
AFRAH
AFWVQ
AFZJQ
AGHNM
AGQPQ
AGXDD
AGYGG
AHBTC
AHMBA
AIACR
AIAGR
AIDQK
AIDYY
AIQQE
AITYG
AIURR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMXJE
BROTX
BRXPI
BSCLL
BY8
C45
CS3
D-6
D-7
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRMAN
DRSTM
DU5
EBD
EBS
EJD
EMOBN
F00
F01
F04
FEDTE
FUBAC
G-S
G.N
GNP
GODZA
H.X
HBH
HDBZQ
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
I-F
IX1
J0M
JPC
KBYEO
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M65
MEWTI
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
OVD
P2P
P2W
P2X
P2Z
P4B
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RIWAO
RJQFR
ROL
RX1
RYL
SAMSI
SUPJJ
SV3
TEORI
TUS
TWZ
UB1
V2E
V8K
W8V
W99
WBKPD
WHWMO
WIB
WIH
WIJ
WIK
WIN
WJL
WOHZO
WQJ
WVDHM
WXI
WXSBR
X7M
XG1
XPP
XV2
ZGI
ZXP
ZZTAW
~IA
~WT
24P
AAHHS
ACCFJ
AEEZP
AEQDE
AEUQT
AFPWT
AIWBW
AJBDE
RGB
RWI
WRC
WUP
AAYXX
CITATION
O8X
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7QO
8FD
FR3
P64
5PM
ID FETCH-LOGICAL-c5820-5793e3aae1a6f1a1c1b8da6fc8dca387f200d66b3ba963ba49d50657c7c9bd403
IEDL.DBID WIN
ISICitedReferencesCount 69
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000272067600014&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0740-3194
1522-2594
IngestDate Tue Sep 30 16:56:46 EDT 2025
Tue Oct 07 09:47:19 EDT 2025
Tue Oct 07 09:35:55 EDT 2025
Sun Nov 09 10:23:52 EST 2025
Mon Jul 21 05:59:12 EDT 2025
Sat Nov 29 02:37:21 EST 2025
Tue Nov 18 21:28:03 EST 2025
Wed Jan 22 16:32:31 EST 2025
Sun Sep 21 06:14:26 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
License (c) 2009 Wiley-Liss, Inc.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5820-5793e3aae1a6f1a1c1b8da6fc8dca387f200d66b3ba963ba49d50657c7c9bd403
Notes ArticleID:MRM22100
GE Healthcare
ark:/67375/WNG-34V4FBNN-V
National Institutes of Health/National Institute of Neurological Disorders and Stroke (NIH/NINDS) - No. R01NS065034
istex:6C1FD366949E579C178B8B6B3CD322BEFB16728C
National Cancer Institute (NCI) - No. 1R01CA116380
ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Undefined-1
ObjectType-Feature-3
content type line 23
ObjectType-Feature-1
OpenAccessLink http://doi.org/10.1002/mrm.22100
PMID 19877274
PQID 733903216
PQPubID 23462
PageCount 11
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_2857383
proquest_miscellaneous_888108303
proquest_miscellaneous_883015095
proquest_miscellaneous_733903216
pubmed_primary_19877274
crossref_primary_10_1002_mrm_22100
crossref_citationtrail_10_1002_mrm_22100
wiley_primary_10_1002_mrm_22100_MRM22100
istex_primary_ark_67375_WNG_34V4FBNN_V
PublicationCentury 2000
PublicationDate December 2009
PublicationDateYYYYMMDD 2009-12-01
PublicationDate_xml – month: 12
  year: 2009
  text: December 2009
PublicationDecade 2000
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
– name: United States
PublicationTitle Magnetic resonance in medicine
PublicationTitleAlternate Magn. Reson. Med
PublicationYear 2009
Publisher Wiley Subscription Services, Inc., A Wiley Company
Publisher_xml – name: Wiley Subscription Services, Inc., A Wiley Company
References Mason GF, Harshbarger T, Hetherington HP, Zhang Y, Pohost GM, Twieg DB. A Method to measure arbitrary k-space trajectories for rapid MR imaging. Magn Reson Med 1997; 38: 492-496.
