Skeletal muscle ex vivo mitochondrial respiration parallels decline in vivo oxidative capacity, cardiorespiratory fitness, and muscle strength: The Baltimore Longitudinal Study of Aging

Summary Mitochondrial function in human skeletal muscle declines with age. Most evidence for this decline comes from studies that assessed mitochondrial function indirectly, and the impact of such deterioration with respect to physical function has not been clearly delineated. We hypothesized that m...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Aging cell Ročník 17; číslo 2
Hlavní autoři: Gonzalez‐Freire, Marta, Scalzo, Paul, D'Agostino, Jarod, Moore, Zenobia A., Diaz‐Ruiz, Alberto, Fabbri, Elisa, Zane, Ariel, Chen, Brian, Becker, Kevin G., Lehrmann, Elin, Zukley, Linda, Chia, Chee W., Tanaka, Toshiko, Coen, Paul M., Bernier, Michel, Cabo, Rafael, Ferrucci, Luigi
Médium: Journal Article
Jazyk:angličtina
Vydáno: England John Wiley & Sons, Inc 01.04.2018
John Wiley and Sons Inc
Témata:
ISSN:1474-9718, 1474-9726, 1474-9726
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Summary Mitochondrial function in human skeletal muscle declines with age. Most evidence for this decline comes from studies that assessed mitochondrial function indirectly, and the impact of such deterioration with respect to physical function has not been clearly delineated. We hypothesized that mitochondrial respiration in permeabilized human muscle fibers declines with age and correlates with phosphocreatine postexercise recovery rate (kPCr), muscle performance, and aerobic fitness. Mitochondrial respiration was assessed by high‐resolution respirometry in saponin‐permeabilized fibers from vastus lateralis muscle biopsies of 38 participants from the Baltimore Longitudinal Study of Aging (BLSA; 21 men, age 24–91 years) who also had available measures of peak oxygen consumption (VO2max) from treadmill tests, gait speed in different tasks, 31P magnetic resonance spectroscopy, isokinetic knee extension, and grip strength. Results indicated a significant reduction in mitochondrial respiration with age (p < .05) that was independent of other potential confounders. Mitochondrial respiratory capacity was also associated with VO2max, muscle strength, kPCr, and time to complete a 400‐m walk (p < .05). A negative trend toward significance (p = .074) was observed between mitochondrial respiration and BMI. Finally, transcriptional profiling revealed a reduced mRNA expression of mitochondrial gene networks with aging (p < .05). Overall, our findings reinforce the notion that mitochondrial function declines with age and may contribute to age‐associated loss of muscle performance and cardiorespiratory fitness.
AbstractList Mitochondrial function in human skeletal muscle declines with age. Most evidence for this decline comes from studies that assessed mitochondrial function indirectly, and the impact of such deterioration with respect to physical function has not been clearly delineated. We hypothesized that mitochondrial respiration in permeabilized human muscle fibers declines with age and correlates with phosphocreatine postexercise recovery rate (kPCr), muscle performance, and aerobic fitness. Mitochondrial respiration was assessed by high‐resolution respirometry in saponin‐permeabilized fibers from vastus lateralis muscle biopsies of 38 participants from the Baltimore Longitudinal Study of Aging (BLSA; 21 men, age 24–91 years) who also had available measures of peak oxygen consumption (VO 2max) from treadmill tests, gait speed in different tasks, 31P magnetic resonance spectroscopy, isokinetic knee extension, and grip strength. Results indicated a significant reduction in mitochondrial respiration with age (p < .05) that was independent of other potential confounders. Mitochondrial respiratory capacity was also associated with VO 2max, muscle strength, kPCr, and time to complete a 400‐m walk (p < .05). A negative trend toward significance (p = .074) was observed between mitochondrial respiration and BMI. Finally, transcriptional profiling revealed a reduced mRNA expression of mitochondrial gene networks with aging (p < .05). Overall, our findings reinforce the notion that mitochondrial function declines with age and may contribute to age‐associated loss of muscle performance and cardiorespiratory fitness.
Mitochondrial function in human skeletal muscle declines with age. Most evidence for this decline comes from studies that assessed mitochondrial function indirectly, and the impact of such deterioration with respect to physical function has not been clearly delineated. We hypothesized that mitochondrial respiration in permeabilized human muscle fibers declines with age and correlates with phosphocreatine postexercise recovery rate (kPCr), muscle performance, and aerobic fitness. Mitochondrial respiration was assessed by high-resolution respirometry in saponin-permeabilized fibers from vastus lateralis muscle biopsies of 38 participants from the Baltimore Longitudinal Study of Aging (BLSA; 21 men, age 24-91 years) who also had available measures of peak oxygen consumption (VO2max ) from treadmill tests, gait speed in different tasks, 31 P magnetic resonance spectroscopy, isokinetic knee extension, and grip strength. Results indicated a significant reduction in mitochondrial respiration with age (p < .05) that was independent of other potential confounders. Mitochondrial respiratory capacity was also associated with VO2max , muscle strength, kPCr, and time to complete a 400-m walk (p < .05). A negative trend toward significance (p = .074) was observed between mitochondrial respiration and BMI. Finally, transcriptional profiling revealed a reduced mRNA expression of mitochondrial gene networks with aging (p < .05). Overall, our findings reinforce the notion that mitochondrial function declines with age and may contribute to age-associated loss of muscle performance and cardiorespiratory fitness.Mitochondrial function in human skeletal muscle declines with age. Most evidence for this decline comes from studies that assessed mitochondrial function indirectly, and the impact of such deterioration with respect to physical function has not been clearly delineated. We hypothesized that mitochondrial respiration in permeabilized human muscle fibers declines with age and correlates with phosphocreatine postexercise recovery rate (kPCr), muscle performance, and aerobic fitness. Mitochondrial respiration was assessed by high-resolution respirometry in saponin-permeabilized fibers from vastus lateralis muscle biopsies of 38 participants from the Baltimore Longitudinal Study of Aging (BLSA; 21 men, age 24-91 years) who also had available measures of peak oxygen consumption (VO2max ) from treadmill tests, gait speed in different tasks, 31 P magnetic resonance spectroscopy, isokinetic knee extension, and grip strength. Results indicated a significant reduction in mitochondrial respiration with age (p < .05) that was independent of other potential confounders. Mitochondrial respiratory capacity was also associated with VO2max , muscle strength, kPCr, and time to complete a 400-m walk (p < .05). A negative trend toward significance (p = .074) was observed between mitochondrial respiration and BMI. Finally, transcriptional profiling revealed a reduced mRNA expression of mitochondrial gene networks with aging (p < .05). Overall, our findings reinforce the notion that mitochondrial function declines with age and may contribute to age-associated loss of muscle performance and cardiorespiratory fitness.
