A Multihead Attention Deep Learning Algorithm to Detect Amblyopia Using Fixation Eye Movements

To develop an attention-based deep learning (DL) model based on eye movements acquired during a simple visual fixation task to detect amblyopic subjects across different types and severity from controls. An observational study. We recruited 40 controls and 95 amblyopic subjects (anisometropic = 32;...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Ophthalmology science (Online) Jg. 5; H. 5; S. 100775
Hauptverfasser: Upadhyaya, Dipak P., Cakir, Gokce, Ramat, Stefano, Albert, Jeffrey, Shaikh, Aasef, Sahoo, Satya S., Ghasia, Fatema
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Netherlands Elsevier Inc 01.09.2025
Elsevier
Schlagworte:
ISSN:2666-9145, 2666-9145
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract To develop an attention-based deep learning (DL) model based on eye movements acquired during a simple visual fixation task to detect amblyopic subjects across different types and severity from controls. An observational study. We recruited 40 controls and 95 amblyopic subjects (anisometropic = 32; strabismic = 29; and mixed = 34) at the Cleveland Clinic from 2020 to 2024. Binocular horizontal and vertical eye positions were recorded using infrared video-oculography during binocular and monocular viewing. Amblyopic subjects were classified as those without nystagmus (n = 42) and those with nystagmus with fusion maldevelopment nystagmus (FMN) or nystagmus that did not meet the criteria of FMN or infantile nystagmus syndrome (n = 53). A multihead attention-based transformer encoder model was trained and cross-validated on deblinked and denoised eye position data acquired during fixation. Detection of amblyopia across types (anisometropia, strabismus, or mixed) and severity (treated, mild, moderate, or severe) and subjects with and without nystagmus was evaluated with area under the receiver-operator characteristic curves, area under the precision–recall curve (AUPRC), and accuracy. Area under the receiver-operator characteristic curves for classification of subjects per type were 0.70 ± 0.16 for anisometropia (AUPRC: 0.72 ± 0.08), 0.78 ± 0.15 for strabismus (AUPRC: 0.81 ± 0.16), and 0.80 ± 0.13 for mixed (AUPRC: 0.82 ± 0.15). Area under the receiver-operator characteristic curves for classification of amblyopia subjects per severity were 0.77 ± 0.12 for treated/mild (AUPRC: 0.76 ± 0.18), and 0.78 ± 0.09 for moderate/severe (AUPRC: 0.79 ± 0.16). Th area under the receiver-operator characteristic curve for classification of subjects with nystagmus was 0.83 ± 0.11 (AUPRC: 0.81 ± 0.18), and the area under the receiver-operator characteristic curve for those without nystagmus was 0.75 ± 0.15 (AUPRC: 0.76 ± 0.09). The multihead transformer DL model classified amblyopia subjects regardless of the type, severity, and presence of nystagmus. The model's ability to identify amblyopia using eye movements alone demonstrates the feasibility of using eye-tracking data in clinical settings to perform objective classifications and complement traditional amblyopia evaluations. Proprietary or commercial disclosure may be found in the Footnotes and Disclosures at the end of this article.
AbstractList To develop an attention-based deep learning (DL) model based on eye movements acquired during a simple visual fixation task to detect amblyopic subjects across different types and severity from controls. An observational study. We recruited 40 controls and 95 amblyopic subjects (anisometropic = 32; strabismic = 29; and mixed = 34) at the Cleveland Clinic from 2020 to 2024. Binocular horizontal and vertical eye positions were recorded using infrared video-oculography during binocular and monocular viewing. Amblyopic subjects were classified as those without nystagmus (n = 42) and those with nystagmus with fusion maldevelopment nystagmus (FMN) or nystagmus that did not meet the criteria of FMN or infantile nystagmus syndrome (n = 53). A multihead attention-based transformer encoder model was trained and cross-validated on deblinked and denoised eye position data acquired during fixation. Detection of amblyopia across types (anisometropia, strabismus, or mixed) and severity (treated, mild, moderate, or severe) and subjects with and without nystagmus was evaluated with area under the receiver-operator characteristic curves, area under the precision-recall curve (AUPRC), and accuracy. Area under the receiver-operator characteristic curves for classification of subjects per type were 0.70 ± 0.16 for anisometropia (AUPRC: 0.72 ± 0.08), 0.78 ± 0.15 for strabismus (AUPRC: 0.81 ± 0.16), and 0.80 ± 0.13 for mixed (AUPRC: 0.82 ± 0.15). Area under the receiver-operator characteristic curves for classification of amblyopia subjects per severity were 0.77 ± 0.12 for treated/mild (AUPRC: 0.76 ± 0.18), and 0.78 ± 0.09 for moderate/severe (AUPRC: 0.79 ± 0.16). Th area under the receiver-operator characteristic curve for classification of subjects with nystagmus was 0.83 ± 0.11 (AUPRC: 0.81 ± 0.18), and the area under the receiver-operator characteristic curve for those without nystagmus was 0.75 ± 0.15 (AUPRC: 0.76 ± 0.09). The multihead transformer DL model classified amblyopia subjects regardless of the type, severity, and presence of nystagmus. The model's ability to identify amblyopia using eye movements alone demonstrates the feasibility of using eye-tracking data in clinical settings to perform objective classifications and complement traditional amblyopia evaluations. Proprietary or commercial disclosure may be found in the Footnotes and Disclosures at the end of this article.
Objective: To develop an attention-based deep learning (DL) model based on eye movements acquired during a simple visual fixation task to detect amblyopic subjects across different types and severity from controls. Design: An observational study. Subjects: We recruited 40 controls and 95 amblyopic subjects (anisometropic = 32; strabismic = 29; and mixed = 34) at the Cleveland Clinic from 2020 to 2024. Methods: Binocular horizontal and vertical eye positions were recorded using infrared video-oculography during binocular and monocular viewing. Amblyopic subjects were classified as those without nystagmus (n = 42) and those with nystagmus with fusion maldevelopment nystagmus (FMN) or nystagmus that did not meet the criteria of FMN or infantile nystagmus syndrome (n = 53). A multihead attention-based transformer encoder model was trained and cross-validated on deblinked and denoised eye position data acquired during fixation. Main Outcome Measures: Detection of amblyopia across types (anisometropia, strabismus, or mixed) and severity (treated, mild, moderate, or severe) and subjects with and without nystagmus was evaluated with area under the receiver-operator characteristic curves, area under the precision–recall curve (AUPRC), and accuracy. Results: Area under the receiver-operator characteristic curves for classification of subjects per type were 0.70 ± 0.16 for anisometropia (AUPRC: 0.72 ± 0.08), 0.78 ± 0.15 for strabismus (AUPRC: 0.81 ± 0.16), and 0.80 ± 0.13 for mixed (AUPRC: 0.82 ± 0.15). Area under the receiver-operator characteristic curves for classification of amblyopia subjects per severity were 0.77 ± 0.12 for treated/mild (AUPRC: 0.76 ± 0.18), and 0.78 ± 0.09 for moderate/severe (AUPRC: 0.79 ± 0.16). Th area under the receiver-operator characteristic curve for classification of subjects with nystagmus was 0.83 ± 0.11 (AUPRC: 0.81 ± 0.18), and the area under the receiver-operator characteristic curve for those without nystagmus was 0.75 ± 0.15 (AUPRC: 0.76 ± 0.09). Conclusions: The multihead transformer DL model classified amblyopia subjects regardless of the type, severity, and presence of nystagmus. The model's ability to identify amblyopia using eye movements alone demonstrates the feasibility of using eye-tracking data in clinical settings to perform objective classifications and complement traditional amblyopia evaluations. Financial Disclosure(s): Proprietary or commercial disclosure may be found in the Footnotes and Disclosures at the end of this article.
To develop an attention-based deep learning (DL) model based on eye movements acquired during a simple visual fixation task to detect amblyopic subjects across different types and severity from controls. An observational study. We recruited 40 controls and 95 amblyopic subjects (anisometropic = 32; strabismic = 29; and mixed = 34) at the Cleveland Clinic from 2020 to 2024. Binocular horizontal and vertical eye positions were recorded using infrared video-oculography during binocular and monocular viewing. Amblyopic subjects were classified as those without nystagmus (n = 42) and those with nystagmus with fusion maldevelopment nystagmus (FMN) or nystagmus that did not meet the criteria of FMN or infantile nystagmus syndrome (n = 53). A multihead attention-based transformer encoder model was trained and cross-validated on deblinked and denoised eye position data acquired during fixation. Detection of amblyopia across types (anisometropia, strabismus, or mixed) and severity (treated, mild, moderate, or severe) and subjects with and without nystagmus was evaluated with area under the receiver-operator characteristic curves, area under the precision–recall curve (AUPRC), and accuracy. Area under the receiver-operator characteristic curves for classification of subjects per type were 0.70 ± 0.16 for anisometropia (AUPRC: 0.72 ± 0.08), 0.78 ± 0.15 for strabismus (AUPRC: 0.81 ± 0.16), and 0.80 ± 0.13 for mixed (AUPRC: 0.82 ± 0.15). Area under the receiver-operator characteristic curves for classification of amblyopia subjects per severity were 0.77 ± 0.12 for treated/mild (AUPRC: 0.76 ± 0.18), and 0.78 ± 0.09 for moderate/severe (AUPRC: 0.79 ± 0.16). Th area under the receiver-operator characteristic curve for classification of subjects with nystagmus was 0.83 ± 0.11 (AUPRC: 0.81 ± 0.18), and the area under the receiver-operator characteristic curve for those without nystagmus was 0.75 ± 0.15 (AUPRC: 0.76 ± 0.09). The multihead transformer DL model classified amblyopia subjects regardless of the type, severity, and presence of nystagmus. The model's ability to identify amblyopia using eye movements alone demonstrates the feasibility of using eye-tracking data in clinical settings to perform objective classifications and complement traditional amblyopia evaluations. Proprietary or commercial disclosure may be found in the Footnotes and Disclosures at the end of this article.
