Global switches and fine-tuning-ABA modulates plant pathogen defense

Plants are obliged to defend themselves against a wide range of biotic and abiotic stresses. Complex regulatory signaling networks mount an appropriate defense response depending on the type of stress that is perceived. In response to abiotic stresses such as drought, cold, and salinity, the functio...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Molecular plant-microbe interactions Ročník 21; číslo 6; s. 709 - 719
Hlavní autoři: Asselbergh, Bob, De Vleesschauwer, David, Höfte, Monica
Médium: Journal Article
Jazyk:angličtina
Vydáno: United States The American Phytopathological Society 01.06.2008
Témata:
ISSN:0894-0282, 1943-7706
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Plants are obliged to defend themselves against a wide range of biotic and abiotic stresses. Complex regulatory signaling networks mount an appropriate defense response depending on the type of stress that is perceived. In response to abiotic stresses such as drought, cold, and salinity, the function of abscisic acid (ABA) is well documented: elevation of plant ABA levels and activation of ABA-responsive signaling result in regulation of stomatal aperture and expression of stress-responsive genes. In response to pathogens, the role of ABA is more obscure and is a research topic that has long been overlooked. This article aims to evaluate and review the reported modes of ABA action on pathogen defense and highlight recent advances in deciphering the complex role of ABA in plant-pathogen interactions. The proposed mechanisms responsible for positive or negative effects of ABA on pathogen defense are discussed, as well as the regulation of ABA signaling and in planta ABA concentrations by beneficial and pathogenic microorganisms. In addition, the fast-growing number of reports that characterize antagonistic and synergistic interactions between abiotic and biotic stress responses point to ABA as an essential component in integrating and fine-tuning abiotic and biotic stress-response signaling networks.
AbstractList Plants are obliged to defend themselves against a wide range of biotic and abiotic stresses. Complex regulatory signaling networks mount an appropriate defense response depending on the type of stress that is perceived. In response to abiotic stresses such as drought, cold, and salinity, the function of abscisic acid (ABA) is well documented: elevation of plant ABA levels and activation of ABA-responsive signaling result in regulation of stomatal aperture and expression of stress-responsive genes. In response to pathogens, the role of ABA is more obscure and is a research topic that has long been overlooked. This article aims to evaluate and review the reported modes of ABA action on pathogen defense and highlight recent advances in deciphering the complex role of ABA in plant–pathogen interactions. The proposed mechanisms responsible for positive or negative effects of ABA on pathogen defense are discussed, as well as the regulation of ABA signaling and in planta ABA concentrations by beneficial and pathogenic microorganisms. In addition, the fast-growing number of reports that characterize antagonistic and synergistic interactions between abiotic and biotic stress responses point to ABA as an essential component in integrating and fine-tuning abiotic and biotic stress-response signaling networks.
Plants are obliged to defend themselves against a wide range of biotic and abiotic stresses. Complex regulatory signaling networks mount an appropriate defense response depending on the type of stress that is perceived. In response to abiotic stresses such as drought, cold, and salinity, the function of abscisic acid (ABA) is well documented: elevation of plant ABA levels and activation of ABA-responsive signaling result in regulation of stomatal aperture and expression of stress-responsive genes. In response to pathogens, the role of ABA is more obscure and is a research topic that has long been overlooked. This article aims to evaluate and review the reported modes of ABA action on pathogen defense and highlight recent advances in deciphering the complex role of ABA in plant-pathogen interactions. The proposed mechanisms responsible for positive or negative effects of ABA on pathogen defense are discussed, as well as the regulation of ABA signaling and in planta ABA concentrations by beneficial and pathogenic microorganisms. In addition, the fast-growing number of reports that characterize antagonistic and synergistic interactions between abiotic and biotic stress responses point to ABA as an essential component in integrating and fine-tuning abiotic and biotic stress-response signaling networks.Plants are obliged to defend themselves against a wide range of biotic and abiotic stresses. Complex regulatory signaling networks mount an appropriate defense response depending on the type of stress that is perceived. In response to abiotic stresses such as drought, cold, and salinity, the function of abscisic acid (ABA) is well documented: elevation of plant ABA levels and activation of ABA-responsive signaling result in regulation of stomatal aperture and expression of stress-responsive genes. In response to pathogens, the role of ABA is more obscure and is a research topic that has long been overlooked. This article aims to evaluate and review the reported modes of ABA action on pathogen defense and highlight recent advances in deciphering the complex role of ABA in plant-pathogen interactions. The proposed mechanisms responsible for positive or negative effects of ABA on pathogen defense are discussed, as well as the regulation of ABA signaling and in planta ABA concentrations by beneficial and pathogenic microorganisms. In addition, the fast-growing number of reports that characterize antagonistic and synergistic interactions between abiotic and biotic stress responses point to ABA as an essential component in integrating and fine-tuning abiotic and biotic stress-response signaling networks.
