Damage Identification in Structural Health Monitoring: A Brief Review from its Implementation to the Use of Data-Driven Applications
The damage identification process provides relevant information about the current state of a structure under inspection, and it can be approached from two different points of view. The first approach uses data-driven algorithms, which are usually associated with the collection of data using sensors....
Uloženo v:
| Vydáno v: | Sensors (Basel, Switzerland) Ročník 20; číslo 3; s. 733 |
|---|---|
| Hlavní autoři: | , , , , |
| Médium: | Journal Article Publikace |
| Jazyk: | angličtina |
| Vydáno: |
Switzerland
MDPI AG
29.01.2020
Multidisciplinary Digital Publishing Institute (MDPI) MDPI |
| Témata: | |
| ISSN: | 1424-8220, 1424-8220 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | The damage identification process provides relevant information about the current state of a structure under inspection, and it can be approached from two different points of view. The first approach uses data-driven algorithms, which are usually associated with the collection of data using sensors. Data are subsequently processed and analyzed. The second approach uses models to analyze information about the structure. In the latter case, the overall performance of the approach is associated with the accuracy of the model and the information that is used to define it. Although both approaches are widely used, data-driven algorithms are preferred in most cases because they afford the ability to analyze data acquired from sensors and to provide a real-time solution for decision making; however, these approaches involve high-performance processors due to the high computational cost. As a contribution to the researchers working with data-driven algorithms and applications, this work presents a brief review of data-driven algorithms for damage identification in structural health-monitoring applications. This review covers damage detection, localization, classification, extension, and prognosis, as well as the development of smart structures. The literature is systematically reviewed according to the natural steps of a structural health-monitoring system. This review also includes information on the types of sensors used as well as on the development of data-driven algorithms for damage identification. |
|---|---|
| AbstractList | The damage identification process provides relevant information about the current state of a structure under inspection, and it can be approached from two different points of view. The first approach uses data-driven algorithms, which are usually associated with the collection of data using sensors. Data are subsequently processed and analyzed. The second approach uses models to analyze information about the structure. In the latter case, the overall performance of the approach is associated with the accuracy of the model and the information that is used to define it. Although both approaches are widely used, data-driven algorithms are preferred in most cases because they afford the ability to analyze data acquired from sensors and to provide a real-time solution for decision making; however, these approaches involve high-performance processors due to the high computational cost. As a contribution to the researchers working with data-driven algorithms and applications, this work presents a brief review of data-driven algorithms for damage identification in structural health-monitoring applications. This review covers damage detection, localization, classification, extension, and prognosis, as well as the development of smart structures. The literature is systematically reviewed according to the natural steps of a structural health-monitoring system. This review also includes information on the types of sensors used as well as on the development of data-driven algorithms for damage identification. The damage identification process provides relevant information about the current state of a structure under inspection, and it can be approached from two different points of view. The first approach uses data-driven algorithms, which are usually associated with the collection of data using sensors. Data are subsequently processed and analyzed. The second approach uses models to analyze information about the structure. In the latter case, the overall performance of the approach is associated with the accuracy of the model and the information that is used to define it. Although both approaches are widely used, data-driven algorithms are preferred in most cases because they afford the ability to analyze data acquired from sensors and to provide a real-time solution for decision making; however, these approaches involve high-performance processors due to the high computational cost. As a contribution to the researchers working with data-driven algorithms and applications, this work presents a brief review of data-driven algorithms for damage identification in structural health-monitoring applications. This review covers damage detection, localization, classification, extension, and prognosis, as well as the development of smart structures. The literature is systematically reviewed according to the natural steps of a structural health-monitoring system. This review also includes information on the types of sensors used as well as on the development of data-driven algorithms for damage identification. Peer Reviewed The damage identification process provides relevant information about the current state of a structure under inspection, and it can be approached from two different points of view. The first approach uses data-driven algorithms, which are usually associated with the collection of data using sensors. Data are subsequently processed and analyzed. The second approach uses models to analyze information about the structure. In the latter case, the overall performance of the approach is associated with the accuracy of the model and the information that is used to define it. Although both approaches are widely used, data-driven algorithms are preferred in most cases because they afford the ability to analyze data acquired from sensors and to provide a real-time solution for decision making; however, these approaches involve high-performance processors due to the high computational cost. As a contribution to the researchers working with data-driven algorithms and applications, this work presents a brief review of data-driven algorithms for damage identification in structural health-monitoring applications. This review covers damage detection, localization, classification, extension, and prognosis, as well as the development of smart structures. The literature is systematically reviewed according to the natural steps of a structural health-monitoring system. This review also includes information on the types of sensors used as well as on the development of data-driven algorithms for damage identification.The damage identification process provides relevant information about the current state of a structure under inspection, and it can be approached from two different points of view. The first approach uses data-driven algorithms, which are usually associated with the collection of data using sensors. Data are subsequently processed and analyzed. The second approach uses models to analyze information about the structure. In the latter case, the overall performance of the approach is associated with the accuracy of the model and the information that is used to define it. Although both approaches are widely used, data-driven algorithms are preferred in most cases because they afford the ability to analyze data acquired from sensors and to provide a real-time solution for decision making; however, these approaches involve high-performance processors due to the high computational cost. As a contribution to the researchers working with data-driven algorithms and applications, this work presents a brief review of data-driven algorithms for damage identification in structural health-monitoring applications. This review covers damage detection, localization, classification, extension, and prognosis, as well as the development of smart structures. The literature is systematically reviewed according to the natural steps of a structural health-monitoring system. This review also includes information on the types of sensors used as well as on the development of data-driven algorithms for damage identification. |
| Author | Tibaduiza Burgos, Diego A. Pozo, Francesc Gomez Vargas, Ricardo C. Pedraza, Cesar Agis, David |