Summary Mitochondrial function in human skeletal muscle declines with age. Most evidence for this decline comes from studies that assessed mitochondrial function indirectly, and the impact of such deterioration with respect to physical function has not been clearly delineated. We hypothesized that mitochondrial respiration in permeabilized human muscle fibers declines with age and correlates with phosphocreatine postexercise recovery rate (kPCr), muscle performance, and aerobic fitness. Mitochondrial respiration was assessed by high‐resolution respirometry in saponin‐permeabilized fibers from vastus lateralis muscle biopsies of 38 participants from the Baltimore Longitudinal Study of Aging (BLSA; 21 men, age 24–91 years) who also had available measures of peak oxygen consumption (VO2max) from treadmill tests, gait speed in different tasks, 31P magnetic resonance spectroscopy, isokinetic knee extension, and grip strength. Results indicated a significant reduction in mitochondrial respiration with age (p < .05) that was independent of other potential confounders. Mitochondrial respiratory capacity was also associated with VO2max, muscle strength, kPCr, and time to complete a 400‐m walk (p < .05). A negative trend toward significance (p = .074) was observed between mitochondrial respiration and BMI. Finally, transcriptional profiling revealed a reduced mRNA expression of mitochondrial gene networks with aging (p < .05). Overall, our findings reinforce the notion that mitochondrial function declines with age and may contribute to age‐associated loss of muscle performance and cardiorespiratory fitness.
Mitochondrial function in human skeletal muscle declines with age. Most evidence for this decline comes from studies that assessed mitochondrial function indirectly, and the impact of such deterioration with respect to physical function has not been clearly delineated. We hypothesized that mitochondrial respiration in permeabilized human muscle fibers declines with age and correlates with phosphocreatine postexercise recovery rate (kPCr), muscle performance, and aerobic fitness. Mitochondrial respiration was assessed by high‐resolution respirometry in saponin‐permeabilized fibers from vastus lateralis muscle biopsies of 38 participants from the Baltimore Longitudinal Study of Aging (BLSA; 21 men, age 24–91 years) who also had available measures of peak oxygen consumption (VO2max) from treadmill tests, gait speed in different tasks, 31P magnetic resonance spectroscopy, isokinetic knee extension, and grip strength. Results indicated a significant reduction in mitochondrial respiration with age (p < .05) that was independent of other potential confounders. Mitochondrial respiratory capacity was also associated with VO2max, muscle strength, kPCr, and time to complete a 400‐m walk (p < .05). A negative trend toward significance (p = .074) was observed between mitochondrial respiration and BMI. Finally, transcriptional profiling revealed a reduced mRNA expression of mitochondrial gene networks with aging (p < .05). Overall, our findings reinforce the notion that mitochondrial function declines with age and may contribute to age‐associated loss of muscle performance and cardiorespiratory fitness.
Mitochondrial function in human skeletal muscle declines with age. Most evidence for this decline comes from studies that assessed mitochondrial function indirectly, and the impact of such deterioration with respect to physical function has not been clearly delineated. We hypothesized that mitochondrial respiration in permeabilized human muscle fibers declines with age and correlates with phosphocreatine postexercise recovery rate ( kPC r), muscle performance, and aerobic fitness. Mitochondrial respiration was assessed by high‐resolution respirometry in saponin‐permeabilized fibers from vastus lateralis muscle biopsies of 38 participants from the Baltimore Longitudinal Study of Aging ( BLSA ; 21 men, age 24–91 years) who also had available measures of peak oxygen consumption ( VO 2max ) from treadmill tests, gait speed in different tasks, 31 P magnetic resonance spectroscopy, isokinetic knee extension, and grip strength. Results indicated a significant reduction in mitochondrial respiration with age ( p <  .05) that was independent of other potential confounders. Mitochondrial respiratory capacity was also associated with VO 2max , muscle strength, kPC r, and time to complete a 400‐m walk ( p  < .05). A negative trend toward significance ( p  = .074) was observed between mitochondrial respiration and BMI . Finally, transcriptional profiling revealed a reduced mRNA expression of mitochondrial gene networks with aging ( p  < .05). Overall, our findings reinforce the notion that mitochondrial function declines with age and may contribute to age‐associated loss of muscle performance and cardiorespiratory fitness.
Mitochondrial function in human skeletal muscle declines with age. Most evidence for this decline comes from studies that assessed mitochondrial function indirectly, and the impact of such deterioration with respect to physical function has not been clearly delineated. We hypothesized that mitochondrial respiration in permeabilized human muscle fibers declines with age and correlates with phosphocreatine postexercise recovery rate (kPCr), muscle performance, and aerobic fitness. Mitochondrial respiration was assessed by high-resolution respirometry in saponin-permeabilized fibers from vastus lateralis muscle biopsies of 38 participants from the Baltimore Longitudinal Study of Aging (BLSA; 21 men, age 24-91 years) who also had available measures of peak oxygen consumption (VO ) from treadmill tests, gait speed in different tasks, P magnetic resonance spectroscopy, isokinetic knee extension, and grip strength. Results indicated a significant reduction in mitochondrial respiration with age (p < .05) that was independent of other potential confounders. Mitochondrial respiratory capacity was also associated with VO , muscle strength, kPCr, and time to complete a 400-m walk (p < .05). A negative trend toward significance (p = .074) was observed between mitochondrial respiration and BMI. Finally, transcriptional profiling revealed a reduced mRNA expression of mitochondrial gene networks with aging (p < .05). Overall, our findings reinforce the notion that mitochondrial function declines with age and may contribute to age-associated loss of muscle performance and cardiorespiratory fitness.
Mitochondrial function in human skeletal muscle declines with age. Most evidence for this decline comes from studies that assessed mitochondrial function indirectly, and the impact of such deterioration with respect to physical function has not been clearly delineated. We hypothesized that mitochondrial respiration in permeabilized human muscle fibers declines with age and correlates with phosphocreatine postexercise recovery rate (kPCr), muscle performance, and aerobic fitness. Mitochondrial respiration was assessed by high-resolution respirometry in saponin-permeabilized fibers from vastus lateralis muscle biopsies of 38 participants from the Baltimore Longitudinal Study of Aging (BLSA; 21 men, age 24-91 years) who also had available measures of peak oxygen consumption (VO[sub.2max]) from treadmill tests, gait speed in different tasks, [sup.31]P magnetic resonance spectroscopy, isokinetic knee extension, and grip strength. Results indicated a significant reduction in mitochondrial respiration with age (p <.05) that was independent of other potential confounders. Mitochondrial respiratory capacity was also associated with VO[sub.2max], muscle strength, kPCr, and time to complete a 400-m walk (p <.05). A negative trend toward significance (p=.074) was observed between mitochondrial respiration and BMI. Finally, transcriptional profiling revealed a reduced mRNA expression of mitochondrial gene networks with aging (p <.05). Overall, our findings reinforce the notion that mitochondrial function declines with age and may contribute to age-associated loss of muscle performance and cardiorespiratory fitness.
Audience Academic
Author Diaz‐Ruiz, Alberto
Becker, Kevin G.
Tanaka, Toshiko
Zane, Ariel
Fabbri, Elisa
Zukley, Linda
Bernier, Michel
D'Agostino, Jarod
Gonzalez‐Freire, Marta
Coen, Paul M.
Cabo, Rafael
Moore, Zenobia A.
Lehrmann, Elin
Scalzo, Paul
Chen, Brian
Chia, Chee W.
Ferrucci, Luigi
AuthorAffiliation 6 Translational Research Institute for Metabolism and Diabetes Florida Hospital Orlando FL USA
4 Gene Expression and Genomics Unit National Institute on Aging Baltimore MD USA
1 Longitudinal Studies Section Translational Gerontology Branch National Institute on Aging Baltimore MD USA
2 Clinical Research Unit MedStar Harbor Hospital National Institute on Aging Baltimore MD USA
3 Experimental Gerontology Section Translational Gerontology Branch National Institute on Aging Baltimore MD USA
5 Diabetes Section Laboratory of Clinical Investigation National Institute on Aging Baltimore MD USA
AuthorAffiliation_xml – name: 2 Clinical Research Unit MedStar Harbor Hospital National Institute on Aging Baltimore MD USA
– name: 6 Translational Research Institute for Metabolism and Diabetes Florida Hospital Orlando FL USA
– name: 4 Gene Expression and Genomics Unit National Institute on Aging Baltimore MD USA
– name: 5 Diabetes Section Laboratory of Clinical Investigation National Institute on Aging Baltimore MD USA
– name: 1 Longitudinal Studies Section Translational Gerontology Branch National Institute on Aging Baltimore MD USA
– name: 3 Experimental Gerontology Section Translational Gerontology Branch National Institute on Aging Baltimore MD USA
Author_xml – sequence: 1
  givenname: Marta
  surname: Gonzalez‐Freire
  fullname: Gonzalez‐Freire, Marta
  email: marta.gonzalezfreire@nih.gov
  organization: National Institute on Aging
– sequence: 2
  givenname: Paul
  surname: Scalzo
  fullname: Scalzo, Paul
  organization: National Institute on Aging
– sequence: 3
  givenname: Jarod
  surname: D'Agostino
  fullname: D'Agostino, Jarod
  organization: National Institute on Aging
– sequence: 4
  givenname: Zenobia A.
  surname: Moore
  fullname: Moore, Zenobia A.
  organization: National Institute on Aging
– sequence: 5
  givenname: Alberto
  surname: Diaz‐Ruiz
  fullname: Diaz‐Ruiz, Alberto
  organization: National Institute on Aging
– sequence: 6
  givenname: Elisa
  surname: Fabbri
  fullname: Fabbri, Elisa
  organization: National Institute on Aging
– sequence: 7
  givenname: Ariel
  surname: Zane
  fullname: Zane, Ariel
  organization: National Institute on Aging
– sequence: 8
  givenname: Brian
  surname: Chen
  fullname: Chen, Brian
  organization: National Institute on Aging
– sequence: 9
  givenname: Kevin G.
  surname: Becker
  fullname: Becker, Kevin G.
  organization: National Institute on Aging
– sequence: 10
  givenname: Elin
  surname: Lehrmann
  fullname: Lehrmann, Elin
  organization: National Institute on Aging
– sequence: 11
  givenname: Linda
  surname: Zukley
  fullname: Zukley, Linda
  organization: National Institute on Aging
– sequence: 12
  givenname: Chee W.
  surname: Chia
  fullname: Chia, Chee W.
  organization: National Institute on Aging
– sequence: 13
  givenname: Toshiko
  surname: Tanaka
  fullname: Tanaka, Toshiko
  organization: National Institute on Aging
– sequence: 14
  givenname: Paul M.
  orcidid: 0000-0002-2805-2115
  surname: Coen
  fullname: Coen, Paul M.
  organization: Florida Hospital
– sequence: 15
  givenname: Michel
  surname: Bernier
  fullname: Bernier, Michel
  organization: National Institute on Aging
– sequence: 16
  givenname: Rafael
  surname: Cabo
  fullname: Cabo, Rafael
  organization: National Institute on Aging
– sequence: 17
  givenname: Luigi
  surname: Ferrucci
  fullname: Ferrucci, Luigi
  email: FerrucciLu@grc.nia.nih.gov
  organization: National Institute on Aging
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29356348$$D View this record in MEDLINE/PubMed
BookMark eNp9kt9u0zAUxiM0xLbCDQ-ALHGD0Fri2M4fLpBKNf5IlbjYuLZc5yQ9w7GLnZT1bXgP7ngy3LUdbJpIFOUo_n3f8Ym_0-TIOgtJ8pymExqvN0qDmdCsyMSj5ITygo-rIsuPbmtaHienIVylKS2qlD1JjrOKiZzx8iT5dfENDPTKkG4I2gCB698_17h2pMPe6aWztce46iGs0KsenSUr5ZUxYAKpQRu0QNDuRe4a6witgWi1Uhr7zVmsfI3uYOD8hjTYWwjhjChbH_qG3oNt--VbcrkE8l6ZHrsoInNnW-yHGm3cxUUsNsQ1ZNqibZ8mjxtlAjzbv0fJ1w_nl7NP4_mXj59n0_lYi5KKccZYrTQvcp5XWkCpq4yJcpFDKgQTqqw0LRZCC06BMZ6JRVkXUC-aBqgAqhQbJe92vqth0UGtwfbxB8iVx075jXQK5d0Vi0vZurUUJS9KUUaDV3sD774PEHrZYYiHZpQFNwRJq7KqKMvjM0pe3kOv3ODj7EFmKWW04rxI_1KtMiDRNi721VtTOS3SYtuW80hNHqDiXUOHOmaowfj9juDFv4PeTniISwTSHaC9C8FDI-MR34QiOqORNJXbRMptIuVNIqPk9T3JwfVBmO7gH3Fnm_-Qcjo7n-80fwBIa_a6
CitedBy_id crossref_primary_10_1111_acel_13080
crossref_primary_10_1161_CIR_0000000000000866
crossref_primary_10_3390_antiox8060168
crossref_primary_10_7554_eLife_49874
crossref_primary_10_1016_j_mad_2020_111405
crossref_primary_10_3390_nu17050915
crossref_primary_10_1113_JP280868
crossref_primary_10_3389_fgene_2022_975886
crossref_primary_10_1038_s41586_024_07348_6
crossref_primary_10_3390_ijms22010091
crossref_primary_10_3390_nu13041238
crossref_primary_10_3390_metabo12040356
crossref_primary_10_1007_s00125_021_05540_1
crossref_primary_10_1002_j_2040_4603_2022_tb00224_x
crossref_primary_10_1111_apha_13625
crossref_primary_10_3390_ijms23147602
crossref_primary_10_1016_j_exger_2021_111247
crossref_primary_10_1016_j_jsb_2019_03_008
crossref_primary_10_1016_j_numecd_2023_04_002
crossref_primary_10_1111_acel_13552
crossref_primary_10_1096_fj_201901936RR
crossref_primary_10_1249_JES_0000000000000315
crossref_primary_10_1016_j_exger_2022_112011
crossref_primary_10_1016_j_jnha_2024_100401
crossref_primary_10_3390_nu15081951
crossref_primary_10_4103_ijp_ijp_442_21
crossref_primary_10_3389_fphys_2018_01135
crossref_primary_10_3390_cells14090672
crossref_primary_10_52586_4995
crossref_primary_10_1016_j_mad_2025_112112
crossref_primary_10_1038_s41467_023_38410_y
crossref_primary_10_1016_j_jnha_2024_100397
crossref_primary_10_14814_phy2_14526
crossref_primary_10_1016_j_mam_2024_101319
crossref_primary_10_1007_s13300_024_01639_x
crossref_primary_10_1038_s41467_021_24956_2
crossref_primary_10_1016_j_mito_2019_10_007
crossref_primary_10_1113_JP286695
crossref_primary_10_1016_j_arr_2019_100940
crossref_primary_10_3390_biomedicines9040405
crossref_primary_10_1002_jcsm_13413
crossref_primary_10_1111_acel_13124
crossref_primary_10_1111_acel_14015
crossref_primary_10_1093_gerona_glae101
crossref_primary_10_3389_ebm_2025_10254
crossref_primary_10_3390_cells12172183
crossref_primary_10_3389_fphys_2018_01883
crossref_primary_10_1016_j_jshs_2024_02_001
crossref_primary_10_1007_s11912_020_00977_w
crossref_primary_10_2337_db23_0827
crossref_primary_10_1002_jcsm_13603
crossref_primary_10_1016_j_psyneuen_2019_04_004
crossref_primary_10_1093_infdis_jiaa799
crossref_primary_10_1096_fj_202301644RR
crossref_primary_10_3390_ijerph19052927
crossref_primary_10_1111_ggi_15000
crossref_primary_10_3389_fendo_2023_1263650
crossref_primary_10_1111_apha_14185
crossref_primary_10_1113_JP277071
crossref_primary_10_1002_nbm_70020
crossref_primary_10_1007_s11357_023_01002_1
crossref_primary_10_1016_j_mehy_2019_04_015
crossref_primary_10_1097_MCO_0000000000000486
crossref_primary_10_1016_j_arr_2020_101025
crossref_primary_10_3389_fphys_2024_1429673
crossref_primary_10_1002_rco2_90
crossref_primary_10_3390_nu15040943
crossref_primary_10_1007_s11357_023_00892_5
crossref_primary_10_1111_apha_14139
crossref_primary_10_1007_s13105_024_01062_7
crossref_primary_10_1113_JP281691
crossref_primary_10_1111_acel_14386
crossref_primary_10_1002_jcsm_12313
crossref_primary_10_1016_j_jnha_2024_100300
crossref_primary_10_1002_jcsm_12353
crossref_primary_10_1016_j_exger_2024_112594
crossref_primary_10_1016_j_exger_2021_111579
crossref_primary_10_1096_fj_201801145R
crossref_primary_10_3389_fneur_2021_735009
crossref_primary_10_3390_ijms21083010
crossref_primary_10_1093_hmg_ddy332
crossref_primary_10_1096_fj_202101628R
crossref_primary_10_1111_acel_70040
crossref_primary_10_1152_japplphysiol_00659_2022
crossref_primary_10_1016_j_molmet_2022_101648
crossref_primary_10_1111_jgs_15991
crossref_primary_10_1002_oby_24008
crossref_primary_10_1016_j_arr_2024_102586
crossref_primary_10_1038_s41380_020_00943_9
crossref_primary_10_1080_07853890_2023_2240707
crossref_primary_10_1113_JP282273
crossref_primary_10_3390_sports7070170
crossref_primary_10_3389_fpubh_2023_1330131
crossref_primary_10_1152_japplphysiol_00026_2019
crossref_primary_10_1111_acel_14115
crossref_primary_10_1016_j_jacc_2021_07_014
Cites_doi 10.1152/japplphysiol.00583.2016
10.1111/acel.12604
10.1016/S0092-8674(04)00400-3
10.1093/gerona/glu096
10.1186/s40608-015-0070-4
10.1046/j.1532-5415.2001.4911247.x
10.1111/micc.12098
10.1016/j.bbabio.2016.02.014
10.1186/s13395-015-0059-1
10.1093/gerona/gls196
10.2337/db16-0754
10.1016/j.cmet.2007.01.008
10.2337/db15-0823
10.1159/000172832
10.1152/ajpendo.00125.2015
10.1016/S1525-1578(10)60455-2
10.1155/2012/194821
10.2337/db15-0809
10.1093/gerona/glv070
10.1016/j.cmet.2017.02.009
10.1093/geronj/21.4.575
10.1210/jc.2013-3983
10.1042/BJ20110366
10.3389/fnagi.2014.00208
10.1016/S0010-4825(01)00006-3
10.1093/gerona/61.6.534
10.1001/jama.295.17.2018
10.1161/JAHA.117.006604
10.1093/gerona/glu058
10.1111/acel.12568
10.1016/j.exger.2016.04.002
10.1161/CIRCULATIONAHA.105.545459
10.1186/1471-2105-6-144
10.1111/jgs.12653
10.1038/nature14614
10.1093/gerona/glw059
ContentType Journal Article
Copyright Published 2018. This article is a U.S. Government work and is in the public domain in the USA. published by the Anatomical Society and John Wiley & Sons Ltd.
Published 2018. This article is a U.S. Government work and is in the public domain in the USA. Aging Cell published by the Anatomical Society and John Wiley & Sons Ltd.
COPYRIGHT 2018 John Wiley & Sons, Inc.
Copyright © 2018 The Anatomical Society and John Wiley & Sons Ltd.
Copyright_xml – notice: Published 2018. This article is a U.S. Government work and is in the public domain in the USA. published by the Anatomical Society and John Wiley & Sons Ltd.
– notice: Published 2018. This article is a U.S. Government work and is in the public domain in the USA. Aging Cell published by the Anatomical Society and John Wiley & Sons Ltd.
– notice: COPYRIGHT 2018 John Wiley & Sons, Inc.
– notice: Copyright © 2018 The Anatomical Society and John Wiley & Sons Ltd.
DBID 24P
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QP
7TK
7X8
5PM
DOI 10.1111/acel.12725
DatabaseName Wiley Online Library Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Calcium & Calcified Tissue Abstracts
Neurosciences Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Calcium & Calcified Tissue Abstracts
Neurosciences Abstracts
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic

Calcium & Calcified Tissue Abstracts
CrossRef
MEDLINE


Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
Statistics
DocumentTitleAlternate GONZALEZ‐FREIRE et al
EISSN 1474-9726
EndPage n/a
ExternalDocumentID PMC5847858
A707847844
29356348
10_1111_acel_12725
ACEL12725
Genre article
Journal Article
GeographicLocations United States--US
Baltimore Maryland
GeographicLocations_xml – name: United States--US
– name: Baltimore Maryland
GrantInformation_xml – fundername: NIA NIH HHS
  grantid: K01 AG044437
GroupedDBID ---
.3N
.GA
.Y3
05W
0R~
10A
1OC
23M
24P
2WC
31~
36B
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52W
52X
53G
5GY
5HH
5LA
5VS
66C
6J9
702
7PT
8-0
8-1
8-3
8-4
8-5
8FE
8FH
8UM
930
A01
A03
AAMMB
AAZKR
ABCQN
ABDBF
ABEML
ABJNI
ACCMX
ACGFO
ACGFS
ACPRK
ACSCC
ACUHS
ACXQS
ADBBV
ADKYN
ADRAZ
ADZMN
AEFGJ
AEGXH
AENEX
AFBPY
AFEBI
AFKRA
AFZJQ
AGXDD
AIAGR
AIDQK
AIDYY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AOIJS
AVUZU
BAWUL
BBNVY
BCNDV
BENPR
BFHJK
BHPHI
BY8
CAG
CCPQU
COF
CS3
D-6
D-7
D-E
D-F
DIK
DR2
E3Z
EAD
EAP
EBD
EBS
EJD
EMB
EMK
EMOBN
EST
ESX
F00
F01
F04
F5P
FIJ
GODZA
GROUPED_DOAJ
GX1
HCIFZ
HF~
HOLLA
HZ~
IAO
IHE
IHR
ITC
IX1
J0M
K.9
KQ8
LC2
LC3
LH4
LK8
LP6
LP7
LW6
M48
M7P
MK4
N04
N05
N9A
O9-
OBS
OIG
OK1
OVD
P2P
P2X
P2Z
P4B
P4D
PHGZM
PHGZT
PIMPY
PQGLB
PUEGO
Q11
ROL
RPM
RX1
SUPJJ
SV3
TEORI
TR2
TUS
UB1
V8K
W8V
WIN
WQJ
WXI
XG1
YFH
YUY
~IA
~WT
AAYXX
AFFHD
CITATION
O8X
AAHHS
ACCFJ
ADZOD
AEEZP
AEQDE
AIWBW
AJBDE
CGR
CUY
CVF
ECM
EIF
NPM
7QP
7TK
7X8
5PM
ID FETCH-LOGICAL-c5815-233dac476469c5e8c92358b6e05535a89c17b5c541e33425b8d7edbffe15e1aa3
IEDL.DBID 24P
ISICitedReferencesCount 118
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000427234300016&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1474-9718
1474-9726
IngestDate Tue Nov 04 01:51:17 EST 2025
Wed Oct 01 12:58:54 EDT 2025
Wed Aug 13 09:00:57 EDT 2025
Sat Nov 29 13:37:22 EST 2025
Sat Nov 29 10:17:55 EST 2025
Thu Apr 03 07:01:48 EDT 2025
Tue Nov 18 21:32:36 EST 2025
Sat Nov 29 03:05:14 EST 2025
Sun Sep 21 06:17:33 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords aging
muscle performance
skeletal muscle
mitochondria
oxidative capacity
Language English
License Attribution
http://creativecommons.org/licenses/by/4.0
Published 2018. This article is a U.S. Government work and is in the public domain in the USA. Aging Cell published by the Anatomical Society and John Wiley & Sons Ltd.
This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5815-233dac476469c5e8c92358b6e05535a89c17b5c541e33425b8d7edbffe15e1aa3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-2805-2115
OpenAccessLink https://onlinelibrary.wiley.com/doi/abs/10.1111%2Facel.12725
PMID 29356348
PQID 2013194470
PQPubID 1036381
PageCount 11
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_5847858
proquest_miscellaneous_1989913691
proquest_journals_2013194470
gale_infotracmisc_A707847844
gale_infotracacademiconefile_A707847844
pubmed_primary_29356348
crossref_citationtrail_10_1111_acel_12725
crossref_primary_10_1111_acel_12725
wiley_primary_10_1111_acel_12725_ACEL12725
PublicationCentury 2000
PublicationDate April 2018
PublicationDateYYYYMMDD 2018-04-01
PublicationDate_xml – month: 04
  year: 2018
  text: April 2018
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
– name: London
– name: Hoboken
PublicationTitle Aging cell
PublicationTitleAlternate Aging Cell
PublicationYear 2018
Publisher John Wiley & Sons, Inc
John Wiley and Sons Inc
Publisher_xml – name: John Wiley & Sons, Inc
– name: John Wiley and Sons Inc
References 2015; 2
2017; 6
2012; 2012
2015; 5
2011; 437
2015; 523
2015; 70
2017; 25
2013; 68
2005; 112
2017; 66
1984 1984
2009
2006; 295
2014; 69
2015; 309
2016; 121
2016; 71
2001; 49
2014; 62
2012; 205
2014; 21
2017; 72
2009; 55
2006; 61
2017; 16
2015; 64
2016; 1857
2003; 2
2016; 65
2003; 5
2005; 6
2007; 5
2016; 81
1966; 21
2014; 6
2004; 117
2014; 99
2001; 31
e_1_2_9_30_1
e_1_2_9_31_1
e_1_2_9_34_1
e_1_2_9_10_1
e_1_2_9_35_1
e_1_2_9_13_1
e_1_2_9_32_1
e_1_2_9_12_1
e_1_2_9_33_1
e_1_2_9_15_1
e_1_2_9_38_1
e_1_2_9_14_1
e_1_2_9_39_1
e_1_2_9_17_1
e_1_2_9_36_1
e_1_2_9_19_1
e_1_2_9_18_1
Larsen S. (e_1_2_9_22_1) 2012; 205
e_1_2_9_41_1
e_1_2_9_42_1
e_1_2_9_20_1
e_1_2_9_40_1
e_1_2_9_21_1
e_1_2_9_24_1
e_1_2_9_43_1
e_1_2_9_23_1
e_1_2_9_8_1
Cheadle C. (e_1_2_9_5_1) 2003; 2
e_1_2_9_7_1
e_1_2_9_6_1
e_1_2_9_4_1
e_1_2_9_3_1
e_1_2_9_2_1
Gnaiger E. (e_1_2_9_16_1) 2009
e_1_2_9_9_1
e_1_2_9_26_1
Distefano G. (e_1_2_9_11_1) 2017; 72
e_1_2_9_25_1
e_1_2_9_28_1
e_1_2_9_27_1
e_1_2_9_29_1
Shock N. W. (e_1_2_9_37_1) 1984
References_xml – volume: 1857
  start-page: 1284
  year: 2016
  end-page: 1289
  article-title: The electrochemical transmission in I‐Band segments of the mitochondrial reticulum
  publication-title: Biochimica et Biophysica Acta
– volume: 65
  start-page: 561
  year: 2016
  end-page: 573
  article-title: Altered skeletal muscle mitochondrial proteome as the basis of disruption of mitochondrial function in diabetic mice
  publication-title: Diabetes
– volume: 55
  start-page: 259
  year: 2009
  end-page: 268
  article-title: Reproducibility of an isokinetic strength‐testing protocol of the knee and ankle in older adults
  publication-title: Gerontology
– volume: 2012
  start-page: 194821
  year: 2012
  article-title: Skeletal muscle mitochondria and aging: A review
  publication-title: Journal of Aging Research
– volume: 437
  start-page: 215