Author Asselbergh, Bob
De Vleesschauwer, David
Höfte, Monica
Author_xml – sequence: 1
  givenname: Bob
  surname: Asselbergh
  fullname: Asselbergh, Bob
  organization: Laboratory of Phytopathology, Ghent University, 9000 Gent, Belgium
– sequence: 2
  givenname: David
  surname: De Vleesschauwer
  fullname: De Vleesschauwer, David
– sequence: 3
  givenname: Monica
  surname: Höfte
  fullname: Höfte, Monica
BackLink https://www.ncbi.nlm.nih.gov/pubmed/18624635$$D View this record in MEDLINE/PubMed
BookMark eNo9kEtPwzAQhC0Eoi1w5Yhy4mbwO_axvEqlVnCAc-TYmzZVYpc4EeLfE1FgLyvNjL7V7AwdhxgAoUtKbigx4nb9ul5iRrHCJCfmCE2pERznOVHHaEq0EZgwzSZoltKOEGqUlKdoQrViQnE5RQ-LJpa2ydJn3bstpMwGn1V1ANwPoQ4bPL-bZ230Q2P70d03NvTZ3vbbuIGQeaggJDhHJ5VtElz87jP0_vT4dv-MVy-L5f18hZ3UtMeCO1cxVkkCpaDcSFl5RqVWxFtTEuaA80qB045WzHjiR0sYDZY6KowHfoaWB66Pdlfsu7q13VcRbV38CLHbFLbra9dAkVtFKJSaSzFOCZrw3JegRk1JQf3Iuj6w9l38GCD1RVsnB81YEOKQCmU4FZrKMXj1GxzKFvz_2b8f8m8xgHPd
CitedBy_id crossref_primary_10_1093_pcp_pcu100
crossref_primary_10_3389_fagro_2022_836360
crossref_primary_10_1186_1756_0500_5_392
crossref_primary_10_1016_j_envexpbot_2016_08_007
crossref_primary_10_1371_journal_pgen_1002020
crossref_primary_10_1038_s41598_025_87134_0
crossref_primary_10_1111_j_1365_313X_2011_04633_x
crossref_primary_10_1111_mpp_12204
crossref_primary_10_1038_srep19715
crossref_primary_10_1111_aab_70029
crossref_primary_10_1111_j_1364_3703_2010_00630_x
crossref_primary_10_1016_j_tplants_2013_07_002
crossref_primary_10_1111_j_1365_3040_2011_02426_x
crossref_primary_10_1016_j_plaphy_2012_09_015
crossref_primary_10_3389_fpls_2016_00552
crossref_primary_10_1186_1471_2229_10_281
crossref_primary_10_1104_pp_110_158972
crossref_primary_10_1111_nph_15396
crossref_primary_10_1111_ppa_12042
crossref_primary_10_1038_s41598_017_03907_2
crossref_primary_10_1371_journal_pone_0132683
crossref_primary_10_1186_1471_2229_12_224
crossref_primary_10_3390_ijms20010047
crossref_primary_10_1111_j_1600_0706_2011_19944_x
crossref_primary_10_1111_j_1365_3040_2010_02220_x
crossref_primary_10_1094_PDIS_07_24_1575_RE
crossref_primary_10_1093_mp_sss147
crossref_primary_10_1007_s11240_017_1289_1
crossref_primary_10_1080_00380768_2024_2405834
crossref_primary_10_1094_MPMI_08_13_0216_R
crossref_primary_10_1146_annurev_phyto_081211_172902
crossref_primary_10_1111_ppa_12725
crossref_primary_10_1016_j_plaphy_2021_05_028
crossref_primary_10_1111_tpj_14232
crossref_primary_10_1094_MPMI_05_12_0124_FI
crossref_primary_10_1111_tpj_13141
crossref_primary_10_3389_fevo_2019_00262
crossref_primary_10_1111_j_1365_313X_2009_03887_x
crossref_primary_10_1016_j_biocontrol_2018_07_003
crossref_primary_10_1007_s10059_012_2299_9
crossref_primary_10_1093_jxb_ert454
crossref_primary_10_3390_ijms23042280
crossref_primary_10_1104_pp_109_138420
crossref_primary_10_1016_j_plantsci_2013_03_004
crossref_primary_10_1016_j_pestbp_2017_06_005
crossref_primary_10_1007_s11103_013_0109_1
crossref_primary_10_1093_jxb_ers129
crossref_primary_10_1002_ece3_657
crossref_primary_10_1016_j_pmpp_2009_03_004
crossref_primary_10_1186_1471_2229_14_85
crossref_primary_10_1111_nph_12436
crossref_primary_10_3389_fpls_2018_01037