To develop an attention-based deep learning (DL) model based on eye movements acquired during a simple visual fixation task to detect amblyopic subjects across different types and severity from controls.ObjectiveTo develop an attention-based deep learning (DL) model based on eye movements acquired during a simple visual fixation task to detect amblyopic subjects across different types and severity from controls.An observational study.DesignAn observational study.We recruited 40 controls and 95 amblyopic subjects (anisometropic = 32; strabismic = 29; and mixed = 34) at the Cleveland Clinic from 2020 to 2024.SubjectsWe recruited 40 controls and 95 amblyopic subjects (anisometropic = 32; strabismic = 29; and mixed = 34) at the Cleveland Clinic from 2020 to 2024.Binocular horizontal and vertical eye positions were recorded using infrared video-oculography during binocular and monocular viewing. Amblyopic subjects were classified as those without nystagmus (n = 42) and those with nystagmus with fusion maldevelopment nystagmus (FMN) or nystagmus that did not meet the criteria of FMN or infantile nystagmus syndrome (n = 53). A multihead attention-based transformer encoder model was trained and cross-validated on deblinked and denoised eye position data acquired during fixation.MethodsBinocular horizontal and vertical eye positions were recorded using infrared video-oculography during binocular and monocular viewing. Amblyopic subjects were classified as those without nystagmus (n = 42) and those with nystagmus with fusion maldevelopment nystagmus (FMN) or nystagmus that did not meet the criteria of FMN or infantile nystagmus syndrome (n = 53). A multihead attention-based transformer encoder model was trained and cross-validated on deblinked and denoised eye position data acquired during fixation.Detection of amblyopia across types (anisometropia, strabismus, or mixed) and severity (treated, mild, moderate, or severe) and subjects with and without nystagmus was evaluated with area under the receiver-operator characteristic curves, area under the precision-recall curve (AUPRC), and accuracy.Main Outcome MeasuresDetection of amblyopia across types (anisometropia, strabismus, or mixed) and severity (treated, mild, moderate, or severe) and subjects with and without nystagmus was evaluated with area under the receiver-operator characteristic curves, area under the precision-recall curve (AUPRC), and accuracy.Area under the receiver-operator characteristic curves for classification of subjects per type were 0.70 ± 0.16 for anisometropia (AUPRC: 0.72 ± 0.08), 0.78 ± 0.15 for strabismus (AUPRC: 0.81 ± 0.16), and 0.80 ± 0.13 for mixed (AUPRC: 0.82 ± 0.15). Area under the receiver-operator characteristic curves for classification of amblyopia subjects per severity were 0.77 ± 0.12 for treated/mild (AUPRC: 0.76 ± 0.18), and 0.78 ± 0.09 for moderate/severe (AUPRC: 0.79 ± 0.16). Th area under the receiver-operator characteristic curve for classification of subjects with nystagmus was 0.83 ± 0.11 (AUPRC: 0.81 ± 0.18), and the area under the receiver-operator characteristic curve for those without nystagmus was 0.75 ± 0.15 (AUPRC: 0.76 ± 0.09).ResultsArea under the receiver-operator characteristic curves for classification of subjects per type were 0.70 ± 0.16 for anisometropia (AUPRC: 0.72 ± 0.08), 0.78 ± 0.15 for strabismus (AUPRC: 0.81 ± 0.16), and 0.80 ± 0.13 for mixed (AUPRC: 0.82 ± 0.15). Area under the receiver-operator characteristic curves for classification of amblyopia subjects per severity were 0.77 ± 0.12 for treated/mild (AUPRC: 0.76 ± 0.18), and 0.78 ± 0.09 for moderate/severe (AUPRC: 0.79 ± 0.16). Th area under the receiver-operator characteristic curve for classification of subjects with nystagmus was 0.83 ± 0.11 (AUPRC: 0.81 ± 0.18), and the area under the receiver-operator characteristic curve for those without nystagmus was 0.75 ± 0.15 (AUPRC: 0.76 ± 0.09).The multihead transformer DL model classified amblyopia subjects regardless of the type, severity, and presence of nystagmus. The model's ability to identify amblyopia using eye movements alone demonstrates the feasibility of using eye-tracking data in clinical settings to perform objective classifications and complement traditional amblyopia evaluations.ConclusionsThe multihead transformer DL model classified amblyopia subjects regardless of the type, severity, and presence of nystagmus. The model's ability to identify amblyopia using eye movements alone demonstrates the feasibility of using eye-tracking data in clinical settings to perform objective classifications and complement traditional amblyopia evaluations.Proprietary or commercial disclosure may be found in the Footnotes and Disclosures at the end of this article.Financial DisclosuresProprietary or commercial disclosure may be found in the Footnotes and Disclosures at the end of this article.
ObjectiveTo develop an attention-based deep learning (DL) model based on eye movements acquired during a simple visual fixation task to detect amblyopic subjects across different types and severity from controls. DesignAn observational study. SubjectsWe recruited 40 controls and 95 amblyopic subjects (anisometropic = 32; strabismic = 29; and mixed = 34) at the Cleveland Clinic from 2020 to 2024. MethodsBinocular horizontal and vertical eye positions were recorded using infrared video-oculography during binocular and monocular viewing. Amblyopic subjects were classified as those without nystagmus (n = 42) and those with nystagmus with fusion maldevelopment nystagmus (FMN) or nystagmus that did not meet the criteria of FMN or infantile nystagmus syndrome (n = 53). A multihead attention-based transformer encoder model was trained and cross-validated on deblinked and denoised eye position data acquired during fixation. Main Outcome MeasuresDetection of amblyopia across types (anisometropia, strabismus, or mixed) and severity (treated, mild, moderate, or severe) and subjects with and without nystagmus was evaluated with area under the receiver-operator characteristic curves, area under the precision–recall curve (AUPRC), and accuracy. ResultsArea under the receiver-operator characteristic curves for classification of subjects per type were 0.70 ± 0.16 for anisometropia (AUPRC: 0.72 ± 0.08), 0.78 ± 0.15 for strabismus (AUPRC: 0.81 ± 0.16), and 0.80 ± 0.13 for mixed (AUPRC: 0.82 ± 0.15). Area under the receiver-operator characteristic curves for classification of amblyopia subjects per severity were 0.77 ± 0.12 for treated/mild (AUPRC: 0.76 ± 0.18), and 0.78 ± 0.09 for moderate/severe (AUPRC: 0.79 ± 0.16). Th area under the receiver-operator characteristic curve for classification of subjects with nystagmus was 0.83 ± 0.11 (AUPRC: 0.81 ± 0.18), and the area under the receiver-operator characteristic curve for those without nystagmus was 0.75 ± 0.15 (AUPRC: 0.76 ± 0.09). ConclusionsThe multihead transformer DL model classified amblyopia subjects regardless of the type, severity, and presence of nystagmus. The model's ability to identify amblyopia using eye movements alone demonstrates the feasibility of using eye-tracking data in clinical settings to perform objective classifications and complement traditional amblyopia evaluations. Financial Disclosure(s)Proprietary or commercial disclosure may be found in the Footnotes and Disclosures at the end of this article.
ArticleNumber 100775
Author Sahoo, Satya S.
Cakir, Gokce
Albert, Jeffrey
Shaikh, Aasef
Ramat, Stefano
Upadhyaya, Dipak P.
Ghasia, Fatema
Author_xml – sequence: 1
  givenname: Dipak P.
  surname: Upadhyaya
  fullname: Upadhyaya, Dipak P.
  organization: Department of Computer and Systems Engineering, School of Engineering, Case Western Reserve University, Cleveland, Ohio
– sequence: 2
  givenname: Gokce
  surname: Cakir
  fullname: Cakir, Gokce
  organization: Department of Ophthalmology, Cole Eye Institute, Cleveland Clinic, Cleveland, Ohio
– sequence: 3
  givenname: Stefano
  surname: Ramat
  fullname: Ramat, Stefano
  organization: Department of Biomedical Engineering, University of Pavia, Pavia, Lombardy, Italy
– sequence: 4
  givenname: Jeffrey
  surname: Albert
  fullname: Albert, Jeffrey
  organization: Department of Population and Quantitative Health Sciences, School of Medicine, Case Western Reserve University, Cleveland, Ohio
– sequence: 5
  givenname: Aasef
  surname: Shaikh
  fullname: Shaikh, Aasef
  organization: Daroff-Dell'Osso Ocular Motility Laboratory, Louis Stokes Cleveland VA Medical Center, Cleveland, Ohio
– sequence: 6
  givenname: Satya S.
  surname: Sahoo
  fullname: Sahoo, Satya S.
