A Deep Learning Filter that Blocks Phishing Campaigns Using Intelligent English Text Recognition Methods

Most of the sophisticated attacks in the modern age of cybercrime are based, among other things, on specialized phishing campaigns. A challenge in identifying phishing campaigns is defining a classification of patterns that can be generalized and used in different areas and campaigns of a different...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Applied bionics and biomechanics Ročník 2022; s. 1 - 9
Hlavní autoři: Tang, Yonghui, Wu, Fei
Médium: Journal Article
Jazyk:angličtina
Vydáno: Egypt Hindawi 30.05.2022
John Wiley & Sons, Inc
Wiley
Témata:
ISSN:1176-2322, 1754-2103
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Most of the sophisticated attacks in the modern age of cybercrime are based, among other things, on specialized phishing campaigns. A challenge in identifying phishing campaigns is defining a classification of patterns that can be generalized and used in different areas and campaigns of a different nature. Although efforts have been made to establish a general labeling scheme in their classification, there is still limited data labeled in such a format. The usual approaches are based on feature engineering to correctly identify phishing campaigns, exporting lexical, syntactic, and semantic features, e.g., previous phrases. In this context, the most recent approaches have taken advantage of modern neural network architectures to record hidden information at the phrase and text levels, e.g., Long Short-Term Memory (LSTM) and Convolutional Neural Networks (CNNs). However, these models lose semantic information related to the specific problem, resulting in a variation in their performance, depending on the different data sets and the corresponding standards used for labeling. In this paper, we propose to extend word embeddings with word vectors that indicate the semantic similarity of each word with each phishing campaigns template tag. These embedded keywords are calculated based on semantic subfields corresponding to each phishing campaign tag, constructed based on the automatic extraction of keywords representing these tags. Combining general word integrations with vectors is calculated based on word similarity using a set of sequential Kalman filters, which can then power any neural architecture such as LSTM or CNN to predict each phishing campaign. Our experiments use a data indicator to evaluate our approach and achieve remarkable results that reinforce the state-of-the-art.
AbstractList Most of the sophisticated attacks in the modern age of cybercrime are based, among other things, on specialized phishing campaigns. A challenge in identifying phishing campaigns is defining a classification of patterns that can be generalized and used in different areas and campaigns of a different nature. Although efforts have been made to establish a general labeling scheme in their classification, there is still limited data labeled in such a format. The usual approaches are based on feature engineering to correctly identify phishing campaigns, exporting lexical, syntactic, and semantic features, e.g., previous phrases. In this context, the most recent approaches have taken advantage of modern neural network architectures to record hidden information at the phrase and text levels, e.g., Long Short-Term Memory (LSTM) and Convolutional Neural Networks (CNNs). However, these models lose semantic information related to the specific problem, resulting in a variation in their performance, depending on the different data sets and the corresponding standards used for labeling. In this paper, we propose to extend word embeddings with word vectors that indicate the semantic similarity of each word with each phishing campaigns template tag. These embedded keywords are calculated based on semantic subfields corresponding to each phishing campaign tag, constructed based on the automatic extraction of keywords representing these tags. Combining general word integrations with vectors is calculated based on word similarity using a set of sequential Kalman filters, which can then power any neural architecture such as LSTM or CNN to predict each phishing campaign. Our experiments use a data indicator to evaluate our approach and achieve remarkable results that reinforce the state-of-the-art.