| AuthorAffiliation | 3 Departamento de Ingeniería de Sistemas e Industrial, Universidad Nacional de Colombia, Cra 45 No. 26-85, Bogotá 111321, Colombia; capedrazab@unal.edu.co 4 Control, Modeling, Identification and Applications (CoDAlab), Departament de Matemàtiques, Escola d’Enginyeria de Barcelona Est (EEBE), Universitat Politècnica de Catalunya (UPC), Campus Diagonal-Besòs (CDB), Eduard Maristany, 16, 08019 Barcelona, Spain; david.agis@upc.edu (D.A.); francesc.pozo@upc.edu (F.P.) 1 Departamento de Ingeniería Eléctrica y Electrónica, Universidad Nacional de Colombia, Cra 45 No. 26-85, Bogotá 111321, Colombia; rcgomezv@unal.edu.co 2 Escuela de Tecnologías de la información y la comunicación, Politécnico Grancolombiano Institución Universitaria, Bogotá 111321, Colombia |
| AuthorAffiliation_xml | – name: 2 Escuela de Tecnologías de la información y la comunicación, Politécnico Grancolombiano Institución Universitaria, Bogotá 111321, Colombia – name: 4 Control, Modeling, Identification and Applications (CoDAlab), Departament de Matemàtiques, Escola d’Enginyeria de Barcelona Est (EEBE), Universitat Politècnica de Catalunya (UPC), Campus Diagonal-Besòs (CDB), Eduard Maristany, 16, 08019 Barcelona, Spain; david.agis@upc.edu (D.A.); francesc.pozo@upc.edu (F.P.) – name: 1 Departamento de Ingeniería Eléctrica y Electrónica, Universidad Nacional de Colombia, Cra 45 No. 26-85, Bogotá 111321, Colombia; rcgomezv@unal.edu.co – name: 3 Departamento de Ingeniería de Sistemas e Industrial, Universidad Nacional de Colombia, Cra 45 No. 26-85, Bogotá 111321, Colombia; capedrazab@unal.edu.co |
| Author_xml | – sequence: 1 givenname: Diego A. orcidid: 0000-0002-4498-596X surname: Tibaduiza Burgos fullname: Tibaduiza Burgos, Diego A. – sequence: 2 givenname: Ricardo C. orcidid: 0000-0003-2296-8648 surname: Gomez Vargas fullname: Gomez Vargas, Ricardo C. – sequence: 3 givenname: Cesar orcidid: 0000-0002-6687-1429 surname: Pedraza fullname: Pedraza, Cesar – sequence: 4 givenname: David orcidid: 0000-0002-7283-6902 surname: Agis fullname: Agis, David – sequence: 5 givenname: Francesc orcidid: 0000-0001-8958-6789 surname: Pozo fullname: Pozo, Francesc |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32013073$$D View this record in MEDLINE/PubMed |
| BookMark | eNplkstuEzEUhkeoiF5gwQsgS2xgEerLeC4skEIDNFIREtC15djHiaMZO9ieoO774DidNGrLwvLt_J_P-X1OiyPnHRTFa4I_MNbi80gxZrhm7FlxQkpaThpK8dGD9XFxGuMaY8oYa14Ux4xishOcFLcz2csloLkGl6yxSibrHbIO_UphUGkIskOXILu0Qt-9s8kH65Yf0RR9DhYM-glbC3-RCb5HNkU07zcd9Jk1cpJHaQXoOgLyBs1kkpNZsFtwaLrZdPvX4sviuZFdhFf7-ay4_vrl98Xl5OrHt_nF9GqieEPSZKG5KnVtpKkYk1RysqBtiamuqGFtXRm6aDRvGilNQ7MbtW6Y4WwBnJh8rNlZMR-52su12ATby3AjvLTi7sCHpZAhWdWB4HWrFC2ZoqBKDGXTalrhtqyNJqpidWZ9GlmbYdGDVrnkbNUj6OMbZ1di6beixqzhFGcAGQEqDkoEUBCyHXfCw2Y3KK6pYFVbEp417_aPBv9ngJhEb6OCrpMO_BAFZRy3hNRkl9_bJ6FrPwSX7RWUc8zaNluXo948rOKQ_n2D5IDzfZbBxxjACGXHv81F2U4QLHYtKA4tmBXvnyjuof_H_gN2QNqU |
| CitedBy_id | crossref_primary_10_1680_jmaen_2022_027 crossref_primary_10_3390_s21051558 crossref_primary_10_3390_s22041484 crossref_primary_10_1016_j_measurement_2023_114023 crossref_primary_10_3390_s22207981 crossref_primary_10_1177_14759217251326601 crossref_primary_10_1007_s11831_024_10063_0 crossref_primary_10_1177_14759217241289575 crossref_primary_10_3390_buildings14092811 crossref_primary_10_1016_j_conbuildmat_2024_137725 crossref_primary_10_1016_j_ymssp_2022_109466 crossref_primary_10_1109_JIOT_2023_3272535 crossref_primary_10_1177_10775463211006965 crossref_primary_10_1016_j_engstruct_2023_116601 crossref_primary_10_1080_15583058_2022_2033884 crossref_primary_10_1016_j_ijsolstr_2024_113160 crossref_primary_10_1016_j_ymssp_2024_112263 crossref_primary_10_1016_j_engappai_2020_104055 crossref_primary_10_1109_TIT_2023_3298231 crossref_primary_10_1088_2515_7647_adb9ac crossref_primary_10_1177_14613484251324390 crossref_primary_10_3390_s25144423 crossref_primary_10_1016_j_measurement_2024_115387 crossref_primary_10_3390_metrology5030040 crossref_primary_10_3390_s20030911 crossref_primary_10_3390_s21030782 crossref_primary_10_1007_s10518_022_01576_9 crossref_primary_10_1061__ASCE_ST_1943_541X_0003345 crossref_primary_10_1002_admt_202100118 crossref_primary_10_1016_j_yofte_2025_104231 crossref_primary_10_1016_j_engstruct_2021_113089 crossref_primary_10_1177_1045389X221128586 crossref_primary_10_1088_1361_665X_ac099f crossref_primary_10_3390_buildings15050739 crossref_primary_10_1007_s42107_023_00681_7 crossref_primary_10_1177_14759217241242517 crossref_primary_10_3390_s22041418 crossref_primary_10_1007_s41683_021_00081_6 crossref_primary_10_1177_14759217221119709 crossref_primary_10_3390_infrastructures9030040 crossref_primary_10_1016_j_engstruct_2025_120842 crossref_primary_10_3390_buildings14020402 crossref_primary_10_3390_eng5020036 crossref_primary_10_1177_14759217251355946 crossref_primary_10_3390_s24051608 crossref_primary_10_1177_14759217211036880 crossref_primary_10_3390_s25051424 crossref_primary_10_1061_JMENEA_MEENG_5266 crossref_primary_10_1177_10775463241229477 crossref_primary_10_1177_14759217241248047 crossref_primary_10_1007_s41062_025_02147_y crossref_primary_10_1007_s10518_020_01032_6 crossref_primary_10_3390_s22187070 crossref_primary_10_1080_10168664_2024_2407100 crossref_primary_10_1016_j_ymssp_2023_110983 crossref_primary_10_3390_buildings15152803 crossref_primary_10_3390_mi15020202 crossref_primary_10_1177_14759217211052335 crossref_primary_10_1016_j_measurement_2021_110234 crossref_primary_10_1061_JITSE4_ISENG_2139 crossref_primary_10_3390_s24175588 crossref_primary_10_3390_s21010304 crossref_primary_10_3390_sci6030040 crossref_primary_10_3390_computers10030034 crossref_primary_10_1016_j_ijmecsci_2024_109461 crossref_primary_10_1088_1361_6501_ac9152 crossref_primary_10_1007_s00419_024_02712_4 crossref_primary_10_3390_s21051646 crossref_primary_10_1016_j_advengsoft_2025_103895 crossref_primary_10_31893_multirev_2025389 crossref_primary_10_56748_ejse_24765 crossref_primary_10_1002_nme_70032 crossref_primary_10_1007_s13296_022_00627_w crossref_primary_10_1007_s42107_024_01193_8 crossref_primary_10_1016_j_engstruct_2023_117069 crossref_primary_10_3390_s24248161 crossref_primary_10_1016_j_istruc_2025_109779 crossref_primary_10_1016_j_ymssp_2021_108113 crossref_primary_10_3390_s20051257 crossref_primary_10_1007_s11760_025_04354_7 crossref_primary_10_1109_TR_2022_3179602 crossref_primary_10_1155_2020_6932463 crossref_primary_10_3390_s21217390 crossref_primary_10_22227_2305_5502_2024_3_131_142 crossref_primary_10_3390_bdcc7020099 crossref_primary_10_1007_s13349_024_00772_2 crossref_primary_10_1080_15732479_2025_2536212 crossref_primary_10_3390_s20195692 crossref_primary_10_1016_j_compstruc_2021_106604 crossref_primary_10_1016_j_ymssp_2024_111783 crossref_primary_10_1002_rnc_6124 crossref_primary_10_1007_s11831_025_10276_x crossref_primary_10_1007_s42107_025_01405_9 crossref_primary_10_1016_j_sna_2022_113843 crossref_primary_10_1007_s11709_024_1107_x crossref_primary_10_1177_14759217231216694 |
| Cites_doi | 10.1007/s13320-017-0419-z 10.1088/0957-0233/19/12/122001 10.1002/stc.2178 10.1007/s10443-016-9538-8 10.1109/TLA.2015.7106362 10.1109/ICFST.2017.8210469 10.1109/TDSC.2015.2469655 10.5772/65867 10.1016/j.compositesb.2014.08.046 10.1007/s11831-017-9217-4 10.1016/j.ymssp.2015.04.032 10.1177/1475921710365267 10.1016/j.apacoust.2015.01.013 10.1007/s13349-016-0168-5 10.1016/j.paerosci.2015.10.001 10.1088/0964-1726/24/3/033001 10.3390/en11040749 10.1088/0964-1726/23/2/025014 10.1007/s13349-013-0060-5 10.1177/1045389X9901000406 10.1177/1687814017696210 10.1016/j.optlaseng.2016.10.023 10.1117/12.815366 10.1080/10589759.2015.1058376 10.1088/1742-6596/1106/1/012001 10.1109/ICIEA.2016.7603550 10.1016/j.ymssp.2017.05.047 10.3390/en9010003 10.1109/ICSensT.2011.6137057 10.1115/1.4029539 10.2514/6.2014-3264 10.1109/JLT.2016.2614542 10.1016/j.measurement.2018.07.008 10.1146/annurev-anchem-060908-155248 10.1016/j.ymssp.2013.05.020 10.1016/j.ymssp.2013.05.007 10.1002/aic.12760 10.1016/j.ymssp.2018.02.008 10.1007/s13349-019-00369-0 10.1111/mice.12338 10.1155/2014/709127 10.1109/JSEN.2014.2352612 10.1007/978-3-7091-1390-5_4 10.20944/preprints201810.0522.v1 10.4401/ag-5268 10.1088/0964-1726/23/10/105005 10.1007/s40091-015-0084-7 10.1155/2015/648097 10.1016/j.proeng.2011.07.095 10.1177/1475921715624504 10.1016/j.ymssp.2018.07.040 10.1016/j.ymssp.2009.09.003 10.1006/jsvi.2000.3390 10.1088/1361-665X/aaafeb 10.1115/IMECE1996-0685 10.1109/JSEN.2007.894908 10.3390/s18092745 10.1016/j.neunet.2009.04.005 10.1109/TSP.2014.2302736 10.1109/ICMSAO.2011.5775618 10.1016/j.marstruc.2017.09.009 10.3390/s18113730 10.1109/JPROC.2015.2511540 10.1177/1475921718758629 10.1155/2016/6027812 10.1109/COMST.2017.2691551 10.3390/s18072174 10.1109/JSEN.2009.2019339 10.1016/j.oceaneng.2016.08.009 10.1016/j.compositesb.2019.01.050 10.1002/stc.1811 10.1016/j.jsv.2017.02.002 10.1088/1361-665X/aac78a 10.1016/j.sna.2016.05.014 10.1177/0583102406061499 10.1109/TIM.2018.2792854 10.1177/1045389X14566520 10.1177/1475921705049764 10.3390/mi8070210 10.1016/j.jsv.2016.10.006 10.3390/s17040667 10.1109/RAST.2017.8002955 10.1002/stc.2122 10.1177/1475921706067741 10.1002/stc.2165 10.1016/j.conbuildmat.2018.04.045 10.1177/1475921713513973 10.3390/ma9090790 