Population Value Decomposition, a Framework for the Analysis of Image Populations

Images, often stored in multidimensional arrays, are fast becoming ubiquitous in medical and public health research. Analyzing populations of images is a statistical problem that raises a host of daunting challenges. The most significant challenge is the massive size of the datasets incorporating im...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Journal of the American Statistical Association Ročník 106; číslo 495; s. 775 - 790
Hlavní autori: Crainiceanu, Ciprian M., Caffo, Brian S., Luo, Sheng, Zipunnikov, Vadim M., Punjabi, Naresh M.
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Alexandria, VA American Statistical Association 01.09.2011
Predmet:
ISSN:0162-1459, 1537-274X
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Images, often stored in multidimensional arrays, are fast becoming ubiquitous in medical and public health research. Analyzing populations of images is a statistical problem that raises a host of daunting challenges. The most significant challenge is the massive size of the datasets incorporating images recorded for hundreds or thousands of subjects at multiple visits. We introduce the population value decomposition (PVD), a general method for simultaneous dimensionality reduction of large populations of massive images. We show how PVD can be seamlessly incorporated into statistical modeling, leading to a new, transparent, and rapid inferential framework. Our PVD methodology was motivated by and applied to the Sleep Heart Health Study, the largest community-based cohort study of sleep containing more than 85 billion observations on thousands of subjects at two visits. This article has supplementary material online.
AbstractList Images, often stored in multidimensional arrays, are fast becoming ubiquitous in medical and public health research. Analyzing populations of images is a statistical problem that raises a host of daunting challenges. The most significant challenge is the massive size of the datasets incorporating images recorded for hundreds or thousands of subjects at multiple visits. We introduce the population value decomposition (PVD), a general method for simultaneous dimensionality reduction of large populations of massive images. We show how PVD can be seamlessly incorporated into statistical modeling, leading to a new, transparent, and rapid inferential framework. Our PVD methodology was motivated by and applied to the Sleep Heart Health Study, the largest community-based cohort study of sleep containing more than 85 billion observations on thousands of subjects at two visits. This article has supplementary material online.
Images, often stored in multidimensional arrays, are fast becoming ubiquitous in medical and public health research. Analyzing populations of images is a statistical problem that raises a host of daunting challenges. The most significant challenge is the massive size of the datasets incorporating images recorded for hundreds or thousands of subjects at multiple visits. We introduce the population value decomposition (PVD), a general method for simultaneous dimensionality reduction of large populations of massive images. We show how PVD can be seamlessly incorporated into statistical modeling, leading to a new, transparent, and rapid inferential framework. Our PVD methodology was motivated by and applied to the Sleep Heart Health Study, the largest community-based cohort study of sleep containing more than 85 billion observations on thousands of subjects at two visits. This article has supplementary material online.Images, often stored in multidimensional arrays, are fast becoming ubiquitous in medical and public health research. Analyzing populations of images is a statistical problem that raises a host of daunting challenges. The most significant challenge is the massive size of the datasets incorporating images recorded for hundreds or thousands of subjects at multiple visits. We introduce the population value decomposition (PVD), a general method for simultaneous dimensionality reduction of large populations of massive images. We show how PVD can be seamlessly incorporated into statistical modeling, leading to a new, transparent, and rapid inferential framework. Our PVD methodology was motivated by and applied to the Sleep Heart Health Study, the largest community-based cohort study of sleep containing more than 85 billion observations on thousands of subjects at two visits. This article has supplementary material online.
Author Crainiceanu, Ciprian M.
Caffo, Brian S.
Luo, Sheng
Zipunnikov, Vadim M.
Punjabi, Naresh M.
Author_xml – sequence: 1
  givenname: Ciprian M.
  surname: Crainiceanu
  fullname: Crainiceanu, Ciprian M.
– sequence: 2
  givenname: Brian S.
  surname: Caffo
  fullname: Caffo, Brian S.
– sequence: 3
  givenname: Sheng
  surname: Luo
  fullname: Luo, Sheng
– sequence: 4
  givenname: Vadim M.
  surname: Zipunnikov
  fullname: Zipunnikov, Vadim M.
– sequence: 5
  givenname: Naresh M.
  surname: Punjabi
  fullname: Punjabi, Naresh M.