Most of the sophisticated attacks in the modern age of cybercrime are based, among other things, on specialized phishing campaigns. A challenge in identifying phishing campaigns is defining a classification of patterns that can be generalized and used in different areas and campaigns of a different nature. Although efforts have been made to establish a general labeling scheme in their classification, there is still limited data labeled in such a format. The usual approaches are based on feature engineering to correctly identify phishing campaigns, exporting lexical, syntactic, and semantic features, e.g., previous phrases. In this context, the most recent approaches have taken advantage of modern neural network architectures to record hidden information at the phrase and text levels, e.g., Long Short-Term Memory (LSTM) and Convolutional Neural Networks (CNNs). However, these models lose semantic information related to the specific problem, resulting in a variation in their performance, depending on the different data sets and the corresponding standards used for labeling. In this paper, we propose to extend word embeddings with word vectors that indicate the semantic similarity of each word with each phishing campaigns template tag. These embedded keywords are calculated based on semantic subfields corresponding to each phishing campaign tag, constructed based on the automatic extraction of keywords representing these tags. Combining general word integrations with vectors is calculated based on word similarity using a set of sequential Kalman filters, which can then power any neural architecture such as LSTM or CNN to predict each phishing campaign. Our experiments use a data indicator to evaluate our approach and achieve remarkable results that reinforce the state-of-the-art.Most of the sophisticated attacks in the modern age of cybercrime are based, among other things, on specialized phishing campaigns. A challenge in identifying phishing campaigns is defining a classification of patterns that can be generalized and used in different areas and campaigns of a different nature. Although efforts have been made to establish a general labeling scheme in their classification, there is still limited data labeled in such a format. The usual approaches are based on feature engineering to correctly identify phishing campaigns, exporting lexical, syntactic, and semantic features, e.g., previous phrases. In this context, the most recent approaches have taken advantage of modern neural network architectures to record hidden information at the phrase and text levels, e.g., Long Short-Term Memory (LSTM) and Convolutional Neural Networks (CNNs). However, these models lose semantic information related to the specific problem, resulting in a variation in their performance, depending on the different data sets and the corresponding standards used for labeling. In this paper, we propose to extend word embeddings with word vectors that indicate the semantic similarity of each word with each phishing campaigns template tag. These embedded keywords are calculated based on semantic subfields corresponding to each phishing campaign tag, constructed based on the automatic extraction of keywords representing these tags. Combining general word integrations with vectors is calculated based on word similarity using a set of sequential Kalman filters, which can then power any neural architecture such as LSTM or CNN to predict each phishing campaign. Our experiments use a data indicator to evaluate our approach and achieve remarkable results that reinforce the state-of-the-art.
Audience Academic
Author Wu, Fei
Tang, Yonghui
AuthorAffiliation 1 Shaoyang University, Shaoyang 422000, China
2 Hunan Institute of Engineering, Xiangtan 411101, China
AuthorAffiliation_xml – name: 2 Hunan Institute of Engineering, Xiangtan 411101, China
– name: 1 Shaoyang University, Shaoyang 422000, China
Author_xml – sequence: 1
  givenname: Yonghui
  surname: Tang
  fullname: Tang, Yonghui
  organization: Shaoyang UniversityShaoyang 422000Chinahnsyu.net
– sequence: 2
  givenname: Fei
  orcidid: 0000-0002-0759-5882
  surname: Wu
  fullname: Wu, Fei
  organization: Hunan Institute of EngineeringXiangtan 411101Chinahnie.edu.cn
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35677198$$D View this record in MEDLINE/PubMed
BookMark eNp9kstvEzEQxleoiD7gxhmtxAUJ0vrt9QUphBYiBYFQe7a83tmNw8YOa4fHf4-XhEIqQD7YHv_mmxnrOy2OfPBQFI8xOseY8wuCCLngiApExL3iBEvOJgQjepTPWIoJoYQcF6cxrhDimCH6oDimXEiJVXVSLKfla4BNuQAzeOe78sr1CYYyLU0qX_XBforlh6WLy_FtZtYb4zofy5s43uc-Qd-7DnwqL33XZ6y8hm-p_Ag2dN4lF3z5DtIyNPFhcb81fYRH-_2suLm6vJ69nSzev5nPpouJ5RVOE0GqihNrUF0LQFI1jBPR1rVqaSsZgKosIbVRDJCRSiFlGK9lI1pjpawxoWfFfKfbBLPSm8GtzfBdB-P0z0AYOm2G5GwP2kjeSmErIgCYUKySVFaIMctRDYayrPVyp7XZ1mtobJ5zMP2B6OGLd0vdhS9aYYkYp1ng2V5gCJ-3EJNeu2jznxkPYRs1EZJJTqtq7PvpHXQVtoPPXzVSnFFBcPWb6kwewPk25Lp2FNVTiYSiimORqfO_UHk1sHY226d1OX6Q8OTPQW8n_OWTDLzYAXYIMQ7Q3iIY6dGGerSh3tsw4-QObl0yox1yI67_V9LzXVL2WmO-uv-X-AFkiOla