10.1109/ESIME.2010.5464563 10.1016/j.ymssp.2017.11.045 10.1002/stc.1540 10.1155/2018/5081283 10.1016/j.ultras.2015.02.011 10.4271/2013-01-2219 10.1016/j.measurement.2019.01.054 10.1016/j.measurement.2017.05.064 10.2478/meceng-2014-0037 10.1177/1045389X13498317 10.1016/j.apor.2018.01.008 10.3390/en9070520 10.1109/JSEN.2018.2844564 10.1007/s13349-015-0108-9 10.1177/1475921712451954 10.1016/j.ymssp.2019.06.003 10.1016/j.ymssp.2018.07.031 10.1098/rsta.2006.1928 10.1143/JJAP.46.4908 10.1016/j.measurement.2015.02.007 10.1063/1.4914695 10.1109/ICPHM.2017.7998322 10.1260/1369-4332.16.7.1187 10.1002/9781118443118 10.1111/j.1467-8667.2008.00543.x 10.1109/TMECH.2017.2761902 10.1061/9780784413609.018 10.1109/ICSENS.2016.7808731 10.1109/JSEN.2016.2630008 10.1016/j.ymssp.2015.01.019 10.1533/9781782422433.1.33 10.1016/j.ymssp.2016.09.004 10.3390/s18103426 10.1016/j.ymssp.2017.04.022 10.1111/jace.16242 10.1002/stc.1851 10.1016/j.sna.2018.03.005 10.1533/9781845696825.1 10.1016/j.engstruct.2017.10.022 10.1016/j.engstruct.2010.11.012 10.3390/s17020417 10.1117/12.2261212 10.1088/1361-6501/aa52ed 10.1109/WiSEE.2013.6737554 10.12989/sss.2016.17.6.1031 10.1109/JLT.2018.2877991 10.1016/j.measurement.2018.06.030 10.1061/(ASCE)BE.1943-5592.0000735 10.1088/0964-1726/10/3/304 10.3390/s18030809 10.1109/JSEN.2016.2522940 10.3390/s17061252 10.1016/j.jsamd.2016.05.004 10.1016/j.compositesa.2011.10.016 10.1109/TIM.2011.2170889 10.1109/JSEN.2014.2366932 10.3390/ma10070832 10.1117/12.827823 10.1016/j.jsv.2016.08.038 10.1016/j.paerosci.2010.05.001 10.1177/1475921717737971 10.1002/stc.2238 10.1117/12.2260167 10.1117/12.816285 10.1016/j.oceaneng.2017.02.030 10.1002/stc.1735 10.1177/1475921704041876 10.3390/s140407394 10.1007/s00779-018-1130-9 10.1134/S1061830915060078 10.1088/0964-1726/23/4/045006 10.1016/j.ultras.2014.11.012 10.1109/JIOT.2017.2664072 10.1109/ISQED.2018.8357313 10.1016/j.apor.2016.12.008 10.1016/j.engstruct.2008.01.013 10.1177/1475921713502836 10.1007/s00158-017-1849-3 10.1109/ICMOCE.2015.7489736 10.3390/s18010262 10.1117/12.2012107 10.1098/rsta.2006.1935 10.1007/978-3-7091-0399-9_1 10.1088/0964-1726/25/5/053001 |
| ContentType | Journal Article Publication |
| Contributor | Universitat Politècnica de Catalunya. CoDAlab - Control, Modelització, Identificació i Aplicacions Universitat Politècnica de Catalunya. Doctorat en Matemàtica Aplicada Universitat Politècnica de Catalunya. Departament de Matemàtiques |
| Contributor_xml | – sequence: 1 fullname: Universitat Politècnica de Catalunya. Doctorat en Matemàtica Aplicada – sequence: 2 fullname: Universitat Politècnica de Catalunya. Departament de Matemàtiques – sequence: 3 fullname: Universitat Politècnica de Catalunya. CoDAlab - Control, Modelització, Identificació i Aplicacions |
| Copyright | 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. Attribution-NonCommercial-NoDerivs 3.0 Spain info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-nc-nd/3.0/es 2020 by the authors. 2020 |
| Copyright_xml | – notice: 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: Attribution-NonCommercial-NoDerivs 3.0 Spain info:eu-repo/semantics/openAccess <a href="http://creativecommons.org/licenses/by-nc-nd/3.0/es/">http://creativecommons.org/licenses/by-nc-nd/3.0/es/</a> – notice: 2020 by the authors. 2020 |
| DBID | AAYXX CITATION NPM 3V. 7X7 7XB 88E 8FI 8FJ 8FK ABUWG AFKRA AZQEC BENPR CCPQU DWQXO FYUFA GHDGH K9. M0S M1P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI PRINS 7X8 XX2 5PM DOA |
| DOI | 10.3390/s20030733 |
| DatabaseName | CrossRef PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One Community College ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Health & Medical Complete (Alumni) Health & Medical Collection (Alumni) Medical Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic Recercat PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Central China ProQuest Central ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Health & Medical Research Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | Publicly Available Content Database MEDLINE - Academic CrossRef PubMed |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1424-8220 |
| ExternalDocumentID | oai_doaj_org_article_579cc243c2ec40e489d260947fd1c637 PMC7038520 oai_recercat_cat_2072_369415 32013073 10_3390_s20030733 |
| Genre | Journal Article Review |
| GrantInformation_xml | – fundername: Ministerio de Economía, Industria y Competitividad, Gobierno de España grantid: DPI2017-82930-C2-1-R – fundername: Generalitat de Catalunya grantid: 2017 SGR 388 |
| GroupedDBID | --- 123 2WC 53G 5VS 7X7 88E 8FE 8FG 8FI 8FJ AADQD AAHBH AAYXX ABDBF ABUWG ACUHS ADBBV ADMLS AENEX AFFHD AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS BENPR BPHCQ BVXVI CCPQU CITATION CS3 D1I DU5 E3Z EBD ESX F5P FYUFA GROUPED_DOAJ GX1 HH5 HMCUK HYE KQ8 L6V M1P M48 MODMG M~E OK1 OVT P2P P62 PHGZM PHGZT PIMPY PJZUB PPXIY PQQKQ PROAC PSQYO RNS RPM TUS UKHRP XSB ~8M 3V. ABJCF ALIPV ARAPS HCIFZ KB. M7S NPM PDBOC 7XB 8FK AZQEC DWQXO K9. PKEHL PQEST PQUKI PRINS 7X8 PUEGO XX2 5PM |
| ID | FETCH-LOGICAL-c581t-bd5c4d7faf633a2a51b29402d62f3976f2b8d588aaf827337d83f53be51f588d3 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 111 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000517786200157&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1424-8220 |
| IngestDate | Fri Oct 03 12:43:55 EDT 2025 Tue Nov 04 01:57:45 EST 2025 Fri Nov 07 13:44:56 EST 2025 Fri Sep 05 07:44:40 EDT 2025 Tue Oct 07 07:20:31 EDT 2025 Wed Feb 19 02:31:38 EST 2025 Sat Nov 29 07:08:55 EST 2025 Tue Nov 18 21:42:20 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 3 |
| Keywords | structural health monitoring sensors data-driven algorithms damage identification |
| Language | English |
| License | Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c581t-bd5c4d7faf633a2a51b29402d62f3976f2b8d588aaf827337d83f53be51f588d3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
| ORCID | 0000-0002-4498-596X 0000-0003-2296-8648 0000-0002-7283-6902 0000-0002-6687-1429 0000-0001-8958-6789 |
| OpenAccessLink | https://doaj.org/article/579cc243c2ec40e489d260947fd1c637 |
| PMID | 32013073 |
| PQID | 2550399940 |
| PQPubID | 2032333 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_579cc243c2ec40e489d260947fd1c637 pubmedcentral_primary_oai_pubmedcentral_nih_gov_7038520 csuc_recercat_oai_recercat_cat_2072_369415 proquest_miscellaneous_2350911717 proquest_journals_2550399940 pubmed_primary_32013073 crossref_citationtrail_10_3390_s20030733 crossref_primary_10_3390_s20030733 |
| PublicationCentury | 2000 |
| PublicationDate | 2020-01-29 |
| PublicationDateYYYYMMDD | 2020-01-29 |
| PublicationDate_xml | – month: 01 year: 2020 text: 2020-01-29 day: 29 |
| PublicationDecade | 2020 |
| PublicationPlace | Switzerland |
| PublicationPlace_xml | – name: Switzerland – name: Basel |
| PublicationTitle | Sensors (Basel, Switzerland) |
| PublicationTitleAlternate | Sensors (Basel) |
| PublicationYear | 2020 |
| Publisher | MDPI AG Multidisciplinary Digital Publishing Institute (MDPI) MDPI |
| Publisher_xml | – name: MDPI AG – name: Multidisciplinary Digital Publishing Institute (MDPI) – name: MDPI |
| References | ref_94 Webb (ref_202) 2015; 20 ref_91 ref_90 Abdollahian (ref_138) 2017; 9 Barke (ref_5) 2005; 4 ref_134 Zhang (ref_99) 2018; 18 Cazangiu (ref_174) 2014; 7 Worden (ref_157) 2018; 98 ref_126 Mujica (ref_3) 2013; 23 ref_128 Reilly (ref_149) 2017; 386 ref_127 ref_122 Adler (ref_33) 2010; 3 ref_124 ref_123 Farrar (ref_30) 2006; 365 Tibaduiza (ref_172) 2016; 27 Oliveira (ref_58) 2018; 25 Fernandes (ref_154) 2015; 13 Noel (ref_8) 2017; 19 Li (ref_150) 2016; 6 ref_78 Budoya (ref_113) 2018; 67 ref_152 ref_155 Cao (ref_23) 2017; 9 Perales (ref_96) 2018; 27 Cappello (ref_198) 2016; 104 ref_160 Taha (ref_166) 2006; 5 Zhou (ref_57) 2017; 63 Mitra (ref_27) 2016; 25 ref_147 Hoshyarmanesh (ref_41) 2017; 22 ref_80 Ma (ref_87) 2015; 57 ref_140 ref_141 ref_144 Zang (ref_79) 2004; 3 ref_143 Ganesan (ref_148) 2017; 394 Mandal (ref_105) 2019; 117 Hedberg (ref_104) 2007; 46 Morse (ref_69) 2018; 99 Padmavathy (ref_40) 2018; 22 Ruan (ref_112) 2014; 23 Montejo (ref_159) 2015; 7 (ref_76) 2018; 25 Ruiz (ref_163) 2018; 17 Sikarwar (ref_12) 2017; 7 Sabato (ref_9) 2017; 17 Adeli (ref_13) 2015; 22 Sabato (ref_136) 2016; 16 Jamalkia (ref_39) 2016; 125 Sen (ref_188) 2019; 131 Buethe (ref_64) 2013; 3 Li (ref_98) 2011; 14 Tibaduiza (ref_185) 2018; 2018 Le (ref_22) 2015; 79 Datteo (ref_189) 2017; 153 ref_201 ref_200 Araujo (ref_151) 2012; 61 Yang (ref_117) 2017; 35 Wan (ref_66) 2018; 27 Yoon (ref_67) 2018; 33 Talakokula (ref_115) 2014; 25 Sohn (ref_20) 2001; 10 Rainieri (ref_42) 2019; 18 ref_111 ref_110 Torres (ref_119) 2011; 33 Park (ref_68) 2018; 25 (ref_139) 2018; 25 Martowicz (ref_205) 2016; 31 Zhou (ref_35) 2013; 16 Lu (ref_51) 2009; 9 Potapov (ref_102) 2015; 51 Bolognani (ref_206) 2017; Volume 10170 ref_103 ref_106 Iakovidis (ref_170) 