  email: satya.sahoo@case.edu
  organization: Department of Computer and Systems Engineering, School of Engineering, Case Western Reserve University, Cleveland, Ohio
– sequence: 7
  givenname: Fatema
  surname: Ghasia
  fullname: Ghasia, Fatema
  email: ghasiaf@ccf.org
  organization: Department of Ophthalmology, Cole Eye Institute, Cleveland Clinic, Cleveland, Ohio
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40458668$$D View this record in MEDLINE/PubMed
BookMark eNqFUsFu1DAQjVARLaU_wAHlyGW3M07iJAiBVqWFSltxgF6xHGey6yWxF9u76v59nW6pWiTgZHv83hvNvPcyOTDWUJK8RpgiID9dTW_s2k8ZsCIWoCyLZ8kR45xPasyLg0f3w-TE-xVARGLGcnyRHOaQFxXn1VHyY5ZebfqglyTbdBYCmaCtST8RrdM5SWe0WaSzfmGdDsshDTZ-BVIhnQ1Nv7NrLdNrP2Iu9I28o57vKL2yWxqilH-VPO9k7-nk_jxOri_Ov599mcy_fr48m80nqqgwTBrWclVV0JY8hwwYcgaqLLksgIB1rKsRgbEaGlCkMsT4RmxQVlAxqXh2nFzudVsrV2Lt9CDdTlipxV3BuoWQLmjVk5BKFXmWdUhdmdeEDeSqrGEs1DXwPGp93GutN81ArYpzONk_EX36Y_RSLOxWIEMWB6ijwtt7BWd_bcgHMWivqO-lIbvxImNYsKyOlkTom8fNHrr8digC2B6gnPXeUfcAQRBjEsRKjEkQYxLEPgmR9H5PorjzrSYnvNJkFLXaRfPiUvS_6R_-oKteG61k_5N25Fd240x0U6DwTID4NkZtTBor4khlNi7g3d8F_tf9FuT54nI
Cites_doi 10.3109/09273972.2011.600423
10.1016/j.ajo.2024.06.021
10.1007/s10278-014-9758-0
10.1001/jamaophthalmol.2015.4486
10.1016/j.ophtha.2009.04.034
10.1001/jama.2016.17216
10.1016/j.jaapos.2004.08.009
10.1111/j.0956-7976.2004.00697.x
10.3390/jcm8050633
10.1016/j.jns.2022.120373
10.1016/j.jns.2023.120721
10.1016/bs.pbr.2019.04.024
10.1016/S0161-6420(96)30753-7
10.1167/iovs.12-11054
10.3758/s13428-017-0860-3
10.1167/iovs.12-11400
10.3109/09273970903234032
10.1136/bjo.66.1.64
10.1016/j.jcjo.2012.05.002
10.1016/j.ophtha.2006.01.068
10.22336/rjo.2020.56
10.1136/bmj.324.7353.1549
10.2147/EB.S300454
10.1016/S0042-6989(03)00084-1
10.3310/hta12250
10.1016/j.ajo.2017.11.017
10.1167/iovs.14-14745
10.1186/1471-2415-9-3
10.1016/j.visres.2015.01.016
10.1016/j.jns.2022.120438
10.1080/09286586.2001.11644257
10.1080/09273972.2018.1500618
10.16910/jemr.12.6.10
10.1161/CIRCULATIONAHA.105.594929
10.1016/j.visres.2004.09.029
10.1371/journal.pone.0149953
10.1097/ICU.0000000000000593
10.1155/2019/6817839
10.1016/j.neuron.2005.11.033
10.1167/iovs.12-9941
10.1136/bjophthalmol-2019-314759
10.1038/eye.2011.4
10.1038/s41598-020-79077-5
10.1167/tvst.10.1.33
10.1007/s00221-024-06936-2
10.1167/iovs.17-22389
10.4103/ijph.ijph_1848_21
10.3758/s13428-018-1050-7
10.1007/BF00578761
10.1016/j.ophtha.2006.01.069
10.1016/0042-6989(78)90001-9
10.1016/j.yaoo.2016.03.007
10.1167/iovs.65.3.19
10.1038/eye.1994.156
10.1016/j.jaapos.2017.10.001
10.1016/j.jaapos.2016.01.004
10.16910/jemr.12.6.9
10.1186/1475-925X-12-41
10.1167/iovs.63.2.33
10.1016/j.jaapos.2006.08.014
10.1016/j.patrec.2017.09.012
10.1167/iovs.09-4236
10.1016/j.cmpb.2017.01.002
10.3389/fped.2022.819998
10.1109/TBME.1985.325586
10.1136/bmjopen-2015-009207
10.1167/iovs.18-24794
10.1167/iovs.61.10.43
10.1167/iovs.10-5882
10.1016/S0161-6420(93)31617-9
10.1136/bmjopen-2019-032138
10.1371/journal.pone.0128428
ContentType Journal Article
Copyright 2025 American Academy of Ophthalmology
American Academy of Ophthalmology
2025 by the American Academy of Ophthalmologyé.
2025 by the American Academy of Ophthalmologyé. 2025 American Academy of Ophthalmology
Copyright_xml – notice: 2025 American Academy of Ophthalmology
– notice: American Academy of Ophthalmology
– notice: 2025 by the American Academy of Ophthalmologyé.
– notice: 2025 by the American Academy of Ophthalmologyé. 2025 American Academy of Ophthalmology
DBID 6I.
AAFTH
AAYXX
CITATION
NPM
7X8
5PM
DOA
DOI 10.1016/j.xops.2025.100775
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList PubMed



MEDLINE - Academic

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 2666-9145
EndPage 100775
ExternalDocumentID oai_doaj_org_article_acc5433f1ef749e1b04c7903f1e99064
PMC12127649
40458668
10_1016_j_xops_2025_100775
S2666914525000739
1_s2_0_S2666914525000739
Genre Journal Article
GrantInformation_xml – fundername: US National Institutes of Health
  funderid: https://doi.org/10.13039/100000002
– fundername: Research to Prevent Blindness
  funderid: https://doi.org/10.13039/100001818
– fundername: Blind Children's Foundation
– fundername: Lerner Research Institute Artificial Intelligence in Medicine
– fundername: Cleveland Clinic RPC
– fundername: Clinical and Translational Science Collaborative of Cleveland
  funderid: https://doi.org/10.13039/100012729
– fundername: US Department of Defense
  grantid: W81XWH2110859
  funderid: https://doi.org/10.13039/100000005
– fundername: Dravet Syndrome Foundation
  funderid: https://doi.org/10.13039/100009712
– fundername: Cleveland Eye Bank
  funderid: https://doi.org/10.13039/100018313
GroupedDBID .1-
.FO
0R~
AAEDW
AALRI
AAXUO
AAYWO
ACVFH
ADCNI
ADVLN
AEUPX
AFJKZ
AFPUW
AFRHN
AIGII
AITUG
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
APXCP
EBS
FDB
GROUPED_DOAJ
M~E
OK1
ROL
RPM
Z5R
6I.
AAFTH
AAYXX
CITATION
NPM
7X8
5PM
ID FETCH-LOGICAL-c581t-b2d6c880d76403021620c776a50e02f2f91102290b0cec31191111b1a8082ac63
IEDL.DBID DOA
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001489503300004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2666-9145
IngestDate Fri Oct 03 12:50:56 EDT 2025
Thu Aug 21 18:24:40 EDT 2025
Wed Jul 02 02:46:39 EDT 2025
Sun Jun 29 02:53:01 EDT 2025
Thu Nov 13 04:35:55 EST 2025
Sat Oct 11 16:51:15 EDT 2025
Sun Oct 19 01:20:52 EDT 2025
Sat Oct 11 07:32:40 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords Strabismus
D
FMN
DL
MV
Fixation eye movements
FEM
AEV
BV
AUPRC
FEV
Amblyopia
Artificial intelligence
Eye tracking
fixation eye movement
amblyopic eye viewing
binocular viewing
fusion maldevelopment nystagmus
deep learning
area under the precision–recall curve
diopters
fellow eye viewing
monocular viewin
Language English
License This is an open access article under the CC BY-NC-ND license.
2025 by the American Academy of Ophthalmologyé.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c581t-b2d6c880d76403021620c776a50e02f2f91102290b0cec31191111b1a8082ac63
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://doaj.org/article/acc5433f1ef749e1b04c7903f1e99064
PMID 40458668
PQID 3215239000
PQPubID 23479
PageCount 1
ParticipantIDs doaj_primary_oai_doaj_org_article_acc5433f1ef749e1b04c7903f1e99064
pubmedcentral_primary_oai_pubmedcentral_nih_gov_12127649
proquest_miscellaneous_3215239000
pubmed_primary_40458668
crossref_primary_10_1016_j_xops_2025_100775
elsevier_sciencedirect_doi_10_1016_j_xops_2025_100775
elsevier_clinicalkeyesjournals_1_s2_0_S2666914525000739
elsevier_clinicalkey_doi_10_1016_j_xops_2025_100775
PublicationCentury 2000
PublicationDate 2025-09-01
PublicationDateYYYYMMDD 2025-09-01
PublicationDate_xml – month: 09
  year: 2025
  text: 2025-09-01
  day: 01
PublicationDecade 2020
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle Ophthalmology science (Online)
PublicationTitleAlternate Ophthalmol Sci
PublicationYear 2025
Publisher Elsevier Inc
Elsevier
Publisher_xml – name: Elsevier Inc
– name: Elsevier
References Estes, Estes, West (bib70) 2007; 11
Engbert, Kliegl (bib57) 2003; 43
Carlton, Kaltenthaler (bib16) 2011; 25
Gulshan, Peng, Coram (bib47) 2016; 316
Zheng, Yao, Lu (bib73) 2021; 10
Bhutada, Jacobs, Murray (bib12) 2022; 442
Nishimura, Wong, Cohen (bib23) 2019; 9
Dobson, Teller (bib28) 1978; 18
Ghasia, Tychsen (bib30) 2024; 267
Niechwiej-Szwedo, Colpa, Wong (bib15) 2019; 2019
Chen, Otero-Millan, Kumar (bib11) 2018; 59
Chung, Kumar, Li, Levi (bib33) 2015; 114
Gonzalez, Wong, Niechwiej-Szwedo (bib35) 2012; 53
Niechwiej-Szwedo, Goltz, Chandrakumar (bib10) 2010; 51
Sousa de Almeida, Silva, Teixeira (bib72) 2015; 28
Cotter, Pediatric Eye Disease Investigator, Edwards (bib53) 2006; 113
Carlton, Karnon, Czoski-Murray (bib21) 2008; 12
Langeslag-Smith, Vandal, Briane (bib24) 2015; 5
Fu, Hong, Su (bib4) 2020; 104
Kanonidou, Proudlock, Gottlob (bib8) 2010; 51
Bregman, Donahue (bib22) 2016; 20
Chen, Xu, Yang (bib76) 2018; 105
Van Eenwyk, Agah, Giangiacomo, Cibis (bib81) 2008; 106
Hashemi, Pakzad, Yekta (bib5) 2018; 26
Kang, Beylergil, Otero-Millan (bib37) 2019; 12
Simon, Siegfried, Mills (bib56) 2004; 8
Ciuffreda, Kenyon, Stark (bib38) 1979; 50
Cakir, Murray, Dulaney, Ghasia (bib45) 2024; 65
Shi, Xu, Li (bib40) 2012; 30
Mostafaie, Ghojazadeh, Hosseinifard (bib3) 2020; 64
Chollet (bib67) 2021
Grant, Suttle, Melmoth (bib13) 2014; 55
Friedman, Rigas, Abdulin, Komogortsev (bib49) 2018; 50
Lim, Park, Jeon (bib79) 2019; 8
Valente, de Almeida, Silva (bib74) 2017; 140
Martti, Joutsijoki, Hirvonen (bib80) 2013
Kelly, Morale, Beauchamp (bib14) 2020; 61
Williams, Northstone, Harrad (bib18) 2002; 324
Bahill, Brockenbrough, Troost (bib64) 1981; 21
Yang, Seo, Hwang, Kim (bib71) 2013; 54
Grant, Moseley (bib7) 2011; 19
Zou, O'Malley, Mauri (bib68) 2007; 115
Dulaney, Murray, Ghasia (bib44) 2023; 451
Scaramuzzi, Murray, Nucci (bib42) 2021; 11
Kossaifi, Panagakis, Anandkumar, Pantic (bib65) 2019; 20
Ghasia, Wang (bib61) 2022; 441
Quinn, Berlin, James (bib29) 1993; 100
Scaramuzzi, Murray, Otero-Millan (bib39) 2019; 249
Upadhyaya, Pullela, Ramachandran (bib62) 2017; 58
Preslan, Novak (bib27) 1996; 103
Murray, Garg, Ghasia (bib43) 2021; 13
Gramatikov (bib77) 2013; 12
Chen, Cotter (bib52) 2016; 1
Wong (bib6) 2012; 47
Economides, Adams, Horton (bib41) 2016; 134
Steinman, Cushman, Martins (bib60) 1982; 1
Inchingolo, Spanio (bib63) 1985; 32
Williams, Harrad, Harvey (bib26) 2001; 8
Laubrock, Engbert, Kliegl (bib59) 2005; 45