CitedBy_id crossref_primary_10_1155_2023_9807027
crossref_primary_10_1002_cpe_8033
Cites_doi 10.1007/978-3-319-73618-1_3
10.1109/NLPKE.2010.5587788
10.1109/ICITISEE48480.2019.9003803
10.1109/ESCI50559.2021.9396969
10.1109/TASLP.2020.2991544
10.1109/ICCICC46617.2019.9146027
10.1109/ICITEE53064.2021.9611880
10.1109/ICETAS.2018.8629198
10.1109/IACC48062.2019.8971592
10.1109/RAMS48030.2020.9153681
10.1109/EI250167.2020.9347143
10.1007/978-3-319-17091-6_17
10.1109/iSAI-NLP.2018.8692973
10.1109/ASRU.2013.6707745
10.1109/CCST.2019.8888416
10.1109/BigComp51126.2021.00010
10.1186/s40537-021-00444-8
10.1109/CyberSecurity49315.2020.9138871
10.23919/MIPRO.2019.8757074
10.1093/lpr/mgi008
10.1109/ICPCI.2012.6486479
10.1109/ICSCN.2017.8085731
10.1109/ACMI53878.2021.9528204
10.1109/IICSPI.2018.8690387
10.1109/ICEngTechnol.2017.8308186
10.1109/iSAI-NLP.2018.8692959
10.17632/c2gw7fy2j4.2
10.1109/NLPKE.2010.5587778
10.1109/ISAMSR.2018.8540555
10.1109/SMART-TECH49988.2020.00026
10.1007/978-981-10-5780-9_2
10.1007/s11235-020-00733-2
10.1109/ICSE-Companion52605.2021.00137
10.1109/IC4ME247184.2019.9036670
10.1109/PAAP.2014.38
10.1109/CSCI49370.2019.00071
10.1109/ICIRCA48905.2020.9183355
10.3389/frai.2020.00004
10.1109/ICPICS50287.2020.9202191
10.1109/IWECAI50956.2020.00027
10.1109/ICINIS.2015.35
10.3233/ICA-210657
10.1093/lpr/mgm014
10.1093/lawprj/3.3-4.243
10.1007/978-3-319-57358-8_7
ContentType Journal Article
Copyright Copyright © 2022 Yonghui Tang and Fei Wu.
COPYRIGHT 2022 John Wiley & Sons, Inc.
Copyright © 2022 Yonghui Tang and Fei Wu. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0
Copyright © 2022 Yonghui Tang and Fei Wu. 2022
Copyright_xml – notice: Copyright © 2022 Yonghui Tang and Fei Wu.
– notice: COPYRIGHT 2022 John Wiley & Sons, Inc.
– notice: Copyright © 2022 Yonghui Tang and Fei Wu. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0
– notice: Copyright © 2022 Yonghui Tang and Fei Wu. 2022
DBID RHU
RHW
RHX
AAYXX
CITATION
NPM
3V.
7QO
7TB
7TK
7XB
88A
88I
8AO
8FD
8FE
8FG
8FH
8FK
ABJCF
ABUWG
AEUYN
AFKRA
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
DWQXO
FR3
GNUQQ
HCIFZ
L6V
LK8
M2P
M7P
M7S
P64
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
Q9U
7X8
5PM
DOA
DOI 10.1155/2022/5036026
DatabaseName Hindawi Publishing Complete
Hindawi Publishing Subscription Journals
Hindawi Publishing Open Access
CrossRef
PubMed
ProQuest Central (Corporate)
Biotechnology Research Abstracts
Mechanical & Transportation Engineering Abstracts
Neurosciences Abstracts
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Science Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest SciTech Premium Collection Technology Collection Materials Science & Engineering Database
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Central Essentials Local Electronic Collection Information
Biological Science Collection
ProQuest Central
Technology collection
Natural Science Collection
ProQuest One Community College
ProQuest Central
Engineering Research Database
ProQuest Central Student
SciTech Premium Collection
ProQuest Engineering Collection
Biological Sciences
Science Database
Biological Science Database
Engineering Database
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest Central Student
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central China
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Engineering Collection
Biotechnology Research Abstracts
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
ProQuest Central (New)
Engineering Collection
Engineering Database
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
Biological Science Database
ProQuest SciTech Collection
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList PubMed

MEDLINE - Academic
CrossRef


Publicly Available Content Database

Database_xml – sequence: 1
  dbid: RHX
  name: Hindawi Publishing Open Access
  url: http://www.hindawi.com/journals/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Open Access Full Text
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1754-2103
Editor Liu, Ye
Editor_xml – sequence: 1
  givenname: Ye
  surname: Liu
  fullname: Liu, Ye
EndPage 9
ExternalDocumentID oai_doaj_org_article_a75f76c826ee469487378044c50bea34
PMC9170453
A706939516
35677198
10_1155_2022_5036026
Genre Retracted Publication
Journal Article
GeographicLocations China
GeographicLocations_xml – name: China
GrantInformation_xml – fundername: Hunan Provincial Social Science
  grantid: 18ZDB005
– fundername: Education Department of Hunan Province
  grantid: 19B130
GroupedDBID .DC
0R~
23M
3V.