2018; 1106 Lynch (ref_7) 2006; 38 ref_109 Momon (ref_191) 2012; 43 Li (ref_24) 2015; 24 Bai (ref_203) 2017; 84 Tibaduiza (ref_77) 2015; 22 Ha (ref_93) 2010; 9 Carboni (ref_85) 2015; 60 Jung (ref_142) 2019; 163 Tokognon (ref_29) 2017; 4 Lorenzoni (ref_195) 2016; 66 Flynn (ref_180) 2010; 24 ref_14 ref_10 Huang (ref_167) 2016; 17 ref_19 ref_18 ref_17 Konstantinidis (ref_52) 2007; 7 Moschas (ref_132) 2019; 116 Prendergast (ref_56) 2018; 57 Calleja (ref_158) 2008; 3 Kedziora (ref_101) 2013; 542 Rothberg (ref_11) 2017; 99 Lu (ref_145) 2017; 28 Das (ref_25) 2018; 129 ref_21 Mujica (ref_187) 2012; 22 Ciang (ref_4) 2008; 19 Cherkassky (ref_192) 2009; 22 ref_26 Chandarana (ref_107) 2017; 24 Ge (ref_173) 2012; 58 Park (ref_16) 2014; 62 Dixit (ref_130) 2018; 274 Zhou (ref_53) 2009; Volume 7293 Liu (ref_97) 2014; 13 Baghalian (ref_89) 2017; 8 Catbas (ref_31) 2008; 30 Joseph (ref_108) 2017; Volume 10170 Baghalian (ref_74) 2018; 128 Carden (ref_6) 2008; 23 Willberg (ref_28) 2015; 67 Bilbao (ref_47) 2011; Volume 7981 Li (ref_116) 2018; 36 Giang (ref_125) 2016; 1 Schmitt (ref_118) 2009; Volume 7389 Andre (ref_175) 2016; Volume 9803 ref_50 Saboonchi (ref_129) 2016; 247 Tibaduiza (ref_32) 2013; 41 Kim (ref_70) 2018; 57 Lakhmi (ref_131) 2014; 605 ref_55 ref_54 ref_177 Sabatino (ref_207) 2017; 135 Tashakori (ref_81) 2018; 72 ref_179 ref_178 Diamanti (ref_84) 2010; 46 ref_182 Tondolo (ref_135) 2018; 173 ref_181 Cooperman (ref_133) 2015; Volume 9439 Linderman (ref_153) 2015; 15 Anaya (ref_49) 2014; 23 Pozo (ref_176) 2016; 15 Annamdas (ref_95) 2009; Volume 7293 ref_162 ref_161 Tibaduiza (ref_183) 2013; 20 ref_164 ref_65 ref_165 ref_63 Rainieri (ref_60) 2015; 60 ref_62 Bond (ref_73) 2015; 1650 Dai (ref_137) 2013; Volume 8694 ref_171 Sohn (ref_156) 2006; 365 Mulligan (ref_186) 2013; 4 Endsley (ref_199) 2012; Volume 8345 Foote (ref_72) 2013; 6 Yamamoto (ref_59) 2018; 26 Deraemaeker (ref_204) 2018; 105 Qin (ref_114) 2015; 94 ref_36 Shehata (ref_120) 1999; 10 ref_194 ref_34 ref_197 ref_196 Zou (ref_75) 2015; 15 Zang (ref_15) 2001; 242 Kinet (ref_121) 2014; 14 ref_38 ref_37 McCrory (ref_193) 2015; 68 Reynders (ref_43) 2014; 13 Senyurek (ref_86) 2015; 67 Barski (ref_100) 2014; 61 Chehami (ref_82) 2017; 386 Isidori (ref_45) 2016; 23 Kudela (ref_92) 2018; 108 Yi (ref_168) 2017; 109 ref_184 ref_46 ref_44 Rainieri (ref_61) 2018; 25 Fan (ref_71) 2014; 574 ref_1 ref_2 ref_190 Gresil (ref_88) 2012; 11 ref_48 Kullaa (ref_169) 2013; 40 Bhuiyan (ref_146) 2017; 14 Tashakori (ref_83) 2018; 2018 |
| References_xml | – ident: ref_190 – volume: 7 start-page: 294 year: 2017 ident: ref_12 article-title: Review on pressure sensors for structural health monitoring publication-title: Photonic Sens. doi: 10.1007/s13320-017-0419-z – volume: 19 start-page: 122001 year: 2008 ident: ref_4 article-title: Structural health monitoring for a wind turbine system: A review of damage detection methods publication-title: Meas. Sci. Technol. doi: 10.1088/0957-0233/19/12/122001 – volume: 25 start-page: e2178 year: 2018 ident: ref_76 article-title: An acousto-ultrasonics approach for probabilistic modelling and inference based on Gaussian processes publication-title: Struct. Control Health Monit. doi: 10.1002/stc.2178 – volume: 24 start-page: 525 year: 2017 ident: ref_107 article-title: Characterisation of damaged tubular composites by acoustic emission, thermal diffusivity mapping and TSR-RGB projection technique publication-title: Appl. Compos. Mater. doi: 10.1007/s10443-016-9538-8 – volume: 13 start-page: 1090 year: 2015 ident: ref_154 article-title: Data Management System for Structural Health Monitoring publication-title: IEEE Lat. Am. Trans. doi: 10.1109/TLA.2015.7106362 – ident: ref_65 – ident: ref_155 – ident: ref_147 doi: 10.1109/ICFST.2017.8210469 – ident: ref_161 – volume: 14 start-page: 363 year: 2017 ident: ref_146 article-title: Dependable structural health monitoring using wireless sensor networks publication-title: IEEE Trans. Dependable Secur. Comput. doi: 10.1109/TDSC.2015.2469655 – ident: ref_184 doi: 10.5772/65867 – volume: 68 start-page: 424 year: 2015 ident: ref_193 article-title: Damage classification in carbon fibre composites using acoustic emission: A comparison of three techniques publication-title: Compos. Part B Eng. doi: 10.1016/j.compositesb.2014.08.046 – volume: 25 start-page: 901 year: 2018 ident: ref_139 article-title: Sensors used in structural health monitoring publication-title: Arch. Comput. Methods Eng. doi: 10.1007/s11831-017-9217-4 – volume: 66 start-page: 268 year: 2016 ident: ref_195 article-title: Uncertainty quantification in structural health monitoring: Applications on cultural heritage buildings publication-title: Mech. Syst. Signal Process. doi: 10.1016/j.ymssp.2015.04.032 – volume: 9 start-page: 247 year: 2010 ident: ref_93 article-title: Adhesive Layer Effects on PZT-induced Lamb Waves at Elevated Temperatures publication-title: Struct. Health Monit. doi: 10.1177/1475921710365267 – volume: 94 start-page: 53 year: 2015 ident: ref_114 article-title: Development of technique capable of identifying different corrosion stages in reinforced concrete publication-title: Appl. Acoust. doi: 10.1016/j.apacoust.2015.01.013 – ident: ref_19 doi: 10.1007/s13349-016-0168-5 – volume: 79 start-page: 147 year: 2015 ident: ref_22 article-title: Review on energy harvesting for structural health monitoring in aeronautical applications publication-title: Prog. Aerosp. Sci. doi: 10.1016/j.paerosci.2015.10.001 – volume: 24 start-page: 033001 year: 2015 ident: ref_24 article-title: A review of damage detection methods for wind turbine blades publication-title: Smart Mater. Struct. doi: 10.1088/0964-1726/24/3/033001 – ident: ref_179 doi: 10.3390/en11040749 – volume: 23 start-page: 025014 year: 2013 ident: ref_3 article-title: A structural damage detection indicator based on principal component analysis and statistical hypothesis testing publication-title: Smart Mater. Struct. doi: 10.1088/0964-1726/23/2/025014 – volume: 3 start-page: 297 year: 2013 ident: ref_64 article-title: Damage detection and classification in pipework using acousto-ultrasonics and non-linear data-driven modelling publication-title: J. Civ. Struct. Health Monit. doi: 10.1007/s13349-013-0060-5 – volume: 10 start-page: 304 year: 1999 ident: ref_120 article-title: Intelligent sensing for innovative bridges publication-title: J. Intell. Mater. Syst. Struct. doi: 10.1177/1045389X9901000406 – volume: 9 start-page: 1 year: 2017 ident: ref_23 article-title: A survey on ambient energy sources and harvesting methods for structural health monitoring applications publication-title: Adv. Mech. Eng. doi: 10.1177/1687814017696210 – ident: ref_196 – volume: 99 start-page: 11 year: 2017 ident: ref_11 article-title: An international review of laser Doppler vibrometry: Making light work of vibration measurement publication-title: Opt. Lasers Eng. doi: 10.1016/j.optlaseng.2016.10.023 – volume: Volume 7293 start-page: 72930V year: 2009 ident: ref_95 article-title: Influence of the excitation frequency in the electromechanical impedance method for SHM applications publication-title: Smart Sensor Phenomena, Technology, Networks, and Systems 2009 doi: 10.1117/12.815366 – volume: 31 start-page: 17 year: 2016 ident: ref_205 article-title: Application of electromechanical impedance-based SHM for damage detection in bolted pipeline connection publication-title: Nondestruct. Test. Eval. doi: 10.1080/10589759.2015.1058376 – ident: ref_14 – volume: 1106 start-page: 012001 year: 2018 ident: ref_170 article-title: A principled multiresolution approach for signal decomposition publication-title: J. Phys. Conf. Ser. doi: 10.1088/1742-6596/1106/1/012001 – ident: ref_200 doi: 10.1109/ICIEA.2016.7603550 – volume: 99 start-page: 107 year: 2018 ident: ref_69 article-title: Reliability based impact localization in composite panels using Bayesian updating and the Kalman filter publication-title: Mech. Syst. Signal Process. doi: 10.1016/j.ymssp.2017.05.047 – ident: ref_177 doi: 10.3390/en9010003 – ident: ref_26 doi: 10.1109/ICSensT.2011.6137057 – volume: 67 start-page: 010803 year: 2015 ident: ref_28 article-title: Simulation methods for guided wave-based structural health monitoring: A review publication-title: Appl. Mech. Rev. doi: 10.1115/1.4029539 – ident: ref_37 doi: 10.2514/6.2014-3264 – volume: 35 start-page: 3604 year: 2017 ident: ref_117 article-title: A novel white light interference based AFM head publication-title: J. Lightwave Technol. doi: 10.1109/JLT.2016.2614542 – volume: 129 start-page: 68 year: 2018 ident: ref_25 article-title: A review of some advanced sensors used for health diagnosis of civil engineering structures publication-title: Measurement doi: 10.1016/j.measurement.2018.07.008 – volume: Volume 9803 start-page: 98030F year: 2016 ident: ref_175 article-title: Structural health monitoring approach for detecting ice accretion