Vaswani, Shazeer, Parmar (bib66) 2017; 30
Chandna, Fisher, Cunningham (bib75) 2009; 17
Manh, Holmes, Lazar (bib51) 2018; 186
Tang, Skelly, Otero-Millan (bib55) 2019; 12
Shaikh, Otero-Millan, Kumar, Ghasia (bib36) 2016; 11
Dell'Osso, Daroff (bib50) 1975; 39
Schmucker, Grosselfinger, Riemsma (bib25) 2009; 9
Hu, Liu, Zhao (bib2) 2022; 10
Zemblys, Niehorster, Komogortsev, Holmqvist (bib48) 2018; 50
Murali, Vidhya, Murthy, Mallapa (bib20) 2022; 66
Woodruff, Hiscox, Thompson, Smith (bib19) 1994; 8
Subramanian, Jost, Birch (bib34) 2013; 54
D'Addio, Ricciardi, Improta (bib78) 2020
Kelly, Jost, De La Cruz (bib9) 2017; 21
Murray, Gupta, Dulaney (bib46) 2022; 63
Wallace, Pediatric Eye Disease Investigator, Edwards (bib54) 2006; 113
McCamy, Otero-Millan, Leigh (bib32) 2015; 10
Yue, Cakir, Shaikh, Ghasia (bib82) 2024; 242
Reid, Eaton (bib69) 2019; 30
Friedman, Repka, Katz (bib1) 2009; 116
Engbert, Kliegl (bib58) 2004; 15
Martinez-Conde, Macknik, Troncoso, Dyar (bib31) 2006; 49
Assaf (bib17) 1982; 66
Martinez-Conde (10.1016/j.xops.2025.100775_bib31) 2006; 49
Van Eenwyk (10.1016/j.xops.2025.100775_bib81) 2008; 106
Murray (10.1016/j.xops.2025.100775_bib43) 2021; 13
Wong (10.1016/j.xops.2025.100775_bib6) 2012; 47
Ghasia (10.1016/j.xops.2025.100775_bib30) 2024; 267
Williams (10.1016/j.xops.2025.100775_bib18) 2002; 324
Engbert (10.1016/j.xops.2025.100775_bib58) 2004; 15
Gulshan (10.1016/j.xops.2025.100775_bib47) 2016; 316
Zou (10.1016/j.xops.2025.100775_bib68) 2007; 115
Grant (10.1016/j.xops.2025.100775_bib13) 2014; 55
Kang (10.1016/j.xops.2025.100775_bib37) 2019; 12
Vaswani (10.1016/j.xops.2025.100775_bib66) 2017; 30
Chen (10.1016/j.xops.2025.100775_bib11) 2018; 59
Kelly (10.1016/j.xops.2025.100775_bib14) 2020; 61
Chen (10.1016/j.xops.2025.100775_bib52) 2016; 1
Chandna (10.1016/j.xops.2025.100775_bib75) 2009; 17
Zheng (10.1016/j.xops.2025.100775_bib73) 2021; 10
Kanonidou (10.1016/j.xops.2025.100775_bib8) 2010; 51
Steinman (10.1016/j.xops.2025.100775_bib60) 1982; 1
Fu (10.1016/j.xops.2025.100775_bib4) 2020; 104
Ciuffreda (10.1016/j.xops.2025.100775_bib38) 1979; 50
Cotter (10.1016/j.xops.2025.100775_bib53) 2006; 113
Dobson (10.1016/j.xops.2025.100775_bib28) 1978; 18
Scaramuzzi (10.1016/j.xops.2025.100775_bib42) 2021; 11
Kossaifi (10.1016/j.xops.2025.100775_bib65) 2019; 20
Dulaney (10.1016/j.xops.2025.100775_bib44) 2023; 451
Wallace (10.1016/j.xops.2025.100775_bib54) 2006; 113
Gonzalez (10.1016/j.xops.2025.100775_bib35) 2012; 53
Niechwiej-Szwedo (10.1016/j.xops.2025.100775_bib10) 2010; 51
Langeslag-Smith (10.1016/j.xops.2025.100775_bib24) 2015; 5
Hashemi (10.1016/j.xops.2025.100775_bib5) 2018; 26
Schmucker (10.1016/j.xops.2025.100775_bib25) 2009; 9
Friedman (10.1016/j.xops.2025.100775_bib1) 2009; 116
Lim (10.1016/j.xops.2025.100775_bib79) 2019; 8
Bhutada (10.1016/j.xops.2025.100775_bib12) 2022; 442
Ghasia (10.1016/j.xops.2025.100775_bib61) 2022; 441
Yue (10.1016/j.xops.2025.100775_bib82) 2024; 242
D'Addio (10.1016/j.xops.2025.100775_bib78) 2020
Inchingolo (10.1016/j.xops.2025.100775_bib63) 1985; 32
Chung (10.1016/j.xops.2025.100775_bib33) 2015; 114
Yang (10.1016/j.xops.2025.100775_bib71) 2013; 54
Martti (10.1016/j.xops.2025.100775_bib80) 2013
Manh (10.1016/j.xops.2025.100775_bib51) 2018; 186
Shaikh (10.1016/j.xops.2025.100775_bib36) 2016; 11
Gramatikov (10.1016/j.xops.2025.100775_bib77) 2013; 12
Williams (10.1016/j.xops.2025.100775_bib26) 2001; 8
Carlton (10.1016/j.xops.2025.100775_bib16) 2011; 25
Estes (10.1016/j.xops.2025.100775_bib70) 2007; 11
Quinn (10.1016/j.xops.2025.100775_bib29) 1993; 100
Tang (10.1016/j.xops.2025.100775_bib55) 2019; 12
Scaramuzzi (10.1016/j.xops.2025.100775_bib39) 2019; 249
Reid (10.1016/j.xops.2025.100775_bib69) 2019; 30
Chen (10.1016/j.xops.2025.100775_bib76) 2018; 105
Kelly (10.1016/j.xops.2025.100775_bib9) 2017; 21
Dell'Osso (10.1016/j.xops.2025.100775_bib50) 1975; 39
Niechwiej-Szwedo (10.1016/j.xops.2025.100775_bib15) 2019; 2019
McCamy (10.1016/j.xops.2025.100775_bib32) 2015; 10
Grant (10.1016/j.xops.2025.100775_bib7) 2011; 19
Zemblys (10.1016/j.xops.2025.100775_bib48) 2018; 50
Bregman (10.1016/j.xops.2025.100775_bib22) 2016; 20
Shi (10.1016/j.xops.2025.100775_bib40) 2012; 30
Sousa de Almeida (10.1016/j.xops.2025.100775_bib72) 2015; 28
Upadhyaya (10.1016/j.xops.2025.100775_bib62) 2017; 58
Hu (10.1016/j.xops.2025.100775_bib2) 2022; 10
Nishimura (10.1016/j.xops.2025.100775_bib23) 2019; 9
Murray (10.1016/j.xops.2025.100775_bib46) 2022; 63
Chollet (10.1016/j.xops.2025.100775_bib67) 2021
Cakir (10.1016/j.xops.2025.100775_bib45) 2024; 65
Valente (10.1016/j.xops.2025.100775_bib74) 2017; 140
Woodruff (10.1016/j.xops.2025.100775_bib19) 1994; 8
Friedman (10.1016/j.xops.2025.100775_bib49) 2018; 50
Laubrock (10.1016/j.xops.2025.100775_bib59) 2005; 45
Economides (10.1016/j.xops.2025.100775_bib41) 2016; 134
Bahill (10.1016/j.xops.2025.100775_bib64) 1981; 21
Assaf (10.1016/j.xops.2025.100775_bib17) 1982; 66
Carlton (10.1016/j.xops.2025.100775_bib21) 2008; 12
Preslan (10.1016/j.xops.2025.100775_bib27) 1996; 103
Mostafaie (10.1016/j.xops.2025.100775_bib3) 2020; 64
Subramanian (10.1016/j.xops.2025.100775_bib34) 2013; 54
Simon (10.1016/j.xops.2025.100775_bib56) 2004; 8
Engbert (10.1016/j.xops.2025.100775_bib57) 2003; 43
Murali (10.1016/j.xops.2025.100775_bib20) 2022; 66
References_xml – volume: 116
  start-page: 2128
  year: 2009
  end-page: 2134.e1-2
  ident: bib1
  article-title: Prevalence of amblyopia and strabismus in white and African American children aged 6 through 71 months the Baltimore pediatric eye disease study
  publication-title: Ophthalmology
– volume: 26
  start-page: 168
  year: 2018
  end-page: 183
  ident: bib5
  article-title: Global and regional estimates of prevalence of amblyopia: a systematic review and meta-analysis
  publication-title: Strabismus
– volume: 51
  start-page: 3502
  year: 2010
  end-page: 3508
  ident: bib8
  article-title: Reading strategies in mild to moderate strabismic amblyopia: an eye movement investigation
  publication-title: Invest Ophthalmol Vis Sci
– volume: 1
  start-page: 97
  year: 1982
  end-page: 109
  ident: bib60
  article-title: The precision of gaze. A review
  publication-title: Hum Neurobiol
– volume: 50
  start-page: 160
  year: 2018
  end-page: 181
  ident: bib48
  article-title: Using machine learning to detect events in eye-tracking data
  publication-title: Behav Res Methods
– volume: 267
  start-page: 230
  year: 2024
  end-page: 248
  ident: bib30
  article-title: Inter-ocular fixation instability of amblyopia: relationship to visual acuity, strabismus, nystagmus, stereopsis, vergence and age
  publication-title: Am J Ophthalmol
– volume: 10
  year: 2015
  ident: bib32
  article-title: Simultaneous recordings of human microsaccades and drifts with a contemporary video eye tracker and the search coil technique
  publication-title: PLoS One
– volume: 15
  start-page: 431
  year: 2004
  end-page: 436
  ident: bib58
  article-title: Microsaccades keep the eyes' balance during fixation
  publication-title: Psychol Sci
– volume: 441
  year: 2022
  ident: bib61
  article-title: Amblyopia and fixation eye movements
  publication-title: J Neurol Sci
– volume: 113
  start-page: 904
  year: 2006
  end-page: 912
  ident: bib54
  article-title: A randomized trial to evaluate 2 hours of daily patching for strabismic and anisometropic amblyopia in children
  publication-title: Ophthalmology
– volume: 11
  start-page: 1217
  year: 2021
  ident: bib42
  article-title: Fixational eye movements abnormalities and rate of visual acuity and stereoacuity improvement with part time patching
  publication-title: Sci Rep
– year: 2013
  ident: bib80
  article-title: The classification of valid and invalid beats of three-dimensional nystagmus eye movement signals using machine learning methods
  publication-title: Adv Arti cial Neural Syst
– volume: 32
  start-page: 683
  year: 1985
  end-page: 695
  ident: bib63
  article-title: On the identification and analysis of saccadic eye movements--a quantitative study of the processing procedures
  publication-title: IEEE Trans Biomed Eng
– volume: 54
  start-page: 1998
  year: 2013
  end-page: 2003
  ident: bib34
  article-title: A quantitative study of fixation stability in amblyopia
  publication-title: Invest Ophthalmol Vis Sci
– volume: 8
  start-page: 279
  year: 2001
  end-page: 295
  ident: bib26
  article-title: Screening for amblyopia in preschool children: results of a population-based, randomised controlled trial. ALSPAC Study Team. Avon Longitudinal Study of Pregnancy and Childhood
  publication-title: Ophthalmic Epidemiol
– volume: 113
  start-page: 895
  year: 2006
  end-page: 903
  ident: bib53
  article-title: Treatment of anisometropic amblyopia in children with refractive correction
  publication-title: Ophthalmology
– volume: 140
  start-page: 295
  year: 2017
  end-page: 305
  ident: bib74
  article-title: Automatic diagnosis of strabismus in digital videos through cover test
  publication-title: Comput Methods Programs Biomed
– volume: 316
  start-page: 2402
  year: 2016
  end-page: 2410
  ident: bib47
  article-title: Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs
  publication-title: JAMA
– volume: 50
  start-page: 1374
  year: 2018
  end-page: 1397
  ident: bib49
  article-title: A novel evaluation of two related and two independent algorithms for eye movement classification during reading