Barger A, Block WF, Grist TM, Mistretta C. Isotropic resolution and broad coverage in contrast-enhanced MR angiography using undersampled 3D projection trajectories. Magn Reson Med 2002; 48: 297-305.
Takahashi A, Peters T. Compensation of multi-dimensional selective excitation pulses using measured k-space trajectories. Magn Reson Med 1995; 34: 446-456.
Duyn JH, Yang Y, Frank JA, van der Veen JW. Simple correction method for k-space trajectory deviations in MRI. J Magn Reson 1998; 132: 150-153.
Jehenson P, Westphal M, Schuff N. Analytical method for the compensation of eddy-current effects induced by pulsed magnetic field gradients in NMR systems. J Magn Reson 1990; 90: 264-278.
Onodera T, Matsui S, Sekihara K, Kohno H. A method of measuring field-gradient modulation shapes. Applications to high-speed NMR spectroscopic imaging. J Phys [E] 1987; 20: 416-419.
van Vaals JJ, Bergman AH. Optimization of eddy-current compensation. J Magn Reson 1990; 90: 52-70.
Peters DC, Derbyshire JA, McVeigh ER. Centering the projection reconstruction trajectory: reducing gradient delay errors. Magn Reson Med 2003; 50: 1-6.
Reeder SB, Atalar E, Faranesh AZ, McVeigh ER. Referenceless interleaved echo-planar imaging. Magn Reson Med 1999; 41: 87-94.
Lu A, Brodsky EK, Grist TM, Block WF. Rapid fat-suppressed isotropic steady-state free precession imaging using true 3D multiple-half-echo projection reconstruction. Magn Reson Med 2005; 53: 692-699.
Bernstein MA, Grgic M, Brosnan TJ, Pelc NJ. Reconstruction of phase contrast, phased-array multicoil data. Magn Reson Med 1994; 32: 330-334.
Jung Y, Jashnani Y, Kijowski R, Block WF. Consistent non-Cartesian off-axis MRI quality: calibrating and removing multiple sources of demodulation phase errors. Magn Reson Med 2007; 57: 206-212.
Jensen DJ, Brey WW, Delayre JL, Nayarana PA. Reduction of pulsed gradient settling time in the superconducting magnet of a magnetic resonance instrument. Med Phys 1987; 14: 859-862.
Noll DC, Peltier SJ, Boada FE. Simultaneous multislice acquisition using rosette trajectories (SMART): a new imaging method for functional MRI. Magn Reson Med 1998; 39: 709-716.
Papadakis NG, Wilkinson AA, Carpenter TA, Hall LD. A general method for measurement of the time integral of variant magnetic field gradients: application to 2D spiral imaging. Magn Reson Imag 1997; 15: 567-578.
1987; 14
2002; 48
1998; 39
1987; 20
2000
1997; 15
1995; 34
2008
2005; 53
1997; 38
2006
1999; 41
2003
2002
2003; 50
1998; 132
1990; 90
2007; 57
1994; 32
e_1_2_7_5_2
e_1_2_7_4_2
e_1_2_7_3_2
e_1_2_7_2_2
e_1_2_7_9_2
e_1_2_7_8_2
e_1_2_7_7_2
e_1_2_7_6_2
e_1_2_7_19_2
e_1_2_7_18_2
e_1_2_7_17_2
e_1_2_7_16_2
e_1_2_7_15_2
e_1_2_7_14_2
e_1_2_7_13_2
e_1_2_7_12_2
e_1_2_7_11_2
e_1_2_7_10_2
e_1_2_7_21_2
e_1_2_7_20_2
References_xml – reference: Jehenson P, Westphal M, Schuff N. Analytical method for the compensation of eddy-current effects induced by pulsed magnetic field gradients in NMR systems. J Magn Reson 1990; 90: 264-278.