crossref_primary_10_3390_plants10020273
crossref_primary_10_1007_s00425_010_1137_6
crossref_primary_10_3390_ijms24043214
crossref_primary_10_1111_aab_12356
crossref_primary_10_1016_j_plaphy_2008_08_002
crossref_primary_10_1094_PDIS_07_22_1726_RE
crossref_primary_10_1186_s12870_014_0409_x
crossref_primary_10_5511_plantbiotechnology_11_1130a
crossref_primary_10_1007_s10725_020_00571_x
crossref_primary_10_1111_j_1469_8137_2009_02894_x
crossref_primary_10_1104_pp_112_200154
crossref_primary_10_1111_ppl_12895
crossref_primary_10_1016_j_pmpp_2023_102127
crossref_primary_10_7554_eLife_07295
crossref_primary_10_1111_j_1365_313X_2011_04534_x
crossref_primary_10_1094_MPMI_06_12_0164_R
crossref_primary_10_1080_15427528_2014_865412
crossref_primary_10_1111_j_1365_313X_2009_03804_x
crossref_primary_10_3390_genes9070339
crossref_primary_10_1111_j_1365_313X_2011_04800_x
crossref_primary_10_1016_j_cropro_2023_106551
crossref_primary_10_1128_spectrum_02638_21
crossref_primary_10_1016_j_tplants_2009_03_006
crossref_primary_10_1094_PHYTO_12_21_0496_R
crossref_primary_10_1186_s12870_018_1402_6
crossref_primary_10_1007_s12298_024_01447_4
crossref_primary_10_1093_jxb_erp233
crossref_primary_10_1094_PDIS_10_15_1134_RE
crossref_primary_10_1016_j_stress_2025_100750
crossref_primary_10_1111_eea_12937
crossref_primary_10_1016_j_pmpp_2011_12_003
crossref_primary_10_3389_fpls_2018_00525
crossref_primary_10_1016_j_plantsci_2012_12_019
crossref_primary_10_1094_MPMI_34_3
crossref_primary_10_3389_fpls_2020_548034
crossref_primary_10_3390_ijms21176067
crossref_primary_10_1111_ppl_70136
crossref_primary_10_1002_advs_202503083
crossref_primary_10_1094_MPMI_23_6_0791
crossref_primary_10_1111_j_1365_313X_2010_04124_x
crossref_primary_10_3389_fpls_2020_578919
crossref_primary_10_1007_s10265_011_0409_y
crossref_primary_10_1007_s11829_012_9239_7
crossref_primary_10_3389_fpls_2019_00193
crossref_primary_10_1007_s00425_013_1841_0
crossref_primary_10_1104_pp_109_147645
crossref_primary_10_1038_s41598_021_90607_7
crossref_primary_10_1093_jxb_ers079
crossref_primary_10_1007_s10658_010_9726_6
crossref_primary_10_1016_j_tplants_2013_06_004
crossref_primary_10_1371_journal_pone_0235482
crossref_primary_10_1094_MPMI_23_5_0558
crossref_primary_10_1371_journal_pone_0086399
crossref_primary_10_1111_tpj_12014
crossref_primary_10_3389_fpls_2014_00207
crossref_primary_10_1016_j_jia_2025_07_001
crossref_primary_10_1007_s00425_024_04355_9
crossref_primary_10_1016_j_indcrop_2022_116136
crossref_primary_10_1111_j_1365_3059_2010_02402_x
crossref_primary_10_1093_jxb_erw088
crossref_primary_10_1186_s12864_019_5726_x
crossref_primary_10_1007_s00344_018_9842_7
crossref_primary_10_1134_S1021443709060028
crossref_primary_10_1111_j_1469_8137_2012_04113_x
crossref_primary_10_3390_ijms22095001
crossref_primary_10_3389_fpls_2017_00654
crossref_primary_10_1111_j_1365_313X_2010_04255_x
crossref_primary_10_1038_hortres_2017_63
crossref_primary_10_1146_annurev_phyto_073009_114436
crossref_primary_10_1007_s00344_014_9471_8
crossref_primary_10_1111_brv_12789
crossref_primary_10_3390_su10020391
crossref_primary_10_3109_1040841X_2013_770385
crossref_primary_10_1093_jxb_ers175
crossref_primary_10_3390_ijms20102544
crossref_primary_10_1093_jxb_err402
crossref_primary_10_3390_ijms21165852
crossref_primary_10_1111_j_1438_8677_2011_00524_x
crossref_primary_10_1111_j_1469_8137_2012_04310_x
crossref_primary_10_1038_emboj_2009_263
crossref_primary_10_1104_pp_111_190074
crossref_primary_10_1111_pce_14863
crossref_primary_10_1016_j_plantsci_2011_08_009
crossref_primary_10_3390_plants9010056
crossref_primary_10_1016_j_plantsci_2020_110697
crossref_primary_10_1016_j_pmpp_2013_10_002
crossref_primary_10_1002_ps_4655
crossref_primary_10_1007_s10530_022_02891_7
crossref_primary_10_1016_j_pbi_2015_05_028
crossref_primary_10_1016_j_envexpbot_2020_104047
crossref_primary_10_1007_s10493_010_9351_2
crossref_primary_10_3390_ijms222010978
crossref_primary_10_1016_j_scienta_2024_112840
crossref_primary_10_1111_j_1755_0238_2011_00149_x
crossref_primary_10_1093_jxb_erp277
crossref_primary_10_1094_PHYTO_100_9_0871
crossref_primary_10_1111_mpp_12719
crossref_primary_10_1007_s11738_014_1559_z
crossref_primary_10_1094_PHYTO_02_13_0040_R
crossref_primary_10_1186_1471_2164_14_841
crossref_primary_10_1111_pbr_12671
crossref_primary_10_1111_pce_14275
crossref_primary_10_1016_j_plaphy_2023_108237
crossref_primary_10_1603_EC10455
crossref_primary_10_1094_MPMI_09_20_0257_R
crossref_primary_10_1111_j_1365_313X_2008_03646_x
crossref_primary_10_1007_s10658_021_02279_8
crossref_primary_10_1007_s00299_024_03276_x
crossref_primary_10_1111_mpp_12299
crossref_primary_10_3389_fpls_2015_00987
crossref_primary_10_1016_j_plaphy_2024_109295
crossref_primary_10_1007_s10327_010_0218_5
crossref_primary_10_1007_s11103_009_9502_1
crossref_primary_10_1111_j_1365_3040_2010_02198_x
crossref_primary_10_1371_journal_pone_0067413
crossref_primary_10_1104_pp_111_174425
crossref_primary_10_1111_j_1365_313X_2008_03755_x
crossref_primary_10_3389_fpls_2022_817500
crossref_primary_10_3390_ijms19041141
crossref_primary_10_1017_qpb_2023_1
crossref_primary_10_1007_s40502_023_00766_0
crossref_primary_10_32604_phyton_2022_021919
crossref_primary_10_1016_j_envexpbot_2017_01_004
crossref_primary_10_1111_j_1438_8677_2012_00701_x
crossref_primary_10_3389_fpls_2014_00423
crossref_primary_10_1016_j_scienta_2022_111611
crossref_primary_10_1093_mp_ssu042
crossref_primary_10_1111_j_1462_2920_2009_02063_x
crossref_primary_10_1007_s11427_017_9036_2
crossref_primary_10_1111_ppa_13566
crossref_primary_10_1093_jxb_erq227
crossref_primary_10_3389_fpls_2017_00456
crossref_primary_10_3389_fpls_2021_720452
crossref_primary_10_1111_tpj_12538
crossref_primary_10_1094_MPMI_05_11_0116
crossref_primary_10_1007_s10658_015_0606_y
crossref_primary_10_1038_ncomms12525
crossref_primary_10_3389_fpls_2018_01675
crossref_primary_10_1104_pp_113_233759
crossref_primary_10_1093_hr_uhac010
crossref_primary_10_3390_ijms23158825
crossref_primary_10_1104_pp_110_154765
crossref_primary_10_1093_forestry_cpv040
crossref_primary_10_1007_s10682_010_9374_5
crossref_primary_10_1016_j_envexpbot_2014_06_020
crossref_primary_10_1093_mp_ssu050
crossref_primary_10_17221_182_2015_PPS
crossref_primary_10_1038_s41598_019_53694_1
crossref_primary_10_1111_1751_7915_12017
crossref_primary_10_1146_annurev_cellbio_092910_154055
crossref_primary_10_17221_24_2018_PPS
crossref_primary_10_1016_j_pmpp_2016_01_004
crossref_primary_10_1094_MPMI_06_18_0162_R
crossref_primary_10_1080_07388551_2016_1271767
crossref_primary_10_1007_s00344_022_10823_x
crossref_primary_10_1093_jxb_erq282
crossref_primary_10_1007_s13199_014_0273_3
crossref_primary_10_1007_s13205_019_1587_x
crossref_primary_10_1104_pp_109_152702
crossref_primary_10_1007_s00442_017_4000_7
crossref_primary_10_1016_j_pbi_2011_04_001
crossref_primary_10_1093_jxb_ers100
crossref_primary_10_1007_s00299_013_1447_9
crossref_primary_10_1093_jxb_erac491
crossref_primary_10_3389_fmicb_2022_898356
crossref_primary_10_1007_s10658_020_01944_8
crossref_primary_10_1007_s11033_025_10728_4
crossref_primary_10_1111_pce_12967
crossref_primary_10_3390_plants12193380
crossref_primary_10_3389_fpls_2021_615114
crossref_primary_10_3389_fpls_2022_1074447
crossref_primary_10_3390_plants8120592
crossref_primary_10_1105_tpc_112_102046
crossref_primary_10_1371_journal_pone_0210903
crossref_primary_10_1094_MPMI_07_10_0172
crossref_primary_10_1104_pp_109_137943
crossref_primary_10_1094_MPMI_06_12_0152_R
crossref_primary_10_1007_s42360_020_00312_0
crossref_primary_10_1111_nph_17549
crossref_primary_10_1371_journal_ppat_1005231
crossref_primary_10_3389_fpls_2016_00731
crossref_primary_10_3390_plants5010013
crossref_primary_10_1093_plphys_kiac495
crossref_primary_10_1371_journal_pone_0164996
crossref_primary_10_1002_ece3_5499
crossref_primary_10_1111_j_1365_294X_2011_05301_x
crossref_primary_10_1038_srep05905
crossref_primary_10_1094_MPMI_22_8_0977
crossref_primary_10_1515_hmbci_2016_0013
crossref_primary_10_1111_j_1365_294X_2009_04389_x
crossref_primary_10_1093_jxb_erx495
crossref_primary_10_48130_tp_0025_0013
crossref_primary_10_1038_s41598_019_49590_3
crossref_primary_10_1111_j_1365_313X_2012_04950_x
crossref_primary_10_3389_fpls_2019_01317
crossref_primary_10_1073_pnas_0907711106
crossref_primary_10_1094_MPMI_07_10_0149
crossref_primary_10_1007_s00344_021_10365_8
crossref_primary_10_3389_fpls_2022_876428
crossref_primary_10_1080_17429145_2020_1867770
crossref_primary_10_1094_PDIS_93_9_0912
crossref_primary_10_3390_ijms160715251
crossref_primary_10_1007_s10529_009_0139_6
crossref_primary_10_1093_jxb_ers329
crossref_primary_10_3390_biology13050308
crossref_primary_10_1016_j_jplph_2012_09_018
crossref_primary_10_3389_fpls_2017_00022
crossref_primary_10_3389_fpls_2018_01598
crossref_primary_10_1094_MPMI_12_12_0288_CR
crossref_primary_10_1080_07352689_2010_487780
crossref_primary_10_1104_pp_113_222372
crossref_primary_10_1016_j_cropro_2009_01_009
crossref_primary_10_1093_pcp_pcp146
crossref_primary_10_3390_insects14060489
crossref_primary_10_1038_nchembio_164
crossref_primary_10_1104_pp_108_133926
crossref_primary_10_1111_j_1469_8137_2010_03601_x
crossref_primary_10_1111_j_1469_8137_2008_02578_x
crossref_primary_10_1016_j_jplph_2014_07_006
crossref_primary_10_3390_ijms14059497
crossref_primary_10_1111_nph_13270
crossref_primary_10_1007_s13562_021_00739_0
crossref_primary_10_3390_ijms140714136
crossref_primary_10_3389_fpls_2022_988048