53G
5GY
5VS
88A
88I
8AO
8FE
8FG
8FH
AAFWJ
AAJEY
ABJCF
ABUWG
ACGOD
ACIWK
ACPRK
ADBBV
ADRAZ
AENEX
AFKRA
AFPKN
AFRAH
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BGLVJ
BHPHI
BPHCQ
CCPQU
CS3
DIK
DWQXO
EBD
EBS
GNUQQ
GROUPED_DOAJ
HCIFZ
HYE
HZ~
I-F
IAO
IHR
IOS
KQ8
L6V
LK8
M0L
M2P
M48
M4Z
M7P
M7S
MIO
MK~
ML~
MV1
NGNOM
O9-
OK1
P2P
PIMPY
PQQKQ
PROAC
PTHSS
RHU
RHW
RHX
RPM
TWF
TWQ
24P
AAMMB
AAYXX
ACCMX
ADMLS
AEFGJ
AEUYN
AFFHD
AGXDD
AIDQK
AIDYY
ALUQN
CITATION
H13
ITC
PGMZT
PHGZM
PHGZT
PQGLB
TFW
4.4
ACPQW
ADZMO
AFRHK
CAG
COF
EJD
HF~
IPNFZ
MET
NPM
RIG
TDBHL
7QO
7TB
7TK
7XB
8FD
8FK
FR3
P64
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
PUEGO
5PM
ID FETCH-LOGICAL-c581t-628852ca0bb6e079d4526fbb9f3f74ee98c22ba94e0a79909a45b7d6fac77b123
IEDL.DBID RHX
ISICitedReferencesCount 2
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000811257900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1176-2322
IngestDate Mon Nov 10 04:29:03 EST 2025
Tue Nov 04 01:43:48 EST 2025
Fri Sep 05 14:19:30 EDT 2025
Mon Nov 10 03:05:43 EST 2025
Tue Nov 11 10:56:22 EST 2025
Tue Nov 04 18:14:22 EST 2025
Wed Feb 19 02:05:24 EST 2025
Tue Nov 18 22:44:17 EST 2025
Sat Nov 29 05:34:59 EST 2025
Sun Jun 02 18:53:20 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
https://creativecommons.org/licenses/by/4.0
Copyright © 2022 Yonghui Tang and Fei Wu.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c581t-628852ca0bb6e079d4526fbb9f3f74ee98c22ba94e0a79909a45b7d6fac77b123
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ObjectType-Correction/Retraction-3
Academic Editor: Ye Liu
ORCID 0000-0002-0759-5882
OpenAccessLink https://dx.doi.org/10.1155/2022/5036026
PMID 35677198
PQID 2675436218
PQPubID 28075
PageCount 9
ParticipantIDs doaj_primary_oai_doaj_org_article_a75f76c826ee469487378044c50bea34
pubmedcentral_primary_oai_pubmedcentral_nih_gov_9170453
proquest_miscellaneous_2674753882
proquest_journals_2675436218
gale_infotracmisc_A706939516
gale_infotracacademiconefile_A706939516
pubmed_primary_35677198
crossref_primary_10_1155_2022_5036026
crossref_citationtrail_10_1155_2022_5036026
hindawi_primary_10_1155_2022_5036026
PublicationCentury 2000
PublicationDate 2022-05-30
PublicationDateYYYYMMDD 2022-05-30
PublicationDate_xml – month: 05
  year: 2022
  text: 2022-05-30
  day: 30
PublicationDecade 2020
PublicationPlace Egypt
PublicationPlace_xml – name: Egypt
– name: Amsterdam
PublicationTitle Applied bionics and biomechanics
PublicationTitleAlternate Appl Bionics Biomech
PublicationYear 2022
Publisher Hindawi
John Wiley & Sons, Inc
Wiley
Publisher_xml – name: Hindawi
– name: John Wiley & Sons, Inc
– name: Wiley
References 22
44
23
45
24
46
25
47
26
48
27
28
R. G. Krishnan (33)
30
31
10
32
11
12
34
13
35
14
36
15
37
16
38
17
39
18
1
2
3
4
5
6
A. Bhowmick (29)
7
8
9