– reference: Noll DC, Peltier SJ, Boada FE. Simultaneous multislice acquisition using rosette trajectories (SMART): a new imaging method for functional MRI. Magn Reson Med 1998; 39: 709-716.
– reference: Jensen DJ, Brey WW, Delayre JL, Nayarana PA. Reduction of pulsed gradient settling time in the superconducting magnet of a magnetic resonance instrument. Med Phys 1987; 14: 859-862.
– reference: Lu A, Brodsky EK, Grist TM, Block WF. Rapid fat-suppressed isotropic steady-state free precession imaging using true 3D multiple-half-echo projection reconstruction. Magn Reson Med 2005; 53: 692-699.
– reference: Reeder SB, Atalar E, Faranesh AZ, McVeigh ER. Referenceless interleaved echo-planar imaging. Magn Reson Med 1999; 41: 87-94.
– reference: Bernstein MA, Grgic M, Brosnan TJ, Pelc NJ. Reconstruction of phase contrast, phased-array multicoil data. Magn Reson Med 1994; 32: 330-334.
– reference: Duyn JH, Yang Y, Frank JA, van der Veen JW. Simple correction method for k-space trajectory deviations in MRI. J Magn Reson 1998; 132: 150-153.
– reference: Onodera T, Matsui S, Sekihara K, Kohno H. A method of measuring field-gradient modulation shapes. Applications to high-speed NMR spectroscopic imaging. J Phys [E] 1987; 20: 416-419.
– reference: Mason GF, Harshbarger T, Hetherington HP, Zhang Y, Pohost GM, Twieg DB. A Method to measure arbitrary k-space trajectories for rapid MR imaging. Magn Reson Med 1997; 38: 492-496.
– reference: Jung Y, Jashnani Y, Kijowski R, Block WF. Consistent non-Cartesian off-axis MRI quality: calibrating and removing multiple sources of demodulation phase errors. Magn Reson Med 2007; 57: 206-212.
– reference: Papadakis NG, Wilkinson AA, Carpenter TA, Hall LD. A general method for measurement of the time integral of variant magnetic field gradients: application to 2D spiral imaging. Magn Reson Imag 1997; 15: 567-578.
– reference: Peters DC, Derbyshire JA, McVeigh ER. Centering the projection reconstruction trajectory: reducing gradient delay errors. Magn Reson Med 2003; 50: 1-6.
– reference: van Vaals JJ, Bergman AH. Optimization of eddy-current compensation. J Magn Reson 1990; 90: 52-70.
– reference: Takahashi A, Peters T. Compensation of multi-dimensional selective excitation pulses using measured k-space trajectories. Magn Reson Med 1995; 34: 446-456.
– reference: Barger A, Block WF, Grist TM, Mistretta C. Isotropic resolution and broad coverage in contrast-enhanced MR angiography using undersampled 3D projection trajectories. Magn Reson Med 2002; 48: 297-305.