  publication-title: Behav Res Methods
– volume: 66
  start-page: 171
  year: 2022
  end-page: 175
  ident: bib20
  article-title: Cost-Effectiveness of photoscreeners in screening at-risk amblyopia in Indian children
  publication-title: Indian J Public Health
– volume: 12
  start-page: 41
  year: 2013
  ident: bib77
  article-title: Detecting fixation on a target using time-frequency distributions of a retinal birefringence scanning signal
  publication-title: Biomed Eng Online
– volume: 66
  start-page: 64
  year: 1982
  end-page: 70
  ident: bib17
  article-title: The sensitive period: transfer of fixation after occlusion for strabismic amblyopia
  publication-title: Br J Ophthalmol
– volume: 45
  start-page: 721
  year: 2005
  end-page: 730
  ident: bib59
  article-title: Microsaccade dynamics during covert attention
  publication-title: Vis Res
– volume: 13
  start-page: 99
  year: 2021
  end-page: 109
  ident: bib43
  article-title: Monocular and binocular visual function deficits in amblyopic patients with and without fusion maldevelopment nystagmus
  publication-title: Eye Brain
– volume: 2019
  year: 2019
  ident: bib15
  article-title: Visuomotor behaviour in amblyopia: deficits and compensatory adaptations
  publication-title: Neural Plast
– volume: 19
  start-page: 119
  year: 2011
  end-page: 128
  ident: bib7
  article-title: Amblyopia and real-world visuomotor tasks
  publication-title: Strabismus
– volume: 65
  start-page: 19
  year: 2024
  ident: bib45
  article-title: Multifaceted interactions of stereoacuity, inter-ocular suppression, and fixation eye movement abnormalities in amblyopia and strabismus
  publication-title: Invest Ophthalmol Vis Sci
– volume: 21
  start-page: 447
  year: 2017
  end-page: 451.e1
  ident: bib9
  article-title: Slow reading in children with anisometropic amblyopia is associated with fixation instability and increased saccades
  publication-title: J AAPOS
– volume: 43
  start-page: 1035
  year: 2003
  end-page: 1045
  ident: bib57
  article-title: Microsaccades uncover the orientation of covert attention
  publication-title: Vis Res
– year: 2021
  ident: bib67
  article-title: Deep learning with Python
– volume: 8
  start-page: 633
  year: 2019
  ident: bib79
  article-title: Developing a diagnostic decision support system for benign paroxysmal positional vertigo using a deep-learning model
  publication-title: J Clin Med
– volume: 53
  start-page: 5386
  year: 2012
  end-page: 5394
  ident: bib35
  article-title: Eye position stability in amblyopia and in normal binocular vision
  publication-title: Invest Ophthalmol Vis Sci
– volume: 451
  year: 2023
  ident: bib44
  article-title: Contrast sensitivity, optotype acuity and fixation eye movement abnormalities in amblyopia under binocular viewing
  publication-title: J Neurol Sci
– volume: 186
  start-page: 104
  year: 2018
  end-page: 115
  ident: bib51
  article-title: A randomized trial of a binocular iPad game versus part-time patching in children aged 13 to 16 Years with amblyopia
  publication-title: Am J Ophthalmol
– volume: 39
  start-page: 155
  year: 1975
  end-page: 182
  ident: bib50
  article-title: Congenital nystagmus waveforms and foveation strategy
  publication-title: Doc Ophthalmol
– volume: 10
  year: 2022
  ident: bib2
  article-title: The global prevalence of amblyopia in children: a systematic review and meta-analysis
  publication-title: Front Pediatr
– volume: 50
  start-page: 1251
  year: 1979
  end-page: 1258
  ident: bib38
  article-title: Fixational eye movements in amblyopia and strabismus
  publication-title: J Am Optom Assoc
– year: 2020
  ident: bib78
  article-title: Feasibility of machine learning in predicting features related to congenital nystagmus. IFMBE Proceedings book series
– volume: 12
  start-page: 10
  year: 2019
  ident: bib55
  article-title: Effects of visual blur on microsaccades during visual exploration
  publication-title: J Eye Mov Res
– volume: 106
  start-page: 64
  year: 2008
  end-page: 73
  ident: bib81
  article-title: Artificial intelligence techniques for automatic screening of amblyogenic factors
  publication-title: Trans Am Ophthalmol Soc
– volume: 9
  year: 2019
  ident: bib23
  article-title: Choosing appropriate tools and referral criteria for vision screening of children aged 4-5 years in Canada: a quantitative analysis
  publication-title: BMJ Open
– volume: 20
  start-page: 1
  year: 2019
  end-page: 6
  ident: bib65
  article-title: Tensorly: tensor learning in python
  publication-title: J Machine Learn Res
– volume: 5
  year: 2015
  ident: bib24
  article-title: Preschool children's vision screening in New Zealand: a retrospective evaluation of referral accuracy
  publication-title: BMJ Open
– volume: 242
  start-page: 2749
  year: 2024
  end-page: 2763
  ident: bib82
  article-title: Assessing inter-ocular fixational eye movements throughout the lifespan
  publication-title: Exp Brain Res
– volume: 21
  start-page: 116
  year: 1981
  end-page: 125
  ident: bib64
  article-title: Variability and development of a normative data base for saccadic eye movements
  publication-title: Invest Ophthalmol Vis Sci
– volume: 63
  start-page: 33
  year: 2022
  ident: bib46
  article-title: Effect of viewing conditions on fixation eye movements and eye alignment in amblyopia
  publication-title: Invest Ophthalmol Vis Sci
– volume: 58
  start-page: 5743
  year: 2017
  end-page: 5753
  ident: bib62
  article-title: Fixational saccades and their relation to fixation instability in strabismic monkeys
  publication-title: Invest Ophthalmol Vis Sci
– volume: 442
  year: 2022
  ident: bib12
  article-title: Reading difficulties in amblyopia: consequence of visual sensory and oculomotor dysfunction
  publication-title: J Neurol Sci
– volume: 1
  start-page: 287
  year: 2016
  end-page: 305
  ident: bib52
  article-title: The amblyopia treatment studies: implications for clinical practice
  publication-title: Adv Ophthalmol Optom
– volume: 54
  start-page: 2733
  year: 2013
  end-page: 2737
  ident: bib71
  article-title: Automated analysis of binocular alignment using an infrared camera and selective wavelength filter
  publication-title: Invest Ophthalmol Vis Sci
– volume: 105
  start-page: 30
  year: 2018
  end-page: 38
  ident: bib76
  article-title: Deep ranking structural support vector machine for image tagging
  publication-title: Pattern Recognit Lett
– volume: 30
  start-page: 337
  year: 2019
  end-page: 346
  ident: bib69
  article-title: Artificial intelligence for pediatric ophthalmology
  publication-title: Curr Opin Ophthalmol
– volume: 47
  start-page: 399
  year: 2012
  end-page: 409
  ident: bib6
  article-title: New concepts concerning the neural mechanisms of amblyopia and their clinical implications
  publication-title: Can J Ophthalmol
– volume: 59
  start-page: 4506
  year: 2018
  end-page: 4517
  ident: bib11
  article-title: Visual search in amblyopia: abnormal fixational eye movements and suboptimal sampling strategies
  publication-title: Invest Ophthalmol Vis Sci
– volume: 134
  start-page: 63
  year: 2016
  end-page: 69
  ident: bib41
  article-title: Variability of ocular deviation in strabismus
  publication-title: JAMA Ophthalmol
– volume: 8
  start-page: 623
  year: 1994
  end-page: 626
  ident: bib19
  article-title: The presentation of children with amblyopia
  publication-title: Eye (Lond)
– volume: 30
  year: 2017
  ident: bib66
  article-title: Attention is all you need
  publication-title: Adv Neural Inf Process Syst
– volume: 28
  start-page: 462
  year: 2015
  end-page: 473
  ident: bib72
  article-title: Computer-aided methodology for syndromic strabismus diagnosis
  publication-title: J Digit Imaging
– volume: 49
  start-page: 297
  year: 2006
  end-page: 305
  ident: bib31
  article-title: Microsaccades counteract visual fading during fixation
  publication-title: Neuron
– volume: 249
  start-page: 235
  year: 2019
  end-page: 248
  ident: bib39
  article-title: Fixation instability in amblyopia: oculomotor disease biomarkers predictive of treatment effectiveness
  publication-title: Prog Brain Res
– volume: 20
  start-page: 153
  year: 2016
  end-page: 158
  ident: bib22
  article-title: Validation of photoscreening technology in the general pediatrics office: a prospective study
  publication-title: J AAPOS
– volume: 18
  start-page: 1469
  year: 1978
  end-page: 1483
  ident: bib28
  article-title: Visual acuity in human infants: a review and comparison of behavioral and electrophysiological studies
  publication-title: Vis Res
– volume: 103
  start-page: 105
  year: 1996
  end-page: 109
  ident: bib27
  article-title: Baltimore vision screening project
  publication-title: Ophthalmology
– volume: 61
  start-page: 43
  year: 2020
  ident: bib14
  article-title: Factors associated with impaired motor skills in strabismic and anisometropic children
  publication-title: Invest Ophthalmol Vis Sci
– volume: 8
  start-page: 549
  year: 2004
  end-page: 554
  ident: bib56
  article-title: A new visual evoked potential system for vision screening in infants and young children
  publication-title: J Aapos
– volume: 114
  start-page: 87
  year: 2015
  end-page: 99
  ident: bib33
  article-title: Characteristics of fixational eye movements in amblyopia: limitations on fixation stability and acuity?