K. O’Shea (19)
40
41
20
42
21
43
38152735 - Appl Bionics Biomech. 2023 Dec 20;2023:9807027
References_xml – ident: 20
  doi: 10.1007/978-3-319-73618-1_3
– ident: 9
  doi: 10.1109/NLPKE.2010.5587788
– ident: 3
  doi: 10.1109/ICITISEE48480.2019.9003803
– ident: 7
  doi: 10.1109/ESCI50559.2021.9396969
– ident: 22
  doi: 10.1109/TASLP.2020.2991544
– ident: 29
  article-title: Machine learning for e-mail spam filtering: review,techniques and trends
– ident: 37
  doi: 10.1109/ICCICC46617.2019.9146027
– ident: 43
  doi: 10.1109/ICITEE53064.2021.9611880
– ident: 8
  doi: 10.1109/ICETAS.2018.8629198
– ident: 26
  doi: 10.1109/IACC48062.2019.8971592
– ident: 40
  doi: 10.1109/RAMS48030.2020.9153681
– ident: 46
  doi: 10.1109/EI250167.2020.9347143
– ident: 42
  doi: 10.1007/978-3-319-17091-6_17
– ident: 12
  doi: 10.1109/iSAI-NLP.2018.8692973
– ident: 19
  article-title: An introduction to convolutional neural networks
– ident: 48
  doi: 10.1109/ASRU.2013.6707745
– ident: 1
  doi: 10.1109/CCST.2019.8888416
– ident: 23
  doi: 10.1109/BigComp51126.2021.00010
– ident: 27
  doi: 10.1186/s40537-021-00444-8
– ident: 44
  doi: 10.1109/CyberSecurity49315.2020.9138871
– ident: 30
  doi: 10.23919/MIPRO.2019.8757074
– ident: 35
  doi: 10.1093/lpr/mgi008
– ident: 17
  doi: 10.1109/ICPCI.2012.6486479
– ident: 36
  doi: 10.1109/ICSCN.2017.8085731
– ident: 2
  doi: 10.1109/ACMI53878.2021.9528204
– ident: 47
  doi: 10.1109/IICSPI.2018.8690387
– ident: 18
  doi: 10.1109/ICEngTechnol.2017.8308186
– ident: 10
  doi: 10.1109/iSAI-NLP.2018.8692959
– ident: 41
  doi: 10.17632/c2gw7fy2j4.2
– ident: 14
  doi: 10.1109/NLPKE.2010.5587778
– ident: 31
  doi: 10.1109/ISAMSR.2018.8540555
– ident: 15
  doi: 10.1109/SMART-TECH49988.2020.00026
– ident: 32
  doi: 10.1007/978-981-10-5780-9_2
– ident: 4
  doi: 10.1007/s11235-020-00733-2
– ident: 6
  doi: 10.1109/ICSE-Companion52605.2021.00137
– ident: 11
  doi: 10.1109/IC4ME247184.2019.9036670
– ident: 16
  doi: 10.1109/PAAP.2014.38
– ident: 28
  doi: 10.1109/CSCI49370.2019.00071
– ident: 13
  doi: 10.1109/ICIRCA48905.2020.9183355
– ident: 24
  doi: 10.3389/frai.2020.00004
– ident: 5
  doi: 10.1109/ICPICS50287.2020.9202191
– ident: 21
  doi: 10.1109/IWECAI50956.2020.00027
– ident: 34
  doi: 10.1109/ICINIS.2015.35
– ident: 25
  doi: 10.3233/ICA-210657
– ident: 33
  article-title: Deep Kalman filters
– ident: 38
  doi: 10.1093/lpr/mgm014
– ident: 39
  doi: 10.1093/lawprj/3.3-4.243
– ident: 45
  doi: 10.1007/978-3-319-57358-8_7
– reference: 38152735 - Appl Bionics Biomech. 2023 Dec 20;2023:9807027
SSID ssj0051403
Score 2.2317767
SecondaryResourceType retracted_publication
Snippet Most of the sophisticated attacks in the modern age of cybercrime are based, among other things, on specialized phishing campaigns. A challenge in identifying...