– volume: 15
  start-page: 567
  year: 1997
  end-page: 578
  article-title: A general method for measurement of the time integral of variant magnetic field gradients: application to 2D spiral imaging
  publication-title: Magn Reson Imag
– volume: 34
  start-page: 446
  year: 1995
  end-page: 456
  article-title: Compensation of multi‐dimensional selective excitation pulses using measured ‐space trajectories
  publication-title: Magn Reson Med
– volume: 20
  start-page: 416
  year: 1987
  end-page: 419
  article-title: A method of measuring field‐gradient modulation shapes. Applications to high‐speed NMR spectroscopic imaging
  publication-title: J Phys [E]
– start-page: 105
  year: 2008
– volume: 41
  start-page: 87
  year: 1999
  end-page: 94
  article-title: Referenceless interleaved echo‐planar imaging
  publication-title: Magn Reson Med
– volume: 32
  start-page: 330
  year: 1994
  end-page: 334
  article-title: Reconstruction of phase contrast, phased‐array multicoil data
  publication-title: Magn Reson Med
– volume: 48
  start-page: 297
  year: 2002
  end-page: 305
  article-title: Isotropic resolution and broad coverage in contrast‐enhanced MR angiography using undersampled 3D projection trajectories
  publication-title: Magn Reson Med
– year: 2002
– volume: 50
  start-page: 1
  year: 2003
  end-page: 6
  article-title: Centering the projection reconstruction trajectory: reducing gradient delay errors
  publication-title: Magn Reson Med
– volume: 38
  start-page: 492
  year: 1997
  end-page: 496
  article-title: A Method to measure arbitrary ‐space trajectories for rapid MR imaging
  publication-title: Magn Reson Med
– volume: 132
  start-page: 150
  year: 1998
  end-page: 153
  article-title: Simple correction method for ‐space trajectory deviations in MRI
  publication-title: J Magn Reson
– year: 2006
– year: 2003
– volume: 14
  start-page: 859
  year: 1987
  end-page: 862
  article-title: Reduction of pulsed gradient settling time in the superconducting magnet of a magnetic resonance instrument
  publication-title: Med Phys
– start-page: 186
  year: 2000
– volume: 53
  start-page: 692
  year: 2005
  end-page: 699
  article-title: Rapid fat‐suppressed isotropic steady‐state free precession imaging using true 3D multiple‐half‐echo projection reconstruction
  publication-title: Magn Reson Med
– volume: 90
  start-page: 264
  year: 1990
  end-page: 278
  article-title: Analytical method for the compensation of eddy‐current effects induced by pulsed magnetic field gradients in NMR systems
  publication-title: J Magn Reson
– volume: 57
  start-page: 206
  year: 2007
  end-page: 212
  article-title: Consistent non‐Cartesian off‐axis MRI quality: calibrating and removing multiple sources of demodulation phase errors
  publication-title: Magn Reson Med
– volume: 39
  start-page: 709
  year: 1998
  end-page: 716
  article-title: Simultaneous multislice acquisition using rosette trajectories (SMART): a new imaging method for functional MRI
  publication-title: Magn Reson Med
– volume: 90
  start-page: 52
  year: 1990
  end-page: 70
  article-title: Optimization of eddy‐current compensation
  publication-title: J Magn Reson
– ident: e_1_2_7_16_2
  doi: 10.1002/mrm.1910390507
– ident: e_1_2_7_2_2
– ident: e_1_2_7_12_2
  doi: 10.1016/0022-2364(90)90133-T
– ident: e_1_2_7_10_2
– ident: e_1_2_7_4_2
  doi: 10.1002/(SICI)1522-2594(199901)41:1<87::AID-MRM13>3.0.CO;2-X
– ident: e_1_2_7_18_2
  doi: 10.1002/mrm.21092
– ident: e_1_2_7_9_2
  doi: 10.1006/jmre.1998.1396
– ident: e_1_2_7_21_2
– ident: e_1_2_7_11_2
  doi: 10.1118/1.596012
– ident: e_1_2_7_6_2
  doi: 10.1016/S0730-725X(97)00014-3
– ident: e_1_2_7_14_2
– ident: e_1_2_7_3_2
  doi: 10.1002/mrm.10501
– ident: e_1_2_7_5_2
  doi: 10.1088/0022-3735/20/4/014
– ident: e_1_2_7_8_2
  doi: 10.1002/mrm.1910380318
– ident: e_1_2_7_15_2
  doi: 10.1002/mrm.10212
– ident: e_1_2_7_19_2
  doi: 10.1002/mrm.1910320308
– ident: e_1_2_7_13_2
  doi: 10.1016/0022-2364(90)90365-G
– ident: e_1_2_7_17_2
  doi: 10.1002/mrm.20389
– ident: e_1_2_7_20_2
– ident: e_1_2_7_7_2
  doi: 10.1002/mrm.1910340323
SSID ssj0009974
Score 2.2562861
Snippet Non‐Cartesian and rapid imaging sequences are more sensitive to scanner imperfections such as gradient delays and eddy currents. These imperfections vary...