  publication-title: Vis Res
– volume: 10
  start-page: 33
  year: 2021
  ident: bib73
  article-title: Detection of referable horizontal strabismus in children's primary gaze photographs using deep learning
  publication-title: Transl Vis Sci Technol
– volume: 11
  year: 2016
  ident: bib36
  article-title: Abnormal fixational eye movements in amblyopia
  publication-title: PLoS One
– volume: 17
  start-page: 131
  year: 2009
  end-page: 138
  ident: bib75
  article-title: Pattern recognition of vertical strabismus using an artificial neural network (StrabNet)
  publication-title: Strabismus
– volume: 100
  start-page: 488
  year: 1993
  end-page: 494
  ident: bib29
  article-title: The Teller acuity card procedure. Three testers in a clinical setting
  publication-title: Ophthalmology
– volume: 104
  start-page: 1164
  year: 2020
  end-page: 1170
  ident: bib4
  article-title: Global prevalence of amblyopia and disease burden projections through 2040: a systematic review and meta-analysis
  publication-title: Br J Ophthalmol
– volume: 9
  start-page: 3
  year: 2009
  ident: bib25
  article-title: Effectiveness of screening preschool children for amblyopia: a systematic review
  publication-title: BMC Ophthalmol
– volume: 11
  start-page: 325
  year: 2007
  end-page: 329
  ident: bib70
  article-title: The American association for pediatric ophthalmology and strabismus workforce distribution project
  publication-title: J AAPOS
– volume: 64
  start-page: 342
  year: 2020
  end-page: 355
  ident: bib3
  article-title: A systematic review of Amblyopia prevalence among the children of the world
  publication-title: Rom J Ophthalmol
– volume: 115
  start-page: 654
  year: 2007
  end-page: 657
  ident: bib68
  article-title: Receiver-operating characteristic analysis for evaluating diagnostic tests and predictive models
  publication-title: Circulation
– volume: 51
  start-page: 6348
  year: 2010
  end-page: 6354
  ident: bib10
  article-title: Effects of anisometropic amblyopia on visuomotor behavior, I: saccadic eye movements
  publication-title: Invest Ophthalmol Vis Sci
– volume: 55
  start-page: 5687
  year: 2014
  end-page: 57015
  ident: bib13
  article-title: Age- and stereovision-dependent eye-hand coordination deficits in children with amblyopia and abnormal binocularity
  publication-title: Invest Ophthalmol Vis Sci
– volume: 30
  start-page: 445
  year: 2012
  end-page: 462
  ident: bib40
  article-title: Fixational saccadic eye movements are altered in anisometropic amblyopia
  publication-title: Restor Neurol Neurosci
– volume: 324
  start-page: 1549
  year: 2002
  end-page: 1551
  ident: bib18
  article-title: Amblyopia treatment outcomes after screening before or at age 3 years: follow up from randomized trial
  publication-title: BMJ
– volume: 25
  start-page: 403
  year: 2011
  end-page: 413
  ident: bib16
  article-title: Amblyopia and quality of life: a systematic review
  publication-title: Eye (Lond)
– volume: 12
  start-page: iii
  year: 2008
  ident: bib21
  article-title: The clinical effectiveness and cost-effectiveness of screening programmes for amblyopia and strabismus in children up to the age of 4-5 years: a systematic review and economic evaluation
  publication-title: Health Technol Assess
– volume: 12
  start-page: 9
  year: 2019
  ident: bib37
  article-title: Fixational eye movement waveforms in amblyopia: characteristics of fast and slow eye movements
  publication-title: J Eye Mov Res
– volume: 19
  start-page: 119
  year: 2011
  ident: 10.1016/j.xops.2025.100775_bib7
  article-title: Amblyopia and real-world visuomotor tasks
  publication-title: Strabismus
  doi: 10.3109/09273972.2011.600423
– volume: 267
  start-page: 230
  year: 2024
  ident: 10.1016/j.xops.2025.100775_bib30
  article-title: Inter-ocular fixation instability of amblyopia: relationship to visual acuity, strabismus, nystagmus, stereopsis, vergence and age
  publication-title: Am J Ophthalmol
  doi: 10.1016/j.ajo.2024.06.021
– volume: 50
  start-page: 1251
  year: 1979
  ident: 10.1016/j.xops.2025.100775_bib38
  article-title: Fixational eye movements in amblyopia and strabismus
  publication-title: J Am Optom Assoc
– volume: 30
  start-page: 445
  year: 2012
  ident: 10.1016/j.xops.2025.100775_bib40
  article-title: Fixational saccadic eye movements are altered in anisometropic amblyopia
  publication-title: Restor Neurol Neurosci
– volume: 28
  start-page: 462
  year: 2015
  ident: 10.1016/j.xops.2025.100775_bib72
  article-title: Computer-aided methodology for syndromic strabismus diagnosis
  publication-title: J Digit Imaging
  doi: 10.1007/s10278-014-9758-0
– volume: 134
  start-page: 63
  year: 2016
  ident: 10.1016/j.xops.2025.100775_bib41
  article-title: Variability of ocular deviation in strabismus
  publication-title: JAMA Ophthalmol
  doi: 10.1001/jamaophthalmol.2015.4486
– volume: 116
  start-page: 2128
  year: 2009
  ident: 10.1016/j.xops.2025.100775_bib1
  article-title: Prevalence of amblyopia and strabismus in white and African American children aged 6 through 71 months the Baltimore pediatric eye disease study
  publication-title: Ophthalmology
  doi: 10.1016/j.ophtha.2009.04.034
– volume: 316
  start-page: 2402
  year: 2016
  ident: 10.1016/j.xops.2025.100775_bib47
  article-title: Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs
  publication-title: JAMA
  doi: 10.1001/jama.2016.17216
– volume: 8
  start-page: 549
  year: 2004
  ident: 10.1016/j.xops.2025.100775_bib56
  article-title: A new visual evoked potential system for vision screening in infants and young children
  publication-title: J Aapos
  doi: 10.1016/j.jaapos.2004.08.009
– volume: 15
  start-page: 431
  year: 2004
  ident: 10.1016/j.xops.2025.100775_bib58
  article-title: Microsaccades keep the eyes' balance during fixation
  publication-title: Psychol Sci
  doi: 10.1111/j.0956-7976.2004.00697.x
– volume: 8
  start-page: 633
  year: 2019
  ident: 10.1016/j.xops.2025.100775_bib79
  article-title: Developing a diagnostic decision support system for benign paroxysmal positional vertigo using a deep-learning model
  publication-title: J Clin Med
  doi: 10.3390/jcm8050633
– volume: 441
  year: 2022
  ident: 10.1016/j.xops.2025.100775_bib61
  article-title: Amblyopia and fixation eye movements
  publication-title: J Neurol Sci
  doi: 10.1016/j.jns.2022.120373
– volume: 451
  year: 2023
  ident: 10.1016/j.xops.2025.100775_bib44
  article-title: Contrast sensitivity, optotype acuity and fixation eye movement abnormalities in amblyopia under binocular viewing
  publication-title: J Neurol Sci
  doi: 10.1016/j.jns.2023.120721
– volume: 249
  start-page: 235
  year: 2019
  ident: 10.1016/j.xops.2025.100775_bib39
  article-title: Fixation instability in amblyopia: oculomotor disease biomarkers predictive of treatment effectiveness
  publication-title: Prog Brain Res
  doi: 10.1016/bs.pbr.2019.04.024
– volume: 103
  start-page: 105
  year: 1996
  ident: 10.1016/j.xops.2025.100775_bib27
  article-title: Baltimore vision screening project
  publication-title: Ophthalmology
  doi: 10.1016/S0161-6420(96)30753-7
– volume: 20
  start-page: 1
  year: 2019
  ident: 10.1016/j.xops.2025.100775_bib65
  article-title: Tensorly: tensor learning in python
  publication-title: J Machine Learn Res
– volume: 54
  start-page: 1998
  year: 2013
  ident: 10.1016/j.xops.2025.100775_bib34
  article-title: A quantitative study of fixation stability in amblyopia
  publication-title: Invest Ophthalmol Vis Sci
  doi: 10.1167/iovs.12-11054
– volume: 50
  start-page: 160
  year: 2018
  ident: 10.1016/j.xops.2025.100775_bib48
  article-title: Using machine learning to detect events in eye-tracking data
  publication-title: Behav Res Methods
  doi: 10.3758/s13428-017-0860-3
– volume: 54
  start-page: 2733
  year: 2013
  ident: 10.1016/j.xops.2025.100775_bib71
  article-title: Automated analysis of binocular alignment using an infrared camera and selective wavelength filter
  publication-title: Invest Ophthalmol Vis Sci
  doi: 10.1167/iovs.12-11400
– volume: 17
  start-page: 131
  year: 2009
  ident: 10.1016/j.xops.2025.100775_bib75
  article-title: Pattern recognition of vertical strabismus using an artificial neural network (StrabNet)
  publication-title: Strabismus
  doi: 10.3109/09273970903234032
– volume: 66
  start-page: 64
  year: 1982
  ident: 10.1016/j.xops.2025.100775_bib17
  article-title: The sensitive period: transfer of fixation after occlusion for strabismic amblyopia
  publication-title: Br J Ophthalmol
  doi: 10.1136/bjo.66.1.64
– volume: 47
  start-page: 399
  year: 2012
  ident: 10.1016/j.xops.2025.100775_bib6
  article-title: New concepts concerning the neural mechanisms of amblyopia and their clinical implications
  publication-title: Can J Ophthalmol
  doi: 10.1016/j.jcjo.2012.05.002
– volume: 113
  start-page: 895
  year: 2006
  ident: 10.1016/j.xops.2025.100775_bib53
  article-title: Treatment of anisometropic amblyopia in children with refractive correction
  publication-title: Ophthalmology
  doi: 10.1016/j.ophtha.2006.01.068
– volume: 64
  start-page: 342
  issue: 4
  year: 2020
  ident: 10.1016/j.xops.2025.100775_bib3
  article-title: A systematic review of Amblyopia prevalence among the children of the world
  publication-title: Rom J Ophthalmol
  doi: 10.22336/rjo.2020.56
– volume: 324
  start-page: 1549
  year: 2002
  ident: 10.1016/j.xops.2025.100775_bib18
  article-title: Amblyopia treatment outcomes after screening before or at age 3 years: follow up from randomized trial
  publication-title: BMJ
  doi: 10.1136/bmj.324.7353.1549
– volume: 13
  start-page: 99
  year: 2021
  ident: 10.1016/j.xops.2025.100775_bib43
  article-title: Monocular and binocular visual function deficits in amblyopic patients with and without fusion maldevelopment nystagmus
  publication-title: Eye Brain
  doi: 10.2147/EB.S300454
– volume: 43
  start-page: 1035
  year: 2003
  ident: 10.1016/j.xops.2025.100775_bib57
  article-title: Microsaccades uncover the orientation of covert attention
  publication-title: Vis Res
  doi: 10.1016/S0042-6989(03)00084-1
– volume: 12
  start-page: iii
  year: 2008
  ident: 10.1016/j.xops.2025.100775_bib21
  article-title: The clinical effectiveness and cost-effectiveness of screening programmes for amblyopia and strabismus in children up to the age of 4-5 years: a systematic review and economic evaluation
  publication-title: Health Technol Assess
  doi: 10.3310/hta12250
– volume: 186
  start-page: 104
  year: 2018
  ident: 10.1016/j.xops.2025.100775_bib51
  article-title: A randomized trial of a binocular iPad game versus part-time patching in children aged 13 to 16 Years with amblyopia
  publication-title: Am J Ophthalmol
  doi: 10.1016/j.ajo.2017.11.017
– volume: 55
  start-page: 5687
  year: 2014
  ident: 10.1016/j.xops.2025.100775_bib13
  article-title: Age- and stereovision-dependent eye-hand coordination deficits in children with amblyopia and abnormal binocularity
  publication-title: Invest Ophthalmol Vis Sci
  doi: 10.1167/iovs.14-14745
– volume: 9
  start-page: 3
  year: 2009
  ident: 10.1016/j.xops.2025.100775_bib25
  article-title: Effectiveness of screening preschool children for amblyopia: a systematic review
  publication-title: BMC Ophthalmol
  doi: 10.1186/1471-2415-9-3
– volume: 114
  start-page: 87
  year: 2015
  ident: 10.1016/j.xops.2025.100775_bib33
  article-title: Characteristics of fixational eye movements in amblyopia: limitations on fixation stability and acuity?