on bridge cable using the Haar Wavelet Transform publication-title: Sensors and Smart Structures Technologies for Civil, Mechanical, and Aerospace Systems 2016 – volume: 2018 start-page: 1361932 year: 2018 ident: ref_83 article-title: Composites Bond Inspection Using Heterodyne Effect and SuRE Methods publication-title: Shock Vib. – volume: 3 start-page: 175 year: 2010 ident: ref_33 article-title: Cavity-enhanced direct frequency comb spectroscopy: Technology and applications publication-title: Annu. Rev. Anal. Chem. doi: 10.1146/annurev-anchem-060908-155248 – volume: 41 start-page: 467 year: 2013 ident: ref_32 article-title: A study of two unsupervised data driven statistical methodologies for detecting and classifying damages in structural health monitoring publication-title: Mech. Syst. Signal Process. doi: 10.1016/j.ymssp.2013.05.020 – volume: 40 start-page: 208 year: 2013 ident: ref_169 article-title: Detection, identification, and quantification of sensor fault in a sensor network publication-title: Mech. Syst. Signal Process. doi: 10.1016/j.ymssp.2013.05.007 – volume: 58 start-page: 2357 year: 2012 ident: ref_173 article-title: Local ICA for multivariate statistical fault diagnosis in systems with unknown signal and error distributions publication-title: AIChE J. doi: 10.1002/aic.12760 – volume: 108 start-page: 21 year: 2018 ident: ref_92 article-title: Structural Health Monitoring system based on a concept of Lamb wave focusing by the piezoelectric array publication-title: Mech. Syst. Signal Process. doi: 10.1016/j.ymssp.2018.02.008 – ident: ref_44 doi: 10.1007/s13349-019-00369-0 – volume: 33 start-page: 183 year: 2018 ident: ref_67 article-title: Structural displacement measurement using an unmanned aerial system publication-title: Comput.-Aided Civ. Infrastruct. Eng. doi: 10.1111/mice.12338 – volume: 574 start-page: 77 year: 2014 ident: ref_71 article-title: Reliability prediction of bridges based on monitored data and Bayesian dynamic models. Key Engineering Materials publication-title: Trans Tech Publ. – ident: ref_182 doi: 10.1155/2014/709127 – volume: 15 start-page: 809 year: 2015 ident: ref_75 article-title: An approach of reliable data transmission with random redundancy for wireless sensors in structural health monitoring publication-title: IEEE Sens. J. doi: 10.1109/JSEN.2014.2352612 – ident: ref_21 doi: 10.1007/978-3-7091-1390-5_4 – ident: ref_80 doi: 10.20944/preprints201810.0522.v1 – ident: ref_124 doi: 10.4401/ag-5268 – volume: 23 start-page: 105005 year: 2014 ident: ref_112 article-title: Wind turbine blade damage detection using an active sensing approach publication-title: Smart Mater. Struct. doi: 10.1088/0964-1726/23/10/105005 – volume: 7 start-page: 69 year: 2015 ident: ref_159 article-title: Experimental and numerical evaluation of wavelet based damage detection methodologies publication-title: Int. J. Adv. Struct. Eng. doi: 10.1007/s40091-015-0084-7 – ident: ref_181 doi: 10.1155/2015/648097 – volume: 14 start-page: 753 year: 2011 ident: ref_98 article-title: Structural health monitoring: From sensing technology stepping to health diagnosis publication-title: Procedia Eng. doi: 10.1016/j.proeng.2011.07.095 – volume: 15 start-page: 127 year: 2016 ident: ref_176 article-title: Detection of structural changes through principal component analysis and multivariate statistical inference publication-title: Struct. Health Monit. doi: 10.1177/1475921715624504 – volume: 117 start-page: 33 year: 2019 ident: ref_105 article-title: Identification of breathing type disbonds in stiffened panels using non-linear lamb waves and built-in circular PWT array publication-title: Mech. Syst. Signal Process. doi: 10.1016/j.ymssp.2018.07.040 – volume: 24 start-page: 891 year: 2010 ident: ref_180 article-title: A Bayesian approach to optimal sensor placement for structural health monitoring with application to active sensing publication-title: Mech. Syst. Signal Process. doi: 10.1016/j.ymssp.2009.09.003 – volume: 242 start-page: 813 year: 2001 ident: ref_15 article-title: Structural damage detection using artificial neural networks and measured FRF data reduced via principal component projection publication-title: J. Sound Vib. doi: 10.1006/jsvi.2000.3390 – volume: 27 start-page: 045006 year: 2018 ident: ref_66 article-title: Numerical study on static component generation from the primary Lamb waves propagating in a plate with nonlinearity publication-title: Smart Mater. Struct. doi: 10.1088/1361-665X/aaafeb – ident: ref_110 doi: 10.1115/IMECE1996-0685 – volume: 7 start-page: 905 year: 2007 ident: ref_52 article-title: An investigation into the temperature stability of a guided wave structural health monitoring system using permanently attached sensors publication-title: IEEE Sens. J. doi: 10.1109/JSEN.2007.894908 – ident: ref_94 doi: 10.3390/s18092745 – volume: 22 start-page: 958 year: 2009 ident: ref_192 article-title: Another look at statistical learning theory and regularization publication-title: Neural Netw. doi: 10.1016/j.neunet.2009.04.005 – volume: 62 start-page: 1655 year: 2014 ident: ref_16 article-title: Modal analysis with compressive measurements publication-title: IEEE Trans. Signal Process. doi: 10.1109/TSP.2014.2302736 – ident: ref_62 doi: 10.1109/ICMSAO.2011.5775618 – volume: 57 start-page: 87 year: 2018 ident: ref_56 article-title: Probabilistic examination of the change in eigenfrequencies of an offshore wind turbine under progressive scour incorporating soil spatial variability publication-title: Mar. Struct. doi: 10.1016/j.marstruc.2017.09.009 – ident: ref_134 doi: 10.3390/s18113730 – volume: 3 start-page: 643 year: 2008 ident: ref_158 article-title: An innovative way to handle residues in a no-tillage maize-based system under sprinkler irrigation in southern Spain publication-title: Ital. J. Agron. – volume: 104 start-page: 1647 year: 2016 ident: ref_198 article-title: Expected utility theory for monitoring-based decision-making publication-title: Proc. IEEE doi: 10.1109/JPROC.2015.2511540 – volume: 18 start-page: 486 year: 2019 ident: ref_42 article-title: Predicting the variability of natural frequencies and its causes by Second-Order Blind Identification publication-title: Struct. Health Monit. doi: 10.1177/1475921718758629 – ident: ref_160 doi: 10.1155/2016/6027812 – volume: 9 start-page: 707 year: 2017 ident: ref_138 article-title: Nonlocal Piezomagnetoelasticity Theory for Buckling Analysis of Piezoelectric/Magnetostrictive Nanobeams Including Surface Effects publication-title: J. Solid Mech. – ident: ref_38 – volume: 19 start-page: 1403 year: 2017 ident: ref_8 article-title: Structural health monitoring using wireless sensor networks: A comprehensive survey publication-title: IEEE Commun. Surv. Tutor. doi: 10.1109/COMST.2017.2691551 – ident: ref_162 – ident: ref_141 doi: 10.3390/s18072174 – volume: 9 start-page: 1462 year: 2009 ident: ref_51 article-title: Feature extraction and sensor fusion for ultrasonic structural health monitoring under changing environmental conditions publication-title: IEEE Sens. J. doi: 10.1109/JSEN.2009.2019339 – volume: 125 start-page: 191 year: 2016 ident: ref_39 article-title: Damage detection of TLP and Spar floating wind turbine using dynamic response of the structure publication-title: Ocean Eng. doi: 10.1016/j.oceaneng.2016.08.009 – volume: 163 start-page: 690 year: 2019 ident: ref_142 article-title: Performance evaluation of smart grid fabrics comprising carbon dry fabrics and PVDF ribbon sensors for structural health monitoring publication-title: Compos. Part B Eng. doi: 10.1016/j.compositesb.2019.01.050 – volume: 23 start-page: 802 year: 2016 ident: ref_45 article-title: Proof of concept of the structural health monitoring of framed structures by a novel combined experimental and theoretical approach publication-title: Struct. Control Health Monit. doi: 10.1002/stc.1811 – ident: ref_111 – volume: 394 start-page: 612 year: 2017 ident: ref_148 article-title: Vibration-based monitoring and diagnostics using compressive sensing publication-title: J. Sound Vib. doi: 10.1016/j.jsv.2017.02.002 – volume: 27 start-page: 085002 year: 2018 ident: ref_96 article-title: SHM via topological derivative publication-title: Smart Mater. Struct. doi: 10.1088/1361-665X/aac78a – ident: ref_54 – volume: 247 start-page: 566 year: 2016 ident: ref_129 article-title: MEMS sensor fusion: Acoustic emission and strain publication-title: Sens. Actuators A Phys. doi: 10.1016/j.sna.2016.05.014 – ident: ref_2 – volume: 38 start-page: 91 year: 2006 ident: ref_7 article-title: A summary review of wireless sensors and sensor networks for structural health monitoring publication-title: Shock Vib. Dig. doi: 10.1177/0583102406061499 – volume: 67 start-page: 912 year: 2018 ident: ref_113 article-title: A comparative study of impedance measurement techniques for structural health monitoring applications publication-title: IEEE Trans. Instrum. Meas. doi: 10.1109/TIM.2018.2792854 – volume: 27 start-page: 233 year: 2016 ident: ref_172 article-title: Structural damage detection using principal component analysis and damage indices publication-title: J. Intell. Mater. Syst. Struct. doi: 10.1177/1045389X14566520 – volume: 4 start-page: 81 year: 2005 ident: ref_5 article-title: Structural health monitoring in the railway industry: A review publication-title: Struct. Health Monit. doi: 10.1177/1475921705049764 – volume: 8 start-page: 1 year: 2017 ident: ref_89 article-title: Non-contact quantification of longitudinal and circumferential defects in pipes using the surface response to excitation (SuRE) method publication-title: Int. J. Progn. Health Manag. – ident: ref_123 doi: 10.3390/mi8070210 – volume: 386 start-page: 283 year: 2017 ident: ref_82 article-title: Nonlinear secondary noise sources for passive defect detection using ultrasound sensors publication-title: J. Sound Vib. doi: 10.1016/j.jsv.2016.10.006 – ident: ref_122 doi: 10.3390/s17040667 – ident: ref_90 doi: 10.1109/RAST.2017.8002955 – volume: 25 start-page: e2122 year: 2018 ident: ref_68 article-title: Visual–inertial displacement sensing using data fusion of vision-based displacement with acceleration publication-title: Struct. Control Health Monit. doi: 10.1002/stc.2122 – volume: 5 start-page: 267 year: 2006 ident: ref_166 article-title: Wavelet transform for structural health monitoring: A compendium of uses and features publication-title: Struct. Health Monit. doi: 10.1177/1475921706067741 – volume: 25 start-page: 1 year: 2018 ident: ref_61 article-title: Shaking table tests for the experimental verification of the effectiveness of an automated modal parameter monitoring system for existing bridges in seismic areas publication-title: Struct. Control Health Monit. doi: 10.1002/stc.2165 – volume: 173 start-page: 740 year: 2018 ident: ref_135 article-title: Smart reinforcement steel bars with low-cost MEMS sensors for the structural health monitoring of RC structures publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2018.04.045 – volume: 13 start-page: 131 year: 2014 ident: ref_97 article-title: Damage assessment with state–space embedding strategy and singular value decomposition under stochastic excitation publication-title: Struct. Health Monit. doi: 10.1177/1475921713513973 – ident: ref_201 doi: 10.3390/ma9090790 – ident: ref_50 doi: 10.1109/ESIME.2010.5464563 – volume: 105 start-page: 1 year: 2018 ident: ref_204 article-title: A comparison of linear approaches to filter out environmental effects in structural health monitoring publication-title: Mech. Syst. Signal Process. doi: 10.1016/j.ymssp.2017.11.045 – ident: ref_1 – volume: 20 start-page: 1303 year: 2013 ident: ref_183 article-title: Damage classification in structural health monitoring using principal component analysis and self-organizing maps publication-title: Struct. Control Health Monit. doi: 10.1002/stc.1540 – volume: 2018 start-page: 5081283 year: 2018 ident: ref_185 article-title: A damage classification approach for structural health monitoring using machine learning publication-title: Complexity doi: 10.1155/2018/5081283 – volume: 60 start-page: 51 year: 2015 ident: ref_85 article-title: A Lamb waves based statistical approach to structural health monitoring of carbon fibre reinforced polymer composites publication-title: Ultrasonics doi: 10.1016/j.ultras.2015.02.011 – volume: 6 start-page: 525 year: 2013 ident: ref_72 article-title: New guidelines for implementation of structural health monitoring in aerospace applications publication-title: SAE Int. J. Aerosp. doi: 10.4271/2013-01-2219 – ident: ref_106 doi: 10.1016/j.measurement.2019.01.054 – volume: 605 start-page: 55 year: 2014 ident: ref_131 article-title: Study of free-standing electroded PZT thick-films: From materials to microsystems. Key Engineering Materials publication-title: Trans Tech Publ. – volume: 109 start-page: 200 year: 2017 ident: ref_168 article-title: Development of sensor validation methodologies for structural health monitoring: A comprehensive review publication-title: Measurement doi: 10.1016/j.measurement.2017.05.064 – volume: 61 start-page: 653 year: 2014 ident: ref_100 article-title: Structural health monitoring (SHM) methods in machine design and operation publication-title: Arch. Mech. Eng. doi: 10.2478/meceng-2014-0037 – volume: 25 start-page: 484 year: 2014 ident: ref_115 article-title: Corrosion assessment of reinforced concrete structures based on equivalent structural parameters using electro-mechanical impedance technique publication-title: J. Intell. Mater. Syst. Struct. doi: 10.1177/1045389X13498317 – volume: 72 start-page: 51 year: 2018 ident: ref_81 article-title: Implementation of heterodyning effect for monitoring the health of adhesively bonded and fastened composite joints publication-title: Appl. Ocean Res. doi: 10.1016/j.apor.2018.01.008 – ident: ref_152 – ident: ref_178 doi: 10.3390/en9070520 – volume: 18 start-page: 6273 year: 2018 ident: ref_99 article-title: Feature extraction for robust crack monitoring using passive wireless RFID antenna sensors publication-title: IEEE Sens. J. doi: 10.1109/JSEN.2018.2844564 – ident: ref_128 – volume: 6 start-page: 3 year: 2016 ident: ref_150 article-title: State-of-the-art in structural health monitoring of large and complex civil infrastructures publication-title: J. Civ. Struct. Health Monit. doi: 10.1007/s13349-015-0108-9 – volume: 11 start-page: 671 year: 2012 ident: ref_88 article-title: Predictive modeling of electromechanical impedance spectroscopy for composite materials publication-title: Struct. Health Monit. doi: 10.1177/1475921712451954 – volume: 131 start-page: 524 year: 2019 ident: ref_188 article-title: Data-driven semi-supervised and supervised learning algorithms for health monitoring of pipes publication-title: Mech. Syst. Signal Process. doi: 10.1016/j.ymssp.2019.06.003 – volume: 116 start-page: 933 year: 2019 ident: ref_132 article-title: Experimental evaluation of the performance of arrays of MEMS accelerometers publication-title: Mech. Syst. Signal Process. doi: 10.1016/j.ymssp.2018.07.031 – volume: 22 start-page: 025011 year: 2012 ident: ref_187 article-title: Damage detection by using FBGs and strain field pattern recognition techniques publication-title: Smart Mater. Struct. – volume: 365 start-page: 303 year: 2006 ident: ref_30 article-title: An introduction to structural health monitoring publication-title: Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. doi: 10.1098/rsta.2006.1928 – volume: 46 start-page: 4908 year: 2007 ident: ref_104 article-title: Design alterations of a high power air transducer publication-title: Jpn. J. Appl. Phys. doi: 10.1143/JJAP.46.4908 – volume: 67 start-page: 10 year: 2015 ident: ref_86 article-title: Detection of cuts and impact damage at the aircraft wing slat by using Lamb wave method publication-title: Measurement doi: 10.1016/j.measurement.2015.02.007 – volume: 1650 start-page: 899 year: 2015 ident: ref_73 article-title: Economics of online structural health monitoring of wind turbines: Cost benefit analysis publication-title: AIP Conf. Proc. doi: 10.1063/1.4914695 – volume: Volume 8345 start-page: 834548 year: 2012 ident: ref_199 article-title: Decision support system for integrating remote sensing in bridge condition assessment and preservation publication-title: Sensors and Smart Structures Technologies for Civil, Mechanical, and Aerospace Systems 2012 – ident: ref_143 doi: 10.1109/ICPHM.2017.7998322 – volume: 16 start-page: 1187 year: 2013 ident: ref_35 article-title: Review of benchmark studies and guidelines for structural health monitoring publication-title: Adv. Struct. Eng. doi: 10.1260/1369-4332.16.7.1187 – ident: ref_36 doi: 10.1002/9781118443118 – volume: 23 start-page: 360 year: 2008 ident: ref_6 article-title: Fuzzy clustering of stability diagrams for vibration-based structural health monitoring publication-title: Comput.