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=24734626$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/24415813$$D View this record in MEDLINE/PubMed
BookMark eNp9kc1u1DAUhS1URKeFB2AB8gbBggz-i2NvkKqWQqVKgASInXXj2K2HJA52AurbN2GGtrCoN5bs75x7dM8B2utj7xB6SsmaUq3ebCDDmhFK1zBQQpR-gFa05FXBKvF9D60IlaygotT76CDnDZlPpdQjtM-EoKWifIU-f4rD1MIYYo-_QTs5fOJs7IaYw_L2GgM-TdC53zH9wD4mPF46fNRDe5VDxtHjsw4uHL51yY_RQw9tdk929yH6evruy_GH4vzj-7Pjo_PCzpPHgnLFReNpKTURlHumGyKt5qVkNQHXMC9ryrlVjteVl8AIcO-FVVVdlaSp-SF6u_UdprpzjXX9mKA1QwodpCsTIZh_f_pwaS7iL8OVkkyJ2eDlziDFn5PLo-lCtq5toXdxykYLoiutpZzJV_eSVDFZKlIKNaPP76a6ifN34zPwYgdAttD6BL0N-Q5XcSHZMpNuOZtizsn5G4QSs7RvlvbN0r7ZtT9rqv80Nox_WpkXENp7lc-2yk0eY7pNwwWrSsH5NW5bv5Y
CODEN JSTNAL
CitedBy_id crossref_primary_10_1080_01621459_2015_1062383
crossref_primary_10_1016_j_envint_2018_07_028
crossref_primary_10_1093_biostatistics_kxac005
crossref_primary_10_1198_jcgs_2011_10122
crossref_primary_10_1109_TNNLS_2015_2487364
crossref_primary_10_1093_biostatistics_kxs055
crossref_primary_10_1093_biostatistics_kxx027
crossref_primary_10_1002_bimj_202300370
crossref_primary_10_3390_brainsci9080194
crossref_primary_10_1080_10618600_2022_2067860
crossref_primary_10_1080_01621459_2018_1482750
crossref_primary_10_1093_biostatistics_kxaf020
crossref_primary_10_1109_ACCESS_2019_2949814
crossref_primary_10_1146_annurev_biodatasci_020722_100353
crossref_primary_10_1093_biostatistics_kxw040
crossref_primary_10_3389_fnins_2016_00015
crossref_primary_10_1016_j_envres_2020_109507
crossref_primary_10_1088_1741_2552_ab5247
crossref_primary_10_1146_annurev_statistics_042720_023234
crossref_primary_10_1111_biom_13369
crossref_primary_10_1002_sim_7210
crossref_primary_10_1109_TMI_2021_3122226
crossref_primary_10_1111_biom_13010
crossref_primary_10_1111_rssb_12031
crossref_primary_10_1016_j_neucom_2015_12_096
crossref_primary_10_1093_cercor_bhaa048
crossref_primary_10_1109_JPROC_2015_2474704
crossref_primary_10_1016_j_jeconom_2018_09_013
crossref_primary_10_1109_TMI_2019_2893651
crossref_primary_10_1093_biostatistics_kxae023
Cites_doi 10.1001/archinte.152.3.538
10.1016/S0893-6080(00)00026-5
10.1164/ajrccm.155.5.9154863
10.1016/j.neuroimage.2010.02.081
10.1002/hbm.1048
10.1016/j.neuroimage.2008.10.057
10.1198/016214504000001745
10.1183/09031936.98.12061264
10.1093/sleep/21.7.749
10.1016/0165-1684(94)90029-9
10.1137/0905052
10.1378/chest.94.1.32
10.1214/08-AOAS206
10.1214/088342306000000682
10.1093/biostatistics/kxp058
10.1198/jasa.2009.0020
10.1198/jasa.2009.tm08564
10.1093/sleep/21.7.759
ContentType Journal Article
Copyright 2011 American Statistical Association
2015 INIST-CNRS
2011 American Statistical 2011