Non-Cartesian and rapid imaging sequences are more sensitive to scanner imperfections such as gradient delays and eddy currents. These imperfections vary...
SourceID pubmedcentral
proquest
pubmed
crossref
wiley
istex
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1466
SubjectTerms Algorithms
Computer Simulation
Eddy current
gradient calibration
gradient error
Image Enhancement - methods
Image Interpretation, Computer-Assisted - methods
Imaging, Three-Dimensional - methods
k-space trajectory
k-space trajectory deviation
Magnetic Resonance Imaging - methods
Models, Biological
Models, Statistical
non-cartesian imaging
Pattern Recognition, Automated - methods
Reproducibility of Results
Sensitivity and Specificity
Time Factors
Title Characterizing and correcting gradient errors in non-cartesian imaging: Are gradient errors linear time-invariant (LTI)?
URI https://api.istex.fr/ark:/67375/WNG-34V4FBNN-V/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmrm.22100
https://www.ncbi.nlm.nih.gov/pubmed/19877274
https://www.proquest.com/docview/733903216
https://www.proquest.com/docview/883015095
https://www.proquest.com/docview/888108303
https://pubmed.ncbi.nlm.nih.gov/PMC2857383
Volume 62
WOSCitedRecordID wos000272067600014&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library - Journals
  customDbUrl:
  eissn: 1522-2594
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009974
  issn: 0740-3194
  databaseCode: DRFUL
  dateStart: 19990101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
– providerCode: PRVWIB
  databaseName: Wiley Online Library Free Content
  customDbUrl:
  eissn: 1522-2594
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009974
  issn: 0740-3194
  databaseCode: WIN
  dateStart: 19990101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB6VFhAXHuW1PFYWQmg5pI1jJ7bhgKCwUKkboaqPvUWO48IKNouy2wohDvwEfiO_hLGTzbJqi5C4Rck4ccYz4xl7_A3AYx1qmtgYrZ9OWMCZ1YFSOQsiyoyiUhaJCX2xCZGmcjhU71fg-fwsTI0P0S64Oc3w9topuM6nmwvQ0HE13ogwYHHxOuVeKQ-30wXgrqoRmAV3dkbxOapQGG22LZfmojXH1q9nOZqn8yX_9GP9RNS_9l-_cB2uNv4neVkLzA1YseU6XB40O-zrcMmnhJrpTfi-1WI5f8P5jeiyIMbV8jAuU5p8qHyy2IzYqppUUzIqSTkpf_34aVyWqDuaSUZjXwLpGX7NnqJ3vdcVcbXtsdGoPMGgHUeZ9Hb2tp--uAX7_Td7W--CplZDYGJ0IoIY9dwyrS3VyRHV1NBcFnhpZGE0k-IItbFIkpzlGlU-11wVMXo_wgij8oKH7DasYi_tXSAGbR7ek4YbgcGq0twKIWOVi6QIdag60JuPWmYaIHNXT-NzVkMwRxnyNfN87cCjlvRLjd5xFtETP_Qtha4-uXQ3EWeH6duM8QPef5Wm2UEHyFw2MlRCt7OiSzs5nmaCMRWyiCbnk0jJ3OKSiv9GIil6xCHrwJ1a4BadVhLDIME7IJZEsSVwKOHLT8rRR48WHslYMInv7HlRPJ8P2WB34C_u_TvpfbgSNQU1QvoAVmfVsX0IF83JbDStunBBDGUX1l7v9vd3ul4_fwML_T7y
