Epigenetic age prediction

Advanced age is the main common risk factor for cancer, cardiovascular disease and neurodegeneration. Yet, more is known about the molecular basis of any of these groups of diseases than the changes that accompany ageing itself. Progress in molecular ageing research was slow because the tools predic...

Full description

Saved in:
Bibliographic Details
Published in:Aging cell Vol. 20; no. 9; pp. e13452 - n/a
Main Authors: Simpson, Daniel J., Chandra, Tamir
Format: Journal Article
Language:English
Published: England John Wiley & Sons, Inc 01.09.2021
John Wiley and Sons Inc
Subjects:
ISSN:1474-9718, 1474-9726, 1474-9726
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Advanced age is the main common risk factor for cancer, cardiovascular disease and neurodegeneration. Yet, more is known about the molecular basis of any of these groups of diseases than the changes that accompany ageing itself. Progress in molecular ageing research was slow because the tools predicting whether someone aged slowly or fast (biological age) were unreliable. To understand ageing as a risk factor for disease and to develop interventions, the molecular ageing field needed a quantitative measure; a clock for biological age. Over the past decade, a number of age predictors utilising DNA methylation have been developed, referred to as epigenetic clocks. While they appear to estimate biological age, it remains unclear whether the methylation changes used to train the clocks are a reflection of other underlying cellular or molecular processes, or whether methylation itself is involved in the ageing process. The precise aspects of ageing that the epigenetic clocks capture remain hidden and seem to vary between predictors. Nonetheless, the use of epigenetic clocks has opened the door towards studying biological ageing quantitatively, and new clocks and applications, such as forensics, appear frequently. In this review, we will discuss the range of epigenetic clocks available, their strengths and weaknesses, and their applicability to various scientific queries. Over the past decade, the repertoire of DNA methylation‐based age predictors, known as epigenetic clocks, has grown. Here, we review four main types of epigenetic clocks that have been developed; human‐array based, reduced, composite and non‐human.
AbstractList Advanced age is the main common risk factor for cancer, cardiovascular disease and neurodegeneration. Yet, more is known about the molecular basis of any of these groups of diseases than the changes that accompany ageing itself. Progress in molecular ageing research was slow because the tools predicting whether someone aged slowly or fast (biological age) were unreliable. To understand ageing as a risk factor for disease and to develop interventions, the molecular ageing field needed a quantitative measure; a clock for biological age. Over the past decade, a number of age predictors utilising DNA methylation have been developed, referred to as epigenetic clocks. While they appear to estimate biological age, it remains unclear whether the methylation changes used to train the clocks are a reflection of other underlying cellular or molecular processes, or whether methylation itself is involved in the ageing process. The precise aspects of ageing that the epigenetic clocks capture remain hidden and seem to vary between predictors. Nonetheless, the use of epigenetic clocks has opened the door towards studying biological ageing quantitatively, and new clocks and applications, such as forensics, appear frequently. In this review, we will discuss the range of epigenetic clocks available, their strengths and weaknesses, and their applicability to various scientific queries.
Advanced age is the main common risk factor for cancer, cardiovascular disease and neurodegeneration. Yet, more is known about the molecular basis of any of these groups of diseases than the changes that accompany ageing itself. Progress in molecular ageing research was slow because the tools predicting whether someone aged slowly or fast (biological age) were unreliable. To understand ageing as a risk factor for disease and to develop interventions, the molecular ageing field needed a quantitative measure; a clock for biological age. Over the past decade, a number of age predictors utilising DNA methylation have been developed, referred to as epigenetic clocks. While they appear to estimate biological age, it remains unclear whether the methylation changes used to train the clocks are a reflection of other underlying cellular or molecular processes, or whether methylation itself is involved in the ageing process. The precise aspects of ageing that the epigenetic clocks capture remain hidden and seem to vary between predictors. Nonetheless, the use of epigenetic clocks has opened the door towards studying biological ageing quantitatively, and new clocks and applications, such as forensics, appear frequently. In this review, we will discuss the range of epigenetic clocks available, their strengths and weaknesses, and their applicability to various scientific queries.Advanced age is the main common risk factor for cancer, cardiovascular disease and neurodegeneration. Yet, more is known about the molecular basis of any of these groups of diseases than the changes that accompany ageing itself. Progress in molecular ageing research was slow because the tools predicting whether someone aged slowly or fast (biological age) were unreliable. To understand ageing as a risk factor for disease and to develop interventions, the molecular ageing field needed a quantitative measure; a clock for biological age. Over the past decade, a number of age predictors utilising DNA methylation have been developed, referred to as epigenetic clocks. While they appear to estimate biological age, it remains unclear whether the methylation changes used to train the clocks are a reflection of other underlying cellular or molecular processes, or whether methylation itself is involved in the ageing process. The precise aspects of ageing that the epigenetic clocks capture remain hidden and seem to vary between predictors. Nonetheless, the use of epigenetic clocks has opened the door towards studying biological ageing quantitatively, and new clocks and applications, such as forensics, appear frequently. In this review, we will discuss the range of epigenetic clocks available, their strengths and weaknesses, and their applicability to various scientific queries.
Advanced age is the main common risk factor for cancer, cardiovascular disease and neurodegeneration. Yet, more is known about the molecular basis of any of these groups of diseases than the changes that accompany ageing itself. Progress in molecular ageing research was slow because the tools predicting whether someone aged slowly or fast (biological age) were unreliable. To understand ageing as a risk factor for disease and to develop interventions, the molecular ageing field needed a quantitative measure; a clock for biological age. Over the past decade, a number of age predictors utilising DNA methylation have been developed, referred to as epigenetic clocks. While they appear to estimate biological age, it remains unclear whether the methylation changes used to train the clocks are a reflection of other underlying cellular or molecular processes, or whether methylation itself is involved in the ageing process. The precise aspects of ageing that the epigenetic clocks capture remain hidden and seem to vary between predictors. Nonetheless, the use of epigenetic clocks has opened the door towards studying biological ageing quantitatively, and new clocks and applications, such as forensics, appear frequently. In this review, we will discuss the range of epigenetic clocks available, their strengths and weaknesses, and their applicability to various scientific queries. Over the past decade, the repertoire of DNA methylation‐based age predictors, known as epigenetic clocks, has grown. Here, we review four main types of epigenetic clocks that have been developed; human‐array based, reduced, composite and non‐human.
Advanced age is the main common risk factor for cancer, cardiovascular disease and neurodegeneration. Yet, more is known about the molecular basis of any of these groups of diseases than the changes that accompany ageing itself. Progress in molecular ageing research was slow because the tools predicting whether someone aged slowly or fast (biological age) were unreliable. To understand ageing as a risk factor for disease and to develop interventions, the molecular ageing field needed a quantitative measure; a clock for biological age. Over the past decade, a number of age predictors utilising DNA methylation have been developed, referred to as epigenetic clocks. While they appear to estimate biological age, it remains unclear whether the methylation changes used to train the clocks are a reflection of other underlying cellular or molecular processes, or whether methylation itself is involved in the ageing process. The precise aspects of ageing that the epigenetic clocks capture remain hidden and seem to vary between predictors. Nonetheless, the use of epigenetic clocks has opened the door towards studying biological ageing quantitatively, and new clocks and applications, such as forensics, appear frequently. In this review, we will discuss the range of epigenetic clocks available, their strengths and weaknesses, and their applicability to various scientific queries. Over the past decade, the repertoire of DNA methylation‐based age predictors, known as epigenetic clocks, has grown. Here, we review four main types of epigenetic clocks that have been developed; human‐array based, reduced, composite and non‐human.
Audience Academic
Author Simpson, Daniel J.
Chandra, Tamir
AuthorAffiliation 1 MRC Human Genetics Unit MRC Institute of Genetics and Molecular Medicine University of Edinburgh Edinburgh UK
AuthorAffiliation_xml – name: 1 MRC Human Genetics Unit MRC Institute of Genetics and Molecular Medicine University of Edinburgh Edinburgh UK
Author_xml – sequence: 1
  givenname: Daniel J.
  orcidid: 0000-0002-8431-7384
  surname: Simpson
  fullname: Simpson, Daniel J.