Copyright_xml – notice: 2011 American Statistical Association
– notice: 2015 INIST-CNRS
– notice: 2011 American Statistical 2011
DBID AAYXX
CITATION
IQODW
NPM
7X8
8BJ
FQK
JBE
5PM
DOI 10.1198/jasa.2011.ap10089
DatabaseName CrossRef
Pascal-Francis
PubMed
MEDLINE - Academic
International Bibliography of the Social Sciences (IBSS)
International Bibliography of the Social Sciences
International Bibliography of the Social Sciences
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
International Bibliography of the Social Sciences (IBSS)
DatabaseTitleList
International Bibliography of the Social Sciences (IBSS)

PubMed
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Statistics
Mathematics
Public Health
EISSN 1537-274X
EndPage 790
ExternalDocumentID PMC3886284
24415813
24734626
10_1198_jasa_2011_ap10089
23427543
Genre Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NINDS NIH HHS
  grantid: R01 NS060910
– fundername: National Institute of Neurological Disorders and Stroke : NINDS
  grantid: R01 NS060910 || NS
GroupedDBID -DZ
-~X
..I
.7F
.QJ
0BK
0R~
29L
2AX
30N
4.4
5GY
5RE
692
7WY
85S
8FL
AAAVZ
AABCJ
AAENE
AAGDL
AAHBH
AAHIA
AAJMT
AALDU
AAMIU
AAPUL
AAQRR
AAWIL
ABAWQ
ABBHK
ABCCY
ABEHJ
ABFAN
ABFIM
ABJNI
ABLIJ
ABLJU
ABPAQ
ABPEM
ABPFR
ABPPZ
ABPQH
ABRLO
ABTAI
ABXSQ
ABXUL
ABXYU
ABYWD
ACGFO
ACGFS
ACGOD
ACHJO
ACIWK
ACMTB
ACNCT
ACTIO
ACTMH
ACUBG
ADCVX
ADGTB
ADLSF
ADMHG
ADODI
ADULT
ADYSH
AEISY
AENEX
AEOZL
AEPSL
AEUPB
AEYOC
AFFNX
AFRVT
AFSUE
AFVYC
AFXHP
AGCQS
AGDLA
AGLNM
AGMYJ
AHDZW
AIHAF
AIJEM
AIYEW
AKBVH
AKOOK
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALQZU
ALRMG
AMPGV
AQRUH
AVBZW
AWYRJ
BLEHA
CCCUG
CJ0
CS3
D0L
DGEBU
DKSSO
DQDLB
DSRWC
DU5
EBS
ECEWR
EJD
E~A
E~B
F5P
FJW
GTTXZ
H13
HF~
HQ6
HZ~
H~9
H~P
IPNFZ
IPSME
J.P
JAAYA
JAS
JBMMH
JBZCM
JENOY
JHFFW
JKQEH
JLEZI
JLXEF
JMS
JPL
JST
K60
K6~
KYCEM
LU7
M4Z
MS~
MW2
NA5
NY~
O9-
OFU
OK1
P2P
RIG
RNANH
ROSJB
RTWRZ
RWL
RXW
S-T
SA0
SNACF
TAE
TBQAZ
TDBHL
TEJ
TFL
TFT
TFW
TN5
TTHFI
TUROJ
U5U
UPT
UQL
UT5
UU3
WH7
WZA
YQT
YYM
ZGOLN
ZUP
~S~
.-4
.GJ
07G
1OL
3R3
7X7
88E
88I
8AF
8C1
8FE
8FG
8FI
8FJ
8G5
8R4
8R5
AAFWJ
AAIKQ
AAKBW
AAYXX
ABEFU
ABJCF
ABUFD
ABUWG
ACAGQ
ACGEE
ACTCW
ADBBV
ADXHL
AEUMN
AFFHD
AFKRA
AFQQW
AGLEN
AGROQ
AHMOU
AI.
ALCKM
AMATQ
AMEWO
AMVHM
AMXXU
AQUVI
AZQEC
BCCOT
BENPR
BEZIV
BGLVJ
BKNYI
BKOMP
BPHCQ
BPLKW
BVXVI
C06
CCPQU
CITATION
CRFIH
DMQIW
DWIFK
DWQXO
E.L
FEDTE
FRNLG
FVMVE
FYUFA
GNUQQ
GROUPED_ABI_INFORM_RESEARCH
GUQSH
HCIFZ
HGD
HMCUK
HVGLF
IVXBP
K9-
KQ8
L6V
LJTGL
M0C
M0R
M0T
M1P
M2O
M2P
M7S
MVM
NHB
NUSFT
P-O
PADUT
PHGZM
PHGZT
PJZUB
PPXIY
PQBIZ
PQBZA
PQGLB
PQQKQ
PRG
PROAC
PSQYO
PTHSS
Q2X
QCRFL
RNS
S0X
SJN
TAQ
TASJS
TFMCV
TOXWX
UB9
UKHRP
VH1
VOH
WHG
YXB
YYP
ZCG
ZGI
ZXP
IQODW
3V.