-Aided Civ. Infrastruct. Eng. doi: 10.1111/j.1467-8667.2008.00543.x – volume: 22 start-page: 2809 year: 2017 ident: ref_41 article-title: Design and implementation of an accurate, portable, and time-efficient impedance-based transceiver for structural health monitoring publication-title: IEEE/ASME Trans. Mechatron. doi: 10.1109/TMECH.2017.2761902 – ident: ref_197 doi: 10.1061/9780784413609.018 – ident: ref_144 doi: 10.1109/ICSENS.2016.7808731 – volume: 17 start-page: 226 year: 2017 ident: ref_9 article-title: Wireless MEMS-Based Accelerometer Sensor Boards for Structural Vibration Monitoring: A Review publication-title: IEEE Sens. J. doi: 10.1109/JSEN.2016.2630008 – volume: 60 start-page: 512 year: 2015 ident: ref_60 article-title: Development and validation of an automated operational modal analysis algorithm for vibration-based monitoring and tensile load estimation publication-title: Mech. Syst. Signal Process. doi: 10.1016/j.ymssp.2015.01.019 – volume: 22 start-page: 1931 year: 2015 ident: ref_13 article-title: Feature extraction and classification techniques for health monitoring of structures publication-title: Sci. Iranica Trans. A Civ. Eng. – ident: ref_18 doi: 10.1533/9781782422433.1.33 – volume: 84 start-page: 717 year: 2017 ident: ref_203 article-title: Comparison of alternatives to amplitude thresholding for onset detection of acoustic emission signals publication-title: Mech. Syst. Signal Process. doi: 10.1016/j.ymssp.2016.09.004 – ident: ref_91 doi: 10.3390/s18103426 – volume: 98 start-page: 139 year: 2018 ident: ref_157 article-title: On switching response surface models, with applications to the structural health monitoring of bridges publication-title: Mech. Syst. Signal Process. doi: 10.1016/j.ymssp.2017.04.022 – ident: ref_109 doi: 10.1111/jace.16242 – volume: 7 start-page: 95 year: 2014 ident: ref_174 article-title: Aspects regarding to the Design of the Feature Extraction Algorithms used at Structural Health Monitoring Systems publication-title: Res. Sci. Today – ident: ref_194 doi: 10.1002/stc.1851 – ident: ref_171 – volume: 274 start-page: 116 year: 2018 ident: ref_130 article-title: Prognosis of fatigue and impact induced damage in concrete using embedded piezo-transducers publication-title: Sens. Actuators A Phys. doi: 10.1016/j.sna.2018.03.005 – ident: ref_165 doi: 10.1533/9781845696825.1 – volume: 153 start-page: 317 year: 2017 ident: ref_189 article-title: Statistical pattern recognition approach for long-time monitoring of the G.Meazza stadium by means of AR models and PCA publication-title: Eng. Struct. doi: 10.1016/j.engstruct.2017.10.022 – volume: 542 start-page: 75 year: 2013 ident: ref_101 article-title: Piezoelectric transducers. Key Engineering Materials publication-title: Trans Tech Publ. – volume: 33 start-page: 539 year: 2011 ident: ref_119 article-title: Analysis of the strain transfer in a new FBG sensor for structural health monitoring publication-title: Eng. Struct. doi: 10.1016/j.engstruct.2010.11.012 – ident: ref_78 doi: 10.3390/s17020417 – volume: Volume 9439 start-page: 94390A year: 2015 ident: ref_133 article-title: MEMS inertial sensors for load monitoring of wind turbine blades publication-title: Smart Materials and Nondestructive Evaluation for Energy Systems 2015 – volume: Volume 10170 start-page: 101702G year: 2017 ident: ref_206 article-title: An application of Prospect Theory to a SHM-based decision problem publication-title: Health Monitoring of Structural and Biological Systems 2017 doi: 10.1117/12.2261212 – volume: 28 start-page: 024004 year: 2017 ident: ref_145 article-title: Malfunction diagnosis of sensors based on correlation of measurements publication-title: Meas. Sci. Technol. doi: 10.1088/1361-6501/aa52ed – ident: ref_55 doi: 10.1109/WiSEE.2013.6737554 – volume: 17 start-page: 1031 year: 2016 ident: ref_167 article-title: Canonical correlation analysis based fault diagnosis method for structural monitoring sensor networks publication-title: Smart Struct. Syst. doi: 10.12989/sss.2016.17.6.1031 – volume: 36 start-page: 5663 year: 2018 ident: ref_116 article-title: In-Fiber Integrated Sensor Array With Embedded Weakly Reflective Joint Surface publication-title: J. Lightwave Technol. doi: 10.1109/JLT.2018.2877991 – volume: 128 start-page: 89 year: 2018 ident: ref_74 article-title: Development of comprehensive heterodyne effect based inspection (CHEBI) method for inclusive monitoring of cracks publication-title: Measurement doi: 10.1016/j.measurement.2018.06.030 – volume: 20 start-page: 04014118 year: 2015 ident: ref_202 article-title: Categories of SHM deployments: Technologies and capabilities publication-title: J. Bridge Eng. doi: 10.1061/(ASCE)BE.1943-5592.0000735 – volume: 10 start-page: 446 year: 2001 ident: ref_20 article-title: Damage diagnosis using time series analysis of vibration signals publication-title: Smart Mater. Struct. doi: 10.1088/0964-1726/10/3/304 – ident: ref_103 doi: 10.3390/s18030809 – volume: 16 start-page: 2942 year: 2016 ident: ref_136 article-title: A novel wireless accelerometer board for measuring low-frequency and low-amplitude structural vibration publication-title: IEEE Sens. J. doi: 10.1109/JSEN.2016.2522940 – ident: ref_48 doi: 10.3390/s17061252 – ident: ref_17 – volume: 1 start-page: 214 year: 2016 ident: ref_125 article-title: Fabrication and characterization of PZT string based MEMS devices publication-title: J. Sci. Adv. Mater. Devices doi: 10.1016/j.jsamd.2016.05.004 – volume: 43 start-page: 254 year: 2012 ident: ref_191 article-title: Unsupervised and supervised classification of AE data collected during fatigue test on CMC at high temperature publication-title: Compos. Part A Appl. Sci. Manuf. doi: 10.1016/j.compositesa.2011.10.016 – volume: 61 start-page: 801 year: 2012 ident: ref_151 article-title: Wireless measurement system for structural health monitoring with high time-synchronization accuracy publication-title: IEEE Trans. Instrum. Meas. doi: 10.1109/TIM.2011.2170889 – volume: 15 start-page: 1800 year: 2015 ident: ref_153 article-title: Low-latency data acquisition hardware for real-time wireless sensor applications publication-title: IEEE Sens. J. doi: 10.1109/JSEN.2014.2366932 – ident: ref_46 doi: 10.3390/ma10070832 – volume: Volume 7389 start-page: 738914 year: 2009 ident: ref_118 article-title: Surface profile analysis using a fiber optic low-coherence interferometer publication-title: Optical Measurement Systems for Industrial Inspection VI doi: 10.1117/12.827823 – ident: ref_34 – volume: 386 start-page: 134 year: 2017 ident: ref_149 article-title: Guaranteeing robustness of structural condition monitoring to environmental variability publication-title: J. Sound Vib. doi: 10.1016/j.jsv.2016.08.038 – volume: 46 start-page: 342 year: 2010 ident: ref_84 article-title: Structural health monitoring techniques for aircraft composite structures publication-title: Prog. Aerosp. Sci. doi: 10.1016/j.paerosci.2010.05.001 – volume: 17 start-page: 1151 year: 2018 ident: ref_163 article-title: Multiway principal component analysis contributions for structural damage localization publication-title: Struct. Health Monit. doi: 10.1177/1475921717737971 – volume: 26 start-page: 276 year: 2018 ident: ref_59 article-title: Experimental Study about the Applicability of Traffic-induced Vibration for Bridge Monitoring publication-title: Eng. Lett. – volume: 25 start-page: 1 year: 2018 ident: ref_58 article-title: Vibration-based damage detection in a wind turbine using 1 year of data publication-title: Struct. Control Health Monit. doi: 10.1002/stc.2238 – ident: ref_63 – volume: Volume 10170 start-page: 1017028 year: 2017 ident: ref_108 article-title: Acoustic emission source modeling in a plate using buried moment tensors publication-title: Health Monitoring of Structural and Biological Systems 2017 doi: 10.1117/12.2260167 – volume: Volume 7293 start-page: 72930U year: 2009 ident: ref_53 article-title: A system approach for temperature dependency of impedance-based structural health monitoring publication-title: Smart Sensor Phenomena, Technology, Networks, and Systems 2009 doi: 10.1117/12.816285 – volume: 135 start-page: 194 year: 2017 ident: ref_207 article-title: Decision making framework for optimal SHM planning of ship structures considering availability and utility publication-title: Ocean Eng. doi: 10.1016/j.oceaneng.2017.02.030 – volume: 22 start-page: 1103 year: 2015 ident: ref_77 article-title: Signal-based nonlinear modelling for damage assessment under variable temperature conditions by means of acousto-ultrasonics publication-title: Struct. Control Health Monit. doi: 10.1002/stc.1735 – volume: 3 start-page: 69 year: 2004 ident: ref_79 article-title: Structural damage detection using independent component analysis publication-title: Struct. Health Monit. doi: 10.1177/1475921704041876 – volume: 4 start-page: 1 year: 2013 ident: ref_186 article-title: A data-driven method for predicting structural degradation using a piezoceramic array publication-title: Int. J. Progn. Health Manag. – volume: Volume 7981 start-page: 798109 year: 2011 ident: ref_47 article-title: Ultra-low power wireless sensing for long-term structural health monitoring publication-title: Sensors and Smart Structures Technologies for Civil, Mechanical, and Aerospace Systems 2011 – volume: 14 start-page: 7394 year: 2014 ident: ref_121 article-title: Fiber Bragg grating sensors toward structural health monitoring in composite materials: Challenges and solutions publication-title: Sensors doi: 10.3390/s140407394 – volume: 22 start-page: 883 year: 2018 ident: ref_40 article-title: Design and development of microstrip patch antenna with circular and rectangular slot for structural health monitoring publication-title: Pers. Ubiquitous Comput. doi: 