  email: s1684303@sms.ed.ac.uk
  organization: University of Edinburgh
– sequence: 2
  givenname: Tamir
  orcidid: 0000-0002-7935-317X
  surname: Chandra
  fullname: Chandra, Tamir
  email: tamir.chandra@igmm.ed.ac.uk
  organization: University of Edinburgh
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34415665$$D View this record in MEDLINE/PubMed
BookMark eNp9kc1LwzAYxoMofkwv3ryI4EWEzaRJmuYijDE_YOBFzyFNkxnpktl2yv5737pZnAyTQ0Lye568b54jtBtisAidEjwgMG60seWAUMaTHXRImGB9KZJ0t9uT7AAd1fUbxkRITPfRAWWM8DTlh-hsPPdTG2zjzYWe2ot5ZQtvGh_DMdpzuqztyXrtoZe78fPooT95un8cDSd9wzOS9F0hDUulNtzIHNxNoVOaUCFknmcZ4VQ4J4kAxgiCjbNFkVnONc40gNLRHrpd-c4X-cwWxoam0qWaV36mq6WK2qvNm-Bf1TR-qAyaoJKBwdXaoIrvC1s3auZr-JJSBxsXtUp4SllCiOCAXv5B3-KiCtAeUCIBvxbuqKkurfLBRXjXtKZqKLDIKGffXoMtFMzCzryBhJyH8w3B-e9Guw5_wgDgegWYKtZ1ZV2HEKzapFWbtPpOGmD8Bza-0W1wUIYvt0vISvIJlS3_MVfD0Xiy0nwB-gq3eQ
CitedBy_id crossref_primary_10_1111_cdep_12488
crossref_primary_10_1016_j_fsigen_2022_102724
crossref_primary_10_3389_fmars_2023_1096909
crossref_primary_10_3390_epigenomes8010003
crossref_primary_10_1016_j_fsigen_2023_102846
crossref_primary_10_1080_20008066_2024_2379144
crossref_primary_10_1016_j_arr_2024_102418
crossref_primary_10_3390_ijms25094967
crossref_primary_10_2217_epi_2022_0457
crossref_primary_10_1038_s42003_024_06609_4
crossref_primary_10_1242_jeb_245851
crossref_primary_10_1016_j_leukres_2024_107620
crossref_primary_10_1073_pnas_2211755120
crossref_primary_10_1186_s12864_022_08771_7
crossref_primary_10_3390_biology14010092
crossref_primary_10_3390_biomedicines12081631
crossref_primary_10_3389_fmars_2022_1005534
crossref_primary_10_1016_j_biocon_2024_110570
crossref_primary_10_1097_MCO_0000000000000810
crossref_primary_10_1111_acel_13960
crossref_primary_10_1038_s41390_025_04110_0
crossref_primary_10_4103_ajim_ajim_46_24
crossref_primary_10_3389_fcell_2023_1121231
crossref_primary_10_3390_cells11244044
crossref_primary_10_1093_molbev_msad279
crossref_primary_10_1111_acel_70098
crossref_primary_10_1016_j_celrep_2025_115958
crossref_primary_10_13005_bbra_3226
crossref_primary_10_3390_foods14030347
crossref_primary_10_1249_MSS_0000000000003498
crossref_primary_10_1007_s11357_025_01514_y
crossref_primary_10_1016_j_arr_2024_102432
crossref_primary_10_1016_j_forsciint_2024_111950
crossref_primary_10_1111_acel_14100
crossref_primary_10_1186_s13023_025_03778_1
crossref_primary_10_1111_acel_14104
crossref_primary_10_1080_15592294_2022_2153511
crossref_primary_10_1007_s10802_022_00981_7
crossref_primary_10_1007_s11357_023_00871_w
crossref_primary_10_3389_fpubh_2024_1295477
crossref_primary_10_1007_s12024_024_00820_9
crossref_primary_10_1016_j_arr_2023_101956
crossref_primary_10_3389_fendo_2024_1424826
crossref_primary_10_3389_fcell_2022_902857
crossref_primary_10_1016_j_arr_2024_102546
crossref_primary_10_1093_humupd_dmac042
crossref_primary_10_1016_j_it_2023_05_005
crossref_primary_10_3390_cells12202451
crossref_primary_10_1038_s41514_025_00265_6
crossref_primary_10_1038_s41556_025_01739_1
crossref_primary_10_1038_s43587_022_00335_4
crossref_primary_10_3389_fmars_2023_1062151
crossref_primary_10_3390_ijms23136926
crossref_primary_10_20517_jtgg_2024_94
crossref_primary_10_1016_j_ajcnut_2024_08_033
crossref_primary_10_1007_s10964_023_01863_x
crossref_primary_10_1051_medsci_2024171
crossref_primary_10_1111_acel_14451
crossref_primary_10_2217_epi_2023_0307
crossref_primary_10_3389_fnmol_2024_1334862
crossref_primary_10_1016_j_fsigen_2023_102923
crossref_primary_10_1002_cam4_71067
crossref_primary_10_1016_j_socscimed_2023_116088
crossref_primary_10_1016_j_fsigen_2025_103331
crossref_primary_10_3390_cells14161249
crossref_primary_10_1186_s13059_025_03562_1
crossref_primary_10_3389_fnut_2024_1373806
crossref_primary_10_1038_s43587_024_00700_5
crossref_primary_10_1073_pnas_2211349119
crossref_primary_10_1016_j_envint_2023_108109
crossref_primary_10_1002_dad2_70010
crossref_primary_10_1111_acel_13527
crossref_primary_10_1111_acel_14058
crossref_primary_10_1007_s10522_023_10041_2
crossref_primary_10_1177_10998004251334415
crossref_primary_10_3390_ijms26146564
crossref_primary_10_1111_joim_13724
crossref_primary_10_3390_ijms25189836
crossref_primary_10_1097_EE9_0000000000000384
crossref_primary_10_1038_s42003_024_07243_w
crossref_primary_10_3390_genes15010016
crossref_primary_10_3390_ijms23084119
crossref_primary_10_1016_j_arr_2022_101743
crossref_primary_10_1002_elps_202200250
crossref_primary_10_1016_j_arcmed_2024_103033
crossref_primary_10_1016_j_neubiorev_2023_105238
crossref_primary_10_1016_j_neubiorev_2023_105359
crossref_primary_10_1016_j_semcancer_2024_08_003
crossref_primary_10_1111_eva_13320
crossref_primary_10_1186_s12916_024_03832_y
crossref_primary_10_3390_ijms26041738
crossref_primary_10_1093_bib_bbac274
crossref_primary_10_1136_jnnp_2022_330931
crossref_primary_10_1111_1755_0998_14128
crossref_primary_10_1080_17501911_2024_2432851
crossref_primary_10_1111_acel_13866
crossref_primary_10_1371_journal_pgen_1011667
crossref_primary_10_1080_17501911_2024_2432854
crossref_primary_10_1093_eep_dvaf021
crossref_primary_10_1016_j_arr_2025_102884
crossref_primary_10_1111_1753_0407_13596
crossref_primary_10_3390_ijms26115051
crossref_primary_10_3390_genes15040425
crossref_primary_10_3390_ijms25179514
Cites_doi 10.1093/gerona/gls233
10.1371/journal.pone.0014821
10.1016/j.fsigen.2017.04.020
10.1111/eva.13195
10.1073/pnas.95.10.5607
10.1016/0921-8734(91)90032-7
10.1111/acel.12799
10.1186/gb-2014-15-2-r24
10.1016/j.fsigen.2019.102189
10.1038/nature01298
10.1038/45843
10.1186/s12859-020-3443-8
10.1186/s13059-018-1408-2
10.18632/aging.100908
10.18632/oncotarget.7383
10.1186/s13148-016-0186-5
10.1093/hmg/ddv456
10.1016/j.immuni.2015.03.005
10.1111/acel.12877
10.1016/j.cub.2019.07.011
10.1371/journal.pcbi.1005183
10.1093/gerona/gly223
10.1038/384033a0
10.1038/s41398-019-0548-9
10.18632/aging.102173
10.1038/ncomms9570
10.1016/0014-4827(61)90192-6
10.1038/ncomms15353
10.1111/acel.12325
10.1038/ncomms10561
10.1016/j.cub.2004.03.059
10.1007/s12038-010-0034-2
10.18632/aging.101414
10.2217/epi-2015-0017
10.1093/jn/116.4.641
10.1186/s13073-019-0693-z
10.1080/15592294.2017.1414127
10.1073/pnas.1506264112
10.1186/s13148-017-0315-9
10.1186/s13059-015-0584-6
10.1038/s41591-019-0673-2
10.18632/aging.100864
10.1186/s13059-018-1514-1
10.1016/j.ebiom.2017.03.046
10.1111/j.1467-9868.2005.00503.x
10.1111/j.1474-9726.2011.00784.x
10.1016/j.fsigen.2018.09.003
10.18632/aging.100972
10.1093/genetics/148.2.703
10.18632/aging.101588
10.1186/s13059-017-1203-5
10.1016/j.cell.2016.11.052
10.1038/s41467-017-02697-5
10.1186/s13148-015-0148-3
10.18632/aging.101168
10.1111/acel.12421
10.1007/s11357-017-0001-z
10.2337/db12-0819
10.1186/s13059-016-1064-3
10.1161/01.CIR.0000055014.62083.05
10.1186/s13059-019-1753-9
10.18632/aging.202400
10.1038/s41551-017-0093
10.1111/wrr.12426
10.1038/srep04789
10.1016/j.molcel.2012.10.016
10.1038/nature11861
10.1038/nrm4048
10.1186/s13059-016-0871-x
10.18632/aging.101005
10.1016/j.isci.2020.101199
10.1038/ng863
10.18632/aging.101508
10.1111/1556-4029.14185
10.1186/s13059-016-1030-0
10.1093/infdis/jiv277
10.18632/aging.102892
10.18632/aging.100744
10.18632/aging.100742
10.1016/j.mad.2018.01.002
10.1186/s13059-017-1185-3
10.1002/(SICI)1097-0258(19970228)16:4<385::AID-SIM380>3.0.CO;2-3
10.1016/j.legalmed.2020.101744
10.1098/rstb.2019.0616
10.1016/j.forsciint.2020.110267
10.1177/2633105520942221
10.3390/genes8060152
10.1186/s13148-016-0177-6
10.18632/aging.101217
10.1038/35000656
10.1016/j.cmet.2008.06.011
10.1186/s13148-019-0777-z
10.1038/s41598-019-45197-w
10.1038/s41467-019-12293-4
10.18632/aging.101976
10.1073/pnas.1820843116
10.1038/s41586-020-2975-4
10.1186/s13059-019-1824-y
10.1038/s41598-018-28318-9
10.1016/j.ceb.2016.03.020
10.1186/s13072-018-0191-3
10.1038/ncomms10207
10.1016/j.fsigen.2015.05.001
10.1016/j.cels.2020.06.006
10.1016/j.cell.2013.05.039
10.1186/s13148-020-00899-1
10.1016/S2213-8587(15)00127-8
10.1016/j.legalmed.2020.101763
10.1093/gerona/glaa286
10.1186/gb-2013-14-10-r115
10.1093/ije/dyu277
10.7554/eLife.54870
10.18632/aging.101211
10.18632/aging.101684
10.1111/acel.12005
10.1016/0014-4827(65)90211-9
10.1038/ncomms14617
10.1242/dev.01255
10.1073/pnas.1412759111
10.1186/s13073-019-0667-1
10.1111/acel.13349
10.1073/pnas.96.11.5894
10.1038/346866a0
10.1186/s13148-020-00914-5
10.2337/db13-1459
10.1126/science.aaj2239
10.1186/s13148-020-00905-6
10.1038/nmeth.3728
10.1093/gerona/glw185
10.1038/sj.bjc.6603671
10.1111/1755-0998.13111
10.14336/AD.2020.1202
10.1016/0047-6374(77)90043-4
10.1126/science.1078223
10.1158/0008-5472.CAN-19-0924
10.1016/j.dnarep.2014.03.030
10.1016/j.molcel.2018.08.008
10.1038/426620a
10.1016/j.psyneuen.2015.09.020
10.1186/s13059-017-1186-2
10.1016/j.fsigen.2018.09.010
10.1371/journal.pone.0017213
10.1016/j.cmet.2017.03.016
10.1038/s41467-020-15174-3
10.1093/gerona/gly060
10.1001/jamaoncol.2015.1053
10.1038/s41576-018-0004-3
10.1093/ije/dyw041
10.1111/acel.13100
10.18632/aging.101590
10.18632/aging.100861
10.1186/s12915-015-0118-4
10.1186/s13148-016-0228-z
10.1038/srep17788
10.1016/0092-8674(95)90499-9
10.18632/aging.101020
10.1126/science.1057987
10.1186/s13059-019-1810-4
10.1186/s13059-015-0649-6
10.1093/gerona/glaa101
10.1016/0531-5565(88)90025-3
10.1101/gr.207688.116
10.1093/nar/gku372
10.1111/1755-0998.12247
10.1016/j.biopsych.2020.01.025
10.1038/nature01789
10.1080/15592294.2019.1623634
10.1111/j.1365-2443.2012.01595.x
10.1038/345458a0
10.18632/aging.100395
ContentType Journal Article
Copyright 2021 The Authors. published by Anatomical Society and John Wiley & Sons Ltd.
2021 The Authors. Aging Cell published by Anatomical Society and John Wiley & Sons Ltd.
COPYRIGHT 2021 John Wiley & Sons, Inc.
2021. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2021 The Authors. published by Anatomical Society and John Wiley & Sons Ltd.
– notice: 2021 The Authors. Aging Cell published by Anatomical Society and John Wiley & Sons Ltd.
– notice: COPYRIGHT 2021 John Wiley & Sons, Inc.