8P6
ABYAD
ACTWD
AELPN
GROUPED_ABI_INFORM_COMPLETE
IAO
IEA
IGG
IOF
IPO
JSODD
N95
NPM
VXZ
7X8
8BJ
FQK
JBE
5PM
AQTUD
ID FETCH-LOGICAL-c581t-13834df15690413f29d06c93562b0aed2f6b133c8e3b7f6a20a3ff4c87b750db3
ISICitedReferencesCount 31
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000296224200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0162-1459
IngestDate Tue Nov 04 01:31:05 EST 2025
Thu Oct 02 10:21:42 EDT 2025
Sun Sep 28 10:38:54 EDT 2025
Wed Feb 19 02:33:49 EST 2025
Mon Jul 21 09:14:15 EDT 2025
Tue Nov 18 22:26:30 EST 2025
Sat Nov 29 05:11:12 EST 2025
Thu May 29 08:44:04 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 495
Keywords Biometrics
Decomposition method
Population analysis
Decomposition
Electroencephalography
Statistical estimation
Signal extraction
Multivariate analysis
Stochastic process
Statistical method
Random field
Computational geometry
Image analysis
Reduction method
Medical science
Cohort study
Computer graphics
Public health
Language English
License CC BY 4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c581t-13834df15690413f29d06c93562b0aed2f6b133c8e3b7f6a20a3ff4c87b750db3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ObjectType-Article-2
ObjectType-Feature-1
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/3886284
PMID 24415813
PQID 1826580548
PQPubID 23479
PageCount 16
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_3886284
proquest_miscellaneous_940979966
proquest_miscellaneous_1826580548
pubmed_primary_24415813
pascalfrancis_primary_24734626
crossref_primary_10_1198_jasa_2011_ap10089
crossref_citationtrail_10_1198_jasa_2011_ap10089
jstor_primary_23427543
PublicationCentury 2000
PublicationDate 2011-09-01
PublicationDateYYYYMMDD 2011-09-01
PublicationDate_xml – month: 09
  year: 2011
  text: 2011-09-01
  day: 01
PublicationDecade 2010
PublicationPlace Alexandria, VA
PublicationPlace_xml – name: Alexandria, VA
– name: United States
PublicationTitle Journal of the American Statistical Association
PublicationTitleAlternate J Am Stat Assoc
PublicationYear 2011
Publisher American Statistical Association
Publisher_xml – name: American Statistical Association
References p_17
Wold S. (p_28) 1984; 5
p_2
p_4
p_12
p_3
p_13
Redline S. (p_22) 1998; 21
p_6
p_25
p_7
p_9
Crainiceanu C. M. (p_8) 2009
p_30
Martin S. E. (p_19) 1997; 155
p_10
Di C. (p_11) 2009; 3
Karhunen K. (p_16) 1947; 37
Caffo B. S. (p_1) 2010; 51
Whitney C. W. (p_26) 1998; 21
Quan S. (p_20) 1997; 20
References_xml – ident: p_4
  doi: 10.1001/archinte.152.3.538
– volume: 37
  start-page: 3
  year: 1947
  ident: p_16
  publication-title: Annales Academiæ Scientiarum Fennicæ, Series A1: Mathematica-Physica, Suomalainen Tiedeakatemia
– ident: p_13
  doi: 10.1016/S0893-6080(00)00026-5
– volume: 155
  start-page: 1596
  year: 1997
  ident: p_19
  publication-title: American Journal of Respiratory and Critical Care Medicine
  doi: 10.1164/ajrccm.155.5.9154863
– volume: 20
  start-page: 1077
  year: 1997
  ident: p_20
  publication-title: Sleep
– volume: 51
  start-page: 1140
  year: 2010
  ident: p_1
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2010.02.081
– ident: p_2
  doi: 10.1002/hbm.1048
– ident: p_3
  doi: 10.1016/j.neuroimage.2008.10.057
– ident: p_30
  doi: 10.1198/016214504000001745
– ident: p_17
  doi: 10.1183/09031936.98.12061264
– volume: 21
  start-page: 749
  year: 1998
  ident: p_26
  publication-title: Sleep
  doi: 10.1093/sleep/21.7.749
– ident: p_6
  doi: 10.1016/0165-1684(94)90029-9
– volume: 5
  start-page: 735
  year: 1984
  ident: p_28
  publication-title: Journal on Scientific and Statistical Computing
  doi: 10.1137/0905052
– ident: p_12
  doi: 10.1378/chest.94.1.32
– volume: 3
  start-page: 458
  year: 2009
  ident: p_11
  publication-title: The Annals of Applied Statistics
  doi: 10.1214/08-AOAS206
– ident: p_7
  doi: 10.1214/088342306000000682
– ident: p_25
  doi: 10.1093/biostatistics/kxp058
– ident: p_9
  doi: 10.1198/jasa.2009.0020
– ident: p_10
  doi: 10.1198/jasa.2009.tm08564
– year: 2009
  ident: p_8
  publication-title: Journal of Statistical Software, 32. [780]
– volume: 21
  start-page: 759
  year: 1998
  ident: p_22
  publication-title: Sleep
  doi: 10.1093/sleep/21.7.759
SSID ssj0000788
Score 2.2312508
Snippet Images, often stored in multidimensional arrays, are fast becoming ubiquitous in medical and public health research. Analyzing populations of images is a...