  year: 2011
  end-page: 222
  article-title: Inhibiting myosin‐ATPase reveals a dynamic range of mitochondrial respiratory control in skeletal muscle
  publication-title: Biochemical Journal
– volume: 2
  start-page: 40
  year: 2015
  article-title: Relationships between mitochondrial content and bioenergetics with obesity, body composition and fat distribution in healthy older adults
  publication-title: BMC Obesity
– volume: 121
  start-page: 996
  issue: 4
  year: 2016
  end-page: 1003
  article-title: In vivo mitochondrial function in aging skeletal muscle: Capacity, flux, and patterns of use (2016)
  publication-title: Journal of Applied Physiology
– volume: 5
  start-page: 151
  year: 2007
  end-page: 156
  article-title: Aging‐associated reductions in AMP‐activated protein kinase activity and mitochondrial biogenesis
  publication-title: Cell Metabolism
– volume: 6
  start-page: 144
  year: 2005
  article-title: PAGE: Parametric analysis of gene set enrichment
  publication-title: BMC Bioinformatics
– volume: 71
  start-page: 1638
  year: 2016
  end-page: 1645
  article-title: 31P magnetic resonance spectroscopy assessment of muscle bioenergetics as a predictor of gait speed in the Baltimore longitudinal study of aging
  publication-title: Journals of Gerontology. Series A, Biological Sciences and Medical Sciences
– volume: 64
  start-page: 3737
  year: 2015
  end-page: 3750
  article-title: Exercise and weight loss improve muscle mitochondrial respiration, lipid partitioning, and insulin sensitivity after gastric bypass surgery
  publication-title: Diabetes
– volume: 16
  start-page: 738
  issue: 4
  year: 2017
  end-page: 749
  article-title: Biochemical isolation of myonuclei employed to define changes to the myonuclear proteome that occur with aging
  publication-title: Aging Cell
– volume: 70
  start-page: 1394
  year: 2015
  end-page: 1399
  article-title: Respirometric profiling of muscle mitochondria and blood cells are associated with differences in gait speed among community‐dwelling older adults
  publication-title: Journals of Gerontology. Series A, Biological Sciences and Medical Sciences
– volume: 21
  start-page: 131
  year: 2014
  end-page: 147
  article-title: In vivo microscopy reveals extensive embedding of capillaries within the sarcolemma of skeletal muscle fibers
  publication-title: Microcirculation
– volume: 25
  start-page: 581
  year: 2017
  end-page: 592
  article-title: Enhanced protein translation underlies improved metabolic and physical adaptations to different exercise training modes in young and old humans
  publication-title: Cell Metabolism
– volume: 117
  start-page: 399
  year: 2004
  end-page: 412
  article-title: Foxo transcription factors induce the atrophy‐related ubiquitin ligase atrogin‐1 and cause skeletal muscle atrophy
  publication-title: Cell
– start-page: 661
  year: 1984 1984
– volume: 6
  start-page: e006604
  issue: 9
  year: 2017
  article-title: Lower mitochondrial energy production of the thigh muscles in patients with low‐normal ankle‐brachial index
  publication-title: Journal of the American Heart Association
– volume: 5
  start-page: 73
  year: 2003
  end-page: 81
  article-title: Analysis of microarray data using Z score transformation
  publication-title: The Journal of Molecular Diagnostics: JMD
– volume: 21
  start-page: 575
  year: 1966
  end-page: 580
  article-title: Activities and attitudes of participants in the Baltimore longitudinal study
  publication-title: Journal of Gerontology
– volume: 16
  start-page: 461
  issue: 3
  year: 2017
  end-page: 468
  article-title: Muscle strength mediates the relationship between mitochondrial energetics and walking performance
  publication-title: Aging Cell
– volume: 68
  start-page: 447
  year: 2013
  end-page: 455
  article-title: Skeletal muscle mitochondrial energetics are associated with maximal aerobic capacity and walking speed in older adults
  publication-title: Journals of Gerontology. Series A, Biological Sciences and Medical Sciences
– volume: 61
  start-page: 534
  issue: 6
  year: 2006
  end-page: 540
  article-title: J Effects of exercise on mitochondrial content and function in aging human skeletal muscle
  publication-title: Journals of Gerontology. Series A, Biological Sciences and Medical Sciences
– volume: 2
  start-page: 209
  year: 2003
  end-page: 217
  article-title: Application of z‐score transformation to Affymetrix data
  publication-title: Applied Bioinformatics
– volume: 295
  start-page: 2018
  year: 2006
  end-page: 2026
  article-title: Association of long‐distance corridor walk performance with mortality, cardiovascular disease, mobility limitation, and disability
  publication-title: JAMA
– volume: 205
  start-page: 423
  year: 2012
  end-page: 432
  article-title: The influence of age and aerobic fitness: Effects on mitochondrial respiration in skeletal muscle
  publication-title: Acta Psychologica
– volume: 69
  start-page: S21
  issue: Suppl 1
  year: 2014
  end-page: S27
  article-title: Recent progress in metabolic signaling pathways regulating aging and life span
  publication-title: Journals of Gerontology. Series A, Biological Sciences and Medical Sciences
– volume: 81
  start-page: 1
  year: 2016
  end-page: 7
  article-title: The relationship between mitochondrial function and walking performance in older adults with a wide range of physical function
  publication-title: Experimental Gerontology
– volume: 31
  start-page: 269
  year: 2001
  end-page: 286
  article-title: Java‐based graphical user interface for MRUI, a software package for quantitation of in vivo/medical magnetic resonance spectroscopy signals
  publication-title: Computers in Biology and Medicine
– volume: 72
  start-page: 535
  year: 2017
  end-page: 542