– notice: 2021. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QP
7TK
7X8
5PM
DOI 10.1111/acel.13452
DatabaseName Wiley Online Library Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Calcium & Calcified Tissue Abstracts
Neurosciences Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Calcium & Calcified Tissue Abstracts
Neurosciences Abstracts
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
CrossRef
Calcium & Calcified Tissue Abstracts

MEDLINE


Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Open Access Collection
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
DocumentTitleAlternate SIMPSON and CHANDRA
EISSN 1474-9726
EndPage n/a
ExternalDocumentID PMC8441394
A707835475
34415665
10_1111_acel_13452
ACEL13452
Genre reviewArticle
Research Support, Non-U.S. Gov't
Journal Article
Review
GrantInformation_xml – fundername: Medical Research Council
GroupedDBID ---
.3N
.GA
.Y3
05W
0R~
10A
1OC
23M
24P
2WC
31~
36B
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52W
52X
53G
5GY
5HH
5LA
5VS
66C
6J9
702
7PT
8-0
8-1
8-3
8-4
8-5
8FE
8FH
8UM
930
A01
A03
AAHHS
AAZKR
ABCQN
ABDBF
ABEML
ABJNI
ACCFJ
ACCMX
ACGFO
ACGFS
ACPRK
ACSCC
ACUHS
ACXQS
ADBBV
ADKYN
ADRAZ
ADZMN
ADZOD
AEEZP
AEGXH
AENEX
AEQDE
AFBPY
AFEBI
AFKRA
AFZJQ
AIAGR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AOIJS
AVUZU
BAWUL
BBNVY
BCNDV
BENPR
BFHJK
BHPHI
BY8
CAG
CCPQU
COF
CS3
D-6
D-7
D-E
D-F
DIK
DR2
E3Z
EAD
EAP
EBD
EBS
EJD
EMB
EMK
EMOBN
EST
ESX
F00
F01
F04
F5P
FIJ
GODZA
GROUPED_DOAJ
GX1
HCIFZ
HF~
HOLLA
HZ~
IAO
IHE
IHR
IPNFZ
ITC
IX1
J0M
K.9
KQ8
LC2
LC3
LH4
LK8
LP6
LP7
LW6
M48
M7P
MK4
N04
N05
N9A
O9-
OBS
OIG
OK1
OVD
P2P
P2X
P2Z
P4B
P4D
PIMPY
Q11
ROL
RPM
RX1
SUPJJ
SV3
TEORI
TR2
TUS
UB1
V8K
W8V
WIN
WQJ
WRC
WXI
XG1
YFH
YUY
~IA
~WT
AAMMB
AAYXX
AEFGJ
AFFHD
AGXDD
AIDQK
AIDYY
CITATION
O8X
PHGZM
PHGZT
PQGLB
CGR
CUY
CVF
ECM
EIF
NPM
7QP
7TK
7X8
PUEGO
5PM
ID FETCH-LOGICAL-c5812-fd9c469ac5c9b903cda6323779bb881537ff917c46c710cfedd8e55a08aa639f3
IEDL.DBID 24P
ISICitedReferencesCount 122
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000686581400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1474-9718
1474-9726
IngestDate Tue Nov 04 02:03:28 EST 2025
Wed Oct 01 15:05:43 EDT 2025
Wed Aug 13 03:42:41 EDT 2025
Sat Nov 29 13:37:20 EST 2025
Sat Nov 29 10:17:53 EST 2025
Mon Jul 21 06:06:09 EDT 2025
Sat Nov 29 03:05:17 EST 2025
Tue Nov 18 21:17:11 EST 2025
Wed Jan 22 16:27:36 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 9
Keywords mortality
epigenetic clocks
ageing
minimised clocks
composite predictors
Language English
License Attribution
2021 The Authors. Aging Cell published by Anatomical Society and John Wiley & Sons Ltd.
This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5812-fd9c469ac5c9b903cda6323779bb881537ff917c46c710cfedd8e55a08aa639f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
ORCID 0000-0002-8431-7384
0000-0002-7935-317X
OpenAccessLink https://onlinelibrary.wiley.com/doi/abs/10.1111%2Facel.13452
PMID 34415665
PQID 2572413256
PQPubID 1036381
PageCount 20
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_8441394
proquest_miscellaneous_2563421175
proquest_journals_2572413256
gale_infotracmisc_A707835475
gale_infotracacademiconefile_A707835475
pubmed_primary_34415665
crossref_primary_10_1111_acel_13452
crossref_citationtrail_10_1111_acel_13452
wiley_primary_10_1111_acel_13452_ACEL13452
PublicationCentury 2000
PublicationDate September 2021
PublicationDateYYYYMMDD 2021-09-01
PublicationDate_xml – month: 09
  year: 2021
  text: September 2021
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: London
– name: Hoboken
PublicationTitle Aging cell
PublicationTitleAlternate Aging Cell
PublicationYear 2021
Publisher John Wiley & Sons, Inc
John Wiley and Sons Inc
Publisher_xml – name: John Wiley & Sons, Inc
– name: John Wiley and Sons Inc
References 1990; 345
1990; 346
2020; 20
2015b; 7
2019; 11
2013; 68
2019b; 11
2019; 10
2013; 62
2019; 12
2019; 14
2020; 15
2019; 18
2020; 12
2012; 17
1996; 384
2020; 11
2012; 11
2005; 67
2020; 19
2018; 7
2017; 72
2018; 174
2018; 9
2018; 8
2021; 76
2019; 20
2000; 403
2019; 25
2014; 15
2014; 14
2016; 40
2019; 29
2014; 19
2020; 88
2016a; 17
1998; 95
2018; 37
2016; 45
2019; 9
1986; 116
2010; 35
2019; 38
2016; 167
2007; 96
1965; 37
2011; 3
2016; 17
2011; 6
2003; 299
2016; 15
2016; 13
2016; 12
2014; 42
2018; 19
2016; 5
2016; 7
2018; 17
2015; 112
1988; 23
1998; 148
2020; 23
2020; 311
2020; 21
2018; 11
2018; 10
2016; 8
2016; 25
2016; 24
2018; 13
2017; 8
2017; 1
2021; 20
2017; 46
2008; 8
2014; 63
1999; 401
2017; 356
2017; 9
2004; 131
2013; 14
2014; 4
2017; 39
2001; 292
2015; 212
2015; 42
2020; 9
2020; 47
1997; 16
2020; 375
1999; 96
2020; 44
2018; 71
2013; 153
2016b; 8
2019a; 11
2015; 13
2015; 1
2015; 6
2015; 17
2015; 16
1991; 256
2015; 5
2015; 3
2013; 49
2002; 30
2019; 74
2017; 25
2017; 27
2017; 21
2020; 80
2020; 588
2017; 29
2003
2014; 111
2015; 7
2015b; 44
2021; 14
2015a; 16
2021; 10
2003; 426
2021; 12
1995; 80
2003; 424
2021
2020
2004; 14
2015a; 14
2015c; 7
2019
2020; 117
2016; 63
2013; 493
2017; 18
2020; 65
2003; 421
1961; 25
1977; 6
e_1_2_11_70_1
e_1_2_11_93_1
e_1_2_11_200_1
e_1_2_11_186_1
e_1_2_11_32_1
e_1_2_11_55_1
e_1_2_11_78_1
e_1_2_11_29_1
Sailer L. L. (e_1_2_11_155_1) 2020
e_1_2_11_125_1
e_1_2_11_4_1
e_1_2_11_148_1
e_1_2_11_102_1
e_1_2_11_163_1
e_1_2_11_140_1
e_1_2_11_197_1
e_1_2_11_20_1
e_1_2_11_89_1
e_1_2_11_43_1
e_1_2_11_17_1
e_1_2_11_113_1
e_1_2_11_174_1
e_1_2_11_92_1
e_1_2_11_187_1
e_1_2_11_31_1
e_1_2_11_54_1
e_1_2_11_126_1
e_1_2_11_28_1
Simpkin A. J. (e_1_2_11_159_1) 2017; 46
e_1_2_11_5_1
e_1_2_11_141_1
e_1_2_11_164_1
Prado N. A. (e_1_2_11_149_1) 2020
e_1_2_11_190_1
e_1_2_11_80_1
e_1_2_11_198_1
e_1_2_11_88_1
e_1_2_11_65_1
e_1_2_11_114_1
e_1_2_11_16_1
e_1_2_11_137_1
e_1_2_11_39_1
Li X. (e_1_2_11_107_1) 2020; 9
e_1_2_11_152_1
e_1_2_11_175_1
Huh C. J. (e_1_2_11_77_1) 2016; 5
e_1_2_11_180_1
e_1_2_11_72_1
Meer M. V. (e_1_2_11_136_1) 2018; 7
e_1_2_11_188_1
e_1_2_11_57_1
Yang R. (e_1_2_11_189_1) 2020
e_1_2_11_34_1
e_1_2_11_95_1
e_1_2_11_11_1
e_1_2_11_104_1
Horvath S. (e_1_2_11_66_1) 2020
e_1_2_11_127_1
e_1_2_11_2_1
Little T. (e_1_2_11_110_1) 2020
e_1_2_11_165_1
e_1_2_11_142_1
e_1_2_11_83_1
e_1_2_11_191_1
e_1_2_11_60_1
e_1_2_11_45_1
e_1_2_11_199_1
e_1_2_11_68_1
e_1_2_11_22_1
e_1_2_11_138_1
e_1_2_11_19_1
e_1_2_11_176_1
e_1_2_11_153_1
e_1_2_11_130_1
Horvath S. (e_1_2_11_75_1) 2020
Lemaître J. F. (e_1_2_11_100_1) 2020
e_1_2_11_94_1
e_1_2_11_181_1
e_1_2_11_71_1
e_1_2_11_10_1
e_1_2_11_56_1
e_1_2_11_79_1
e_1_2_11_33_1
FOXO BioScience (e_1_2_11_42_1) 2020
e_1_2_11_105_1
e_1_2_11_128_1
e_1_2_11_3_1
e_1_2_11_143_1
e_1_2_11_120_1
e_1_2_11_82_1
e_1_2_11_192_1
e_1_2_11_21_1
e_1_2_11_44_1
e_1_2_11_67_1
e_1_2_11_18_1
e_1_2_11_139_1
e_1_2_11_116_1
e_1_2_11_177_1
e_1_2_11_131_1
Thermo Fisher (e_1_2_11_170_1) 2020
e_1_2_11_182_1
e_1_2_11_36_1
e_1_2_11_51_1
e_1_2_11_97_1
e_1_2_11_13_1
e_1_2_11_118_1
e_1_2_11_48_1
e_1_2_11_121_1
e_1_2_11_167_1
e_1_2_11_144_1
Schachtschneider K. M. (e_1_2_11_157_1) 2020
Arneson A. (e_1_2_11_6_1) 2021
e_1_2_11_193_1
e_1_2_11_47_1
e_1_2_11_24_1
e_1_2_11_62_1
e_1_2_11_129_1
e_1_2_11_8_1
e_1_2_11_85_1
e_1_2_11_117_1
e_1_2_11_59_1
e_1_2_11_178_1
e_1_2_11_132_1
Pinho G. M. (e_1_2_11_147_1) 2021
e_1_2_11_50_1
e_1_2_11_183_1
e_1_2_11_58_1
e_1_2_11_119_1
e_1_2_11_35_1
e_1_2_11_73_1
e_1_2_11_12_1
e_1_2_11_96_1
Katrinli S. (e_1_2_11_90_1) 2020
e_1_2_11_122_1
e_1_2_11_145_1
e_1_2_11_168_1
e_1_2_11_160_1
e_1_2_11_61_1
e_1_2_11_194_1
e_1_2_11_46_1
e_1_2_11_69_1
e_1_2_11_9_1
e_1_2_11_23_1
e_1_2_11_84_1
e_1_2_11_156_1
e_1_2_11_179_1
e_1_2_11_133_1
Levine M. (e_1_2_11_103_1) 2020; 9
Horvath S. (e_1_2_11_76_1) 2020
e_1_2_11_171_1
e_1_2_11_91_1
e_1_2_11_30_1
e_1_2_11_99_1
Ross K. M. (e_1_2_11_154_1) 2020; 12
e_1_2_11_53_1
e_1_2_11_27_1
e_1_2_11_169_1
e_1_2_11_146_1
e_1_2_11_123_1
Lu A. T. (e_1_2_11_115_1) 2021
e_1_2_11_161_1
e_1_2_11_41_1
e_1_2_11_87_1
e_1_2_11_108_1
e_1_2_11_64_1
Wilkinson G. S. (e_1_2_11_184_1) 2021; 12
e_1_2_11_15_1
e_1_2_11_111_1
e_1_2_11_134_1
e_1_2_11_38_1
e_1_2_11_172_1
Raj K. (e_1_2_11_151_1) 2020
e_1_2_11_185_1
e_1_2_11_14_1
e_1_2_11_52_1
e_1_2_11_98_1
e_1_2_11_7_1
e_1_2_11_26_1
e_1_2_11_49_1
e_1_2_11_101_1
e_1_2_11_124_1
e_1_2_11_162_1
Li C. Z. (e_1_2_11_106_1) 2021
Jasinska A. J. (e_1_2_11_81_1) 2020
Sugrue V. J. (e_1_2_11_166_1) 2021; 10
Zhang J. M. (e_1_2_11_195_1) 2019
e_1_2_11_196_1
e_1_2_11_25_1
e_1_2_11_40_1
e_1_2_11_63_1
e_1_2_11_86_1
e_1_2_11_109_1
e_1_2_11_158_1
e_1_2_11_37_1
Horvath S. (e_1_2_11_74_1) 2020
e_1_2_11_135_1
e_1_2_11_112_1
e_1_2_11_150_1
e_1_2_11_173_1
References_xml – volume: 167
  start-page: 1719
  issue: 7
  year: 2016
  end-page: 1733
  article-title: In vivo amelioration of age‐associated hallmarks by partial reprogramming
  publication-title: Cell
– volume: 47
  start-page: 101744
  year: 2020
  article-title: Evaluation of marker selection methods and statistical models for chronological age prediction based on DNA methylation
  publication-title: Legal Medicine
– volume: 7
  start-page: 1159
  issue: 12
  year: 2015b
  end-page: 1170
  article-title: Decreased epigenetic age of PBMCs from Italian semi‐supercentenarians and their offspring
  publication-title: Aging
– volume: 112
  start-page: E4104
  issue: 30
  year: 2015
  end-page: E4110
  article-title: Quantification of biological aging in young adults
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
– volume: 8
  start-page: 1485
  issue: 7
  year: 2016b
  end-page: 1512
  article-title: Huntington’s disease accelerates epigenetic aging of human brain and disrupts DNA methylation levels
  publication-title: Aging
– volume: 9
  start-page: 1
  issue: 1
  year: 2017
  end-page: 6
  article-title: Individual CpG sites that are associated with age and life expectancy become hypomethylated upon aging
  publication-title: Clinical Epigenetics
– volume: 8
  start-page: 1844
  issue: 9