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwELemlq8XPsZX-bQQQuUhLI6d2EZICAZlE22Epm7szXIcDyJoitJuQogH_gT-Rv4Szk6aUm1DSLxFyTlxznfnO_v8O4Qe6lCTxMZg_XRCA0atDqTMaBARaiQRIk9M6ItN8DQV-_vy3Rp6tjgLU-NDtAtuTjO8vXYK7hakN5aooZNq8iSCiAUC9i4DMYo7qPtqZ7A7XILuyhqFmTNnayRbIAuF0UbbeGU-6jrWfj3J2TyeM_mnL-sno8Gl__uNy-hi44TiF7XUXEFrtlxH50bNNvs6OuvzQs3sKvq-2QI6f4NJDusyx8YV9DAuXRp_qHzG2BzbqppWM1yUuJyWv378NC5V1J3PxMXE10F6Cl-zx-hd93WFXYF7aFSURxC5w1Dj_nC8_fj5NbQ7eD3e3Aqagg2BicGTCGJQdku1tkQnB0QTQzKRw6URudFU8ANQyTxJMppp0PtMM5nH4AJxw43MchbS66gDvbQ3ETZg-OCeMMxwiFilZpZzEcuMJ3moQ9lD_cWwKdOgmbuiGp9VjcMcKeCr8nztoQct6ZcawuMkokd-7FsKXX1yOW88Vu_TN4qyPTZ4maZqr4fwQjgUaKLbXtGlnR7OFKdUhjQiyekkQlC3wiTjv5EIAm5xSHvoRi1xy05LAbEQZz3EV2SxJXBQ4atPyuKjhwyPRMypgHf2vSyezgc12hn5i1v_Tnofnd8aj4ZquJ2-vY0uRE2FjZDcQZ15dWjvojPmaF7MqnuNgv4GRwBBtg
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELaqLlRceJRXeFoIoeUQmsRObCMkBC2Bit2oqtrSm-U4Xohgs1V2WyHEgZ_Ab-SXMHayWVZtERK3KBknznhmPGOPv0HosQpUmJgYrJ9KiE-JUb4QOfGjkGgRcl4kOnDFJliW8cNDsbOCXszPwjT4EN2Cm9UMZ6-tgpujYrSxQA0d1-NnEUQsELD3aCwSUMve1m66P1iA7ooGhZlRa2sEnSMLBdFG13hpPupZ1n49y9k8nTP5py_rJqP0yv_9xlV0uXVC8atGaq6hFVOto7Vhu82-ji66vFA9vY6-b3aAzt9gksOqKrC2BT20TZfGH2uXMTbDpq4n9RSXFa4m1a8fP7VNFbXnM3E5dnWQnsPXzCl6231VY1vgHhqV1QlE7jDUuD_Y23768gbaT9_sbb7z24INvo7Bk_BjUHZDlDKhSkahCnWY8wIuNS-0IpyNQCWLJMlJrkDvc0VFEYMLxDTTIi9oQG6iVeiluY2wBsMH97immkHEKhQ1jPFY5CwpAhUID_XnwyZ1i2Zui2p8kQ0OcySBr9Lx1UOPOtKjBsLjLKInbuw7ClV_tjlvLJYfsreS0AOavs4yeeAhPBcOCZpot1dUZSbHU8kIEQGJwuR8Es6JXWES8d9IeAhucUA8dKuRuEWnBYdYiFEPsSVZ7AgsVPjyk6r85CDDIx4zwuGdfSeL5_NBDneH7uLOv5M-RGs7W6kcbGfv76JLUVtgIwjvodVZfWzuowv6ZFZO6wetfv4GdOFBMQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Characterizing+and+Correcting+Gradient+Errors+in+Non-Cartesian+Imaging%3A+Are+Gradient+Errors+Linear-Time-Invariant%3F&rft.jtitle=Magnetic+resonance+in+medicine&rft.au=Brodsky%2C+Ethan+K.&rft.au=Samsonov%2C+Alexey+A.&rft.au=Block%2C+Walter+F.&rft.date=2009-12-01&rft.issn=0740-3194&rft.eissn=1522-2594&rft.volume=62&rft.issue=6&rft.spage=1466&rft.epage=1476&rft_id=info:doi/10.1002%2Fmrm.22100&rft_id=info%3Apmid%2F19877274&rft.externalDocID=PMC2857383
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0740-3194&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0740-3194&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0740-3194&client=summon