10.1007/s00779-018-1130-9 – volume: 51 start-page: 338 year: 2015 ident: ref_102 article-title: Low-frequency broadband ultrasonic transducers for testing articles manufactured of large-structure and composite materials. Part 1. Complete and partial degeneracy of vibration modes in piezoelectric elements of different geometric shapes publication-title: Russ. J. Nondestruct. Test. doi: 10.1134/S1061830915060078 – volume: 23 start-page: 045006 year: 2014 ident: ref_49 article-title: Data-driven methodology to detect and classify structural changes under temperature variations publication-title: Smart Mater. Struct. doi: 10.1088/0964-1726/23/4/045006 – volume: 57 start-page: 190 year: 2015 ident: ref_87 article-title: The reflection of guided waves from simple dents in pipes publication-title: Ultrasonics doi: 10.1016/j.ultras.2014.11.012 – ident: ref_164 – volume: 4 start-page: 619 year: 2017 ident: ref_29 article-title: Structural health monitoring framework based on Internet of Things: A survey publication-title: IEEE Internet Things J. doi: 10.1109/JIOT.2017.2664072 – ident: ref_126 doi: 10.1109/ISQED.2018.8357313 – volume: 63 start-page: 65 year: 2017 ident: ref_57 article-title: Numerical study on mode curvature for damage detection of a drilling riser using transfer matrix technique publication-title: Appl. Ocean Res. doi: 10.1016/j.apor.2016.12.008 – volume: 30 start-page: 2347 year: 2008 ident: ref_31 article-title: Structural health monitoring and reliability estimation: Long span truss bridge application with environmental monitoring data publication-title: Eng. Struct. doi: 10.1016/j.engstruct.2008.01.013 – volume: 13 start-page: 82 year: 2014 ident: ref_43 article-title: Output-only structural health monitoring in changing environmental conditions by means of nonlinear system identification publication-title: Struct. Health Monit. doi: 10.1177/1475921713502836 – volume: 57 start-page: 39 year: 2018 ident: ref_70 article-title: Multi-objective probabilistic optimum monitoring planning considering fatigue damage detection, maintenance, reliability, service life and cost publication-title: Struct. Multidiscip. Optim. doi: 10.1007/s00158-017-1849-3 – ident: ref_10 doi: 10.1109/ICMOCE.2015.7489736 – ident: ref_127 doi: 10.3390/s18010262 – volume: Volume 8694 start-page: 86941N year: 2013 ident: ref_137 article-title: Experimental case studies on wireless and wired sensors publication-title: Nondestructive Characterization for Composite Materials, Aerospace Engineering, Civil Infrastructure, and Homeland Security 2013 doi: 10.1117/12.2012107 – volume: 365 start-page: 539 year: 2006 ident: ref_156 article-title: Effects of environmental and operational variability on structural health monitoring publication-title: Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. doi: 10.1098/rsta.2006.1935 – ident: ref_140 doi: 10.1007/978-3-7091-0399-9_1 – volume: 25 start-page: 053001 year: 2016 ident: ref_27 article-title: Guided wave based structural health monitoring: A review publication-title: Smart Mater. Struct. doi: 10.1088/0964-1726/25/5/053001 |
| SSID | ssj0023338 |
| Score | 2.600812 |
| SecondaryResourceType | review_article |
| Snippet | The damage identification process provides relevant information about the current state of a structure under inspection, and it can be approached from two... |
| SourceID | doaj pubmedcentral csuc proquest pubmed crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
| StartPage | 733 |
| SubjectTerms | Algorithms Aprenentatge automàtic Civil engineering Damage identification Data-driven algorithms Detectors Enginyeria elèctrica Estadística matemàtica Internet of Things Machine learning Matemàtiques i estadística Mathematical statistics Microelectromechanical systems Review Sensors Structural health monitoring Useful life Àrees temàtiques de la UPC |
| SummonAdditionalLinks | – databaseName: Health & Medical Collection dbid: 7X7 link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZg4UAPvB-BggzigJCiJrYTO1zQlqXiVCFBpb1Fjh9lJZq0m5RfwA9nJvamu6jiwiGHJE5kZz6PZzyZbwh5W2rhvNYiLR03qQCbN1Um92nmFdO61LIpQ7EJeXyslsvqa9xw6-NvlRudOCpq2xncIz8A0zeDxbQS2cfzixSrRmF0NZbQuEluYdlsxLlcXjlcHPyvwCbEwbU_6FmANN9Zg2amvzSRsf86M_PvvyW3lp-je__b8fvkbjQ86Twg5QG54dqHZG-LjvAR-b3QZ6BeaEje9XE3j65a-m1kmUWGDhrylmjQBfjcBzqnh-BwexriDBQzVuhq6OnIPHwWk5taOnQUrE160jvaebrQg04Xa1S2dL4VRX9MTo4-f__0JY1VGlJTqHxIG1sYYaXXvuRcM13kDYPBMlsyj8aOZ42yhVJag_jh40uruC9444rcw2XLn5BZ27XuGaFNoystPGMNOG42l8poo7SHMwNmRF4m5N1GbrWJFOZYSeNnDa4MirieRJyQN1PT88DbcV2j9yj8GtYWt4ZR1si1PZ3gwTLJao7JvkVCDhEi09uw7XihW5_WcZrXhayMYYIb5ozInFCVBYexEtJbGAOXCdnfgKSOyqKvrxCSkNfTbZjmGLvRresuoQ1Hyy4H5zshTwMep55whuFnCcORO0jd6erunXb1Y6QSlxgYZtnzf3frBbnDcJshy1NW7ZMZYM69JLfNr2HVr1-Nc-4PuRM4YQ priority: 102 providerName: ProQuest |
| Title | Damage Identification in Structural Health Monitoring: A Brief Review from its Implementation to the Use of Data-Driven Applications |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/32013073 https://www.proquest.com/docview/2550399940 https://www.proquest.com/docview/2350911717 https://recercat.cat/handle/2072/369415 https://pubmed.ncbi.nlm.nih.gov/PMC7038520 https://doaj.org/article/579cc243c2ec40e489d260947fd1c637 |
| Volume | 20 |
| WOSCitedRecordID | wos000517786200157&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: DOA dateStart: 20010101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: M~E dateStart: 20010101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: 7X7 dateStart: 20010101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central Database Suite (ProQuest) customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: BENPR dateStart: 20010101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: PIMPY dateStart: 20010101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nj9MwEB1B4QAHxDeBpRoQB4QUkdhJ7HBraVdw2KoCViony3FsUYlNUdPlyIkfzjhOoxatxIVDI8VxI9vzHM_LZJ4BXhU6s07rLC4sN3FGPm8sTerixEmmdaFFVYTNJsRiIVercnmw1Zf_JizIA4eBI8JeGsMybpg1WWIzWdbkgpeZcHVqCt7lkSei3JOpnmpxYl5BR4gTqX_bsgBmfrT6jEx7aXqt_qsczL-_kzxYeE7vwp3eY8RJaOk9uGab-3D7QEfwAfye6Qt6LmDIunX9azhcN_i5k4f10hoYEo4wTGL_v3c4wSkxZYchQIA-1QTXuxY7yeCLPiupwd0GyU3E89bixuFM73Q82_qnJE4Owt8P4fx0_uX9h7jfXiE2uUx3cVXnJquF067gXDOdpxUriU7WBXPeS3GsknUupdZkNxo7UUvucl7ZPHVUXPNHMGo2jX0CWFW61JljrCLGVadCGm2kdnRmaP1Piwhe74ddmV573G-B8V0RB_EWUoOFIng5VP0RBDeuqvTG207RomC31EvlRbKHE_8jTDDFfZZuHsHUW3i4m6_bFRDMVA8z9S-YRXCyx4fqZ3mriI4l5ODRoEXwYrhM89MHXXRjN5dUh3uXLCXWHMHjAKehJZz5uLGg7ogjoB019fhKs_7WaYALH9FlydP_0bdncIv5twhJGrPyBEaETPscbpqfu3W7HcN1sRLdUY7hxnS-WH4ad5ONjme_5lS2_Hi2_PoHdecwEg |
| linkProvider | Directory of Open Access Journals |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwELbKggQceD8WChgEUoUUNbGT2EFCaMtStWpZIdFKezOOY0MkmpTNFsSd38NvZCbOpruo4tYDhxwSO5adfPPyeGYIeZ7q2Dqt4yC13AQx6LyBNJELQieZ1qkWeeqLTYjJRE6n2Yc18nsRC4PHKhc8sWXURW1wj3wTVN8QhGkWh2-OvwVYNQq9q4sSGh4We_bnDzDZmte7Y_i_LxjbfnfwdifoqgoEJpHRPMiLxMSFcNqlnGumkyhnMCorUuZQODuWyyKRUmuYruBcFJK7hOc2iRw8LjiMe4FcBD4u0NgT01MDj4O957MXcZ6Fmw3zJMRXZN7ANCemqxBwllr79-nMJXG3ff1_-1A3yLVOsaYjTwk3yZqtbpGrS-kWb5NfY30E7JP64GTX7VbSsqIf2yy6mIGE-rgs6nkdvveKjujWrLSOej8KxYgcWs4b2mZWPuqCtyo6rylo0_SwsbR2dKznOhjPUJjQ0dIpgTvk8Fw-w10yqOrK3ic0z3WmY8dYDoZpEQlptJHawZ0BNSlKh2RjgRNluhTtWCnkqwJTDSGlekgNybO-67HPS3JWp5cINgWy085glQpzifc3eLFQMMUxmDkZki2EZD8a9m0f1LPPqmNjKhGZMSzmhlkThzaWWQEGcRYLV8AauBiS9QUoVccMG3WKyCF52jcDG0PflK5sfQJ9OGqukYhgiHse__1MOEP3uoDliBXKWJnqaktVfmlTpQt0fLPwwb-n9YRc3jl4v6_2dyd7D8kVhlsqYRSwbJ0MAH_2Eblkvs_LZva4pXdKPp033fwBEk2VQg |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lj9MwEB4tXYTgwPtRWMAgkBBS1MROYgcJoS6lolqoKsFKy8k4jg2V2GRpsiDu_Cp-HeM6DS1acdsDhxySOI6dfPPyeGYAHqUqNlapOEgN00GMOm8gdGSD0AqqVKp4nvpiE3w6FQcH2WwLfq1iYdy2yhVPXDLqotJujXyAqm-IwjSLw4Ftt0XMRuMXR18DV0HKeVpX5TQ8RPbMj-9ovtXPJyP8148pHb96__J10FYYCHQioibIi0THBbfKpowpqpIop_gGWqTUOkFtaS6KRAilcOicMV4IZhOWmySyeLlg2O8Z2EaVPKY92J5N3s4-dOYeQ-vP5zJiLAsHNfUExTYkYE_Xx7qtF3CSkvv3Xs014Te-9D9_tstwsVW5ydDTyBXYMuVVuLCWiPEa_BypQ2SsxIct23Ydk8xL8m6ZX9flJiE-Yot4Luiee0aGZHcxN5Z4DwtxsTpk3tRkmXP5sA3rKklTEdSzyX5tSGXJSDUqGC2cmCHDtf0D12H_VD7DDeiVVWluAclzlanYUpqjyVpEXGilhbJ4plGBitI-PFlhRuo2eburIfJFohHn4CU7ePXhYdf0yGcsOanRUwc8iVLVLHCW0mUZ707cQUNOJXNhzkkfdh08u95c2-WFavFJtgxOJjzTmsZMU6Pj0MQiK9BUzmJuC5wD433YWQFUtmyyln_Q2YcH3W1kcM5rpUpTHWMb5nTaiEfYxU1PC91IGHWOd47T4RtUsjHUzTvl_PMyiTp3LnEa3v73sO7DOSQX-WYy3bsD56lbawmjgGY70EP4mbtwVn9r5vXiXkv8BD6eNuH8BuqPn5E |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Damage+Identification+in+Structural+Health+Monitoring%3A+A+Brief+Review+from+its+Implementation+to+the+Use+of+Data-Driven+Applications&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Tibaduiza+Burgos%2C+Diego+A.&rft.au=Gomez+Vargas%2C+Ricardo+C.&rft.au=Pedraza%2C+Cesar&rft.au=Agis%2C+David&rft.date=2020-01-29&rft.pub=MDPI&rft.eissn=1424-8220&rft.volume=20&rft.issue=3&rft_id=info:doi/10.3390%2Fs20030733&rft_id=info%3Apmid%2F32013073&rft.externalDocID=PMC7038520 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon |