A beta-mixture quantile normalization method for correcting probe design bias in Illumina Infinium 450 k DNA methylation data

Motivation: The Illumina Infinium 450 k DNA Methylation Beadchip is a prime candidate technology for Epigenome-Wide Association Studies (EWAS). However, a difficulty associated with these beadarrays is that probes come in two different designs, characterized by widely different DNA methylation distr...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Bioinformatics Ročník 29; číslo 2; s. 189 - 196
Hlavní autoři: Teschendorff, Andrew E., Marabita, Francesco, Lechner, Matthias, Bartlett, Thomas, Tegner, Jesper, Gomez-Cabrero, David, Beck, Stephan
Médium: Journal Article
Jazyk:angličtina
Vydáno: England Oxford University Press 15.01.2013
Témata:
ISSN:1367-4803, 1367-4811, 1367-4811, 1460-2059
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Motivation: The Illumina Infinium 450 k DNA Methylation Beadchip is a prime candidate technology for Epigenome-Wide Association Studies (EWAS). However, a difficulty associated with these beadarrays is that probes come in two different designs, characterized by widely different DNA methylation distributions and dynamic range, which may bias downstream analyses. A key statistical issue is therefore how best to adjust for the two different probe designs. Results: Here we propose a novel model-based intra-array normalization strategy for 450 k data, called BMIQ (Beta MIxture Quantile dilation), to adjust the beta-values of type2 design probes into a statistical distribution characteristic of type1 probes. The strategy involves application of a three-state beta-mixture model to assign probes to methylation states, subsequent transformation of probabilities into quantiles and finally a methylation-dependent dilation transformation to preserve the monotonicity and continuity of the data. We validate our method on cell-line data, fresh frozen and paraffin-embedded tumour tissue samples and demonstrate that BMIQ compares favourably with two competing methods. Specifically, we show that BMIQ improves the robustness of the normalization procedure, reduces the technical variation and bias of type2 probe values and successfully eliminates the type1 enrichment bias caused by the lower dynamic range of type2 probes. BMIQ will be useful as a preprocessing step for any study using the Illumina Infinium 450 k platform. Availability: BMIQ is freely available from http://code.google.com/p/bmiq/. Contact:  a.teschendorff@ucl.ac.uk Supplementary information:  Supplementary data are available at Bioinformatics online
AbstractList The Illumina Infinium 450 k DNA Methylation Beadchip is a prime candidate technology for Epigenome-Wide Association Studies (EWAS). However, a difficulty associated with these beadarrays is that probes come in two different designs, characterized by widely different DNA methylation distributions and dynamic range, which may bias downstream analyses. A key statistical issue is therefore how best to adjust for the two different probe designs.MOTIVATIONThe Illumina Infinium 450 k DNA Methylation Beadchip is a prime candidate technology for Epigenome-Wide Association Studies (EWAS). However, a difficulty associated with these beadarrays is that probes come in two different designs, characterized by widely different DNA methylation distributions and dynamic range, which may bias downstream analyses. A key statistical issue is therefore how best to adjust for the two different probe designs.Here we propose a novel model-based intra-array normalization strategy for 450 k data, called BMIQ (Beta MIxture Quantile dilation), to adjust the beta-values of type2 design probes into a statistical distribution characteristic of type1 probes. The strategy involves application of a three-state beta-mixture model to assign probes to methylation states, subsequent transformation of probabilities into quantiles and finally a methylation-dependent dilation transformation to preserve the monotonicity and continuity of the data. We validate our method on cell-line data, fresh frozen and paraffin-embedded tumour tissue samples and demonstrate that BMIQ compares favourably with two competing methods. Specifically, we show that BMIQ improves the robustness of the normalization procedure, reduces the technical variation and bias of type2 probe values and successfully eliminates the type1 enrichment bias caused by the lower dynamic range of type2 probes. BMIQ will be useful as a preprocessing step for any study using the Illumina Infinium 450 k platform.RESULTSHere we propose a novel model-based intra-array normalization strategy for 450 k data, called BMIQ (Beta MIxture Quantile dilation), to adjust the beta-values of type2 design probes into a statistical distribution characteristic of type1 probes. The strategy involves application of a three-state beta-mixture model to assign probes to methylation states, subsequent transformation of probabilities into quantiles and finally a methylation-dependent dilation transformation to preserve the monotonicity and continuity of the data. We validate our method on cell-line data, fresh frozen and paraffin-embedded tumour tissue samples and demonstrate that BMIQ compares favourably with two competing methods. Specifically, we show that BMIQ improves the robustness of the normalization procedure, reduces the technical variation and bias of type2 probe values and successfully eliminates the type1 enrichment bias caused by the lower dynamic range of type2 probes. BMIQ will be useful as a preprocessing step for any study using the Illumina Infinium 450 k platform.BMIQ is freely available from http://code.google.com/p/bmiq/.AVAILABILITYBMIQ is freely available from http://code.google.com/p/bmiq/.a.teschendorff@ucl.ac.ukCONTACTa.teschendorff@ucl.ac.ukSupplementary data are available at Bioinformatics online.SUPPLEMENTARY INFORMATIONSupplementary data are available at Bioinformatics online.
Motivation: The Illumina Infinium 450 k DNA Methylation Beadchip is a prime candidate technology for Epigenome-Wide Association Studies (EWAS). However, a difficulty associated with these beadarrays is that probes come in two different designs, characterized by widely different DNA methylation distributions and dynamic range, which may bias downstream analyses. A key statistical issue is therefore how best to adjust for the two different probe designs.Results: Here we propose a novel model-based intra-array normalization strategy for 450 k data, called BMIQ (Beta MIxture Quantile dilation), to adjust the beta-values of type2 design probes into a statistical distribution characteristic of type1 probes. The strategy involves application of a three-state beta-mixture model to assign probes to methylation states, subsequent transformation of probabilities into quantiles and finally a methylation-dependent dilation transformation to preserve the monotonicity and continuity of the data. We validate our method on cell-line data, fresh frozen and paraffin-embedded tumour tissue samples and demonstrate that BMIQ compares favourably with two competing methods. Specifically, we show that BMIQ improves the robustness of the normalization procedure, reduces the technical variation and bias of type2 probe values and successfully eliminates the type1 enrichment bias caused by the lower dynamic range of type2 probes. BMIQ will be useful as a preprocessing step for any study using the Illumina Infinium 450 k platform.Availability: BMIQ is freely available from http://code.google.com/p/bmiq/.Contact: a.teschendorff super(c)l.ac.ukSupplementary information: Supplementary data are available at Bioinformatics online
Motivation: The Illumina Infinium 450 k DNA Methylation Beadchip is a prime candidate technology for Epigenome-Wide Association Studies (EWAS). However, a difficulty associated with these beadarrays is that probes come in two different designs, characterized by widely different DNA methylation distributions and dynamic range, which may bias downstream analyses. A key statistical issue is therefore how best to adjust for the two different probe designs. Results: Here we propose a novel model-based intra-array normalization strategy for 450 k data, called BMIQ (Beta MIxture Quantile dilation), to adjust the beta-values of type2 design probes into a statistical distribution characteristic of type1 probes. The strategy involves application of a three-state beta-mixture model to assign probes to methylation states, subsequent transformation of probabilities into quantiles and finally a methylation-dependent dilation transformation to preserve the monotonicity and continuity of the data. We validate our method on cell-line data, fresh frozen and paraffin-embedded tumour tissue samples and demonstrate that BMIQ compares favourably with two competing methods. Specifically, we show that BMIQ improves the robustness of the normalization procedure, reduces the technical variation and bias of type2 probe values and successfully eliminates the type1 enrichment bias caused by the lower dynamic range of type2 probes. BMIQ will be useful as a preprocessing step for any study using the Illumina Infinium 450 k platform. Availability: BMIQ is freely available from http://code.google.com/p/bmiq/. Contact:  a.teschendorff@ucl.ac.uk Supplementary information:  Supplementary data are available at Bioinformatics online
The Illumina Infinium 450 k DNA Methylation Beadchip is a prime candidate technology for Epigenome-Wide Association Studies (EWAS). However, a difficulty associated with these beadarrays is that probes come in two different designs, characterized by widely different DNA methylation distributions and dynamic range, which may bias downstream analyses. A key statistical issue is therefore how best to adjust for the two different probe designs. Here we propose a novel model-based intra-array normalization strategy for 450 k data, called BMIQ (Beta MIxture Quantile dilation), to adjust the beta-values of type2 design probes into a statistical distribution characteristic of type1 probes. The strategy involves application of a three-state beta-mixture model to assign probes to methylation states, subsequent transformation of probabilities into quantiles and finally a methylation-dependent dilation transformation to preserve the monotonicity and continuity of the data. We validate our method on cell-line data, fresh frozen and paraffin-embedded tumour tissue samples and demonstrate that BMIQ compares favourably with two competing methods. Specifically, we show that BMIQ improves the robustness of the normalization procedure, reduces the technical variation and bias of type2 probe values and successfully eliminates the type1 enrichment bias caused by the lower dynamic range of type2 probes. BMIQ will be useful as a preprocessing step for any study using the Illumina Infinium 450 k platform. BMIQ is freely available from http://code.google.com/p/bmiq/. a.teschendorff@ucl.ac.uk Supplementary data are available at Bioinformatics online.
Motivation: The Illumina Infinium 450 k DNA Methylation Beadchip is a prime candidate technology for Epigenome-Wide Association Studies (EWAS). However, a difficulty associated with these beadarrays is that probes come in two different designs, characterized by widely different DNA methylation distributions and dynamic range, which may bias downstream analyses. A key statistical issue is therefore how best to adjust for the two different probe designs. Results: Here we propose a novel model-based intra-array normalization strategy for 450 k data, called BMIQ (Beta MIxture Quantile dilation), to adjust the beta-values of type2 design probes into a statistical distribution characteristic of type1 probes. The strategy involves application of a three-state beta-mixture model to assign probes to methylation states, subsequent transformation of probabilities into quantiles and finally a methylation-dependent dilation transformation to preserve the monotonicity and continuity of the data. We validate our method on cell-line data, fresh frozen and paraffin-embedded tumour tissue samples and demonstrate that BMIQ compares favourably with two competing methods. Specifically, we show that BMIQ improves the robustness of the normalization procedure, reduces the technical variation and bias of type2 probe values and successfully eliminates the type1 enrichment bias caused by the lower dynamic range of type2 probes. BMIQ will be useful as a preprocessing step for any study using the Illumina Infinium 450 k platform. Availability: BMIQ is freely available from http://code.google.com/p/bmiq/. Contact: a.teschendorff@ucl.ac.uk Supplementary information: Supplementary data are available at Bioinformatics online
Author Teschendorff, Andrew E.
Bartlett, Thomas
Marabita, Francesco
Lechner, Matthias
Gomez-Cabrero, David
Tegner, Jesper
Beck, Stephan
AuthorAffiliation 1 Statistical Genomics Group, UCL Cancer Institute, University College London, London WC1E 6BT, UK, 2 Department of Medicine, Unit of Computational Medicine, Centre for Molecular Medicine, Karolinska Institute, Solna 171 76, Stockholm, Sweden and 3 Medical Genomics Group, UCL Cancer Institute, University College London, London WC1E 6BT, UK
AuthorAffiliation_xml – name: 1 Statistical Genomics Group, UCL Cancer Institute, University College London, London WC1E 6BT, UK, 2 Department of Medicine, Unit of Computational Medicine, Centre for Molecular Medicine, Karolinska Institute, Solna 171 76, Stockholm, Sweden and 3 Medical Genomics Group, UCL Cancer Institute, University College London, London WC1E 6BT, UK
Author_xml – sequence: 1
  givenname: Andrew E.
  surname: Teschendorff
  fullname: Teschendorff, Andrew E.
– sequence: 2
  givenname: Francesco
  surname: Marabita
  fullname: Marabita, Francesco
– sequence: 3
  givenname: Matthias
  surname: Lechner
  fullname: Lechner, Matthias
– sequence: 4
  givenname: Thomas
  surname: Bartlett
  fullname: Bartlett, Thomas
– sequence: 5
  givenname: Jesper
  surname: Tegner
  fullname: Tegner, Jesper
– sequence: 6
  givenname: David
  surname: Gomez-Cabrero
  fullname: Gomez-Cabrero, David
– sequence: 7
  givenname: Stephan
  surname: Beck
  fullname: Beck, Stephan
BackLink https://www.ncbi.nlm.nih.gov/pubmed/23175756$$D View this record in MEDLINE/PubMed
http://kipublications.ki.se/Default.aspx?queryparsed=id:126019884$$DView record from Swedish Publication Index (Karolinska Institutet)
BookMark eNqNkk1v1DAQhiNURD_gJ4B85BLqbydCQlqVr5UquMDZsh1na-rYW9sBisR_x222FcsBOHnked53ZjRz3ByEGGzTPEXwBYI9OdUuujDGNKniTD7VJfMOPmiOEOGipR1CB_cxJIfNcc5fIIQMMv6oOcQECSYYP2p-roC2RbWT-17mZMHVrEJx3oJwY-3dj2ofA5hsuYgDqPWAiSlZU1zYgG2K2oLBZrcJQDuVgQtg7f08uaDAOowuuHkClEFwCV5_WN3aXPvFclBFPW4ejspn-2T3njSf3775dPa-Pf_4bn22Om8N61BpyThSixkeuDCw0x3TZjA9hBRZZAnVsIPj0AuMMSKGc4p6qOnAKNMDGzulyEnTLr75m93OWm6Tm1S6llE5ufu6rJGVjBAMUeVfLXzNTHYwNpSk_J5sPxPchdzEr5IwykXPqsHznUGKV7PNRU4uG-u9CjbOWSIuEKW96P4DJZjgivbi3ygWhBOIaF_RZ79PcN_63eYr8HIBTIo5JztK48rtZupAzksE5c2dyf07k8udVTX7Q31X4O-6Xzss4Q8
CitedBy_id crossref_primary_10_1371_journal_pone_0269105
crossref_primary_10_3389_fnins_2023_1198243
crossref_primary_10_1038_s41598_017_13099_4
crossref_primary_10_1186_s13148_015_0053_9
crossref_primary_10_1016_j_biopsych_2022_06_020
crossref_primary_10_1186_s13059_023_03114_5
crossref_primary_10_1016_j_ecoenv_2023_115544
crossref_primary_10_1007_s11060_022_04047_y
crossref_primary_10_1080_15592294_2018_1543503
crossref_primary_10_1038_ncomms7326
crossref_primary_10_1007_s00439_023_02609_2
crossref_primary_10_1038_s41408_022_00715_4
crossref_primary_10_1186_s12974_023_02781_2
crossref_primary_10_1038_ncomms13555
crossref_primary_10_1158_2159_8290_CD_13_0349
crossref_primary_10_1242_bio_058222
crossref_primary_10_1093_eep_dvac004
crossref_primary_10_1186_s13293_021_00381_4
crossref_primary_10_1186_s43682_024_00027_7
crossref_primary_10_1289_EHP10118
crossref_primary_10_3389_fpubh_2022_1069685
crossref_primary_10_1371_journal_pone_0314014
crossref_primary_10_1080_15592294_2016_1146853
crossref_primary_10_1016_j_yexcr_2018_06_034
crossref_primary_10_2217_epi_2018_0049
crossref_primary_10_1016_j_molmet_2015_12_004
crossref_primary_10_1186_s13148_025_01839_7
crossref_primary_10_1136_annrheumdis_2020_219152
crossref_primary_10_2217_epi_2018_0042
crossref_primary_10_1186_s12864_020_07186_6
crossref_primary_10_1186_s13148_017_0320_z
crossref_primary_10_1038_ncomms5361
crossref_primary_10_3390_biomedicines9010013
crossref_primary_10_1016_j_heliyon_2023_e23244
crossref_primary_10_1371_journal_pone_0155554
crossref_primary_10_1038_s41380_020_00968_0
crossref_primary_10_1136_jnnp_2023_332889
crossref_primary_10_1080_15622975_2023_2198595
crossref_primary_10_3390_toxics9120338
crossref_primary_10_1186_s12879_025_11181_1
crossref_primary_10_1002_cam4_451
crossref_primary_10_1016_j_csbj_2024_05_015
crossref_primary_10_2217_epi_2018_0037
crossref_primary_10_1186_s13148_018_0541_9
crossref_primary_10_3389_fphar_2020_620811
crossref_primary_10_3389_fnins_2022_858049
crossref_primary_10_1186_s13148_023_01516_7
crossref_primary_10_1371_journal_pgen_1004418
crossref_primary_10_1155_2018_8608327
crossref_primary_10_1080_19490976_2024_2363012
crossref_primary_10_1186_s13072_016_0074_4
crossref_primary_10_1080_15592294_2016_1192736
crossref_primary_10_1093_hmg_ddw072
crossref_primary_10_1186_s13148_019_0635_z
crossref_primary_10_1289_EHP3849
crossref_primary_10_3389_fonc_2025_1585450
crossref_primary_10_1038_s41467_024_54110_7
crossref_primary_10_3389_fpsyt_2022_892302
crossref_primary_10_1038_s41598_018_33238_9
crossref_primary_10_1007_s13273_019_00068_3
crossref_primary_10_3390_biomedicines11010134
crossref_primary_10_1002_ajhb_23488
crossref_primary_10_1007_s00439_024_02659_0
crossref_primary_10_5646_ch_2025_31_e28
crossref_primary_10_1093_nar_gkac503
crossref_primary_10_1177_11769351251324545
crossref_primary_10_1016_j_psychres_2022_114789
crossref_primary_10_1038_s41598_018_34003_8
crossref_primary_10_1186_s13072_024_00555_5
crossref_primary_10_1371_journal_pone_0119201
crossref_primary_10_1016_j_gim_2024_101167
crossref_primary_10_1186_s13148_023_01580_z
crossref_primary_10_1016_j_envres_2021_111640
crossref_primary_10_1016_j_bbih_2025_101014
crossref_primary_10_3389_fnins_2021_799761
crossref_primary_10_3389_fphar_2019_00385
crossref_primary_10_1093_nar_gkv907
crossref_primary_10_1089_omi_2016_0041
crossref_primary_10_1038_s42003_020_01479_y
crossref_primary_10_1093_hmg_ddae112
crossref_primary_10_1093_hmg_ddad024
crossref_primary_10_1371_journal_pone_0152034
crossref_primary_10_1002_jimd_12829
crossref_primary_10_1093_hmg_ddv161
crossref_primary_10_1186_s13058_023_01730_4
crossref_primary_10_3892_mmr_2017_7869
crossref_primary_10_1093_nop_npad025
crossref_primary_10_1186_s13073_021_00905_y
crossref_primary_10_1038_s41386_021_01073_8
crossref_primary_10_1016_j_forsciint_2024_112339
crossref_primary_10_3390_ijms26073419
crossref_primary_10_1016_j_envint_2024_108872
crossref_primary_10_1080_15592294_2023_2230670
crossref_primary_10_1210_endocr_bqaa050
crossref_primary_10_1007_s00401_020_02226_7
crossref_primary_10_1016_j_scitotenv_2023_161815
crossref_primary_10_1093_eep_dvaa014
crossref_primary_10_1186_s13059_014_0503_2
crossref_primary_10_1186_s13148_021_01194_3
crossref_primary_10_3233_JAD_221031
crossref_primary_10_1186_s12967_020_02608_1
crossref_primary_10_3390_epigenomes7030018
crossref_primary_10_1136_bmjopen_2017_016708
crossref_primary_10_1186_1471_2105_16_S3_A7
crossref_primary_10_1186_s12864_015_2034_y
crossref_primary_10_1038_s41416_023_02550_1
crossref_primary_10_1038_s41598_023_34922_1
crossref_primary_10_1371_journal_pgen_1005553
crossref_primary_10_1503_jpn_210064
crossref_primary_10_1186_s13072_018_0245_6
crossref_primary_10_1111_cdev_14239
crossref_primary_10_3389_fonc_2022_927298
crossref_primary_10_1080_15592294_2022_2100684
crossref_primary_10_1186_s13148_021_01119_0
crossref_primary_10_1186_s13287_018_1118_4
crossref_primary_10_1038_s41586_018_0753_3
crossref_primary_10_1161_JAHA_124_035777
crossref_primary_10_1186_s40001_023_01032_7
crossref_primary_10_1371_journal_pone_0174265
crossref_primary_10_3390_ijms241914778
crossref_primary_10_3390_genes14122207
crossref_primary_10_1016_j_heliyon_2025_e43006
crossref_primary_10_1111_cea_13748
crossref_primary_10_3389_fimmu_2022_1011829
crossref_primary_10_3390_ijms231810699
crossref_primary_10_2217_epi_2023_0145
crossref_primary_10_1371_journal_pcbi_1005840
crossref_primary_10_1007_s41237_022_00183_x
crossref_primary_10_1016_j_psyneuen_2015_09_020
crossref_primary_10_1186_s13148_023_01480_2
crossref_primary_10_1038_s41387_022_00228_w
crossref_primary_10_1038_s41598_020_72068_6
crossref_primary_10_1159_000369904
crossref_primary_10_1016_j_neurobiolaging_2020_06_003
crossref_primary_10_2217_epi_2017_0046
crossref_primary_10_1016_j_envres_2023_116215
crossref_primary_10_1016_j_envpol_2023_122197
crossref_primary_10_1016_j_ajhg_2016_06_032
crossref_primary_10_1038_s41598_022_15924_x
crossref_primary_10_1016_j_artere_2022_01_004
crossref_primary_10_1186_s13148_025_01846_8
crossref_primary_10_1080_15592294_2022_2080993
crossref_primary_10_1186_s13148_022_01412_6
crossref_primary_10_3389_fgene_2022_989459
crossref_primary_10_1002_gepi_22252
crossref_primary_10_3390_ijms241411772
crossref_primary_10_1155_2022_4995196
crossref_primary_10_1016_j_ijheh_2020_113569
crossref_primary_10_1093_hmg_ddv124
crossref_primary_10_1016_j_envint_2021_107054
crossref_primary_10_1080_15592294_2016_1161875
crossref_primary_10_1038_s42003_022_04267_y
crossref_primary_10_1186_s13148_019_0653_x
crossref_primary_10_1289_EHP1246
crossref_primary_10_1186_s13148_023_01438_4
crossref_primary_10_1111_jcmm_15642
crossref_primary_10_1093_biostatistics_kxv016
crossref_primary_10_1016_j_psychres_2022_114510
crossref_primary_10_1080_15592294_2019_1590085
crossref_primary_10_1164_rccm_202106_1440OC
crossref_primary_10_1186_s13059_016_1068_z
crossref_primary_10_1186_s13073_016_0342_8
crossref_primary_10_3389_fgene_2015_00092
crossref_primary_10_1111_eos_12607
crossref_primary_10_3389_fimmu_2023_1245876
crossref_primary_10_1186_s12859_016_1140_4
crossref_primary_10_1080_15592294_2018_1497387
crossref_primary_10_1016_j_forsciint_2025_112409
crossref_primary_10_1111_joim_13528
crossref_primary_10_1038_s41398_020_00948_6
crossref_primary_10_1007_s00401_020_02224_9
crossref_primary_10_1016_j_jad_2022_10_049
crossref_primary_10_1093_eep_dvae017
crossref_primary_10_1136_thoraxjnl_2020_215866
crossref_primary_10_1186_s13058_017_0873_y
crossref_primary_10_1038_s41398_017_0026_1
crossref_primary_10_1038_s41390_020_01172_0
crossref_primary_10_1002_jbmr_2342
crossref_primary_10_2217_epi_15_64
crossref_primary_10_1007_s00401_017_1678_x
crossref_primary_10_1111_acel_13652
crossref_primary_10_1371_journal_pone_0151109
crossref_primary_10_1186_s13148_022_01282_y
crossref_primary_10_1186_s13148_025_01859_3
crossref_primary_10_1371_journal_pone_0230253
crossref_primary_10_1186_s12885_018_4482_7
crossref_primary_10_1186_s13059_016_1066_1
crossref_primary_10_1186_s13073_020_00778_7
crossref_primary_10_3389_fnagi_2018_00311
crossref_primary_10_1038_s41380_023_02243_4
crossref_primary_10_1038_s41398_024_02841_y
crossref_primary_10_1097_QAD_0000000000003065
crossref_primary_10_1089_jicm_2022_0713
crossref_primary_10_1186_s13072_023_00507_5
crossref_primary_10_1097_PSY_0000000000000604
crossref_primary_10_1186_s12919_018_0150_9
crossref_primary_10_1053_j_gastro_2019_01_270
crossref_primary_10_2217_epi_2017_0002
crossref_primary_10_15252_emmm_201809443
crossref_primary_10_1186_s13148_016_0285_3
crossref_primary_10_1017_thg_2015_76
crossref_primary_10_1186_s13148_024_01699_7
crossref_primary_10_3389_fimmu_2023_1162796
crossref_primary_10_1038_s41467_021_24710_8
crossref_primary_10_2217_epi_13_68
crossref_primary_10_1016_j_jpsychires_2022_10_023
crossref_primary_10_1186_s40478_024_01874_0
crossref_primary_10_3389_fpsyt_2023_1065417
crossref_primary_10_1186_s13075_021_02697_3
crossref_primary_10_1186_s40478_021_01177_8
crossref_primary_10_1002_rco2_52
crossref_primary_10_1080_15592294_2021_1876297
crossref_primary_10_1038_s41598_024_68071_w
crossref_primary_10_3389_fgene_2018_00258
crossref_primary_10_2217_epi_13_58
crossref_primary_10_1213_ANE_0000000000007749
crossref_primary_10_1186_s13148_020_00873_x
crossref_primary_10_1186_s13148_024_01675_1
crossref_primary_10_1371_journal_pone_0269723
crossref_primary_10_1016_j_kint_2018_01_036
crossref_primary_10_3390_cancers17020266
crossref_primary_10_1038_s41398_021_01207_y
crossref_primary_10_1186_s13073_021_00877_z
crossref_primary_10_1186_s13148_015_0073_5
crossref_primary_10_1289_ehp_1509966
crossref_primary_10_1186_s13059_019_1743_y
crossref_primary_10_1186_1471_2164_16_S12_S7
crossref_primary_10_2217_epi_15_21
crossref_primary_10_1371_journal_pone_0193271
crossref_primary_10_1186_s12859_020_03559_6
crossref_primary_10_1093_hmg_ddad084
crossref_primary_10_1080_15592294_2015_1006497
crossref_primary_10_1186_s13148_021_01010_y
crossref_primary_10_12688_f1000research_8839_2
crossref_primary_10_12688_f1000research_8839_1
crossref_primary_10_12688_f1000research_8839_3
crossref_primary_10_1186_s13148_022_01284_w
crossref_primary_10_1080_15592294_2015_1050172
crossref_primary_10_1186_s13059_015_0828_5
crossref_primary_10_1016_j_ecoenv_2024_116743
crossref_primary_10_1016_j_jpsychires_2024_07_013
crossref_primary_10_3390_genes14040842
crossref_primary_10_1371_journal_pgen_1003763
crossref_primary_10_1093_eep_dvac026
crossref_primary_10_1080_15592294_2018_1529849
crossref_primary_10_1186_s13148_022_01403_7
crossref_primary_10_1016_j_bbi_2019_06_025
crossref_primary_10_1016_j_scitotenv_2025_180079
crossref_primary_10_1111_acel_13863
crossref_primary_10_1007_s00438_024_02176_9
crossref_primary_10_1007_s00018_023_04714_x
crossref_primary_10_1186_s12919_018_0152_7
crossref_primary_10_1186_s13148_018_0471_6
crossref_primary_10_1007_s00439_014_1526_1
crossref_primary_10_3390_brainsci11111376
crossref_primary_10_1158_1078_0432_CCR_19_4207
crossref_primary_10_1093_bib_bbaf170
crossref_primary_10_1007_s00251_014_0768_3
crossref_primary_10_1080_15592294_2019_1629234
crossref_primary_10_1007_s12031_015_0665_8
crossref_primary_10_1038_ncomms10967
crossref_primary_10_3389_fcell_2019_00032
crossref_primary_10_1016_j_jmoldx_2015_11_004
crossref_primary_10_1186_s13148_017_0392_9
crossref_primary_10_1289_EHP2192
crossref_primary_10_1038_s41398_025_03235_4
crossref_primary_10_1186_s13148_020_00984_5
crossref_primary_10_1016_j_envpol_2025_125737
crossref_primary_10_1097_PSY_0000000000000411
crossref_primary_10_1186_s13104_023_06673_9
crossref_primary_10_1053_j_gastro_2018_10_029
crossref_primary_10_1007_s10549_021_06273_w
crossref_primary_10_1038_tp_2017_171
crossref_primary_10_1080_08039488_2019_1613446
crossref_primary_10_1177_07067437241300947
crossref_primary_10_1038_s41598_019_50250_9
crossref_primary_10_1093_nargab_lqae181
crossref_primary_10_1134_S199075081702007X
crossref_primary_10_1093_ije_dyv027
crossref_primary_10_1093_nar_gkt242
crossref_primary_10_1016_j_ultras_2021_106561
crossref_primary_10_2217_epi_2016_0179
crossref_primary_10_1158_1940_6207_CAPR_17_0413
crossref_primary_10_1080_15592294_2019_1666650
crossref_primary_10_1093_humrep_deab078
crossref_primary_10_1038_s41598_025_13868_6
crossref_primary_10_1038_s41698_024_00689_5
crossref_primary_10_1101_gr_269233_120
crossref_primary_10_2217_epi_2020_0344
crossref_primary_10_1155_2016_2584940
crossref_primary_10_1186_s13059_016_1051_8
crossref_primary_10_1038_s41467_018_03170_7
crossref_primary_10_1007_s11060_016_2261_3
crossref_primary_10_1038_s41386_023_01579_3
crossref_primary_10_1158_2159_8290_CD_20_1202
crossref_primary_10_3389_fgene_2020_538492
crossref_primary_10_1038_s41380_022_01525_7
crossref_primary_10_3390_biology12010033
crossref_primary_10_3390_ijms222312840
crossref_primary_10_1186_s13075_025_03628_2
crossref_primary_10_1007_s12094_025_03864_7
crossref_primary_10_1038_s41467_022_28237_4
crossref_primary_10_1038_ijo_2017_245
crossref_primary_10_1007_s00438_023_02010_8
crossref_primary_10_1016_j_ebiom_2022_104206
crossref_primary_10_1002_art_40408
crossref_primary_10_1186_s12920_018_0341_2
crossref_primary_10_1038_s41467_018_04924_z
crossref_primary_10_1016_j_jaut_2023_103137
crossref_primary_10_1186_s13148_022_01394_5
crossref_primary_10_1186_s12864_024_10226_0
crossref_primary_10_1371_journal_pcbi_1009562
crossref_primary_10_1038_s41598_018_31886_5
crossref_primary_10_1186_s40345_019_0176_6
crossref_primary_10_1073_pnas_1412759111
crossref_primary_10_1186_s12944_024_02304_9
crossref_primary_10_1002_aur_2822
crossref_primary_10_1002_dev_22085
crossref_primary_10_3390_ijms17081291
crossref_primary_10_1186_s13072_024_00529_7
crossref_primary_10_1038_ijo_2015_221
crossref_primary_10_1038_s41467_020_19615_x
crossref_primary_10_1080_15592294_2017_1370172
crossref_primary_10_1038_s41598_017_08595_6
crossref_primary_10_1016_j_fertnstert_2021_06_025
crossref_primary_10_1038_s41598_019_55453_8
crossref_primary_10_1038_srep14466
crossref_primary_10_1186_s43682_022_00008_8
crossref_primary_10_1016_j_envres_2025_121286
crossref_primary_10_1371_journal_pone_0171694
crossref_primary_10_1186_s40478_025_01960_x
crossref_primary_10_1038_s41598_019_48493_7
crossref_primary_10_1093_eep_dvv003
crossref_primary_10_1186_s12864_016_3310_1
crossref_primary_10_1038_s41598_024_73845_3
crossref_primary_10_1038_s42003_021_01661_w
crossref_primary_10_2217_epi_2017_0078
crossref_primary_10_1038_ijo_2015_237
crossref_primary_10_1002_acn3_560
crossref_primary_10_1136_thorax_2023_220352
crossref_primary_10_1016_j_jpsychires_2016_09_006
crossref_primary_10_1016_j_envint_2021_106683
crossref_primary_10_1016_j_toxlet_2014_10_024
crossref_primary_10_1111_hepr_12992
crossref_primary_10_1016_j_jad_2025_120118
crossref_primary_10_1038_tp_2017_130
crossref_primary_10_1038_ng_3457
crossref_primary_10_1186_s13148_016_0303_5
crossref_primary_10_1186_s12919_018_0130_0
crossref_primary_10_1038_s41467_025_59427_5
crossref_primary_10_1186_s13059_017_1374_0
crossref_primary_10_1186_s13148_024_01706_x
crossref_primary_10_1186_s13148_017_0370_2
crossref_primary_10_3390_genes13101888
crossref_primary_10_1038_s41390_024_03116_4
crossref_primary_10_1186_s13148_023_01540_7
crossref_primary_10_1016_j_molcel_2016_03_019
crossref_primary_10_1007_s00381_019_04305_x
crossref_primary_10_3390_ijms150610835
crossref_primary_10_1016_j_spinee_2024_10_015
crossref_primary_10_1016_j_canep_2016_08_020
crossref_primary_10_1016_j_modpat_2025_100896
crossref_primary_10_1038_bjc_2014_337
crossref_primary_10_1016_j_compbiomed_2023_106573
crossref_primary_10_1038_s42003_022_03117_1
crossref_primary_10_1136_bmjonc_2024_000675
crossref_primary_10_1017_S2040174419000801
crossref_primary_10_1371_journal_pone_0272064
crossref_primary_10_3390_cancers13205165
crossref_primary_10_1038_ng_3488
crossref_primary_10_1016_j_msard_2024_105910
crossref_primary_10_1186_s13148_019_0670_9
crossref_primary_10_1186_s13148_022_01241_7
crossref_primary_10_1186_gb_2013_14_10_r115
crossref_primary_10_2217_epi_2017_0093
crossref_primary_10_1186_s13148_020_00877_7
crossref_primary_10_1186_s13148_022_01385_6
crossref_primary_10_1210_clinem_dgab488
crossref_primary_10_3390_ijms18030535
crossref_primary_10_1186_s13148_021_01002_y
crossref_primary_10_1186_1471_2164_15_435
crossref_primary_10_1038_s41598_020_61236_3
crossref_primary_10_3389_fonc_2021_620873
crossref_primary_10_1002_em_22153
crossref_primary_10_1111_andr_12170
crossref_primary_10_7717_peerj_14786
crossref_primary_10_1038_s41467_021_23899_y
crossref_primary_10_1016_j_jaci_2016_11_030
crossref_primary_10_1016_j_envres_2022_114797
crossref_primary_10_1038_s41588_023_01494_9
crossref_primary_10_1073_pnas_1820843116
crossref_primary_10_1186_1471_2164_14_293
crossref_primary_10_3390_genes5020347
crossref_primary_10_1016_j_cels_2020_06_006
crossref_primary_10_1161_CIRCGENETICS_116_001506
crossref_primary_10_1038_s41514_022_00085_y
crossref_primary_10_1097_EE9_0000000000000083
crossref_primary_10_1016_j_bbagen_2017_10_012
crossref_primary_10_1134_S0026893323050047
crossref_primary_10_1093_eep_dvz004
crossref_primary_10_2217_epi_2021_0461
crossref_primary_10_3892_etm_2017_5394
crossref_primary_10_1186_s12931_021_01911_9
crossref_primary_10_1186_s13059_018_1601_3
crossref_primary_10_1038_srep26424
crossref_primary_10_1186_s13148_020_00942_1
crossref_primary_10_1016_j_stem_2018_09_016
crossref_primary_10_1038_s41598_020_80345_7
crossref_primary_10_1007_s00432_014_1841_x
crossref_primary_10_2217_epi_2023_0358
crossref_primary_10_7554_eLife_41356
crossref_primary_10_1038_ncomms10577
crossref_primary_10_1186_s12940_019_0533_z
crossref_primary_10_1016_j_psyneuen_2025_107516
crossref_primary_10_1186_s12859_018_2096_3
crossref_primary_10_1007_s00414_024_03365_2
crossref_primary_10_1007_s12975_024_01252_x
crossref_primary_10_1038_ng_3415
crossref_primary_10_1038_s41598_019_42553_8
crossref_primary_10_1080_15592294_2024_2437275
crossref_primary_10_1038_s41598_024_69796_4
crossref_primary_10_1002_art_42654
crossref_primary_10_1016_j_orcp_2025_09_003
crossref_primary_10_1016_j_bbih_2022_100572
crossref_primary_10_1186_s13148_022_01232_8
crossref_primary_10_1038_s41588_022_01248_z
crossref_primary_10_1186_s12859_017_1568_1
crossref_primary_10_1080_15592294_2016_1226451
crossref_primary_10_3390_ijerph21030256
crossref_primary_10_1080_15592294_2020_1734714
crossref_primary_10_1038_s41598_025_13951_y
crossref_primary_10_1146_annurev_psych_122414_033653
crossref_primary_10_2217_epi_2016_0103
crossref_primary_10_1007_s11357_023_00903_5
crossref_primary_10_1186_s12885_021_08645_3
crossref_primary_10_1289_EHP6174
crossref_primary_10_1007_s00420_016_1148_0
crossref_primary_10_1186_s13148_021_01094_6
crossref_primary_10_1186_s13148_024_01779_8
crossref_primary_10_1093_bib_bbae496
crossref_primary_10_1186_s13148_022_01243_5
crossref_primary_10_1111_ppe_12826
crossref_primary_10_1038_s42003_023_04584_w
crossref_primary_10_1186_s12933_023_01774_y
crossref_primary_10_1515_biol_2018_0024
crossref_primary_10_2217_epi_2016_0109
crossref_primary_10_1038_s43587_022_00233_9
crossref_primary_10_1186_s12864_015_2066_3
crossref_primary_10_1016_j_dadr_2022_100077
crossref_primary_10_1073_pnas_1700655114
crossref_primary_10_1002_ajpa_23341
crossref_primary_10_1038_s41467_022_28355_z
crossref_primary_10_1186_s13072_015_0007_7
crossref_primary_10_1186_s13148_019_0628_y
crossref_primary_10_1371_journal_pgen_1005583
crossref_primary_10_1093_nar_gkz840
crossref_primary_10_1186_s13148_018_0556_2
crossref_primary_10_1038_s41514_025_00265_6
crossref_primary_10_1038_s41598_017_09235_9
crossref_primary_10_1016_j_socscimed_2024_117142
crossref_primary_10_3390_genes14020248
crossref_primary_10_1038_s41593_024_01742_z
crossref_primary_10_1002_1878_0261_13479
crossref_primary_10_1016_j_jid_2016_11_029
crossref_primary_10_1007_s40618_022_01923_2
crossref_primary_10_3390_cancers13061189
crossref_primary_10_1186_s13148_023_01462_4
crossref_primary_10_3390_ijms242216412
crossref_primary_10_1038_s41386_020_0675_2
crossref_primary_10_1161_CIRCRESAHA_121_318965
crossref_primary_10_1073_pnas_1604558113
crossref_primary_10_1016_j_biopha_2023_115559
crossref_primary_10_1186_s12863_018_0648_1
crossref_primary_10_1158_1940_6207_CAPR_18_0111
crossref_primary_10_1242_jcs_261323
crossref_primary_10_1038_s41380_025_03031_y
crossref_primary_10_1080_15592294_2018_1460034
crossref_primary_10_1016_j_jcf_2020_06_009
crossref_primary_10_1038_s41467_023_38378_9
crossref_primary_10_1080_15592294_2015_1057384
crossref_primary_10_1016_j_ygeno_2015_09_003
crossref_primary_10_18632_aging_206276
crossref_primary_10_1038_s41467_024_48649_8
crossref_primary_10_1186_s13148_021_01200_8
crossref_primary_10_1186_s13148_023_01507_8
crossref_primary_10_1016_j_ccell_2021_11_012
crossref_primary_10_1080_15592294_2023_2199373
crossref_primary_10_1186_s13148_016_0212_7
crossref_primary_10_1016_j_nicl_2020_102458
crossref_primary_10_1038_s41398_024_02992_y
crossref_primary_10_1038_s41467_025_62894_5
crossref_primary_10_1186_s12859_017_1511_5
crossref_primary_10_1158_2159_8290_CD_22_0603
crossref_primary_10_1007_s00420_025_02147_6
crossref_primary_10_1038_s42003_024_06488_9
crossref_primary_10_1186_s13148_024_01690_2
crossref_primary_10_1186_s42466_024_00327_2
crossref_primary_10_1503_jpn_230062
crossref_primary_10_1002_hbm_70261
crossref_primary_10_1002_sctm_20_0491
crossref_primary_10_1016_j_vaccine_2015_04_088
crossref_primary_10_1016_j_fsigen_2021_102624
crossref_primary_10_1186_s13072_016_0108_y
crossref_primary_10_1289_EHP333
crossref_primary_10_1161_CIRCRESAHA_115_305206
crossref_primary_10_1186_s13148_015_0168_z
crossref_primary_10_3389_freae_2024_1427399
crossref_primary_10_1038_s41467_017_01078_2
crossref_primary_10_1371_journal_pone_0201066
crossref_primary_10_2217_epi_2016_0143
crossref_primary_10_3390_cancers12030680
crossref_primary_10_1007_s00438_020_01678_6
crossref_primary_10_3390_cancers15030647
crossref_primary_10_1007_s10120_014_0348_0
crossref_primary_10_1038_s41592_022_01412_7
crossref_primary_10_1002_mnfr_202100991
crossref_primary_10_1186_s13148_021_01115_4
crossref_primary_10_1177_09567976221122760
crossref_primary_10_1186_s13148_019_0637_x
crossref_primary_10_1016_j_cels_2019_06_006
crossref_primary_10_1093_bib_bbac274
crossref_primary_10_1098_rsos_200872
crossref_primary_10_1016_j_envres_2025_121914
crossref_primary_10_1158_0008_5472_CAN_13_3198
crossref_primary_10_1186_s12863_018_0637_4
crossref_primary_10_1186_s13148_018_0558_0
crossref_primary_10_2217_epi_2018_0225
crossref_primary_10_1186_s12931_018_0850_8
crossref_primary_10_1038_s41467_025_57760_3
crossref_primary_10_1186_s13073_014_0116_0
crossref_primary_10_1371_journal_pgen_1009506
crossref_primary_10_1016_j_jaci_2024_01_014
crossref_primary_10_1371_journal_pone_0166486
crossref_primary_10_3389_fgene_2022_766553
crossref_primary_10_1002_jcp_27557
crossref_primary_10_4049_jimmunol_2100931
crossref_primary_10_1111_adb_13198
crossref_primary_10_1038_s41596_020_0369_6
crossref_primary_10_3390_math12172716
crossref_primary_10_1038_nature24294
crossref_primary_10_1371_journal_pone_0098330
crossref_primary_10_1186_s13148_025_01880_6
crossref_primary_10_1007_s11033_016_3946_6
crossref_primary_10_3390_ijerph192013421
crossref_primary_10_1186_s13148_023_01528_3
crossref_primary_10_1080_15592294_2020_1819666
crossref_primary_10_1186_s13073_016_0361_5
crossref_primary_10_1080_15592294_2017_1411444
crossref_primary_10_1097_MD_0000000000012763
crossref_primary_10_3892_mmr_2018_8487
crossref_primary_10_1177_09622802221146313
crossref_primary_10_1016_j_heliyon_2021_e06000
crossref_primary_10_1016_j_jid_2022_11_016
crossref_primary_10_1186_s13148_018_0588_7
crossref_primary_10_1001_jamanetworkopen_2022_23285
crossref_primary_10_1073_pnas_1717340115
crossref_primary_10_3390_cancers15194826
crossref_primary_10_1038_s41598_017_00384_5
crossref_primary_10_1002_humu_23740
crossref_primary_10_1093_ecco_jcc_jjae072
crossref_primary_10_3390_ijms241612576
crossref_primary_10_1016_j_jaci_2019_07_047
crossref_primary_10_1038_s41421_024_00652_5
crossref_primary_10_1186_s12916_022_02701_w
crossref_primary_10_1038_s41598_019_54355_z
crossref_primary_10_1210_JC_2015_2284
crossref_primary_10_1017_S2040174422000526
crossref_primary_10_3389_fgene_2022_929416
crossref_primary_10_1186_s12859_019_3307_2
crossref_primary_10_1038_s41467_019_12228_z
crossref_primary_10_1038_s41598_018_35111_1
crossref_primary_10_1016_j_joca_2016_03_009
crossref_primary_10_2217_epi_2017_0105
crossref_primary_10_1080_15592294_2016_1270486
crossref_primary_10_1289_EHP11559
crossref_primary_10_3390_cancers12113079
crossref_primary_10_1186_s13148_017_0376_9
crossref_primary_10_1186_s13073_020_00724_7
crossref_primary_10_1186_s13148_019_0798_7
crossref_primary_10_1080_15592294_2021_1969499
crossref_primary_10_1080_15592294_2021_1985301
crossref_primary_10_1186_s13148_021_01207_1
crossref_primary_10_1093_ije_dyz082
crossref_primary_10_3390_cancers13246291
crossref_primary_10_1016_j_xhgg_2024_100326
crossref_primary_10_1186_s13072_022_00477_0
crossref_primary_10_1038_s41525_021_00225_5
crossref_primary_10_1038_s42003_020_01267_8
crossref_primary_10_1186_s40246_023_00484_6
crossref_primary_10_1093_toxsci_kfu210
crossref_primary_10_1186_s12859_020_03734_9
crossref_primary_10_1007_s00414_023_03049_3
crossref_primary_10_1016_j_ecoenv_2024_116823
crossref_primary_10_1016_j_envres_2018_01_009
crossref_primary_10_1016_j_jpsychires_2020_06_005
crossref_primary_10_1186_s12919_018_0125_x
crossref_primary_10_3389_fgene_2019_01229
crossref_primary_10_3390_cancers14071664
crossref_primary_10_1038_s41525_025_00509_0
crossref_primary_10_1186_s40364_024_00592_y
crossref_primary_10_3389_fpsyt_2022_870656
crossref_primary_10_1016_j_ajcnut_2024_08_033
crossref_primary_10_1038_s41467_022_31827_x
crossref_primary_10_1002_dev_22103
crossref_primary_10_1186_s13148_016_0266_6
crossref_primary_10_3390_cells12071021
crossref_primary_10_1002_ana_26923
crossref_primary_10_1016_j_ebiom_2017_12_018
crossref_primary_10_1007_s12072_022_10469_7
crossref_primary_10_1093_mutage_geu089
crossref_primary_10_1371_journal_pone_0325050
crossref_primary_10_1093_eep_dvab003
crossref_primary_10_1080_15592294_2015_1105424
crossref_primary_10_1111_pcn_12835
crossref_primary_10_1093_sleep_zsz198
crossref_primary_10_1111_cns_12786
crossref_primary_10_1158_1541_7786_MCR_19_0309
crossref_primary_10_1080_15592294_2020_1805692
crossref_primary_10_1016_j_ajhg_2020_08_019
crossref_primary_10_1080_28361512_2025_2554836
crossref_primary_10_1111_cas_14160
crossref_primary_10_1038_srep46330
crossref_primary_10_1002_gepi_70008
crossref_primary_10_1016_j_ymeth_2020_10_002
crossref_primary_10_1186_s12885_020_07078_8
crossref_primary_10_1016_j_bone_2019_06_021
crossref_primary_10_1038_s41598_024_75287_3
crossref_primary_10_3389_fimmu_2021_737650
crossref_primary_10_1186_s13148_014_0040_6
crossref_primary_10_1002_2211_5463_13656
crossref_primary_10_1016_j_biopsych_2023_07_010
crossref_primary_10_1038_s41598_020_68741_5
crossref_primary_10_1080_15592294_2019_1565590
crossref_primary_10_3389_fgene_2020_522125
crossref_primary_10_2217_epi_2023_0284
crossref_primary_10_1080_1357650X_2017_1377726
crossref_primary_10_1186_s13148_019_0789_8
crossref_primary_10_1186_s13148_024_01767_y
crossref_primary_10_1038_s41598_019_46930_1
crossref_primary_10_1186_s13073_025_01453_5
crossref_primary_10_3389_fgene_2021_810985
crossref_primary_10_1093_geronb_gbx015
crossref_primary_10_1038_s41370_019_0183_9
crossref_primary_10_1038_s41366_020_0546_2
crossref_primary_10_1093_infdis_jiaa599
crossref_primary_10_1038_s42003_025_08021_y
crossref_primary_10_1016_j_fct_2023_114409
crossref_primary_10_1016_j_biopsych_2021_11_025
crossref_primary_10_1016_j_genrep_2024_101927
crossref_primary_10_3390_ijms241813910
crossref_primary_10_1038_s41598_024_77914_5
crossref_primary_10_1186_s13148_019_0678_1
crossref_primary_10_3390_biomedicines12061261
crossref_primary_10_1017_S2040174414000506
crossref_primary_10_1080_17501911_2025_2510190
crossref_primary_10_2217_epi_2023_0017
crossref_primary_10_1038_s41467_018_07276_w
crossref_primary_10_1146_annurev_biodatasci_120924_091033
crossref_primary_10_1016_j_psyneuen_2014_07_011
crossref_primary_10_1111_acel_13100
crossref_primary_10_1016_j_ajhg_2017_09_028
crossref_primary_10_1093_neuonc_nox076
crossref_primary_10_1186_s13148_017_0367_x
crossref_primary_10_1186_s13058_021_01434_7
crossref_primary_10_1002_mef2_27
crossref_primary_10_1158_1541_7786_MCR_17_0293
crossref_primary_10_3389_fimmu_2021_681714
crossref_primary_10_1186_s12859_016_1056_z
crossref_primary_10_1016_j_psyneuen_2022_105748
crossref_primary_10_2217_epi_2017_0160
crossref_primary_10_2217_epi_2017_0162
crossref_primary_10_1136_lupus_2016_000183
crossref_primary_10_1371_journal_pgen_1009189
crossref_primary_10_1093_bib_bbac617
crossref_primary_10_1186_s12906_021_03310_5
crossref_primary_10_1038_s41698_024_00578_x
crossref_primary_10_1186_s13148_015_0128_7
crossref_primary_10_1016_j_ejca_2017_01_014
crossref_primary_10_1038_mp_2016_250
crossref_primary_10_1186_s13072_015_0035_3
crossref_primary_10_1080_15592294_2022_2135201
crossref_primary_10_1371_journal_pcbi_1007095
crossref_primary_10_1093_nar_gkw1100
crossref_primary_10_1038_s41467_020_18618_y
crossref_primary_10_1186_s12916_022_02610_y
crossref_primary_10_3390_ijms23062957
crossref_primary_10_1002_art_39952
crossref_primary_10_1093_hmg_ddx424
crossref_primary_10_7554_eLife_80729
crossref_primary_10_1186_s13148_018_0488_x
crossref_primary_10_1186_s40478_022_01470_0
crossref_primary_10_3389_fnins_2019_00712
crossref_primary_10_3390_ijms251910576
crossref_primary_10_1080_15592294_2022_2028072
crossref_primary_10_1097_MIB_0000000000000179
crossref_primary_10_1016_j_jcyt_2020_06_001
crossref_primary_10_1136_jitc_2024_009841
crossref_primary_10_3390_jcm10122680
crossref_primary_10_1016_j_envint_2020_105929
crossref_primary_10_1038_s41390_025_04381_7
crossref_primary_10_1038_s41467_022_29540_w
crossref_primary_10_1038_s42003_022_03540_4
crossref_primary_10_1186_s40478_022_01406_8
crossref_primary_10_1038_s41398_023_02407_4
crossref_primary_10_1016_j_bpsgos_2025_100545
crossref_primary_10_1186_s13073_022_01079_x
crossref_primary_10_1016_j_mce_2017_11_019
crossref_primary_10_1186_s12872_021_02001_w
crossref_primary_10_1186_s13148_023_01546_1
crossref_primary_10_1186_s13148_015_0094_0
crossref_primary_10_1038_s41467_021_25583_7
crossref_primary_10_1007_s11357_017_0001_z
crossref_primary_10_1371_journal_pone_0152314
crossref_primary_10_1093_ajcn_nqz031
crossref_primary_10_1093_nar_gkx1139
crossref_primary_10_3390_nu13093210
crossref_primary_10_1111_bdi_12422
crossref_primary_10_1212_WNL_0000000000207489
crossref_primary_10_1016_j_forsciint_2024_112247
crossref_primary_10_1016_j_envint_2018_07_041
crossref_primary_10_1186_1471_2105_15_199
crossref_primary_10_1186_s13148_015_0104_2
crossref_primary_10_1038_s41598_021_83016_3
crossref_primary_10_1111_jgh_16054
crossref_primary_10_1186_s12859_021_04268_4
crossref_primary_10_1371_journal_pone_0290450
crossref_primary_10_1016_j_artmed_2024_102962
crossref_primary_10_1080_15592294_2017_1412907
crossref_primary_10_3389_fgene_2019_00770
crossref_primary_10_1038_s41588_023_01520_w
crossref_primary_10_1186_s12864_016_2421_z
crossref_primary_10_1017_thg_2018_10
crossref_primary_10_1002_2211_5463_12907
crossref_primary_10_1158_1078_0432_CCR_17_2206
crossref_primary_10_1093_ije_dyu236
crossref_primary_10_1096_fj_201800400R
crossref_primary_10_1038_s41467_017_01118_x
crossref_primary_10_1186_s13148_018_0571_3
crossref_primary_10_3390_antibiotics12071217
crossref_primary_10_1038_s41380_021_01308_6
crossref_primary_10_1080_15592294_2022_2115600
crossref_primary_10_3389_fgene_2021_618803
crossref_primary_10_1016_j_ajcnut_2025_05_029
crossref_primary_10_1089_dna_2018_4469
crossref_primary_10_1186_s13148_016_0173_x
crossref_primary_10_2337_db17_1539
crossref_primary_10_1016_j_jid_2021_08_445
crossref_primary_10_1177_25424823251341176
crossref_primary_10_1007_s10142_016_0533_9
crossref_primary_10_1186_s40478_020_00908_7
crossref_primary_10_3390_brainsci13081214
crossref_primary_10_1038_s41598_017_03434_0
crossref_primary_10_3109_10641955_2016_1162315
crossref_primary_10_1038_s41598_020_61430_3
crossref_primary_10_1159_000530106
crossref_primary_10_1053_j_gastro_2020_01_044
crossref_primary_10_1080_15592294_2018_1516453
crossref_primary_10_1161_CIRCULATIONAHA_124_073181
crossref_primary_10_3390_ijerph16040600
crossref_primary_10_1007_s13365_019_00777_4
crossref_primary_10_1016_j_ebiom_2021_103399
crossref_primary_10_1371_journal_pgen_1004996
crossref_primary_10_1093_toxres_tfad084
crossref_primary_10_1186_s12864_016_2819_7
crossref_primary_10_3390_ijms232315280
crossref_primary_10_1016_j_isci_2025_113181
crossref_primary_10_3390_biomedicines12051057
crossref_primary_10_1038_s41467_021_24558_y
crossref_primary_10_2217_epi_14_20
crossref_primary_10_1038_s41467_018_05325_y
crossref_primary_10_1093_gigascience_giaf039
crossref_primary_10_1186_s13148_016_0307_1
crossref_primary_10_3390_ijms241512155
crossref_primary_10_1080_15592294_2021_1928994
crossref_primary_10_1016_j_jmoldx_2022_03_010
crossref_primary_10_1038_s12276_024_01173_7
crossref_primary_10_2217_epi_2017_0146
crossref_primary_10_1007_s10910_022_01381_4
crossref_primary_10_1016_j_pnpbp_2019_109805
crossref_primary_10_1093_hmg_ddv232
crossref_primary_10_1186_s13148_021_01164_9
crossref_primary_10_1007_s12035_022_03180_z
crossref_primary_10_3390_genes15121510
crossref_primary_10_3390_jcm8091307
crossref_primary_10_1093_g3journal_jkac041
crossref_primary_10_1111_jgs_18726
crossref_primary_10_3389_fgene_2016_00023
crossref_primary_10_1186_s40246_025_00763_4
crossref_primary_10_1089_dna_2018_4276
crossref_primary_10_1186_s12885_019_5291_3
crossref_primary_10_1097_MD_0000000000022389
crossref_primary_10_1210_jc_2017_00881
crossref_primary_10_1038_s12276_021_00612_z
crossref_primary_10_1186_s12864_015_1381_z
crossref_primary_10_1038_s41408_020_0310_9
crossref_primary_10_1016_j_envres_2020_109573
crossref_primary_10_1016_j_freeradbiomed_2025_08_039
crossref_primary_10_1161_JAHA_119_015299
crossref_primary_10_4251_wjgo_v9_i3_105
crossref_primary_10_1038_s41398_024_03148_8
crossref_primary_10_1002_ajmg_b_32278
crossref_primary_10_1111_jre_12868
crossref_primary_10_1186_s13148_023_01435_7
crossref_primary_10_1186_s13148_023_01459_z
crossref_primary_10_1038_s41467_021_22874_x
crossref_primary_10_1038_nmeth_3115
crossref_primary_10_1186_s13059_019_1753_9
crossref_primary_10_1186_s13148_016_0295_1
crossref_primary_10_1016_j_ygeno_2016_07_001
crossref_primary_10_1007_s00018_024_05208_0
crossref_primary_10_1177_0962280216683571
crossref_primary_10_1038_s42003_020_01469_0
crossref_primary_10_1038_s41598_021_81758_8
crossref_primary_10_3390_cancers12123589
crossref_primary_10_1016_j_psychres_2022_114901
crossref_primary_10_1371_journal_pone_0323756
crossref_primary_10_5498_wjp_v13_i8_524
crossref_primary_10_1111_jcpp_13613
crossref_primary_10_1186_s13059_016_1052_7
crossref_primary_10_1038_tp_2015_210
crossref_primary_10_1371_journal_pone_0263478
crossref_primary_10_1038_s41467_020_15342_5
crossref_primary_10_1038_s41467_025_56054_y
crossref_primary_10_3390_cancers16132429
crossref_primary_10_1186_s13072_016_0058_4
crossref_primary_10_3389_fnagi_2023_1215957
crossref_primary_10_1016_j_phrs_2025_107767
crossref_primary_10_1038_s41598_017_05713_2
crossref_primary_10_2217_epi_15_110
crossref_primary_10_1186_s13073_023_01211_5
crossref_primary_10_1186_s13148_019_0618_0
crossref_primary_10_5812_ircmj_14873
crossref_primary_10_3892_ijo_2019_4885
crossref_primary_10_1038_s41467_020_19791_w
crossref_primary_10_1002_art_39792
crossref_primary_10_1161_CIRCGENETICS_114_000804
crossref_primary_10_3892_mmr_2018_8804
crossref_primary_10_1111_acel_13608
crossref_primary_10_1016_j_placenta_2021_05_005
crossref_primary_10_1007_s12561_016_9145_0
crossref_primary_10_1007_s00059_017_4616_8
crossref_primary_10_1097_PSY_0000000000000506
crossref_primary_10_1200_JCO_2016_68_2153
crossref_primary_10_1186_s13059_015_0600_x
crossref_primary_10_1186_s13148_019_0705_2
crossref_primary_10_1007_s10815_018_1244_z
crossref_primary_10_1038_s41398_023_02441_2
crossref_primary_10_3389_fimmu_2016_00450
crossref_primary_10_1002_jcp_29809
crossref_primary_10_1289_EHP36
crossref_primary_10_1017_S0954579419001421
crossref_primary_10_1007_s10549_021_06185_9
crossref_primary_10_1210_jc_2018_02076
crossref_primary_10_1038_s41598_022_05744_4
crossref_primary_10_2217_epi_2019_0004
crossref_primary_10_1371_journal_pone_0117403
crossref_primary_10_1186_s12859_017_1870_y
crossref_primary_10_1080_15592294_2024_2360160
crossref_primary_10_1186_s12967_024_05842_z
crossref_primary_10_1186_s13148_024_01680_4
crossref_primary_10_1093_pnasnexus_pgaf177
crossref_primary_10_3390_cancers13071677
crossref_primary_10_1080_15592294_2017_1414127
crossref_primary_10_1038_s41598_018_37746_6
crossref_primary_10_3389_fgene_2019_00816
crossref_primary_10_1016_j_dib_2018_01_061
crossref_primary_10_1186_s13287_022_03159_6
crossref_primary_10_1097_QAD_0000000000002805
crossref_primary_10_1210_clinem_dgac010
crossref_primary_10_1038_s43587_025_00883_5
crossref_primary_10_1038_s41598_019_42654_4
crossref_primary_10_1080_15592294_2021_1993607
crossref_primary_10_1002_ijc_33355
crossref_primary_10_1038_s41467_017_01586_1
crossref_primary_10_2217_epi_2016_0077
crossref_primary_10_1186_s13148_021_01080_y
crossref_primary_10_1080_15622975_2020_1747113
crossref_primary_10_1038_s41598_018_33498_5
crossref_primary_10_1093_hmg_ddt430
crossref_primary_10_1080_15592294_2020_1795605
crossref_primary_10_1186_s13059_022_02793_w
crossref_primary_10_1186_s13148_015_0116_y
crossref_primary_10_1016_j_ebiom_2023_104657
crossref_primary_10_1038_s41467_018_04540_x
crossref_primary_10_3390_biomedicines10061406
crossref_primary_10_1186_s13148_018_0439_6
crossref_primary_10_1186_s13148_021_01121_6
crossref_primary_10_1186_s13058_018_1022_y
crossref_primary_10_1186_s13073_015_0258_8
crossref_primary_10_1038_s10038_017_0382_y
crossref_primary_10_1186_s13073_024_01408_2
crossref_primary_10_1186_s12890_025_03634_9
crossref_primary_10_1016_j_psyneuen_2020_105026
crossref_primary_10_1002_dmrr_3781
crossref_primary_10_1038_s41598_024_81486_9
crossref_primary_10_1155_2018_4390789
crossref_primary_10_1038_ng_3349
crossref_primary_10_1038_s41598_017_18034_1
crossref_primary_10_1080_15592294_2019_1634975
crossref_primary_10_3389_fgene_2021_676449
crossref_primary_10_2217_epi_2016_0087
crossref_primary_10_1017_S0033291723001629
crossref_primary_10_3389_fimmu_2023_1173187
crossref_primary_10_1016_j_ymeth_2014_08_011
crossref_primary_10_1186_s12891_015_0745_5
crossref_primary_10_1097_CEJ_0000000000000460
crossref_primary_10_1111_hepr_12877
crossref_primary_10_1007_s10552_024_01924_x
crossref_primary_10_1016_j_envint_2018_08_044
crossref_primary_10_1038_jid_2015_128
crossref_primary_10_7554_eLife_07103
crossref_primary_10_1186_s13059_022_02705_y
crossref_primary_10_1186_s12916_017_0870_0
crossref_primary_10_1016_j_jpeds_2018_02_074
crossref_primary_10_1371_journal_pone_0187422
crossref_primary_10_1038_ncomms10893
crossref_primary_10_1093_bioadv_vbaf150
crossref_primary_10_3389_fnagi_2023_1063536
crossref_primary_10_1186_s13148_016_0172_y
crossref_primary_10_1186_s13148_020_00830_8
crossref_primary_10_1186_s13073_020_00752_3
crossref_primary_10_1186_s13148_024_01671_5
crossref_primary_10_1038_s41467_021_27427_w
crossref_primary_10_1186_s13148_022_01299_3
crossref_primary_10_1371_journal_pone_0135022
crossref_primary_10_1186_s13072_019_0296_3
crossref_primary_10_1289_EHP2045
crossref_primary_10_1038_s41597_020_0456_0
crossref_primary_10_1093_pnasnexus_pgaf127
crossref_primary_10_1186_s13059_016_1030_0
crossref_primary_10_1186_s13148_024_01695_x
crossref_primary_10_1002_ajmg_b_32568
crossref_primary_10_1080_15592294_2019_1568178
crossref_primary_10_3389_fgene_2019_00624
crossref_primary_10_1186_s13148_025_01868_2
crossref_primary_10_4161_15592294_2014_989077
crossref_primary_10_1016_j_jand_2024_01_002
crossref_primary_10_2217_epi_2019_0040
crossref_primary_10_2337_db20_0487
crossref_primary_10_1002_ijc_34477
crossref_primary_10_4161_15592294_2014_982445
crossref_primary_10_1038_s41598_018_33959_x
crossref_primary_10_1080_15592294_2021_1982510
crossref_primary_10_1002_smll_201502346
crossref_primary_10_1093_cercor_bhac043
crossref_primary_10_1097_HC9_0000000000000496
crossref_primary_10_1186_s12263_019_0634_x
crossref_primary_10_1289_EHP2034
crossref_primary_10_1016_j_envint_2021_106587
crossref_primary_10_1186_s13293_024_00682_4
crossref_primary_10_1186_s13073_015_0225_4
crossref_primary_10_1016_j_pnpbp_2018_11_011
crossref_primary_10_1002_1878_0261_13160
crossref_primary_10_1002_ajmg_b_32315
crossref_primary_10_3389_fgene_2019_00613
crossref_primary_10_1080_15592294_2020_1814504
crossref_primary_10_1186_1471_2105_15_141
crossref_primary_10_2217_epi_2019_0276
crossref_primary_10_1186_s13148_023_01598_3
crossref_primary_10_1186_s12967_024_05746_y
crossref_primary_10_1186_s12864_018_4525_0
crossref_primary_10_1038_s41398_021_01225_w
crossref_primary_10_1038_s42003_025_08121_9
crossref_primary_10_1186_s12864_020_07168_8
crossref_primary_10_4161_epi_27119
crossref_primary_10_1186_s13148_022_01277_9
crossref_primary_10_1007_s00401_019_02099_5
crossref_primary_10_1073_pnas_1707151114
crossref_primary_10_4161_epi_26037
crossref_primary_10_1186_s12864_021_07935_1
crossref_primary_10_1016_j_jid_2021_11_017
crossref_primary_10_1016_j_envint_2024_108763
crossref_primary_10_1093_hmg_ddac137
crossref_primary_10_1186_1868_7083_6_22
crossref_primary_10_1038_s41467_020_15538_9
crossref_primary_10_1186_s13148_019_0614_4
crossref_primary_10_1186_s13148_022_01397_2
crossref_primary_10_1038_srep19430
crossref_primary_10_1016_j_jaci_2019_01_034
crossref_primary_10_3390_nu15163621
crossref_primary_10_1016_j_envres_2021_111211
crossref_primary_10_1016_j_envint_2019_02_053
crossref_primary_10_1016_j_jad_2024_01_241
crossref_primary_10_1080_07435800_2019_1669160
crossref_primary_10_2217_epi_2019_0299
crossref_primary_10_1126_scitranslmed_aaz1803
crossref_primary_10_1073_pnas_1713736114
crossref_primary_10_1016_j_neo_2014_07_001
crossref_primary_10_1186_s12864_020_06789_3
crossref_primary_10_3389_fgene_2021_640266
crossref_primary_10_1186_s12864_018_4652_7
crossref_primary_10_1038_nn_4632
crossref_primary_10_1038_s41598_023_29843_y
crossref_primary_10_1002_ajmg_b_32920
crossref_primary_10_1038_s41467_020_17165_w
crossref_primary_10_1109_TPAMI_2014_2353639
crossref_primary_10_1186_s12940_023_01007_5
crossref_primary_10_1186_s12864_016_3426_3
crossref_primary_10_1038_s41467_024_55698_6
crossref_primary_10_1080_15592294_2018_1530008
crossref_primary_10_1080_01621459_2021_1914634
crossref_primary_10_1007_s10120_018_0803_4
crossref_primary_10_1177_15353702211007766
crossref_primary_10_1016_j_gene_2024_148903
crossref_primary_10_1038_ncomms9699
crossref_primary_10_1186_s13059_017_1186_2
crossref_primary_10_1186_s12859_024_05658_0
crossref_primary_10_1289_EHP10174
crossref_primary_10_1038_ncomms10478
crossref_primary_10_1371_journal_pone_0122146
crossref_primary_10_1093_humrep_dead191
crossref_primary_10_1038_ncomms13507
crossref_primary_10_1186_s13072_025_00616_3
crossref_primary_10_1002_wsbm_1242
crossref_primary_10_1016_j_neo_2016_08_008
crossref_primary_10_1038_s41598_023_37511_4
crossref_primary_10_1038_s41598_021_85812_3
crossref_primary_10_1016_j_envint_2019_03_071
crossref_primary_10_1017_S0954579417001213
crossref_primary_10_1038_tp_2016_297
crossref_primary_10_1186_s13073_022_01116_9
crossref_primary_10_2217_epi_15_2
crossref_primary_10_3389_fgene_2023_1248088
crossref_primary_10_1038_s41467_023_43719_9
crossref_primary_10_1111_jcmm_18032
crossref_primary_10_1016_j_bbr_2017_09_035
crossref_primary_10_1111_exd_14047
crossref_primary_10_1016_j_jaci_2021_11_013
crossref_primary_10_1186_s12967_018_1751_9
crossref_primary_10_1530_REP_16_0014
crossref_primary_10_2217_epi_2023_0424
crossref_primary_10_1016_j_bcp_2019_113699
crossref_primary_10_3390_ijerph18147429
crossref_primary_10_2217_epi_2016_0001
crossref_primary_10_1016_j_jhazmat_2021_126548
crossref_primary_10_1111_acel_70149
crossref_primary_10_1186_s13148_016_0235_0
crossref_primary_10_1002_gepi_21874
crossref_primary_10_1038_s41467_023_38891_x
crossref_primary_10_1038_s41380_024_02808_x
crossref_primary_10_1038_s41467_025_62533_z
crossref_primary_10_1186_s13148_022_01399_0
crossref_primary_10_1186_s12863_018_0636_5
crossref_primary_10_1016_j_envint_2021_106955
crossref_primary_10_1371_journal_pone_0229763
crossref_primary_10_1080_15592294_2024_2333654
crossref_primary_10_1186_s13195_023_01216_7
crossref_primary_10_3389_fendo_2022_875180
crossref_primary_10_1002_advs_202100727
crossref_primary_10_1002_em_22095
crossref_primary_10_1016_j_devcel_2019_11_007
crossref_primary_10_1038_s41467_018_05570_1
crossref_primary_10_1016_j_jad_2024_02_044
crossref_primary_10_1038_leu_2016_356
crossref_primary_10_1007_s00018_021_04091_3
crossref_primary_10_1093_cvr_cvx050
crossref_primary_10_1038_s41467_019_10461_0
crossref_primary_10_1038_s41525_019_0102_y
crossref_primary_10_1089_thy_2022_0373
crossref_primary_10_1038_s41598_025_87442_5
crossref_primary_10_1007_s10238_023_01119_9
crossref_primary_10_1186_s13148_017_0336_4
crossref_primary_10_3892_ol_2017_7083
crossref_primary_10_1016_j_neures_2017_02_005
crossref_primary_10_3390_ijms221910417
crossref_primary_10_1038_s41467_022_33544_x
crossref_primary_10_1080_15592294_2019_1661211
crossref_primary_10_1007_s10522_020_09874_y
crossref_primary_10_1038_s41467_022_33215_x
crossref_primary_10_1007_s13365_015_0406_3
crossref_primary_10_1186_s40478_019_0744_0
crossref_primary_10_1080_15592294_2020_1712876
crossref_primary_10_1186_s12940_021_00717_y
crossref_primary_10_1016_j_jsbmb_2016_03_005
crossref_primary_10_1016_j_xcrm_2025_102290
crossref_primary_10_1186_s12935_020_01640_x
crossref_primary_10_1371_journal_pone_0204228
crossref_primary_10_1038_s41398_019_0376_y
crossref_primary_10_1038_bjc_2013_496
crossref_primary_10_1038_s41467_017_01297_7
crossref_primary_10_4161_epi_28041
Cites_doi 10.4161/epi.6.6.16196
10.1038/ng1909
10.2217/epi.12.21
10.1038/nrg1748
10.1186/1471-2105-9-365
10.1016/0022-2836(87)90689-9
10.1038/nature09230
10.1093/bioinformatics/btq470
10.1093/ije/dyr238
10.1073/pnas.052410099
10.1016/j.ygeno.2011.07.007
10.1093/bioinformatics/bts013
10.1016/j.cell.2007.01.029
10.1186/gb-2012-13-6-r44
10.1186/1471-2105-13-59
10.1093/bioinformatics/bti318
10.1186/1471-2105-11-587
10.1038/nbt1010-1049
10.1093/biostatistics/kxq005
10.2217/epi.09.14
10.1038/nature10866
10.1007/0-387-29362-0_23
10.2217/epi.11.105
10.1038/nrg3000
10.1073/pnas.0812945106
10.1038/nrc1799
ContentType Journal Article
Copyright The Author 2012. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com 2012
Copyright_xml – notice: The Author 2012. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com 2012
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7QO
7TM
8FD
FR3
P64
7SC
JQ2
L7M
L~C
L~D
5PM
ADTPV
AOWAS
D8T
ZZAVC
DOI 10.1093/bioinformatics/bts680
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
Biotechnology Research Abstracts
Nucleic Acids Abstracts
Technology Research Database
Engineering Research Database
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
PubMed Central (Full Participant titles)
SwePub
SwePub Articles
SWEPUB Freely available online
SwePub Articles full text
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
Engineering Research Database
Biotechnology Research Abstracts
Technology Research Database
Nucleic Acids Abstracts
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList MEDLINE - Academic
Engineering Research Database
Computer and Information Systems Abstracts
CrossRef
MEDLINE

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1367-4811
1460-2059
EndPage 196
ExternalDocumentID oai_swepub_ki_se_533201
PMC3546795
23175756
10_1093_bioinformatics_bts680
Genre Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Wellcome Trust
  grantid: 084071
– fundername: Wellcome Trust
  grantid: 093855
GroupedDBID ---
-E4
-~X
.2P
.DC
.I3
0R~
1TH
23N
2WC
4.4
48X
53G
5GY
5WA
70D
AAIJN
AAIMJ
AAJKP
AAJQQ
AAKPC
AAMDB
AAMVS
AAOGV
AAPQZ
AAPXW
AAUQX
AAVAP
AAVLN
AAYXX
ABEJV
ABEUO
ABGNP
ABIXL
ABNKS
ABPQP
ABPTD
ABQLI
ABWST
ABXVV
ABZBJ
ACGFS
ACIWK
ACPRK
ACUFI
ACUXJ
ACYTK
ADBBV
ADEYI
ADEZT
ADFTL
ADGKP
ADGZP
ADHKW
ADHZD
ADMLS
ADOCK
ADPDF
ADRDM
ADRTK
ADVEK
ADYVW
ADZTZ
ADZXQ
AECKG
AEGPL
AEJOX
AEKKA
AEKSI
AELWJ
AEMDU
AENEX
AENZO
AEPUE
AETBJ
AEWNT
AFFZL
AFGWE
AFIYH
AFOFC
AFRAH
AGINJ
AGKEF
AGQXC
AGSYK
AHMBA
AHXPO
AIJHB
AJEEA
AJEUX
AKHUL
AKWXX
ALMA_UNASSIGNED_HOLDINGS
ALTZX
ALUQC
AMNDL
APIBT
APWMN
ARIXL
ASPBG
AVWKF
AXUDD
AYOIW
AZVOD
BAWUL
BAYMD
BHONS
BQDIO
BQUQU
BSWAC
BTQHN
C45
CDBKE
CITATION
CS3
CZ4
DAKXR
DIK
DILTD
DU5
D~K
EBD
EBS
EE~
EJD
EMOBN
F5P
F9B
FEDTE
FHSFR
FLIZI
FLUFQ
FOEOM
FQBLK
GAUVT
GJXCC
GROUPED_DOAJ
GX1
H13
H5~
HAR
HW0
HZ~
IOX
J21
JXSIZ
KAQDR
KOP
KQ8
KSI
KSN
M-Z
MK~
ML0
N9A
NGC
NLBLG
NMDNZ
NOMLY
NU-
NVLIB
O0~
O9-
OAWHX
ODMLO
OJQWA
OK1
OVD
OVEED
P2P
PAFKI
PEELM
PQQKQ
Q1.
Q5Y
R44
RD5
RNS
ROL
ROX
RPM
RUSNO
RW1
RXO
SV3
TEORI
TJP
TLC
TOX
TR2
W8F
WOQ
X7H
YAYTL
YKOAZ
YXANX
ZKX
~91
~KM
ABQTQ
CGR
CUY
CVF
ECM
EIF
M49
NPM
7X8
482
7QO
7TM
8FD
ABJNI
FR3
P64
ROZ
TN5
WH7
7SC
JQ2
L7M
L~C
L~D
5PM
C1A
COF
.-4
.GJ
ABEFU
ABNGD
ACUKT
ADTPV
AFFNX
AGQPQ
AI.
AOWAS
AQDSO
ATTQO
AZFZN
CAG
D8T
ELUNK
HVGLF
NTWIH
O~Y
PB-
RNI
RZF
RZO
VH1
ZGI
ZZAVC
ID FETCH-LOGICAL-c581t-3ff4e252d67c08b85bcdc90041e1e34b080fd9722213c664190b4d545bd5f8aa3
ISICitedReferencesCount 1219
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000313722800006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1367-4803
1367-4811
IngestDate Tue Nov 25 03:36:02 EST 2025
Tue Nov 04 01:45:51 EST 2025
Thu Oct 02 06:20:19 EDT 2025
Tue Oct 07 09:26:28 EDT 2025
Sun Nov 09 12:04:22 EST 2025
Thu Apr 03 07:07:14 EDT 2025
Sat Nov 29 05:33:50 EST 2025
Tue Nov 18 21:17:01 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License http://creativecommons.org/licenses/by/3.0
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c581t-3ff4e252d67c08b85bcdc90041e1e34b080fd9722213c664190b4d545bd5f8aa3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Associate Editor: Olga Troyanskaya
OpenAccessLink https://pubmed.ncbi.nlm.nih.gov/PMC3546795
PMID 23175756
PQID 1273630149
PQPubID 23479
PageCount 8
ParticipantIDs swepub_primary_oai_swepub_ki_se_533201
pubmedcentral_primary_oai_pubmedcentral_nih_gov_3546795
proquest_miscellaneous_1671449785
proquest_miscellaneous_1323249797
proquest_miscellaneous_1273630149
pubmed_primary_23175756
crossref_citationtrail_10_1093_bioinformatics_bts680
crossref_primary_10_1093_bioinformatics_bts680
PublicationCentury 2000
PublicationDate 2013-01-15
PublicationDateYYYYMMDD 2013-01-15
PublicationDate_xml – month: 01
  year: 2013
  text: 2013-01-15
  day: 15
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Bioinformatics
PublicationTitleAlternate Bioinformatics
PublicationYear 2013
Publisher Oxford University Press
Publisher_xml – name: Oxford University Press
References Zhuang (2023012810154280700_bts680-B27) 2012; 24
Ji (2023012810154280700_bts680-B13) 2005; 21
Bibikova (2023012810154280700_bts680-B2) 2011; 98
Wu (2023012810154280700_bts680-B25) 2010; 11
Petronis (2023012810154280700_bts680-B17) 2010; 465
Feinberg (2023012810154280700_bts680-B7) 2010; 28
Takai (2023012810154280700_bts680-B21) 2002; 99
Jaffe (2023012810154280700_bts680-B12) 2012; 41
Turcan (2023012810154280700_bts680-B23) 2012; 483
Feinberg (2023012810154280700_bts680-B8) 2006; 7
Dedeurwaerder (2023012810154280700_bts680-B4) 2011; 3
Sandoval (2023012810154280700_bts680-B19) 2011; 6
Koestler (2023012810154280700_bts680-B15) 2010; 26
Eckhardt (2023012810154280700_bts680-B6) 2006; 38
Touleimat (2023012810154280700_bts680-B22) 2012; 4
Zhao (2023012810154280700_bts680-B26) 2009; 106
Smyth (2023012810154280700_bts680-B20) 2005
Jones (2023012810154280700_bts680-B14) 2007; 128
Du (2023012810154280700_bts680-B5) 2010; 11
Gardiner-Garden (2023012810154280700_bts680-B9) 1987; 196
Wang (2023012810154280700_bts680-B24) 2012; 28
Baylin (2023012810154280700_bts680-B1) 2006; 6
Maksimovic (2023012810154280700_bts680-B16) 2012; 13
Rakyan (2023012810154280700_bts680-B18) 2011; 12
Hansen (2023012810154280700_bts680-B10) 2012
Houseman (2023012810154280700_bts680-B11) 2008; 9
Bibikova (2023012810154280700_bts680-B3) 2009; 1
22524302 - BMC Bioinformatics. 2012;13:59
22122642 - Epigenomics. 2009 Oct;1(1):177-200
18782434 - BMC Bioinformatics. 2008;9:365
11891299 - Proc Natl Acad Sci U S A. 2002 Mar 19;99(6):3740-5
3656447 - J Mol Biol. 1987 Jul 20;196(2):261-82
15713737 - Bioinformatics. 2005 May 1;21(9):2118-22
22422453 - Int J Epidemiol. 2012 Feb;41(1):200-9
21118553 - BMC Bioinformatics. 2010;11:587
20944596 - Nat Biotechnol. 2010 Oct;28(10):1049-52
20834038 - Bioinformatics. 2010 Oct 15;26(20):2578-85
20535201 - Nature. 2010 Jun 10;465(7299):721-7
21747404 - Nat Rev Genet. 2011 Aug;12(8):529-41
21593595 - Epigenetics. 2011 Jun;6(6):692-702
21839163 - Genomics. 2011 Oct;98(4):288-95
22126295 - Epigenomics. 2011 Dec;3(6):771-84
20212320 - Biostatistics. 2010 Jul;11(3):499-514
16369569 - Nat Rev Genet. 2006 Jan;7(1):21-33
22703947 - Genome Biol. 2012;13(6):R44
16491070 - Nat Rev Cancer. 2006 Feb;6(2):107-16
22343889 - Nature. 2012 Mar 22;483(7390):479-83
22690668 - Epigenomics. 2012 Jun;4(3):325-41
19181860 - Proc Natl Acad Sci U S A. 2009 Feb 10;106(6):1886-91
22253290 - Bioinformatics. 2012 Mar 1;28(5):729-30
17072317 - Nat Genet. 2006 Dec;38(12):1378-85
17320506 - Cell. 2007 Feb 23;128(4):683-92
References_xml – volume: 6
  start-page: 692
  year: 2011
  ident: 2023012810154280700_bts680-B19
  article-title: Validation of a DNA methylation microarray for 450,000 CpG sites in the human genome
  publication-title: Epigenetics
  doi: 10.4161/epi.6.6.16196
– volume: 38
  start-page: 1378
  year: 2006
  ident: 2023012810154280700_bts680-B6
  article-title: DNA methylation profiling of human chromosomes 6, 20 and 22
  publication-title: Nat. Genet.
  doi: 10.1038/ng1909
– volume: 4
  start-page: 325
  year: 2012
  ident: 2023012810154280700_bts680-B22
  article-title: Complete pipeline for infinium(®) human methylation 450k beadchip data processing using subset quantile normalization for accurate dna methylation estimation
  publication-title: Epigenomics
  doi: 10.2217/epi.12.21
– volume: 7
  start-page: 21
  year: 2006
  ident: 2023012810154280700_bts680-B8
  article-title: The epigenetic progenitor origin of human cancer
  publication-title: Nat. Rev. Genet.
  doi: 10.1038/nrg1748
– volume: 9
  start-page: 365
  year: 2008
  ident: 2023012810154280700_bts680-B11
  article-title: Model-based clustering of dna methylation array data: a recursive-partitioning algorithm for high-dimensional data arising as a mixture of beta distributions
  publication-title: BMC Bioinformatics
  doi: 10.1186/1471-2105-9-365
– volume: 196
  start-page: 261
  year: 1987
  ident: 2023012810154280700_bts680-B9
  article-title: CpG islands in vertebrate genomes
  publication-title: J. Mol. Biol.
  doi: 10.1016/0022-2836(87)90689-9
– volume: 465
  start-page: 721
  year: 2010
  ident: 2023012810154280700_bts680-B17
  article-title: Epigenetics as a unifying principle in the aetiology of complex traits and diseases
  publication-title: Nature
  doi: 10.1038/nature09230
– volume: 26
  start-page: 2578
  year: 2010
  ident: 2023012810154280700_bts680-B15
  article-title: Semi-supervised recursively partitioned mixture models for identifying cancer subtypes
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btq470
– volume: 41
  start-page: 200
  year: 2012
  ident: 2023012810154280700_bts680-B12
  article-title: Bump hunting to identify differentially methylated regions in epigenetic epidemiology studies
  publication-title: Int. J. Epidemiol.
  doi: 10.1093/ije/dyr238
– volume: 99
  start-page: 3740
  year: 2002
  ident: 2023012810154280700_bts680-B21
  article-title: Comprehensive analysis of cpg islands in human chromosomes 21 and 22
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.052410099
– volume: 98
  start-page: 288
  year: 2011
  ident: 2023012810154280700_bts680-B2
  article-title: High density DNA methylation array with single CpG site resolution
  publication-title: Genomics
  doi: 10.1016/j.ygeno.2011.07.007
– volume: 28
  start-page: 729
  year: 2012
  ident: 2023012810154280700_bts680-B24
  article-title: IMA: an R package for high-throughput analysis of illumina’s 450k infinium methylation data
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bts013
– volume: 128
  start-page: 683
  year: 2007
  ident: 2023012810154280700_bts680-B14
  article-title: The epigenomics of cancer
  publication-title: Cell
  doi: 10.1016/j.cell.2007.01.029
– volume: 13
  start-page: R44
  year: 2012
  ident: 2023012810154280700_bts680-B16
  article-title: Swan: Subset quantile Within-Array Normalization for illumina infinium humanmethylation450 beadchips
  publication-title: Genome Biol.
  doi: 10.1186/gb-2012-13-6-r44
– volume: 24
  start-page: 59
  year: 2012
  ident: 2023012810154280700_bts680-B27
  article-title: A comparison of feature selection and classification methods in DNA methylation studies using the illumina 27k platform
  publication-title: BMC Bioinformatics
  doi: 10.1186/1471-2105-13-59
– volume: 21
  start-page: 2118
  year: 2005
  ident: 2023012810154280700_bts680-B13
  article-title: Applications of beta-mixture models in bioinformatics
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bti318
– year: 2012
  ident: 2023012810154280700_bts680-B10
– volume: 11
  start-page: 587
  year: 2010
  ident: 2023012810154280700_bts680-B5
  article-title: Comparison of Beta-value and M-value methods for quantifying methylation levels by microarray analysis
  publication-title: BMC Bioinformatics
  doi: 10.1186/1471-2105-11-587
– volume: 28
  start-page: 1049
  year: 2010
  ident: 2023012810154280700_bts680-B7
  article-title: Epigenomics reveals a functional genome anatomy and a new approach to common disease
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt1010-1049
– volume: 11
  start-page: 499
  year: 2010
  ident: 2023012810154280700_bts680-B25
  article-title: Redefining CpG islands using hidden Markov models
  publication-title: Biostatistics
  doi: 10.1093/biostatistics/kxq005
– volume: 1
  start-page: 177
  year: 2009
  ident: 2023012810154280700_bts680-B3
  article-title: Genome-wide DNA methylation profiling using Infinium® assay
  publication-title: Epigenomics
  doi: 10.2217/epi.09.14
– volume: 483
  start-page: 479
  year: 2012
  ident: 2023012810154280700_bts680-B23
  article-title: IDH1 mutation is sufficient to establish the glioma hypermethylator phenotype
  publication-title: Nature
  doi: 10.1038/nature10866
– start-page: 397
  volume-title: Bioinformatics and Computational Biology Solutions using R and Bioconductor
  year: 2005
  ident: 2023012810154280700_bts680-B20
  article-title: Limma: linear models for microarray data
  doi: 10.1007/0-387-29362-0_23
– volume: 3
  start-page: 771
  year: 2011
  ident: 2023012810154280700_bts680-B4
  article-title: Evaluation of the infinium methylation 450k technology
  publication-title: Epigenomics
  doi: 10.2217/epi.11.105
– volume: 12
  start-page: 529
  year: 2011
  ident: 2023012810154280700_bts680-B18
  article-title: Epigenome-wide association studies for common human diseases
  publication-title: Nat. Rev. Genet.
  doi: 10.1038/nrg3000
– volume: 106
  start-page: 1886
  year: 2009
  ident: 2023012810154280700_bts680-B26
  article-title: Transcriptome-guided characterization of genomic rearrangements in a breast cancer cell line
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.0812945106
– volume: 6
  start-page: 107
  year: 2006
  ident: 2023012810154280700_bts680-B1
  article-title: Epigenetic gene silencing in cancer—a mechanism for early oncogenic pathway addiction? Nat
  publication-title: Rev. Cancer
  doi: 10.1038/nrc1799
– reference: 3656447 - J Mol Biol. 1987 Jul 20;196(2):261-82
– reference: 17320506 - Cell. 2007 Feb 23;128(4):683-92
– reference: 22126295 - Epigenomics. 2011 Dec;3(6):771-84
– reference: 22122642 - Epigenomics. 2009 Oct;1(1):177-200
– reference: 21839163 - Genomics. 2011 Oct;98(4):288-95
– reference: 15713737 - Bioinformatics. 2005 May 1;21(9):2118-22
– reference: 22343889 - Nature. 2012 Mar 22;483(7390):479-83
– reference: 21593595 - Epigenetics. 2011 Jun;6(6):692-702
– reference: 22524302 - BMC Bioinformatics. 2012;13:59
– reference: 16369569 - Nat Rev Genet. 2006 Jan;7(1):21-33
– reference: 22253290 - Bioinformatics. 2012 Mar 1;28(5):729-30
– reference: 20535201 - Nature. 2010 Jun 10;465(7299):721-7
– reference: 21118553 - BMC Bioinformatics. 2010;11:587
– reference: 20212320 - Biostatistics. 2010 Jul;11(3):499-514
– reference: 20944596 - Nat Biotechnol. 2010 Oct;28(10):1049-52
– reference: 19181860 - Proc Natl Acad Sci U S A. 2009 Feb 10;106(6):1886-91
– reference: 17072317 - Nat Genet. 2006 Dec;38(12):1378-85
– reference: 11891299 - Proc Natl Acad Sci U S A. 2002 Mar 19;99(6):3740-5
– reference: 16491070 - Nat Rev Cancer. 2006 Feb;6(2):107-16
– reference: 18782434 - BMC Bioinformatics. 2008;9:365
– reference: 22690668 - Epigenomics. 2012 Jun;4(3):325-41
– reference: 22422453 - Int J Epidemiol. 2012 Feb;41(1):200-9
– reference: 20834038 - Bioinformatics. 2010 Oct 15;26(20):2578-85
– reference: 21747404 - Nat Rev Genet. 2011 Aug;12(8):529-41
– reference: 22703947 - Genome Biol. 2012;13(6):R44
SSID ssj0005056
ssj0051444
Score 2.6276877
Snippet Motivation: The Illumina Infinium 450 k DNA Methylation Beadchip is a prime candidate technology for Epigenome-Wide Association Studies (EWAS). However, a...
The Illumina Infinium 450 k DNA Methylation Beadchip is a prime candidate technology for Epigenome-Wide Association Studies (EWAS). However, a difficulty...
SourceID swepub
pubmedcentral
proquest
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 189
SubjectTerms Algorithms
Bias
Bioinformatics
Deoxyribonucleic acid
DNA Methylation
Mathematical models
Methylation
Neoplasms - genetics
Normal Distribution
Nucleic Acid Probes - chemistry
Oligonucleotide Array Sequence Analysis - methods
Original Papers
Quantiles
Strategy
Transformations
Title A beta-mixture quantile normalization method for correcting probe design bias in Illumina Infinium 450 k DNA methylation data
URI https://www.ncbi.nlm.nih.gov/pubmed/23175756
https://www.proquest.com/docview/1273630149
https://www.proquest.com/docview/1323249797
https://www.proquest.com/docview/1671449785
https://pubmed.ncbi.nlm.nih.gov/PMC3546795
http://kipublications.ki.se/Default.aspx?queryparsed=id:126019884
Volume 29
WOSCitedRecordID wos000313722800006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVASL
  databaseName: Oxford Journals Open Access Collection
  customDbUrl:
  eissn: 1367-4811
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0005056
  issn: 1367-4803
  databaseCode: TOX
  dateStart: 19850101
  isFulltext: true
  titleUrlDefault: https://academic.oup.com/journals/
  providerName: Oxford University Press
– providerCode: PRVASL
  databaseName: Oxford Journals Open Access Collection
  customDbUrl:
  eissn: 1367-4811
  dateEnd: 20220930
  omitProxy: false
  ssIdentifier: ssj0005056
  issn: 1367-4803
  databaseCode: TOX
  dateStart: 19850101
  isFulltext: true
  titleUrlDefault: https://academic.oup.com/journals/
  providerName: Oxford University Press
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lj5swELZ201bqpeq76WPlSlUviN0ABuNjtN2qldp0D2mVGwJjtNZmnTSPVfbQ_97xgwCNlD6kXhAyGIznY5gxM_Mh9CYkIi0rQvwijUNwUGLi55EgfhWWRQBOMxcmw_vbJzoapZMJOz847NW5MNdTqlS62bD5fxU1tIGwdersX4h7e1FogH0QOmxB7LD9I8EPdexV7l_Jjfk58H0Ncwevvqe0dTp1aZeOOdoEGXJN0MFXNi1dx16UJqrDK2RugmU_ajJkqXLQJZVUcn3lkXjgXXrvRkNzmRsbTue5NLfmH7GcubKsphS0rmu6qUPpHXdIax1iLMDPFqqcLVydSBNp6Z0dN2vmi7yQ1tg1dCDQYdbEE_E6dccwmMu8Wf6HOZq6aORWOJRb6dCsE4Fvcz33ZVC2lHeka7inA6swRbvNKXSn8d2zyZbjbdV3YOmMnCUQWK7dnY-MLcBVdCZRN6yWiWWlaqFsfmVgFmozjca_FP02ZsT559Mohs8Viw_RrZDGTOvm8ZdJE6g0MBzE26er89BYdNIdw4kdga5v7W7XNbZ2PKjdQOBOuVxjYo3vo3vON8JDi-kH6ECoh-iOZUu9eYR-DHEb2bhGNu4gG1tkYxgvbpCNDbKxRTbWyMZS4RrZuEY2BmTjSwzIxi1kY43sx-jr-7Px6QffsYf4PE6DlR9VFRFhHJYJ5YMUVFHBS850fTkRiIgU4CpVJaNgHwcRTxIClnFBSnAoijKu0jyPnqCeminxDGEaVTzlg7wiHAxwzljCwfPnPAySAix60UeknuaMu9L6muFlmtkQjyjrCiqzguqj4223ua0t87sOr2sZZvAV0L_2ciVm62UWgBeS6NURtuecSHtPjDK655yEBkSTTsZ99NRiYzu0GlR9RDuo2Z6gK9V3jyh5YSrWO4D30VuLr04X13QJeyID7xNe_ef_fIsX6G6jOl6i3mqxFq_QbX69ksvFETqkk_TIvF4_AVGBKgc
linkProvider Oxford University Press
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+beta-mixture+quantile+normalization+method+for+correcting+probe+design+bias+in+Illumina+Infinium+450+k+DNA+methylation+data&rft.jtitle=Bioinformatics+%28Oxford%2C+England%29&rft.au=Teschendorff%2C+Andrew+E.&rft.au=Marabita%2C+Francesco&rft.au=Lechner%2C+Matthias&rft.au=Bartlett%2C+Thomas&rft.date=2013-01-15&rft.pub=Oxford+University+Press&rft.issn=1367-4803&rft.eissn=1367-4811&rft.volume=29&rft.issue=2&rft.spage=189&rft.epage=196&rft_id=info:doi/10.1093%2Fbioinformatics%2Fbts680&rft_id=info%3Apmid%2F23175756&rft.externalDocID=PMC3546795
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1367-4803&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1367-4803&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1367-4803&client=summon