SourceID doaj
pubmedcentral
proquest
gale
pubmed
crossref
hindawi
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1
SubjectTerms Algorithms
Analysis
Artificial intelligence
Artificial neural networks
Assaults
Automation
Big Data
Classification
Cloning
Communication
Computer architecture
Crime
Cybercrime
Deep learning
Efficiency
Forecasts and trends
Hackers
Identity theft
Kalman filters
Labeling
Long short-term memory
Machine learning
Methods
Natural language
Neural networks
Phishing
Semantics
Similarity
Social networks
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Na9wwEBUlJNBL6XfdbooKKT0UE9uSLPu4Sbq0h4ZQUshNSFo5Ni3eEDsJ_fedkWWzLi259GqNkawZzcyzx28IOWBaW5dYExcQLmOeGh7rqipi8JXJ2jBdycz4ZhPy9LS4uCjPtlp9YU3YQA88bNyhlqKSuYUs2DmAcpBfM-TM4VYkxmnmmUAh6xnB1OCDBbLQjWXuQiDCzw4FOGtPorAVgDxP_-SN92rEwXfN37LNP4smt6LQ6jF5FNJHuhyW_YQ8cO1Tsjc0lPz1jNRLeuLcFQ2sqZd01eDXcNrXuqdHELd-dPSsHl47UfzsoJvLtqO-boB-mdg5exr-7qXn4Lvpt7HIaNPSr77jdPecfF99Oj_-HIdeCrEVRdrH2FVYZFYnxuQukeUaW4tXxpQVqyR3rixslhldcpdoCRGq1FwYuc4rbaU0EN5ekJ1207pXhEoHTjK12oEUz4UxRso8B4UYyfLKJhH5OG6wsoFoHPtd_FQecAihUB0qqCMi7yfpq4Fg4x9yR6irSQZpsf0FMBYVjEXdZywR-YCaVnh4YUlWh38Q4MGQBkstZZKXDJJOmG4xk4RDZ2fDB8FW7ln0YjQkFXxDpzLAaBzOQlpE5N00jBNgvVvrNjdehgOQBPgTkZeD3U0TMZFLmZZwt5xZ5Gxr5iNtU3vmcMDmkMKz1_9jL9-Qh_iovpIiWZCd_vrG7ZNde9s33fVbfxx_A6MvNY8
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Biological Science Database
  dbid: M7P
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELagUKkX3o_AgoxUxAFFzSZ-JCe0BVZwoFqhIvUW2V5nE4GS7SYF8e-ZcZzQIB4HrvFsbK_H87An30fIYaKUsZHRYQruMmRzzUJVFGkItjJa60QVMtaObEKenKRnZ9nKH7i1vqxysInOUK8bg2fkRzFEtgzeME9fbc9DZI3C21VPoXGVXEOUhMSV7q0GS8wRi64nVxEhRA7xUPjOOeb88REH8-1gFS65JIfcP9rn_RIz42_V7-LPX8soL_ml5c3_ndEtcsNHpHTRq9BtcsXWd8h-z1H5_S4pF_SNtVvqgVg3dFnhBTvtStXRY3CFn1u6KvuTLIo3Gara1C11pQj0_Qj42VH_wTA9BXdAPw51S01NPzgS6_Ye-bR8e_r6XejpGULD03kXIlExj42KtBY2ktka2coLrbMiKSSzNktNHGuVMRspCU4vU4xruRaFMlJq8Jj3yV7d1PYhodKC3Z0bZUGKCa61llIIZkA-EYWJAvJyWKHceOxypND4krschvMc1zP36xmQ56P0tsfs-IPcMS72KINI2-5Bs9vkfuPmSvJCCgNZmLVMZJDfJYjZBGOLtFUJC8gLVJUc7QEMySj_WQNMDJG18oWMRJZAHAvdzSaSsI_NpPnQK9s_Bj0btCn35qbNf6pSQJ6NzdgBltDVtrlwMgxyU8ioAvKgV9yxo4QLKecZ_FpOVHry10xb6qp0YOSQ7kNWkDz6-7AekwOchCu7iGZkr9td2CfkuvnaVe3uqdu1PwDLMkZm
  priority: 102
  providerName: ProQuest
Title A Deep Learning Filter that Blocks Phishing Campaigns Using Intelligent English Text Recognition Methods
URI https://dx.doi.org/10.1155/2022/5036026
https://www.ncbi.nlm.nih.gov/pubmed/35677198
https://www.proquest.com/docview/2675436218
https://www.proquest.com/docview/2674753882