  year: 2016
  end-page: 1865
  article-title: DNA methylation‐based measures of biological age: Meta‐analysis predicting time to death
  publication-title: Aging
– volume: 17
  start-page: 173
  year: 2015
  end-page: 179
  article-title: Development of a forensically useful age prediction method based on DNA methylation analysis
  publication-title: Forensic Science International: Genetics
– volume: 401
  start-page: 301
  issue: 6750
  year: 1999
  end-page: 304
  article-title: The thymine glycosylase MBD4 can bind to the product of deamination at methylated CpG sites
  publication-title: Nature
– volume: 424
  start-page: 277
  issue: 6946
  year: 2003
  end-page: 284
  article-title: Genes that act downstream of DAF‐16 to influence the lifespan of Caenorhabditis elegans
  publication-title: Nature
– volume: 8
  start-page: 9998
  issue: 1
  year: 2018
  article-title: Estimation of chimpanzee age based on DNA methylation
  publication-title: Scientific Reports
– volume: 6
  start-page: 1
  issue: 1
  year: 2015
  end-page: 14
  article-title: The transcriptional landscape of age in human peripheral blood
  publication-title: Nature Communications
– volume: 3
  start-page: 1018
  issue: 10
  year: 2011
  end-page: 1027
  article-title: Epigenetic‐aging‐signature to determine age in different tissues
  publication-title: Aging
– volume: 131
  start-page: 3897
  issue: 16
  year: 2004
  end-page: 3906
  article-title: The TOR pathway inter‐ acts with the insulin signaling pathway to regulate larval development, metabolism and life span
  publication-title: Development
– volume: 29
  start-page: R786
  issue: 16
  year: 2019
  end-page: R787
  article-title: Age‐related clonal haemopoiesis is associated with increased epigenetic age
  publication-title: Current Biology
– volume: 116
  start-page: 641
  issue: 4
  year: 1986
  end-page: 6541
  article-title: The retardation of aging in mice by dietary restriction: Longevity, cancer, immunity and lifetime energy intake
  publication-title: Journal of Nutrition
– volume: 67
  start-page: 301
  issue: 2
  year: 2005
  end-page: 320
  article-title: Regularization and variable selection via the elastic net
  publication-title: Journal of the Royal Statistical Society: Series B (Statistical Methodology)
– volume: 42
  start-page: 613
  issue: 4
  year: 2015
  end-page: 626
  article-title: The methylcytosine dioxygenase Tet2 promotes DNA demethylation and activation of cytokine gene expression in T cells
  publication-title: Immunity
– start-page: 2020.09.21.306613
  year: 2020
  article-title: Epigenetic clock and DNA methylation studies of roe deer in the wild
  publication-title: bioRxiv
– volume: 9
  start-page: 1
  year: 2020
  end-page: 56
  article-title: Quantification of the pace of biological aging in humans through a blood test, the DunedinPoAm DNA methylation algorithm
  publication-title: eLife
– volume: 1
  start-page: 7
  year: 2017
  article-title: Biophysical and biomolecular determination of cellular age in humans
  publication-title: Nature Biomedical Engineering
– volume: 17
  start-page: 27
  issue: 1
  year: 2016
  article-title: Variation in 5‐hydroxymethylcytosine across human cortex and cerebellum
  publication-title: Genome Biology
– volume: 7
  start-page: 334
  issue: 5
  year: 2015
  end-page: 339
  article-title: Epigenetic age analysis of children who seem to evade aging
  publication-title: Aging
– volume: 14
  start-page: 1263
  issue: 5
  year: 2021
  end-page: 1273
  article-title: An epigenetic clock to estimate the age of living beluga whales
  publication-title: Evolutionary Applications
– volume: 6
  issue: 1
  year: 2015
  article-title: NSD1 mutations generate a genome‐wide DNA methylation signature
  publication-title: Nature Communications
– volume: 111
  start-page: 15538
  issue: 43
  year: 2014
  end-page: 15543
  article-title: Obesity accelerates epigenetic aging of human liver
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
– volume: 5
  start-page: 1
  issue: 1
  year: 2015
  end-page: 10
  article-title: A novel strategy for forensic age prediction by DNA methylation and support vector regression model
  publication-title: Scientific Reports
– start-page: 2020.09.09.289801
  year: 2020
  article-title: Epigenetic clock and methylation studies in vervet monkeys
  publication-title: bioRxiv
– year: 2003
  article-title: C‐reactive protein, the metabolic syndrome, and risk of incident cardiovascular events: An 8‐year follow‐up of 14 719 initially healthy American women
  publication-title: Circulation
– volume: 8
  start-page: 1
  issue: 1
  year: 2017
  end-page: 14
  article-title: Genetic architecture of epigenetic and neuronal ageing rates in human brain regions
  publication-title: Nature Communications
– volume: 5
  start-page: 1
  issue: e18648
  year: 2016
  end-page: 14
  article-title: Maintenance of age in human neurons generated by microRNA‐based neuronal conversion of fibroblasts
  publication-title: eLife
– volume: 39
  start-page: 475
  issue: 5‐6
  year: 2017
  article-title: A longitudinal study of DNA methylation as a potential mediator of age‐related diabetes risk
  publication-title: GeroScience
– volume: 62
  start-page: 987
  issue: 3
  year: 2013
  end-page: 992
  article-title: Insights into the molecular mechanism for type 2 diabetes susceptibility at the KCNQ1 locus from temporal changes in imprinting status in human islets
  publication-title: Diabetes
– start-page: 2020.09.22.308882
  year: 2020
  article-title: Epigenetic clock and methylation studies in elephants
  publication-title: bioRxiv
– volume: 10
  start-page: 1
  issue: e64932
  year: 2021
  end-page: 20
  article-title: Castration delays epigenetic aging and feminizes DNA methylation at androgen‐regulated loci
  publication-title: eLife
– volume: 19
  start-page: 136
  issue: 1
  year: 2018
  article-title: Epigenetic prediction of complex traits and death
  publication-title: Genome Biology
– volume: 6
  issue: 2
  year: 2011
  article-title: Age‐related differences in plasma proteins: How plasma proteins change from neonates to adults
  publication-title: PLoS One
– volume: 12
  start-page: 4394
  issue: 5
  year: 2020
  end-page: 4406
  article-title: DNA methylation clocks as a predictor for ageing and age estimation in naked mole‐rats,
  publication-title: Aging
– volume: 18
  start-page: 68
  issue: 1
  year: 2017
  article-title: Multi‐tissue DNA methylation age predictor in mouse
  publication-title: Genome Biology
– volume: 4
  start-page: 4789
  issue: 1
  year: 2014
  article-title: Epigenome rejuvenation: HP1 mobility as a measure of pluripotent and senescent chromatin ground states
  publication-title: Scientific Reports
– volume: 44
  start-page: 1388
  issue: 4
  year: 2015b
  end-page: 1396
  article-title: The epigenetic clock is correlated with physical and cognitive fitness in the Lothian Birth Cohort 1936
  publication-title: International Journal of Epidemiology
– volume: 18
  issue: 1
  year: 2017
  article-title: Diverse interventions that extend mouse lifespan suppress shared age‐associated epigenetic changes at critical gene regulatory regions
  publication-title: Genome Biology
– volume: 6
  start-page: 413
  year: 1977
  end-page: 429
  article-title: Aging in the nematode : Major biological and environmental factors influencing life span
  publication-title: Mechanisms of Ageing and Development
– volume: 40
  start-page: 161
  year: 2016
  end-page: 167
  article-title: Chromosome organisation during ageing and senescence
  publication-title: Current Opinion in Cell Biology
– volume: 12
  start-page: 1
  issue: 1
  year: 2021
  end-page: 13
  article-title: DNA methylation predicts age and provides insight into exceptional longevity of bats
  publication-title: Nature Communications
– volume: 11
  start-page: 1
  issue: 1
  year: 2020
  end-page: 12
  article-title: Transient non‐integrative expression of nuclear reprogramming factors promotes multifaceted amelioration of aging in human cells
  publication-title: Nature Communications
– volume: 46
  start-page: 549
  issue: 2
  year: 2017
  end-page: 558
  article-title: The epigenetic clock and physical development during childhood and adolescence: Longitudinal analysis from a UK birth cohort
  publication-title: International Journal of Epidemiology
– volume: 14
  start-page: 912
  issue: 9
  year: 2019
  end-page: 926
  article-title: Human epigenetic ageing is logarithmic with time across the entire lifespan
  publication-title: Epigenetics
– volume: 12
  start-page: 115
  issue: 1
  year: 2020
  article-title: Epigenetic measures of ageing predict the prevalence and incidence of leading causes of death and disease burden
  publication-title: Clinical Epigenetics
– start-page: 2020.07.16.203687
  year: 2020
  article-title: Methylation‐based age estimation in a wild mouse
  publication-title: bioRxiv
– volume: 17
  issue: 5
  year: 2018
  article-title: Plasma proteomic signature of age in healthy humans
  publication-title: Aging Cell
– start-page: 2020.09.29.319509
  year: 2020
  article-title: Epigenetic clock and DNA methylation analysis of porcine models of aging and obesity
  publication-title: bioRxiv
– volume: 8
  start-page: 394
  issue: 2
  year: 2016
  end-page: 401
  article-title: DNA methylation levels at individual age‐associated CpG sites can be indicative for life expectancy
  publication-title: Aging
– volume: 7
  start-page: 8524
  issue: 8
  year: 2016
  end-page: 8531
  article-title: Epigenetic clock analyses of cellular senescence and ageing
  publication-title: Oncotarget
– volume: 11
  start-page: 183
  issue: 1
  year: 2019
  article-title: Effect of tobacco smoking on the epigenetic age of human respiratory organs
  publication-title: Clinical Epigenetics
– volume: 9
  start-page: 1
  issue: e59201
  year: 2020
  end-page: 19
  article-title: A rat epigenetic clock recapitulates phenotypic aging and co‐localizes with heterochromatin
  publication-title: eLife
– volume: 493
  start-page: 338
  issue: 7432
  year: 2013
  end-page: 345
  article-title: MTOR is a key modulator of ageing and age‐related disease
  publication-title: Nature
– volume: 17
  start-page: 337
  issue: 5
  year: 2012
  end-page: 343
  article-title: Epigenetic rejuvenation
  publication-title: Genes to Cells
– volume: 7
  start-page: 1
  issue: 1
  year: 2016
  end-page: 9
  article-title: Genetic variants near MLST8 and DHX57 affect the epigenetic age of the cerebellum
  publication-title: Nature Communications
– volume: 37
  start-page: 215
  year: 2018
  end-page: 226
  article-title: DNA methylation‐based age prediction using massively parallel sequencing data and multiple machine learning models
  publication-title: Forensic Science International: Genetics
– volume: 45
  start-page: 424
  issue: 2
  year: 2016
  end-page: 432
  article-title: The epigenetic clock and telomere length are independently associated with chronological age and mortality
  publication-title: International Journal of Epidemiology
– volume: 37
  start-page: 614
  issue: 3
  year: 1965
  end-page: 636
  article-title: The limited in vitro lifetime of human diploid cell strains
  publication-title: Experimental Cell Research
– volume: 7
  start-page: 113
  issue: 1
  year: 2015
  article-title: DNA methylation changes of whole blood cells in response to active smoking exposure in adults: A systematic review of DNA methylation studies
  publication-title: Clinical Epigenetics
– volume: 9
  start-page: 1055
  issue: 3
  year: 2017
  end-page: 1068
  article-title: An epigenetic aging clock for dogs and wolves
  publication-title: Aging
– volume: 9
  start-page: 387
  issue: 1
  year: 2018
  article-title: GWAS of epigenetic aging rates in blood reveals a critical role for TERT
  publication-title: Nature Communications
– volume: 117
  start-page: 23329
  issue: 38
  year: 2020
  end-page: 23335
  article-title: The PedBE clock accurately estimates DNA methylation age in pediatric buccal cells
  publication-title: Proceedings of the National Academy of Sciences
– volume: 19
  start-page: 33
  issue: 1
  year: 2018
  article-title: Comparison of whole‐genome bisulfite sequencing library preparation strategies identifies sources of biases affecting DNA methylation data
  publication-title: Genome Biology
– volume: 15
  start-page: R24
  issue: 2
  year: 2014
  article-title: Aging of blood can be tracked by DNA methylation changes at just three CpG sites
  publication-title: Genome Biology
– volume: 292
  start-page: 107
  issue: 5514
  year: 2001
  end-page: 110
  article-title: A mutant Drosophila insulin receptor homolog that extends life‐span and impairs neuroendocrine function
  publication-title: Science
– year: 2020
  article-title: Epigenetic clock and methylation studies in cats
  publication-title: bioRxiv
– year: 2020
  article-title: Pair bonding slows epigenetic aging and alters methylation in brains of prairie voles
  publication-title: bioRxiv
– volume: 421
  start-page: 182
  issue: 6919
  year: 2003
  end-page: 187
  article-title: IGF‐1 receptor regulates lifespan and resistance to oxidative stress in mice
  publication-title: Nature
– volume: 25
  start-page: 585
  issue: 3
  year: 1961
  end-page: 621
  article-title: The serial cultivation of human diploid cell strains
  publication-title: Experimental Cell Research
– volume: 44
  start-page: 102189
  year: 2020
  article-title: Novel multiplex strategy for DNA methylation‐based age prediction from small amounts of DNA via Pyrosequencing
  publication-title: Forensic Science International: Genetics
– volume: 426
  start-page: 620
  issue: 6967
  year: 2003
  end-page: 620
  article-title: Influence of TOR kinase on lifespan in
  publication-title: Nature
– volume: 63
  start-page: 155
  year: 2016
  end-page: 162
  article-title: Accelerated DNA methylation age: Associations with PTSD and neural integrity
  publication-title: Psychoneuroendocrinology
– volume: 356
  start-page: 6337
  year: 2017
  article-title: Impact of cytosine methylation on DNA binding specificities of human transcription factors
  publication-title: Science
– volume: 11
  start-page: 5895
  issue: 16
  year: 2019b
  end-page: 5923
  article-title: DNA methylation‐based estimator of telomere length
  publication-title: Aging
– volume: 12
  start-page: 1
  issue: 120
  year: 2020
  end-page: 11
  article-title: Epigenetic age and pregnancy outcomes: GrimAge acceleration is associated with shorter gestational length and lower birthweight
  publication-title: Clinical Epigenetics
– start-page: 2021.01.07.425637
  year: 2021
  article-title: A mammalian methylation array for profiling methylation levels at conserved sequences
  publication-title: bioRxiv
– volume: 71
  start-page: 882
  issue: 6
  year: 2018
  end-page: 895
  article-title: Molecular cell review DNA methylation clocks in aging: Categories, causes and consequences
  publication-title: Molecular Cell
– volume: 11
  start-page: 303
  year: 2019a
  end-page: 327
  article-title: DNA methylation GrimAge strongly predicts lifespan and healthspan
  publication-title: Aging
– volume: 96
  start-page: 5894
  year: 1999
  end-page: 5896
  article-title: DNA demethylation
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
– volume: 10
  start-page: 1758
  issue: 7
  year: 2018
  end-page: 1775
  article-title: Epigenetic clock for skin and blood cells applied to Hutchinson Gilford Progeria Syndrome and ex vivo studies
  publication-title: Aging
– volume: 10
  start-page: 2800
  issue: 10
  year: 2018
  end-page: 2815
  article-title: Epigenetic ageing is distinct from senescence‐mediated ageing and is not prevented by telomerase expression
  publication-title: Aging
– volume: 76
  start-page: 741
  issue: 5
  year: 2021
  end-page: 749
  article-title: GrimAge outperforms other epigenetic clocks in the prediction of age‐related clinical phenotypes and all‐cause mortality
  publication-title: The Journals of Gerontology: Series A
– volume: 148
  start-page: 703
  issue: 2
  year: 1998
  end-page: 717
  article-title: An insulin‐like signaling pathway affects both longevity and reproduction in Caenorhabditis elegans
  publication-title: Genetics
– year: 2020
– volume: 10
  start-page: 573
  issue: 4
  year: 2018
  end-page: 591
  article-title: An epigenetic biomarker of aging for lifespan and healthspan
  publication-title: Aging
– volume: 9
  start-page: 1143
  issue: 4
  year: 2017
  end-page: 1152
  article-title: Accelerated epigenetic aging in Werner syndrome
  publication-title: Aging
– volume: 19
  start-page: 371
  issue: 6
  year: 2018
  end-page: 384
  article-title: DNA methylation‐based biomarkers and the epigenetic clock theory of ageing
  publication-title: Nature Reviews Genetics
– volume: 14
  start-page: 491
  issue: 3
  year: 2015a
  end-page: 495
  article-title: Accelerated epigenetic aging in Down syndrome
  publication-title: Aging Cell
– start-page: 463265
  year: 2019
  article-title: Valid post‐clustering differential analysis for single‐cell RNA‐Seq
  publication-title: bioRxiv
– volume: 19
  start-page: 14
  year: 2014
  end-page: 26
  article-title: Base excision repair: A critical player in many games
  publication-title: DNA Repair
– volume: 12
  start-page: 1005183
  issue: 11
  year: 2016
  article-title: A statistical frame‐work to identify deviation from time linearity in epigenetic aging
  publication-title: PLoS Computational Biology
– volume: 1
  start-page: 476
  issue: 4
  year: 2015
  end-page: 485
  article-title: Correlation of smoking‐associated DNA methylation changes in buccal cells with DNA methylation changes in epithelial cancer
  publication-title: JAMA Oncology
– volume: 16
  start-page: 385
  issue: 4
  year: 1997
  end-page: 395
  article-title: The lasso method for variable selection in the cox model
  publication-title: Statistics in Medicine
– volume: 8
  start-page: 14617
  year: 2017
  article-title: DNA methylation signatures in peripheral blood strongly predict all‐cause mortality
  publication-title: Nature Communications
– volume: 12
  start-page: 1
  year: 2020
  article-title: Highly accurate skin‐specific methylome analysis algorithm as a platform to screen and validate therapeutics for healthy aging
  publication-title: Clinical Epigenetics
– volume: 6
  issue: 6
  year: 2011
  article-title: Epigenetic predictor of age
  publication-title: PLoS One
– volume: 21
  start-page: 108
  issue: 1
  year: 2020
  article-title: MethylNet: An automated and modular deep learning approach for DNA methylation analysis
  publication-title: BMC Bioinformatics
– volume: 16
  start-page: 1
  issue: 1
  year: 2015
  end-page: 5
  article-title: Erratum to DNA methylation age of human tissues and cell types [Genome Biology, 14, R115, (2013)]
  publication-title: Genome Biology
– volume: 8
  start-page: 152
  issue: 6
  year: 2017
  article-title: DNA methylation profiling of human prefrontal cortex neurons in heroin users shows significant difference between genomic contexts of hyper‐ and hypomethylation and a younger epigenetic age
  publication-title: Genes
– volume: 47
  start-page: 101763
  year: 2020
  article-title: Age prediction in living: Forensic epigenetic age estimation based on blood samples
  publication-title: Legal Medicine
– volume: 68
  start-page: 667
  issue: 6
  year: 2013
  end-page: 674
  article-title: Modeling the rate of senescence: can estimated biological age predict mortality more accurately than chronological age?
  publication-title: Journals of Gerontology Series A: Biomedical Sciences and Medical Sciences
– start-page: 1
  year: 2020
  end-page: 8
  article-title: Evaluating the impact of trauma and PTSD on epigenetic prediction of lifespan and neural integrity
  publication-title: Neuropsychopharmacology
– volume: 299
  start-page: 572
  issue: 5606
  year: 2003
  end-page: 574
  article-title: Extended longevity in mice lacking the insulin receptor in adipose tissue
  publication-title: Science
– volume: 96
  start-page: 1020
  issue: 7
  year: 2007
  end-page: 1024
  article-title: Telomere and telomerase in stem cells
  publication-title: British Journal of Cancer
– volume: 384
  start-page: 33
  issue: 6604
  year: 1996
  article-title: Dwarf mice and the ageing process
  publication-title: Nature
– volume: 15
  start-page: 263310552094222
  year: 2020
  article-title: DNA methylation clocks and their predictive capacity for aging phenotypes and healthspan
  publication-title: Neuroscience Insights
– volume: 35
  start-page: 315
  issue: 2
  year: 2010
  end-page: 319
  article-title: Nuclear reprogramming and epigenetic rejuvenation
  publication-title: Journal of Biosciences
– volume: 18
  start-page: 57
  issue: 1
  year: 2017
  article-title: Epigenetic aging signatures in mice livers are slowed by dwarfism, calorie restriction and rapamycin treatment
  publication-title: Genome Biology
– volume: 9
  start-page: 419
  issue: 2
  year: 2017
  end-page: 446
  article-title: Epigenetic clock analysis of diet, exercise, education, and lifestyle factors
  publication-title: Aging
– volume: 65
  start-page: 465
  issue: 2
  year: 2020
  end-page: 470
  article-title: Age Estimation Based on DNA Methylation Using Blood Samples From Deceased Individuals
  publication-title: Journal of Forensic Sciences
– volume: 7
  start-page: 1
  issue: e.40675
  year: 2018
  end-page: 16
  article-title: A whole lifespan mouse multi‐tissue DNA methylation clock
  publication-title: eLife
– volume: 16
  start-page: 593
  issue: 10
  year: 2015
  end-page: 610
  article-title: Epigenetic regulation of ageing: Linking environmental inputs to genomic stability
  publication-title: Nature Reviews Molecular Cell Biology
– volume: 95
  start-page: 5607
  year: 1998
  end-page: 5610
  article-title: The rate of telomere sequence loss in human leukocytes varies with age
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
– volume: 13
  start-page: 229
  issue: 3
  year: 2016
  end-page: 232
  article-title: Parallel single‐cell sequencing links transcriptional and epigenetic heterogeneity
  publication-title: Nature Methods
– volume: 11
  start-page: 1132
  issue: 6
  year: 2012
  end-page: 1134
  article-title: Methylation ofELOVL2gene as a new epigenetic marker of age
  publication-title: Aging Cell
– volume: 18
  start-page: 1
  issue: 1
  year: 2019
  end-page: 7
  article-title: Partial reprogramming induces a steady decline in epigenetic age before loss of somatic identity
  publication-title: Aging Cell
– volume: 10
  start-page: 4361
  issue: 1
  year: 2019
  article-title: Ageing affects DNA methylation drift and transcriptional cell‐to‐cell variability in mouse muscle stem cells
  publication-title: Nature Communications
– start-page: 2021.05.16.444078
  year: 2021
  article-title: Epigenetic predictors of maximum lifespan and other life history traits in mammals
  publication-title: bioRxiv
– volume: 25
  start-page: 1843
  issue: 12
  year: 2019
  end-page: 1850
  article-title: Undulating changes in human plasma proteome profiles across the lifespan
  publication-title: Nature Medicine
– volume: 11
  start-page: 176
  issue: 2
  year: 2020
  end-page: 185
  article-title: Quantitative translation of dog‐to‐human aging by conserved remodeling of the DNA methylome
  publication-title: Cell Systems
– volume: 80
  start-page: 485
  issue: 3
  year: 1995
  end-page: 496
  article-title: Mutation in the silencing gene S/R4 can delay aging in
  publication-title: Cell
– volume: 153
  start-page: 1194
  issue: 6
  year: 2013
  article-title: The hallmarks of aging
  publication-title: Cell
– volume: 38
  start-page: 1
  year: 2019
  end-page: 8
  article-title: DNA methylation of the ELOVL2, FHL2, KLF14, C1orf132/MIR29B2C, and TRIM59 genes for age prediction from blood, saliva, and buccal swab samples
  publication-title: Forensic Science International: Genetics
– volume: 88
  start-page: 224
  issue: 3
  year: 2020
  end-page: 235
  article-title: Schizophrenia and epigenetic aging biomarkers: Increased mortality, reduced cancer risk, and unique clozapine effects
  publication-title: Biological Psychiatry
– volume: 8
  start-page: 705
  issue: 5
  year: 2016
  end-page: 719
  article-title: Epigenetic drift, epigenetic clocks and cancer risk
  publication-title: Epigenomics
– volume: 346
  start-page: 866
  issue: 6287
  year: 1990
  end-page: 868
  article-title: Telomere reduction in human colorectal carcinoma and with ageing
  publication-title: Nature
– volume: 12
  start-page: 1
  issue: 1
  year: 2019
  end-page: 11
  article-title: An epigenome‐wide association study of sex‐ specific chronological ageing
  publication-title: Genome Medicine
– start-page: 2021.03.07.434299
  year: 2021
  article-title: Hibernation slows epigenetic aging in yellow‐bellied marmots
  publication-title: bioRxiv
– volume: 20
  issue: 5
  year: 2021
  article-title: Epigenetic clock and methylation study of oocytes from a bovine model of reproductive aging
  publication-title: Aging Cell
– volume: 588
  start-page: 124
  issue: 7836
  year: 2020
  end-page: 129
  article-title: Reprogramming to recover youthful epigenetic information and restore vision
  publication-title: Nature
– volume: 11
  start-page: 3238
  issue: 10
  year: 2019
  end-page: 3249
  article-title: Rapamycin retards epigenetic ageing of keratinocytes independently of its effects on replicative senescence, proliferation and differentiation
  publication-title: Aging
– volume: 14
  start-page: 976
  issue: 5
  year: 2014
  end-page: 987
  article-title: Epigenetic estimation of age in humpback whales
  publication-title: Molecular Ecology Resources
– volume: 9
  start-page: 1
  year: 2019
  article-title: Evaluation of six blood‐based age prediction models using DNA methylation analysis by pyrosequencing
  publication-title: Scientific Reports
– start-page: 2020.09.21.307108
  year: 2020
  article-title: Epigenetic clock and methylation studies in the rhesus macaque
  publication-title: bioRxiv
– start-page: 2020.11.21.392779
  year: 2020
  article-title: DNA methylation age analysis of rapamycin in common marmosets
  publication-title: bioRxiv
– volume: 20
  issue: 1
  year: 2019
  article-title: Screening for genes that accelerate the epigenetic aging clock in humans reveals a role for the H3K36 methyltransferase NSD1
  publication-title: Genome Biology
– volume: 74
  start-page: 57
  issue: 1
  year: 2019
  end-page: 61
  article-title: Tracking the epigenetic clock across the human life course: A meta‐analysis of longitudinal cohort data
  publication-title: The Journals of Gerontology: Series A
– volume: 19
  start-page: 2
  year: 2020
  article-title: The lipid elongation enzyme ELOVL2 is a molecular regulator of aging in the retina
  publication-title: Aging Cell
– volume: 15
  start-page: 149
  issue: 1
  year: 2016
  end-page: 154
  article-title: DNA methylation age is associated with mortality in a longitudinal Danish twin study
  publication-title: Aging Cell
– volume: 7
  start-page: 1198
  issue: 12
  year: 2015
  end-page: 1211
  article-title: Epigenetic age of the pre‐frontal cortex is associated with neuritic plaques, amyloid load, and Alzheimer’s disease related cognitive functioning
  publication-title: Aging
– volume: 13
  start-page: 85
  issue: 1
  year: 2018
  end-page: 94
  article-title: Faster ticking rate of the epigenetic clock is associated with faster pubertal development in girls
  publication-title: Epigenetics
– volume: 74
  start-page: 91
  issue: 1
  year: 2019
  end-page: 98
  article-title: Effects of Vitamin D 3 supplementation on epigenetic aging in overweight and obese African Americans with suboptimal Vitamin D status: A randomized clinical trial
  publication-title: Journals of Gerontology ‐ Series A Biological Sciences and Medical Sciences
– volume: 12
  start-page: 125
  issue: 1
  year: 2020
  article-title: PRDM8 reveals aberrant DNA methylation in aging syndromes and is relevant for hematopoietic and neuronal differentiation
  publication-title: Clinical Epigenetics
– volume: 24
  start-page: 489
  issue: 3
  year: 2016
  end-page: 500
  article-title: AGE‐induced keratinocyte MMP‐9 expression is linked to TET2‐mediated CpG demethylation
  publication-title: Wound Repair and Regeneration
– volume: 311
  start-page: 110267
  year: 2020
  article-title: DNA methylation age estimation in blood samples of living and deceased individuals using a multiplex SNaPshot assay
  publication-title: Forensic Science International
– start-page: 2020.11.29.402891
  year: 2020