  publication-title: Vis Res
  doi: 10.1016/j.visres.2015.01.016
– volume: 442
  year: 2022
  ident: 10.1016/j.xops.2025.100775_bib12
  article-title: Reading difficulties in amblyopia: consequence of visual sensory and oculomotor dysfunction
  publication-title: J Neurol Sci
  doi: 10.1016/j.jns.2022.120438
– volume: 8
  start-page: 279
  year: 2001
  ident: 10.1016/j.xops.2025.100775_bib26
  article-title: Screening for amblyopia in preschool children: results of a population-based, randomised controlled trial. ALSPAC Study Team. Avon Longitudinal Study of Pregnancy and Childhood
  publication-title: Ophthalmic Epidemiol
  doi: 10.1080/09286586.2001.11644257
– volume: 26
  start-page: 168
  year: 2018
  ident: 10.1016/j.xops.2025.100775_bib5
  article-title: Global and regional estimates of prevalence of amblyopia: a systematic review and meta-analysis
  publication-title: Strabismus
  doi: 10.1080/09273972.2018.1500618
– volume: 12
  start-page: 10
  year: 2019
  ident: 10.1016/j.xops.2025.100775_bib55
  article-title: Effects of visual blur on microsaccades during visual exploration
  publication-title: J Eye Mov Res
  doi: 10.16910/jemr.12.6.10
– volume: 115
  start-page: 654
  year: 2007
  ident: 10.1016/j.xops.2025.100775_bib68
  article-title: Receiver-operating characteristic analysis for evaluating diagnostic tests and predictive models
  publication-title: Circulation
  doi: 10.1161/CIRCULATIONAHA.105.594929
– volume: 45
  start-page: 721
  year: 2005
  ident: 10.1016/j.xops.2025.100775_bib59
  article-title: Microsaccade dynamics during covert attention
  publication-title: Vis Res
  doi: 10.1016/j.visres.2004.09.029
– volume: 11
  year: 2016
  ident: 10.1016/j.xops.2025.100775_bib36
  article-title: Abnormal fixational eye movements in amblyopia
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0149953
– volume: 30
  start-page: 337
  year: 2019
  ident: 10.1016/j.xops.2025.100775_bib69
  article-title: Artificial intelligence for pediatric ophthalmology
  publication-title: Curr Opin Ophthalmol
  doi: 10.1097/ICU.0000000000000593
– volume: 2019
  year: 2019
  ident: 10.1016/j.xops.2025.100775_bib15
  article-title: Visuomotor behaviour in amblyopia: deficits and compensatory adaptations
  publication-title: Neural Plast
  doi: 10.1155/2019/6817839
– volume: 49
  start-page: 297
  year: 2006
  ident: 10.1016/j.xops.2025.100775_bib31
  article-title: Microsaccades counteract visual fading during fixation
  publication-title: Neuron
  doi: 10.1016/j.neuron.2005.11.033
– volume: 53
  start-page: 5386
  year: 2012
  ident: 10.1016/j.xops.2025.100775_bib35
  article-title: Eye position stability in amblyopia and in normal binocular vision
  publication-title: Invest Ophthalmol Vis Sci
  doi: 10.1167/iovs.12-9941
– volume: 104
  start-page: 1164
  year: 2020
  ident: 10.1016/j.xops.2025.100775_bib4
  article-title: Global prevalence of amblyopia and disease burden projections through 2040: a systematic review and meta-analysis
  publication-title: Br J Ophthalmol
  doi: 10.1136/bjophthalmol-2019-314759
– year: 2021
  ident: 10.1016/j.xops.2025.100775_bib67
– volume: 25
  start-page: 403
  year: 2011
  ident: 10.1016/j.xops.2025.100775_bib16
  article-title: Amblyopia and quality of life: a systematic review
  publication-title: Eye (Lond)
  doi: 10.1038/eye.2011.4
– volume: 11
  start-page: 1217
  year: 2021
  ident: 10.1016/j.xops.2025.100775_bib42
  article-title: Fixational eye movements abnormalities and rate of visual acuity and stereoacuity improvement with part time patching
  publication-title: Sci Rep
  doi: 10.1038/s41598-020-79077-5
– volume: 30
  year: 2017
  ident: 10.1016/j.xops.2025.100775_bib66
  article-title: Attention is all you need
  publication-title: Adv Neural Inf Process Syst
– volume: 10
  start-page: 33
  year: 2021
  ident: 10.1016/j.xops.2025.100775_bib73
  article-title: Detection of referable horizontal strabismus in children's primary gaze photographs using deep learning
  publication-title: Transl Vis Sci Technol
  doi: 10.1167/tvst.10.1.33
– volume: 242
  start-page: 2749
  year: 2024
  ident: 10.1016/j.xops.2025.100775_bib82
  article-title: Assessing inter-ocular fixational eye movements throughout the lifespan
  publication-title: Exp Brain Res
  doi: 10.1007/s00221-024-06936-2
– volume: 58
  start-page: 5743
  year: 2017
  ident: 10.1016/j.xops.2025.100775_bib62
  article-title: Fixational saccades and their relation to fixation instability in strabismic monkeys
  publication-title: Invest Ophthalmol Vis Sci
  doi: 10.1167/iovs.17-22389
– volume: 106
  start-page: 64
  year: 2008
  ident: 10.1016/j.xops.2025.100775_bib81
  article-title: Artificial intelligence techniques for automatic screening of amblyogenic factors
  publication-title: Trans Am Ophthalmol Soc
– volume: 66
  start-page: 171
  year: 2022
  ident: 10.1016/j.xops.2025.100775_bib20
  article-title: Cost-Effectiveness of photoscreeners in screening at-risk amblyopia in Indian children
  publication-title: Indian J Public Health
  doi: 10.4103/ijph.ijph_1848_21
– volume: 50
  start-page: 1374
  year: 2018
  ident: 10.1016/j.xops.2025.100775_bib49
  article-title: A novel evaluation of two related and two independent algorithms for eye movement classification during reading
  publication-title: Behav Res Methods
  doi: 10.3758/s13428-018-1050-7
– volume: 39
  start-page: 155
  year: 1975
  ident: 10.1016/j.xops.2025.100775_bib50
  article-title: Congenital nystagmus waveforms and foveation strategy
  publication-title: Doc Ophthalmol
  doi: 10.1007/BF00578761
– volume: 113
  start-page: 904
  year: 2006
  ident: 10.1016/j.xops.2025.100775_bib54
  article-title: A randomized trial to evaluate 2 hours of daily patching for strabismic and anisometropic amblyopia in children
  publication-title: Ophthalmology
  doi: 10.1016/j.ophtha.2006.01.069
– year: 2020
  ident: 10.1016/j.xops.2025.100775_bib78
– volume: 18
  start-page: 1469
  year: 1978
  ident: 10.1016/j.xops.2025.100775_bib28
  article-title: Visual acuity in human infants: a review and comparison of behavioral and electrophysiological studies
  publication-title: Vis Res
  doi: 10.1016/0042-6989(78)90001-9
– volume: 1
  start-page: 97
  issue: 2
  year: 1982
  ident: 10.1016/j.xops.2025.100775_bib60
  article-title: The precision of gaze. A review
  publication-title: Hum Neurobiol
– volume: 21
  start-page: 116
  issue: 1 Pt 1
  year: 1981
  ident: 10.1016/j.xops.2025.100775_bib64
  article-title: Variability and development of a normative data base for saccadic eye movements
  publication-title: Invest Ophthalmol Vis Sci
– volume: 1
  start-page: 287
  year: 2016
  ident: 10.1016/j.xops.2025.100775_bib52
  article-title: The amblyopia treatment studies: implications for clinical practice
  publication-title: Adv Ophthalmol Optom
  doi: 10.1016/j.yaoo.2016.03.007
– volume: 65
  start-page: 19
  year: 2024
  ident: 10.1016/j.xops.2025.100775_bib45
  article-title: Multifaceted interactions of stereoacuity, inter-ocular suppression, and fixation eye movement abnormalities in amblyopia and strabismus
  publication-title: Invest Ophthalmol Vis Sci
  doi: 10.1167/iovs.65.3.19
– volume: 8
  start-page: 623
  issue: Pt 6
  year: 1994
  ident: 10.1016/j.xops.2025.100775_bib19
  article-title: The presentation of children with amblyopia
  publication-title: Eye (Lond)
  doi: 10.1038/eye.1994.156
– volume: 21
  start-page: 447
  year: 2017
  ident: 10.1016/j.xops.2025.100775_bib9
  article-title: Slow reading in children with anisometropic amblyopia is associated with fixation instability and increased saccades
  publication-title: J AAPOS
  doi: 10.1016/j.jaapos.2017.10.001
– volume: 20
  start-page: 153
  year: 2016