crossref_primary_10_1094_MPMI_22_8_0953
crossref_primary_10_3390_ijms21134607
crossref_primary_10_1007_s00425_021_03747_5
crossref_primary_10_1111_mpp_12752
crossref_primary_10_1016_j_pmpp_2013_06_004
crossref_primary_10_1007_s42360_019_00142_9
crossref_primary_10_1016_j_aac_2023_08_006
crossref_primary_10_1093_jxb_erab052
crossref_primary_10_1104_pp_110_157263
crossref_primary_10_3390_plants12213720
crossref_primary_10_3103_S0095452711040062
crossref_primary_10_1094_PHYTO_07_18_0218_RVW
crossref_primary_10_3389_fpls_2017_00156
crossref_primary_10_3389_finsc_2022_971221
crossref_primary_10_3389_fpls_2022_845379
crossref_primary_10_1007_s00425_013_2008_8
crossref_primary_10_1007_s11104_015_2736_6
crossref_primary_10_1093_femsec_fiac142
ContentType Journal Article
DBID CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOA
DOI 10.1094/MPMI-21-6-0709
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
Open Access: DOAJ - Directory of Open Access Journals
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Agriculture
Biology
EISSN 1943-7706
EndPage 719
ExternalDocumentID oai_doaj_org_article_7a601eb8354444be8037dbe61eb6541d
18624635
Genre Research Support, Non-U.S. Gov't
Journal Article
Review
GroupedDBID ---
123
29M
2WC
53G
7X2
7X7
88E
8AO
8CJ
8FE
8FH
8FI
8FJ
8FW
8R4
8R5
AAHBH
AAYJJ
ABDNZ
ABRJW
ABUWG
ACGFO
ACPRK
ACYGS
ADBBV
AENEX
AEUYN
AFKRA
AFRAH
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ATCPS
BAWUL
BBNVY
BENPR
BES
BHPHI
BPHCQ
BVXVI
C1A
CCPQU
CGR
CS3
CUY
CVF
D1J
DIK
DU5
E3Z
EBS
ECM
EIF
EJD
F5P
FRP
FYUFA
GROUPED_DOAJ
HCIFZ
HMCUK
HYO
LK8
M0K
M1P
M7P
MVM
NPM
OK1
P2P
PHGZT
PQQKQ
PROAC
PSQYO
Q2X
RPS
S0X
TR2
UKHRP
YCJ
~KM
7X8
ID FETCH-LOGICAL-c581t-43ccf22f50eb413955fd215860da9b02ce33f6ec8c1f29d0d586498ea1c149de3
IEDL.DBID DOA
ISICitedReferencesCount 343
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000255880400004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0894-0282
IngestDate Fri Oct 03 12:39:40 EDT 2025
Thu Oct 02 06:47:39 EDT 2025
Thu Apr 03 07:02:55 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c581t-43ccf22f50eb413955fd215860da9b02ce33f6ec8c1f29d0d586498ea1c149de3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
OpenAccessLink https://doaj.org/article/7a601eb8354444be8037dbe61eb6541d
PMID 18624635
PQID 69314815
PQPubID 23479
PageCount 11
ParticipantIDs doaj_primary_oai_doaj_org_article_7a601eb8354444be8037dbe61eb6541d
proquest_miscellaneous_69314815
pubmed_primary_18624635
PublicationCentury 2000
PublicationDate 2008-06-01
PublicationDateYYYYMMDD 2008-06-01
PublicationDate_xml – month: 06
  year: 2008
  text: 2008-06-01
  day: 01
PublicationDecade 2000
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Molecular plant-microbe interactions
PublicationTitleAlternate Mol Plant Microbe Interact
PublicationYear 2008
Publisher The American Phytopathological Society
Publisher_xml – name: The American Phytopathological Society
SSID ssj0019655
Score 2.4243388
SecondaryResourceType review_article
Snippet Plants are obliged to defend themselves against a wide range of biotic and abiotic stresses. Complex regulatory signaling networks mount an appropriate defense...
SourceID doaj
proquest
pubmed
SourceType Open Website
Aggregation Database
Index Database
StartPage 709
SubjectTerms Abscisic Acid - metabolism
Abscisic Acid - physiology
callose
ethylene
Ethylenes - metabolism
Gene Expression Regulation, Plant
Immunity, Innate - genetics
Models, Biological
Plant Diseases - genetics
Plant Diseases - microbiology
Plants - genetics
Plants - metabolism
Plants - microbiology
salicylic acid
Signal Transduction - physiology
Title Global switches and fine-tuning-ABA modulates plant pathogen defense
URI https://www.ncbi.nlm.nih.gov/pubmed/18624635
https://www.proquest.com/docview/69314815
https://doaj.org/article/7a601eb8354444be8037dbe61eb6541d
Volume 21
WOSCitedRecordID wos000255880400004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwEB5RRKX2gIC2dCmPHLha-JF17ONSWIHErlYqRXuLHHuMuGTRPlr11h_BL-SXME4C6gX1Qg5RZCuJNTPKPDz5PoDjChFV7iUTQhUsd6iZsS4ynQftNMdQNXRAN1fFeGymUzv5h-or9YS18MCt4E4KukNgleoTdFRouCpChZrGEoV1SF9fXtjnZKrbP7C64TvlJgHfUlbxAteYn4wmo0smBaNEukhtiA1U_-vxZeNnhluw2QWI2aBd2DasYb0DHwe38w4kA3fgfUsg-ecTDFvI_uzH77sk_UXm6pANKXBk16tU8Hj8-zA4HWSjWUgsXTSfOIqW2YTCvhlZTnaGkdJY_Aw_h-fX3y9Yx4zAfN-IJcuV91HK2OdYkRey_X4M5LuN5sHZikuPSkWN3ngRpQ080FRuDTrhKSMKqL7Aej2r8StkXKF0TipKZFSuAjeRLkl_kp6gYog9OE0CKu9b8IsywVE3A6SkslNS-T8l9eDoWbwlmW_ak3A1zlaLUlslEl5MD3Zbqb-8SKRfVygc2nuLBXyDD22jRyqf7MP6cr7CA9jwv5Z3i_khvCum5rCxIDqPJ6MnnMjIfA
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Global+Switches+and+Fine-Tuning%E2%80%94ABA+Modulates+Plant+Pathogen+Defense&rft.jtitle=Molecular+plant-microbe+interactions&rft.au=Bob+Asselbergh&rft.au=David+De+Vleesschauwer&rft.au=Monica+H%C3%B6fte&rft.date=2008-06-01&rft.pub=The+American+Phytopathological+Society&rft.issn=0894-0282&rft.eissn=1943-7706&rft.volume=21&rft.issue=6&rft.spage=709&rft.epage=719&rft_id=info:doi/10.1094%2FMPMI-21-6-0709&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_7a601eb8354444be8037dbe61eb6541d
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0894-0282&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0894-0282&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0894-0282&client=summon