  article-title: DNA methylation study of age and sex in baboons and four other primates
  publication-title: bioRxiv
– start-page: 2020.05.07.082917
  year: 2020
  article-title: Reversing age: Dual species measurement of epigenetic age with a single clock
  publication-title: bioRxiv
– volume: 375
  start-page: 20190616
  issue: 1811
  year: 2020
  article-title: Age‐associated epigenetic change in chimpanzees and humans
  publication-title: Philosophical Transactions of the Royal Society B: Biological Sciences
– volume: 20
  start-page: 1
  issue: 1
  year: 2019
  end-page: 24
  article-title: DNA methylation aging clocks: Challenges and recommendations
  publication-title: Genome Biology
– volume: 20
  start-page: 387
  issue: 2
  year: 2020
  end-page: 397
  article-title: A clockwork fish: Age prediction using DNA methylation‐based biomarkers in the European seabass
  publication-title: Molecular Ecology Resources
– volume: 23
  start-page: 223
  issue: 4‐5
  year: 1988
  end-page: 239
  article-title: Biomarkers of aging
  publication-title: Experimental Gerontology
– start-page: 1
  year: 2020
  end-page: 11
  article-title: A DNA methylation clock associated with age‐related illnesses and mortality is accelerated in men with combat PTSD
  publication-title: Molecular Psychiatry
– start-page: 2021.01.18.426733
  year: 2021
  article-title: Universal DNA methylation age across mammalian tissues
  publication-title: bioRxiv
– volume: 8
  issue: 1
  year: 2016
  article-title: Epigenetic associations of type 2 diabetes and BMI in an Arab population
  publication-title: Clinical Epigenetics
– volume: 16
  start-page: 25
  issue: 1
  year: 2015a
  article-title: DNA methylation age of blood predicts all‐cause mortality in later life
  publication-title: Genome Biology
– volume: 14
  start-page: 885
  issue: 10
  year: 2004
  end-page: 890
  article-title: Regulation of lifespan in Drosophila by modulation of genes in the TOR signaling pathway
  publication-title: Current Biology
– volume: 25
  start-page: 954
  issue: 4
  year: 2017
  end-page: 960
  article-title: Using DNA methylation profiling to evaluate biological age and longevity interventions
  publication-title: Cell Metabolism
– volume: 10
  start-page: 2832
  issue: 10
  year: 2018
  end-page: 2854
  article-title: A multi‐tissue full lifespan epigenetic clock for mice
  publication-title: Aging
– volume: 9
  start-page: 1
  issue: E51507
  year: 2020
  end-page: 20
  article-title: Longitudinal trajectories, correlations and mortality associations of nine biological ages across 20‐years follow‐up
  publication-title: eLife
– volume: 256
  start-page: 45
  issue: 1
  year: 1991
  end-page: 48
  article-title: In vivo loss of telomeric repeats with age in humans
  publication-title: Mutation Research DNAging
– volume: 63
  start-page: 2962
  issue: 9
  year: 2014
  end-page: 2976
  article-title: Altered DNA methylation and differential expression of genes influencing metabolism and inflammation in adipose tissue from subjects with type 2 diabetes
  publication-title: Diabetes
– volume: 12
  start-page: 24817
  year: 2020
  end-page: 24835
  article-title: A DNA methylation age predictor for zebrafish
  publication-title: Aging
– volume: 49
  start-page: 359
  issue: 2
  year: 2013
  end-page: 367
  article-title: Genome‐wide methylation profiles reveal quantitative views of human aging rates
  publication-title: Molecular Cell
– volume: 17
  start-page: 205
  issue: 1
  year: 2016
  article-title: Correlation of an epigenetic mitotic clock with cancer risk
  publication-title: Genome Biology
– volume: 345
  start-page: 458
  issue: 6274
  year: 1990
  end-page: 460
  article-title: Telomeres shorten during ageing of human fibroblasts
  publication-title: Nature
– volume: 3
  start-page: 526
  issue: 7
  year: 2015
  end-page: 534
  article-title: Epigenome‐wide association of DNA methylation markers in peripheral blood from Indian Asians and Europeans with incident type 2 diabetes: A nested case‐control study
  publication-title: The Lancet Diabetes and Endocrinology
– volume: 9
  start-page: 1
  issue: 1
  year: 2019
  end-page: 14
  article-title: Epigenome‐wide association study of depression symptomatology in elderly monozygotic twins
  publication-title: Translational Psychiatry
– volume: 72
  start-page: 1015
  issue: 8
  year: 2017
  end-page: 1023
  article-title: Systemic age‐associated DNA hypermethylation of ELOVL2 Gene. In vivo and in vitro evidences of a cell replication process
  publication-title: Journals of Gerontology ‐ Series A Biological Sciences and Medical Sciences
– volume: 11
  start-page: 366
  issue: 2
  year: 2012
  end-page: 369
  article-title: Monitoring of cellular senescence by DNA‐methylation at specific CpG sites
  publication-title: Aging Cell
– volume: 8
  start-page: 64
  issue: 1
  year: 2016
  article-title: Epigenetic age acceleration predicts cancer, cardiovascular, and all‐cause mortality in a German case cohort
  publication-title: Clinical Epigenetics
– volume: 17
  start-page: 171
  issue: 1
  year: 2016a
  article-title: An epigenetic clock analysis of race/ethnicity, sex, and coronary heart disease
  publication-title: Genome Biology
– volume: 21
  start-page: 29
  year: 2017
  end-page: 36
  article-title: Biological age predictors
  publication-title: EBioMedicine
– volume: 12
  start-page: 1252
  issue: 5
  year: 2021
  article-title: DeepMAge: A methylation aging clock developed with deep learning
  publication-title: Aging and Disease
– volume: 30
  start-page: 365
  issue: 4
  year: 2002
  end-page: 366
  article-title: Haploinsufficiency of NSD1 causes Sotos syndrome
  publication-title: Nature Genetics
– volume: 13
  start-page: 7
  issue: 1
  year: 2015
  article-title: Aging and DNA methylation
  publication-title: BMC Biology
– volume: 8
  start-page: 1
  issue: 1
  year: 2016
  end-page: 8
  article-title: Frailty is associated with the epigenetic clock but not with telomere length in a German cohort
  publication-title: Clinical Epigenetics
– volume: 27
  start-page: 545
  issue: 4
  year: 2017
  end-page: 552
  article-title: Time‐dependent genetic effects on gene expression implicate aging processes
  publication-title: Genome Research
– volume: 80
  start-page: 367
  issue: 3
  year: 2020
  end-page: 374
  article-title: Epigenetic aging: More than just a clock when it comes to cancer
  publication-title: Cancer Research
– volume: 11
  start-page: 54
  issue: 1
  year: 2019
  article-title: Improved precision of epigenetic clock estimates across tissues and its implication for biological ageing
  publication-title: Genome Medicine
– volume: 8
  start-page: 1034
  issue: 5
  year: 2016
  end-page: 1048
  article-title: Epigenetic age predictions based on buccal swabs are more precise in combination with cell type‐specific DNA methylation signatures
  publication-title: Aging
– volume: 11
  start-page: 25
  issue: 1
  year: 2018
  article-title: Age‐related DNA methylation changes are tissue‐specific with ELOVL2 promoter methylation as exception
  publication-title: Epigenetics and Chromatin
– volume: 25
  start-page: 191
  issue: 1
  year: 2016
  end-page: 201
  article-title: Prenatal and early life influences on epigenetic age in children: A study of mother‐offspring pairs from two cohort studies
  publication-title: Human Molecular Genetics
– volume: 174
  start-page: 18
  year: 2018
  end-page: 29
  article-title: Back to the future: Epigenetic clock plasticity towards healthy aging
  publication-title: Mechanisms of Ageing and Development
– volume: 7
  start-page: 294
  issue: 5
  year: 2015c
  end-page: 306
  article-title: The cerebellum ages slowly according to the epigenetic clock
  publication-title: Aging
– volume: 403
  start-page: 501
  issue: 6769
  year: 2000
  end-page: 502
  article-title: Demethylation of the zygotic paternal genome
  publication-title: Nature
– year: 2020
  article-title: Epigenetic clock and leukocyte telomere length are associated with vitamin D status, but not with functional assessments and frailty in the berlin aging study II
  publication-title: The Journals of Gerontology: Series A
– volume: 42
  start-page: 6956
  issue: 11
  year: 2014
  end-page: 6971
  article-title: TET1 is a maintenance DNA demethylase that prevents methylation spreading in differentiated cells
  publication-title: Nucleic Acids Research
– volume: 29
  start-page: 250
  year: 2017
  end-page: 256
  article-title: Independent validation of DNA‐based approaches for age prediction in blood
  publication-title: Forensic Science International: Genetics
– volume: 212
  start-page: 1563
  issue: 10
  year: 2015
  end-page: 1573
  article-title: HIV‐1 infection accelerates age according to the epigenetic clock
  publication-title: Journal of Infectious Diseases
– volume: 20
  start-page: 1
  year: 2019
  article-title: Systematic underestimation of the epigenetic clock and age acceleration in older subjects
  publication-title: Genome Biology
– volume: 23
  start-page: 101199
  issue: 6
  year: 2020