  ident: 10.1016/j.xops.2025.100775_bib22
  article-title: Validation of photoscreening technology in the general pediatrics office: a prospective study
  publication-title: J AAPOS
  doi: 10.1016/j.jaapos.2016.01.004
– volume: 12
  start-page: 9
  year: 2019
  ident: 10.1016/j.xops.2025.100775_bib37
  article-title: Fixational eye movement waveforms in amblyopia: characteristics of fast and slow eye movements
  publication-title: J Eye Mov Res
  doi: 10.16910/jemr.12.6.9
– volume: 12
  start-page: 41
  year: 2013
  ident: 10.1016/j.xops.2025.100775_bib77
  article-title: Detecting fixation on a target using time-frequency distributions of a retinal birefringence scanning signal
  publication-title: Biomed Eng Online
  doi: 10.1186/1475-925X-12-41
– volume: 63
  start-page: 33
  year: 2022
  ident: 10.1016/j.xops.2025.100775_bib46
  article-title: Effect of viewing conditions on fixation eye movements and eye alignment in amblyopia
  publication-title: Invest Ophthalmol Vis Sci
  doi: 10.1167/iovs.63.2.33
– volume: 11
  start-page: 325
  year: 2007
  ident: 10.1016/j.xops.2025.100775_bib70
  article-title: The American association for pediatric ophthalmology and strabismus workforce distribution project
  publication-title: J AAPOS
  doi: 10.1016/j.jaapos.2006.08.014
– volume: 105
  start-page: 30
  year: 2018
  ident: 10.1016/j.xops.2025.100775_bib76
  article-title: Deep ranking structural support vector machine for image tagging
  publication-title: Pattern Recognit Lett
  doi: 10.1016/j.patrec.2017.09.012
– volume: 51
  start-page: 3502
  year: 2010
  ident: 10.1016/j.xops.2025.100775_bib8
  article-title: Reading strategies in mild to moderate strabismic amblyopia: an eye movement investigation
  publication-title: Invest Ophthalmol Vis Sci
  doi: 10.1167/iovs.09-4236
– volume: 140
  start-page: 295
  year: 2017
  ident: 10.1016/j.xops.2025.100775_bib74
  article-title: Automatic diagnosis of strabismus in digital videos through cover test
  publication-title: Comput Methods Programs Biomed
  doi: 10.1016/j.cmpb.2017.01.002
– volume: 10
  year: 2022
  ident: 10.1016/j.xops.2025.100775_bib2
  article-title: The global prevalence of amblyopia in children: a systematic review and meta-analysis
  publication-title: Front Pediatr
  doi: 10.3389/fped.2022.819998
– volume: 32
  start-page: 683
  year: 1985
  ident: 10.1016/j.xops.2025.100775_bib63
  article-title: On the identification and analysis of saccadic eye movements--a quantitative study of the processing procedures
  publication-title: IEEE Trans Biomed Eng
  doi: 10.1109/TBME.1985.325586
– volume: 5
  year: 2015
  ident: 10.1016/j.xops.2025.100775_bib24
  article-title: Preschool children's vision screening in New Zealand: a retrospective evaluation of referral accuracy
  publication-title: BMJ Open
  doi: 10.1136/bmjopen-2015-009207
– volume: 59
  start-page: 4506
  year: 2018
  ident: 10.1016/j.xops.2025.100775_bib11
  article-title: Visual search in amblyopia: abnormal fixational eye movements and suboptimal sampling strategies
  publication-title: Invest Ophthalmol Vis Sci
  doi: 10.1167/iovs.18-24794
– volume: 61
  start-page: 43
  year: 2020
  ident: 10.1016/j.xops.2025.100775_bib14
  article-title: Factors associated with impaired motor skills in strabismic and anisometropic children
  publication-title: Invest Ophthalmol Vis Sci
  doi: 10.1167/iovs.61.10.43
– volume: 51
  start-page: 6348
  year: 2010
  ident: 10.1016/j.xops.2025.100775_bib10
  article-title: Effects of anisometropic amblyopia on visuomotor behavior, I: saccadic eye movements
  publication-title: Invest Ophthalmol Vis Sci
  doi: 10.1167/iovs.10-5882
– volume: 100
  start-page: 488
  year: 1993
  ident: 10.1016/j.xops.2025.100775_bib29
  article-title: The Teller acuity card procedure. Three testers in a clinical setting
  publication-title: Ophthalmology
  doi: 10.1016/S0161-6420(93)31617-9
– year: 2013
  ident: 10.1016/j.xops.2025.100775_bib80
  article-title: The classification of valid and invalid beats of three-dimensional nystagmus eye movement signals using machine learning methods
  publication-title: Adv Arti cial Neural Syst
– volume: 9
  year: 2019
  ident: 10.1016/j.xops.2025.100775_bib23
  article-title: Choosing appropriate tools and referral criteria for vision screening of children aged 4-5 years in Canada: a quantitative analysis
  publication-title: BMJ Open
  doi: 10.1136/bmjopen-2019-032138
– volume: 10
  year: 2015
  ident: 10.1016/j.xops.2025.100775_bib32
  article-title: Simultaneous recordings of human microsaccades and drifts with a contemporary video eye tracker and the search coil technique
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0128428
SSID ssj0002513241
Score 2.3021255
Snippet To develop an attention-based deep learning (DL) model based on eye movements acquired during a simple visual fixation task to detect amblyopic subjects across...
ObjectiveTo develop an attention-based deep learning (DL) model based on eye movements acquired during a simple visual fixation task to detect amblyopic...
Objective: To develop an attention-based deep learning (DL) model based on eye movements acquired during a simple visual fixation task to detect amblyopic...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 100775
SubjectTerms Amblyopia
Artificial intelligence
Eye tracking
Fixation eye movements
Ophthalmology
Original
Strabismus
Title A Multihead Attention Deep Learning Algorithm to Detect Amblyopia Using Fixation Eye Movements
URI https://www.clinicalkey.com/#!/content/1-s2.0-S2666914525000739
https://www.clinicalkey.es/playcontent/1-s2.0-S2666914525000739
https://dx.doi.org/10.1016/j.xops.2025.100775
https://www.ncbi.nlm.nih.gov/pubmed/40458668
https://www.proquest.com/docview/3215239000
https://pubmed.ncbi.nlm.nih.gov/PMC12127649
https://doaj.org/article/acc5433f1ef749e1b04c7903f1e99064
Volume 5
WOSCitedRecordID wos001489503300004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2666-9145
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002513241
  issn: 2666-9145
  databaseCode: DOA
  dateStart: 20210101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2666-9145
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002513241
  issn: 2666-9145
  databaseCode: M~E
  dateStart: 20210101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELagQogL4k14VEbihiLiOHHiY4BdcWArJB7am-U4TpuqTVabFLWX_pb-Fn4ZM3ay2gVEL-xhD3mss_N5xhPNN58Jec3SqqpLKUOuWRomLNGhrAQPZa2trEumpWsf-_4pOzjIl0v5eWurL-SEeXlgb7i32pg04bxmts4SaVkZJSaTER6AQCqcEihkPVsvUxiDYdWGTIGNXTKe0HXerVCfO04dMwCJhVsrkRPs31mQ_kw4f-dNbi1E83vk7phB0sI_-X1yw7YPyO3FWCN_SFRBXVctRNmKFsPg-Yz0g7UrOqqpHtLi5LBbN8PRKR06OIWVBFqclicX3arR1PEI6Lw5d7D9vJpdWLronLL40D8i3-azr-8_huM2CqFJczaEZVwJA25aZSIBl46ZiCOTZUKnkY3iOq4h3kUo-15GxhqOim_wAZhySA-0Efwx2Wu71j7FBu8KG-NKuKiGCCtybeNU84zptI6q2ATkzWRStfJqGWqikR0rBEAhAMoDEJB3aPXNlah07Q4A_mrEX12Hf0D4hJmamkkh_MEPNf8cOvvbXbYfPbhXTPWxitQXSGCEZK7666qaAUk3d45Jik8-rh3x1TShFHgwlmV0a7uzXnHcWpjj5q0BeeIn2MYkCdaxhcgDku9MvR2b7Z5pmyOnEs5Qu18k8tn_sPJzcgf_iyfXvSB7w_rMviS3zI-h6df75Ga2zPedB8L34nL2CyuPNNk
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Multihead+Attention+Deep+Learning+Algorithm+to+Detect+Amblyopia+Using+Fixation%C2%A0Eye+Movements&rft.jtitle=Ophthalmology+science+%28Online%29&rft.au=Dipak+P.+Upadhyaya%2C+MS&rft.au=Gokce+Cakir%2C+MD&rft.au=Stefano+Ramat%2C+PhD&rft.au=Jeffrey+Albert%2C+PhD&rft.date=2025-09-01&rft.pub=Elsevier&rft.eissn=2666-9145&rft.volume=5&rft.issue=5&rft.spage=100775&rft_id=info:doi/10.1016%2Fj.xops.2025.100775&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_acc5433f1ef749e1b04c7903f1e99064
thumbnail_m http://cvtisr.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fcdn.clinicalkey.com%2Fck-thumbnails%2F26669145%2FS2666914525X0004X%2Fcov150h.gif