https://pubmed.ncbi.nlm.nih.gov/PMC9170453
https://doaj.org/article/a75f76c826ee469487378044c50bea34
Volume 2022
WOSCitedRecordID wos000811257900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Open Access Full Text
  customDbUrl:
  eissn: 1754-2103
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0051403
  issn: 1176-2322
  databaseCode: DOA
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVPQU
  databaseName: AUTh Library subscriptions: ProQuest Central
  customDbUrl:
  eissn: 1754-2103
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0051403
  issn: 1176-2322
  databaseCode: BENPR
  dateStart: 20180101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Biological Science Database
  customDbUrl:
  eissn: 1754-2103
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0051403
  issn: 1176-2322
  databaseCode: M7P
  dateStart: 20180101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Engineering Database
  customDbUrl:
  eissn: 1754-2103
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0051403
  issn: 1176-2322
  databaseCode: M7S
  dateStart: 20180101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 1754-2103
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0051403
  issn: 1176-2322
  databaseCode: PIMPY
  dateStart: 20180101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Science Database
  customDbUrl:
  eissn: 1754-2103
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0051403
  issn: 1176-2322
  databaseCode: M2P
  dateStart: 20180101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/sciencejournals
  providerName: ProQuest
– providerCode: PRVWIB
  databaseName: Wiley Online Library Open Access
  customDbUrl:
  eissn: 1754-2103
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0051403
  issn: 1176-2322
  databaseCode: 24P
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwELfoYNJeEN8ESmWkIR5QRL5sJ48trNoeWkVlSOXJsl1niUDptGRD_PecHSciAwQvllpfZCc-390vvvwOoeNYCKUDJf0U3KWfhDLxRVGkPtjKYCdjUbBI2mITbL1Ot9ssdyRJze9H-ODtDDyP3hOwtAAXJmiSEqO8m9Ntb3CJoZzraqhQHwKEqM9vv3XtyPNYgv7BDB-WBgB_r_4UZt7OlvzF_SwfoPsubsTzbqEfoju6foQOu0qSPx6jco4_an2JHV3qBV5W5hgct6Vo8QIc1tcG52X3vgmb8wZRXdQNtgkD-Gyg5Wyx-6wXn4PRxps-u2hf45UtNd08QZ-XJ-cfTn1XRMFXJA1b35QTJpESgZRUByzbmZrihZRZERcs0TpLVRRJkSU6EAxcUyYSItmOFkIxJsGvPUUH9b7WzxFmGqxjqIQGqYQSKSVjlCYK5GNaqMBD7_oHzJVjGDeFLr5xizQI4WY5uFsOD70ZpC87Zo2_yC3MWg0yhg_b_gE6wt324oKRglEFWElrAPyAwmLDrARzC6QWceKht2aludm1MCUl3McHcGOG_4rPWUCzGKJNGG46koTdpkbdx05X_jHpaa9I3BmFhkcAzhLYBGHqoddDtxnAJLrVen9tZRJAkIB7PPSs07thoJhQxsIMrmYjjRw9mnFPXZWWMhxAOcTu8Yv_m_1LdGR-2iSJYIoO2qtr_QrdUzdt1VzN0IRt0xm6uzhZ55uZfYkB7SrKTcu69hP052er_MvMbtWfsZUtfw