  article-title: Chronological age does not influence ex‐vivo mitochondrial respiration and quality control in skeletal muscle
  publication-title: Journals of Gerontology. Series A, Biological Sciences and Medical Sciences
– volume: 523
  start-page: 617
  year: 2015
  end-page: 620
  article-title: Mitochondrial reticulum for cellular energy distribution in muscle
  publication-title: Nature
– volume: 49
  start-page: 1544
  year: 2001
  end-page: 1548
  article-title: Measuring fitness in healthy older adults: The Health ABC Long Distance Corridor Walk
  publication-title: Journal of the American Geriatrics Society
– volume: 5
  start-page: 35
  year: 2015
  article-title: A novel atlas of gene expression in human skeletal muscle reveals molecular changes associated with aging
  publication-title: Skeletal Muscle
– volume: 6
  start-page: 208
  year: 2014
  article-title: The neuromuscular junction: Aging at the crossroad between nerves and muscle
  publication-title: Frontiers in Aging Neuroscience
– volume: 99
  start-page: 1852
  year: 2014
  end-page: 1861
  article-title: Skeletal muscle mitochondria in the elderly: Effects of physical fitness and exercise training
  publication-title: Journal of Clinical Endocrinology and Metabolism
– volume: 66
  start-page: 170
  issue: 1
  year: 2017
  end-page: 176
  article-title: Insulin resistance is associated with reduced mitochondrial oxidative capacity measured by 31P‐magnetic resonance spectroscopy in participants without diabetes from the Baltimore longitudinal study of aging
  publication-title: Diabetes
– start-page: 38
  year: 2009
  end-page: 42
– volume: 112
  start-page: 674
  year: 2005
  end-page: 682
  article-title: Accelerated longitudinal decline of aerobic capacity in healthy older adults
  publication-title: Circulation
– volume: 70
  start-page: 1334
  year: 2015
  end-page: 1342
  article-title: Reconsidering the role of mitochondria in aging
  publication-title: Journals of Gerontology. Series A, Biological Sciences and Medical Sciences
– volume: 62
  start-page: 230
  year: 2014
  end-page: 236
  article-title: Difference in muscle quality over the adult life span and biological correlates in the Baltimore Longitudinal Study of Aging
  publication-title: Journal of the American Geriatrics Society
– volume: 309
  start-page: E224
  year: 2015
  end-page: E232
  article-title: Mitochondrial respiratory capacity and coupling control decline with age in human skeletal muscle
  publication-title: American Journal of Physiology. Endocrinology and Metabolism
– ident: e_1_2_9_20_1
  doi: 10.1152/japplphysiol.00583.2016
– start-page: 661
  volume-title: Normal human aging: The Baltimore longitudinal study of aging
  year: 1984
  ident: e_1_2_9_37_1
– ident: e_1_2_9_10_1
  doi: 10.1111/acel.12604
– ident: e_1_2_9_35_1
  doi: 10.1016/S0092-8674(04)00400-3
– ident: e_1_2_9_41_1
  doi: 10.1093/gerona/glu096
– ident: e_1_2_9_3_1
  doi: 10.1186/s40608-015-0070-4
– ident: e_1_2_9_38_1
  doi: 10.1046/j.1532-5415.2001.4911247.x
– ident: e_1_2_9_28_1
– ident: e_1_2_9_15_1
  doi: 10.1111/micc.12098
– start-page: 38
  volume-title: Mitochondrial pathways and respiratory control
  year: 2009
  ident: e_1_2_9_16_1
– volume: 205
  start-page: 423
  year: 2012
  ident: e_1_2_9_22_1
  article-title: The influence of age and aerobic fitness: Effects on mitochondrial respiration in skeletal muscle
  publication-title: Acta Psychologica
– ident: e_1_2_9_29_1
  doi: 10.1016/j.bbabio.2016.02.014
– ident: e_1_2_9_40_1
  doi: 10.1186/s13395-015-0059-1
– ident: e_1_2_9_8_1
  doi: 10.1093/gerona/gls196
– ident: e_1_2_9_12_1
  doi: 10.2337/db16-0754
– ident: e_1_2_9_33_1
  doi: 10.1016/j.cmet.2007.01.008
– ident: e_1_2_9_42_1
  doi: 10.2337/db15-0823
– ident: e_1_2_9_19_1
  doi: 10.1159/000172832
– ident: e_1_2_9_32_1
  doi: 10.1152/ajpendo.00125.2015
– ident: e_1_2_9_6_1
  doi: 10.1016/S1525-1578(10)60455-2
– ident: e_1_2_9_31_1
  doi: 10.1155/2012/194821
– ident: e_1_2_9_9_1
  doi: 10.2337/db15-0809
– ident: e_1_2_9_17_1
  doi: 10.1093/gerona/glv070
– ident: e_1_2_9_34_1
  doi: 10.1016/j.cmet.2017.02.009
– ident: e_1_2_9_39_1
  doi: 10.1093/geronj/21.4.575
– ident: e_1_2_9_4_1
  doi: 10.1210/jc.2013-3983
– ident: e_1_2_9_30_1
  doi: 10.1042/BJ20110366
– ident: e_1_2_9_18_1
  doi: 10.3389/fnagi.2014.00208
– ident: e_1_2_9_25_1
  doi: 10.1016/S0010-4825(01)00006-3
– ident: e_1_2_9_23_1
  doi: 10.1093/gerona/61.6.534
– ident: e_1_2_9_27_1
  doi: 10.1001/jama.295.17.2018
– ident: e_1_2_9_2_1
  doi: 10.1161/JAHA.117.006604
– volume: 72
  start-page: 535
  year: 2017
  ident: e_1_2_9_11_1
  article-title: Chronological age does not influence ex‐vivo mitochondrial respiration and quality control in skeletal muscle
  publication-title: Journals of Gerontology. Series A, Biological Sciences and Medical Sciences
– ident: e_1_2_9_26_1
  doi: 10.1093/gerona/glu058
– ident: e_1_2_9_43_1
  doi: 10.1111/acel.12568
– ident: e_1_2_9_36_1
  doi: 10.1016/j.exger.2016.04.002
– ident: e_1_2_9_13_1
  doi: 10.1161/CIRCULATIONAHA.105.545459
– ident: e_1_2_9_21_1
  doi: 10.1186/1471-2105-6-144
– ident: e_1_2_9_24_1
  doi: 10.1111/jgs.12653
– ident: e_1_2_9_14_1
  doi: 10.1038/nature14614
– volume: 2
  start-page: 209
  year: 2003
  ident: e_1_2_9_5_1
  article-title: Application of z‐score transformation to Affymetrix data
  publication-title: Applied Bioinformatics
– ident: e_1_2_9_7_1
  doi: 10.1093/gerona/glw059
SSID ssj0017903
Score 2.5584738
Snippet Summary Mitochondrial function in human skeletal muscle declines with age. Most evidence for this decline comes from studies that assessed mitochondrial...
Mitochondrial function in human skeletal muscle declines with age. Most evidence for this decline comes from studies that assessed mitochondrial function...