SourceID pubmedcentral
proquest
pubmed
pascalfrancis
crossref
jstor
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 775
SubjectTerms Applications
Applications and Case Studies
Data processing
Eigenfunctions
Eigenvalues
Eigenvectors
Exact sciences and technology
Frequency ranges
General topics
Image analysis
Inference from stochastic processes; time series analysis
Magnetic resonance imaging
Mathematics
Matrices
Medical care
Medical sciences
Methodology
Multivariate analysis
Principal components analysis
Probability and statistics
Public health
Sciences and techniques of general use
Sleep
Statistical models
Statistical variance
Statistics
Title Population Value Decomposition, a Framework for the Analysis of Image Populations
URI https://www.jstor.org/stable/23427543
https://www.ncbi.nlm.nih.gov/pubmed/24415813
https://www.proquest.com/docview/1826580548
https://www.proquest.com/docview/940979966
https://pubmed.ncbi.nlm.nih.gov/PMC3886284
Volume 106
WOSCitedRecordID wos000296224200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAWR
  databaseName: Taylor & Francis Journals Complete
  customDbUrl:
  eissn: 1537-274X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000788
  issn: 0162-1459
  databaseCode: TFW
  dateStart: 19220301
  isFulltext: true
  titleUrlDefault: https://www.tandfonline.com
  providerName: Taylor & Francis
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLa6wcNeELdBuFRG4gmISGI3th8RYoKXaYgCe4ucxNaqtWnUm_YD-OEcX-Km24rggZeoclw77ffFPj4-_g5CrxWpErD6aaxSnsdUp3UMxpGIVU1hwocZYaS0TTbBTk_5-bk4Gwx-dWdhNlPWNPzqSrT_FWooA7DN0dl_gDs0CgXwGUCHK8AO178C_iyk5Hr7Q07XJi7IxI374CwbrWnMVReSFaIM--IkX2Y2kCe0s9xjwfZOpdg8wCsr-nwL5maPw6aiqJRs1tY3O2kXZmjp7YFoPXdks0NOCBRa29JvF8pPscbJPWnB7J5czjc2SlfWk5lvqN76Y0XnvvAezTyLU-plwbshOcl73KMuDefNwV5wm2RgKZ0Uq2yNUpHo1wVo2pkFOjMLR-7OvV5T2O5uHaA7GRsJMzaOT35u53Nms5eGB_V749D7-xt9G21p39qOoeNiXU3grVwCDtolTbltVXM9OLdn7Yzvo3seZPzB0esBGqjmIToKGC8foa9bfmDLM7zDs3dY4sAyDCzDwBbcsQzPNbYswz2WPUbfTz6NP36OfX6OuIIfuDLylYTWOh3lIgFbSGeiTvJKEDCpy0SqOtN5mRJScUVKpnOZJZJoTSvOSrBT65Ico8Nm3qinCGvKRJmmTBOlKVi0UvHabOBypaCXWkco6f7MovLi9SaHyrSwi1jBCwNFYaAoPBQRehO-0jrllj9VPrYIhZoZocAFSiI03IFsW4EyQvMsj9CrDsMCRmaz3SYbNV8vC7NyH3FYEvEI4T11hJGbMy6HCD1xsPc6cDyKENshRKhghOF37zSTCysQTzjPwex8trfN5-ho-y6-QIerxVq9RHerDZBoMUQH7JwP7UvwG7_M04E
linkProvider Taylor & Francis
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Population+Value+Decomposition%2C+a+Framework+for+the+Analysis+of+Image+Populations&rft.jtitle=Journal+of+the+American+Statistical+Association&rft.au=Crainiceanu%2C+Ciprian+M&rft.au=Caffo%2C+Brian+S&rft.au=Luo%2C+Sheng&rft.au=Zipunnikov%2C+Vadim+M&rft.date=2011-09-01&rft.issn=0162-1459&rft.volume=106&rft.issue=495&rft_id=info:doi/10.1198%2Fjasa.2011.ap10089&rft_id=info%3Apmid%2F24415813&rft.externalDocID=24415813
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0162-1459&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0162-1459&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0162-1459&client=summon