linkProvider Hindawi Publishing
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LbxMxELaqQgUX3o9AACO14oBW3YcfuweEUkrUqG0UoSD1ttiON4labUJ2S9U_xW9kxvugQTxOPXCNJ7G9GX_j8Y6_j5DtSCljfaO9GMKlxwLNPJVlsQdY6U90pDIZaic2IYfD-OQkGW2Q781dGCyrbDDRAfVkYfCMfDeEnS2DXwji98uvHqpG4dvVRkKjcotDe3kBKVvxbrAP_-9OGPY_jj8ceLWqgGd4HJQe6uvy0Chfa2F9mUxQZDvTOsmiTDJrk9iEoVYJs76SgNWJYlzLiciUkVIHSHQAkH8DthFh7EoFRw3yc-S-q8RchAc7lbAptOcczxjCXQ7hwtE4XAmBTimgjQdbM8zEL-a_2-_-WrZ5JQ727_5vT_AeuVPvuGmvWiL3yYbNH5CtSoPz8iGZ9ei-tUtaE81OaX-OBQS0nKmS7kGoPy3oaFad1FF8U6Pm07ygrtSCDlpC05LWF6LpGMId_dTUZS1yeuxEuotH5PO1TPMx2cwXuX1KqLQQVwKjLFgxwbXWUgrBDNhHIjN-h7xtPCI1NTc7SoScpS5H4zxF_0lr_-mQndZ6WXGS_MFuD52rtUEmcffBYjVNa2BKleSZFAayTGuZSCB_jZCTCsbma6si1iFv0DVTxDsYklH1tQ2YGDKHpT3piySCfTp0112zBJwya83btXP_Y9DdxnvTGk6L9Kfrdsjrthk7wBLB3C7OnQ2D3Bsyxg55Ui2UtqOICymDBL4t15bQ2qNZb8nnM0e2ngQSsp7o2d-H9YrcOhgfH6VHg-Hhc3IbJ-RKTPwu2SxX5_YFuWm-lfNi9dIhBiVfrnuB_QBLzKPV
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1JbxMxFLaqQhEXdmgggJFacUCjzGKPZw4IpYSIqBBFqEi9ubbjSSKqSchMqfrX-HW851loEMupB67xS2xP3up5_j5C9iKljPWN9hIIlx4LNPNUliUe-Ep_qiOViVA7sgkxHifHx-lki3xv7sJgW2XjE52jni4NnpH3QshsGfxCkPSyui1iMhi-WX31kEEK37Q2dBqVihzai3Mo34rXowH81_thOHx39Pa9VzMMeIYnQekh1y4PjfK1jq0v0ikSbmdap1mUCWZtmpgw1Cpl1lcC_HaqGNdiGmfKCKEDBD0A939NIGi5axucNFGAIw5eRewSe5C1hE3TPed43hD2OIQOB-lwKRw61oA2NuzMsSo_X_wu9_21hfNSTBze_p-f5h1yq87Eab8ynbtky-b3yE7FzXlxn8z7dGDtitYAtDM6XGBjAS3nqqQHkAJ8KehkXp3gUXyDoxazvKCuBYOOWqDTktYXpekR7J5-avq1ljn96Mi7iwfk85Vs8yHZzpe53SVUWIg3gVEWpFjMtdZCxDEzIB_FmfE75FWjHdLUmO1IHXIqXe3GuURdkrUudch-K72qsEr-IHeAitbKIMK4-2C5nsnaYUkleCZiA9WntSxOoa6NEKsK1uZrqyLWIS9RTSX6QViSUfV1DtgYIorJvvDjNIL8HabrbkiC_zIbw3u1ov9j0d1Gk2XtZgv5U4075EU7jBNg62Bul2dOhkFNDpVkhzyqjKadKOKxEEEK3xYb5rTxaDZH8sXcgbCngYBqKHr892U9JzfAruSH0fjwCbmJ-3GdJ36XbJfrM_uUXDffykWxfuacByUnV21fPwDqJKyS
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Deep+Learning+Filter+that+Blocks+Phishing+Campaigns+Using+Intelligent+English+Text+Recognition+Methods&rft.jtitle=Applied+bionics+and+biomechanics&rft.au=Tang%2C+Yonghui&rft.au=Wu%2C+Fei&rft.date=2022-05-30&rft.issn=1176-2322&rft.eissn=1754-2103&rft.volume=2022&rft.spage=1&rft.epage=9&rft_id=info:doi/10.1155%2F2022%2F5036026&rft.externalDBID=n%2Fa&rft.externalDocID=10_1155_2022_5036026
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1176-2322&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1176-2322&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1176-2322&client=summon