SourceID pubmedcentral
proquest
gale
pubmed
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
SubjectTerms Adult
Age
Aged
Aged, 80 and over
Aging
Cardiorespiratory fitness
Cardiorespiratory Fitness - physiology
Electron transport
Exercise
Female
Gait
Gene expression
Humans
Knee
Longitudinal Studies
Magnetic resonance spectroscopy
Male
Middle Aged
Mitochondria
Mitochondria, Muscle - metabolism
Mitochondrial DNA
muscle performance
Muscle strength
Muscle Strength - physiology
Muscle, Skeletal - metabolism
Muscles
Musculoskeletal system
Original
Oxidation-Reduction
oxidative capacity
Oxygen consumption
Oxygen Consumption - physiology
Phosphocreatine
Physical fitness
Respiration
Skeletal muscle
Statistics
Transcription
Young Adult
Title Skeletal muscle ex vivo mitochondrial respiration parallels decline in vivo oxidative capacity, cardiorespiratory fitness, and muscle strength: The Baltimore Longitudinal Study of Aging
URI https://onlinelibrary.wiley.com/doi/abs/10.1111%2Facel.12725
https://www.ncbi.nlm.nih.gov/pubmed/29356348
https://www.proquest.com/docview/2013194470
https://www.proquest.com/docview/1989913691
https://pubmed.ncbi.nlm.nih.gov/PMC5847858
Volume 17
WOSCitedRecordID wos000427234300016&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1474-9726
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017903
  issn: 1474-9718
  databaseCode: DOA
  dateStart: 20140101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVWIB
  databaseName: Wiley Online Library Free Content
  customDbUrl:
  eissn: 1474-9726
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017903
  issn: 1474-9718
  databaseCode: WIN
  dateStart: 20020101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
– providerCode: PRVWIB
  databaseName: Wiley Online Library Open Access
  customDbUrl:
  eissn: 1474-9726
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017903
  issn: 1474-9718
  databaseCode: 24P
  dateStart: 20020101
  isFulltext: true
  titleUrlDefault: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bi9QwFA7rquCL90t1XSIKomxl0iZNKr6Myy4Kw7Dgbd5KmqRusdvK3Nj9N_4P3_xlnpN2ujOLCCKUUshJbzm3JOd8h5BnKi-4yYsoTKSECYpJBiGYkTxUsRqI3Npc-PWOzyM5HqvJJD3aIm9WuTAtPkS_4IaS4fU1CrjOZ2tCro2rXrFIRuISucwY3BtxnflRv4cgU18XmXHJwxRUcAdOinE85303zNFFpbxmlS5GTK57st4UHd74v4-4Sa53Ligdtjxzi2y5-ja52halPLtDfn74BqYIfHJ6spgBAXWnv34sy2VDT0D6QVvWFpmWTrtNehhYigDiVQVmllqHuZaOlnXXqTktrQcXpwbssgGnfw-uMAh2er7LT4tyjjp3j-rarp6LaSz11_nxawq8TN_qal5iVDAdNVhjaWGxnhfFOMgz2hR0iNWW7pJPhwcf99-FXYmH0AjFRBjFsdWGywRm6UY4ZVJM3c0TNxAiFlqlhslcGMGZi2NQL7my0tm8KBwTjmkd3yPbdVO7B4QWlrEi4gYctoJHRimeGqed08CLxqQmIC9WI52ZDv8cy3BU2WoehIOR-cEIyNOe9nuL-vFHqufIMBmqAriT0V1GA7wPgmplQ0RS4nDwgOxsUIIIm83mFctlnQqZZREiIaWcy0FAnvTN2BPD4mrXLGYZBrylLE5SFpD7LYf27wt-nEhirgIiN3i3J0Bg8c2Wujz2AOO4da4E9HzpefcvvyAb7h-M_NXDfyF-RK7B56k2AmqHbM-nC_eYXDHLeTmb7noxhrOcqF2_RgLnL-_HvwEeIlS-
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELaggMqF9yNQwAgkBGrQOrFjh9tStWrFskKi0N6iZOy0EdsE7Uvtv-F_cOOXMZNk090KISGkHCJ5nDjxvGzPfMPYS5PlErI88COtcYECUc9HM5L5JjQ9lVmbqXq_4-tAD4fm8DD-1MbmUC5Mgw_RbbiRZNT6mgScNqSXpDwFN3orAh2oy-yKRE-DKjcc7A27QwQd14WRhdTSj1EHt-ikFMhz3nfFHl3Uyktm6WLI5LIrW9uinZv_-RW32I3WCeX9hmtus0uuvMOuNWUpz-6yn5-_oTFCr5yfzCZIwN3prx_zYl7xE5R_1JelJbbl4_aYHqeWE4T4aISGlltH2ZaOF2XbqTotbA0vzgEtM6Dbv4l3FAY7Pj_n53kxJa27ydPSLt5LiSzl0fT4HUdu5u_T0bSguGA-qKjK0sxSRS9OkZBnvMp5n-ot3WNfdrb3t3b9tsiDD8oI5QdhaFOQOsJ1OihnIKbk3SxyPaVClZoYhM4UKClcGKKCyYzVzmZ57oRyIk3D-2ytrEr3kPHcCpEHEtBly2UAxsgYXOpcitwIEIPHXi-mOoEWAZ0KcYySxUqIJiOpJ8NjLzra7w3uxx-pXhHHJKQM8EmQtjkNOB6C1Ur6hKUk8ZIe21ihRCGG1eYFzyWtEpkkAWEhxVLqnseed83UkwLjSlfNJgmFvMUijGLhsQcNi3bjRU9ORaE0HtMrzNsRELT4aktZHNcQ43R4bhT2fFMz719-QdLf2h7Ud4_-hfgZW9_d_zhIBnvDD4_ZdfxU08RDbbC16XjmnrCrMJ8Wk_HTWqZ_AwcXVio
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Zj9MwELZgOcQL9xFYwAgktGiD6sSOHd7KshWIqqrEoX2LkrHDRnSTVS_t_hv-B2_8MmaSNNuuEBJC6kMkj9uk_uZwPPMNYy9MlkvI8sCPtMYNCkQ9H91I5pvQ9FRmbabq9x1fh3o0MgcH8bjNzaFamIYfonvhRppR22tScHds8zUtT8FNXotAB-oiuySVFgTqQI67QwQd142RhdTSj9EGt-yklMhzNnfDH523ymtu6XzK5HooW_uiwY3_fIqb7HobhPJ-g5pb7IIrb7MrTVvK0zvs56fv6IwwKudHixkKcHfy68eyWFb8CPUf7WVpCbZ82h7T49JyohCfTNDRcuuo2tLxomwnVSeFrenFOaBnBgz7d_GK0mCnZ-f8PC_mZHV3eVra1e9SIUv5bX74hiOa-dt0Mi8oL5gPK-qytLDU0YtTJuQpr3Lep35Ld9mXwf7nvfd-2-TBB2WE8oMwtClIHeE-HZQzEFPxbha5nlKhSk0MQmcKlBQuDNHAZMZqZ7M8d0I5kabhPbZVVqV7wHhuhcgDCRiy5TIAY2QMLnUuRTQCxOCxndVSJ9AyoFMjjkmy2gnRYiT1YnjseSd73PB-_FHqJSEmIWOA3wRpW9OA90O0WkmfuJQkfqTHtjckUYlhc3iFuaQ1IrMkIC6kWErd89izbphmUmJc6arFLKGUt1iEUSw8dr-BaHe_GMmpKJTGY3oDvJ0AUYtvjpTFYU0xTofnRuHMVzV4__IXJP29_WF99fBfhJ-yq-N3g2T4YfTxEbuGT2qadKhttjWfLtxjdhmW82I2fVKr9G9vZVVB
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Skeletal+muscle+ex+vivo+mitochondrial+respiration+parallels+decline+in+vivo+oxidative+capacity%2C+cardiorespiratory+fitness%2C+and+muscle+strength%3A+The+Baltimore+Longitudinal+Study+of+Aging&rft.jtitle=Aging+cell&rft.au=Gonzalez-Freire%2C+Marta&rft.au=Scalzo%2C+Paul&rft.au=D%27Agostino%2C+Jarod&rft.au=Moore%2C+Zenobia+A&rft.date=2018-04-01&rft.issn=1474-9726&rft.eissn=1474-9726&rft.volume=17&rft.issue=2&rft_id=info:doi/10.1111%2Facel.12725&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1474-9718&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1474-9718&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1474-9718&client=summon