  article-title: Human gut microbiome aging clock based on taxonomic profiling and deep learning
  publication-title: iScience
– volume: 8
  start-page: 157
  issue: 2
  year: 2008
  end-page: 168
  article-title: Resveratrol delays age‐related deterioration and mimics transcriptional aspects of dietary restriction without extending life span
  publication-title: Cell Metabolism
– volume: 14
  year: 2013
  article-title: DNA methylation age of human tissues and cell types
  publication-title: Genome Biology
– volume: 5
  start-page: 1
  issue: 18648
  year: 2016
  ident: e_1_2_11_77_1
  article-title: Maintenance of age in human neurons generated by microRNA‐based neuronal conversion of fibroblasts
  publication-title: eLife
– ident: e_1_2_11_101_1
  doi: 10.1093/gerona/gls233
– start-page: 2020.09.29.3195
  year: 2020
  ident: e_1_2_11_157_1
  article-title: Epigenetic clock and DNA methylation analysis of porcine models of aging and obesity
  publication-title: bioRxiv
– ident: e_1_2_11_16_1
  doi: 10.1371/journal.pone.0014821
– ident: e_1_2_11_27_1
  doi: 10.1016/j.fsigen.2017.04.020
– ident: e_1_2_11_18_1
  doi: 10.1111/eva.13195
– ident: e_1_2_11_43_1
  doi: 10.1073/pnas.95.10.5607
– start-page: 2020.09.22.3088
  year: 2020
  ident: e_1_2_11_149_1
  article-title: Epigenetic clock and methylation studies in elephants
  publication-title: bioRxiv
– ident: e_1_2_11_109_1
  doi: 10.1016/0921-8734(91)90032-7
– ident: e_1_2_11_167_1
  doi: 10.1111/acel.12799
– ident: e_1_2_11_182_1
  doi: 10.1186/gb-2014-15-2-r24
– ident: e_1_2_11_41_1
  doi: 10.1016/j.fsigen.2019.102189
– volume-title: FOXO BioScience, Formerly Known as Life Epigenetics, An nounces New Infinium Mouse Methylation Array in Strategic Collaboration with Van Andel Institute
  year: 2020
  ident: e_1_2_11_42_1
– ident: e_1_2_11_60_1
  doi: 10.1038/nature01298
– ident: e_1_2_11_55_1
  doi: 10.1038/45843
– ident: e_1_2_11_105_1
  doi: 10.1186/s12859-020-3443-8
– ident: e_1_2_11_140_1
  doi: 10.1186/s13059-018-1408-2
– ident: e_1_2_11_108_1
  doi: 10.18632/aging.100908
– ident: e_1_2_11_112_1
  doi: 10.18632/oncotarget.7383
– ident: e_1_2_11_19_1
  doi: 10.1186/s13148-016-0186-5
– start-page: 2021.01.18.4267
  year: 2021
  ident: e_1_2_11_115_1
  article-title: Universal DNA methylation age across mammalian tissues
  publication-title: bioRxiv
– ident: e_1_2_11_158_1
  doi: 10.1093/hmg/ddv456
– ident: e_1_2_11_78_1
  doi: 10.1016/j.immuni.2015.03.005
– ident: e_1_2_11_141_1
  doi: 10.1111/acel.12877
– ident: e_1_2_11_153_1
  doi: 10.1016/j.cub.2019.07.011
– ident: e_1_2_11_163_1
  doi: 10.1371/journal.pcbi.1005183
– ident: e_1_2_11_26_1
  doi: 10.1093/gerona/gly223
– ident: e_1_2_11_20_1
  doi: 10.1038/384033a0
– volume: 10
  start-page: 1
  issue: 64932
  year: 2021
  ident: e_1_2_11_166_1
  article-title: Castration delays epigenetic aging and feminizes DNA methylation at androgen‐regulated loci
  publication-title: eLife
– ident: e_1_2_11_164_1
  doi: 10.1038/s41398-019-0548-9
– ident: e_1_2_11_119_1
  doi: 10.18632/aging.102173
– ident: e_1_2_11_144_1
  doi: 10.1038/ncomms9570
– ident: e_1_2_11_54_1
  doi: 10.1016/0014-4827(61)90192-6
– ident: e_1_2_11_116_1
  doi: 10.1038/ncomms15353
– ident: e_1_2_11_64_1
  doi: 10.1111/acel.12325
– ident: e_1_2_11_117_1
  doi: 10.1038/ncomms10561
– ident: e_1_2_11_89_1
  doi: 10.1016/j.cub.2004.03.059
– start-page: 2020.09.09.2898
  year: 2020
  ident: e_1_2_11_81_1
  article-title: Epigenetic clock and methylation studies in vervet monkeys
  publication-title: bioRxiv
– ident: e_1_2_11_160_1
  doi: 10.1007/s12038-010-0034-2
– ident: e_1_2_11_104_1
  doi: 10.18632/aging.101414
– ident: e_1_2_11_199_1
  doi: 10.2217/epi-2015-0017
– ident: e_1_2_11_183_1
  doi: 10.1093/jn/116.4.641
– ident: e_1_2_11_133_1
  doi: 10.1186/s13073-019-0693-z
– ident: e_1_2_11_14_1
  doi: 10.1080/15592294.2017.1414127
– ident: e_1_2_11_11_1
  doi: 10.1073/pnas.1506264112
– ident: e_1_2_11_194_1
  doi: 10.1186/s13148-017-0315-9
– ident: e_1_2_11_126_1
  doi: 10.1186/s13059-015-0584-6
– ident: e_1_2_11_99_1
  doi: 10.1038/s41591-019-0673-2
– ident: e_1_2_11_102_1
  doi: 10.18632/aging.100864
– ident: e_1_2_11_132_1
  doi: 10.1186/s13059-018-1514-1
– ident: e_1_2_11_87_1
  doi: 10.1016/j.ebiom.2017.03.046
– ident: e_1_2_11_200_1
  doi: 10.1111/j.1467-9868.2005.00503.x
– ident: e_1_2_11_93_1
  doi: 10.1111/j.1474-9726.2011.00784.x
– ident: e_1_2_11_3_1
  doi: 10.1016/j.fsigen.2018.09.003
– ident: e_1_2_11_38_1
  doi: 10.18632/aging.100972
– volume: 12
  start-page: 1
  issue: 120
  year: 2020
  ident: e_1_2_11_154_1
  article-title: Epigenetic age and pregnancy outcomes: GrimAge acceleration is associated with shorter gestational length and lower birthweight
  publication-title: Clinical Epigenetics
– ident: e_1_2_11_174_1
  doi: 10.1093/genetics/148.2.703
– ident: e_1_2_11_88_1
  doi: 10.18632/aging.101588
– ident: e_1_2_11_165_1
  doi: 10.1186/s13059-017-1203-5
– ident: e_1_2_11_139_1
  doi: 10.1016/j.cell.2016.11.052
– ident: e_1_2_11_120_1
  doi: 10.1038/s41467-017-02697-5
– ident: e_1_2_11_46_1
  doi: 10.1186/s13148-015-0148-3
– start-page: 2020.09.21.3071
  year: 2020
  ident: e_1_2_11_75_1
  article-title: Epigenetic clock and methylation studies in the rhesus macaque
  publication-title: bioRxiv
– ident: e_1_2_11_150_1
  doi: 10.18632/aging.101168
– ident: e_1_2_11_29_1
  doi: 10.1111/acel.12421
– ident: e_1_2_11_48_1
  doi: 10.1007/s11357-017-0001-z
– ident: e_1_2_11_175_1
  doi: 10.2337/db12-0819
– ident: e_1_2_11_190_1
  doi: 10.1186/s13059-016-1064-3
– ident: e_1_2_11_152_1
  doi: 10.1161/01.CIR.0000055014.62083.05
– ident: e_1_2_11_129_1
  doi: 10.1186/s13059-019-1753-9
– ident: e_1_2_11_131_1
  doi: 10.18632/aging.202400
– ident: e_1_2_11_146_1
  doi: 10.1038/s41551-017-0093
– ident: e_1_2_11_198_1
  doi: 10.1111/wrr.12426
– ident: e_1_2_11_124_1
  doi: 10.1038/srep04789
– ident: e_1_2_11_50_1
  doi: 10.1016/j.molcel.2012.10.016
– ident: e_1_2_11_84_1
  doi: 10.1038/nature11861
– ident: e_1_2_11_12_1
  doi: 10.1038/nrm4048
– ident: e_1_2_11_121_1
  doi: 10.1186/s13059-016-0871-x
– ident: e_1_2_11_67_1
  doi: 10.18632/aging.101005
– ident: e_1_2_11_44_1
  doi: 10.1016/j.isci.2020.101199
– ident: e_1_2_11_97_1
  doi: 10.1038/ng863
– start-page: 463265
  year: 2019
  ident: e_1_2_11_195_1
  article-title: Valid post‐clustering differential analysis for single‐cell RNA‐Seq
  publication-title: bioRxiv
– ident: e_1_2_11_71_1
  doi: 10.18632/aging.101508
– ident: e_1_2_11_35_1
  doi: 10.1111/1556-4029.14185
– ident: e_1_2_11_65_1
  doi: 10.1186/s13059-016-1030-0
– start-page: 2020.09.21.3066
  year: 2020
  ident: e_1_2_11_100_1
  article-title: Epigenetic clock and DNA methylation studies of roe deer in the wild
  publication-title: bioRxiv
– ident: e_1_2_11_68_1
  doi: 10.1093/infdis/jiv277
– ident: e_1_2_11_113_1
  doi: 10.18632/aging.102892
– year: 2020
  ident: e_1_2_11_155_1
  article-title: Pair bonding slows epigenetic aging and alters methylation in brains of prairie voles
  publication-title: bioRxiv
– ident: e_1_2_11_178_1
  doi: 10.18632/aging.100744
– ident: e_1_2_11_70_1
  doi: 10.18632/aging.100742
– start-page: 1
  year: 2020
  ident: e_1_2_11_90_1
  article-title: Evaluating the impact of trauma and PTSD on epigenetic prediction of lifespan and neural integrity
  publication-title: Neuropsychopharmacology
– start-page: 2020.11.29.4028
  year: 2020
  ident: e_1_2_11_66_1
  article-title: DNA methylation study of age and sex in baboons and four other primates
  publication-title: bioRxiv
– ident: e_1_2_11_34_1
  doi: 10.1016/j.mad.2018.01.002
– ident: e_1_2_11_30_1
  doi: 10.1186/s13059-017-1185-3
– ident: e_1_2_11_173_1
  doi: 10.1002/(SICI)1097-0258(19970228)16:4<385::AID-SIM380>3.0.CO;2-3
– ident: e_1_2_11_98_1
  doi: 10.1016/j.legalmed.2020.101744
– start-page: 2020.07.16.2036
  year: 2020
  ident: e_1_2_11_110_1
  article-title: Methylation‐based age estimation in a wild mouse
  publication-title: bioRxiv
– ident: e_1_2_11_49_1
  doi: 10.1098/rstb.2019.0616
– ident: e_1_2_11_36_1
  doi: 10.1016/j.forsciint.2020.110267
– ident: e_1_2_11_13_1
  doi: 10.1177/2633105520942221
– ident: e_1_2_11_96_1
  doi: 10.3390/genes8060152
– ident: e_1_2_11_2_1
  doi: 10.1186/s13148-016-0177-6
– ident: e_1_2_11_122_1
  doi: 10.18632/aging.101217
– ident: e_1_2_11_130_1
  doi: 10.1038/35000656
– ident: e_1_2_11_142_1
  doi: 10.1016/j.cmet.2008.06.011
– ident: e_1_2_11_187_1
  doi: 10.1186/s13148-019-0777-z
– ident: e_1_2_11_33_1
  doi: 10.1038/s41598-019-45197-w
– ident: e_1_2_11_56_1
  doi: 10.1038/s41467-019-12293-4
– ident: e_1_2_11_69_1
  doi: 10.18632/aging.101976
– ident: e_1_2_11_135_1
  doi: 10.1073/pnas.1820843116
– ident: e_1_2_11_114_1
  doi: 10.1038/s41586-020-2975-4
– ident: e_1_2_11_9_1
  doi: 10.1186/s13059-019-1824-y
– ident: e_1_2_11_80_1
  doi: 10.1038/s41598-018-28318-9
– ident: e_1_2_11_23_1
  doi: 10.1016/j.ceb.2016.03.020
– ident: e_1_2_11_161_1
  doi: 10.1186/s13072-018-0191-3
– ident: e_1_2_11_28_1
  doi: 10.1038/ncomms10207
– ident: e_1_2_11_193_1
  doi: 10.1016/j.fsigen.2015.05.001
– ident: e_1_2_11_180_1
  doi: 10.1016/j.cels.2020.06.006
– start-page: 2020.11.21.3927
  year: 2020
  ident: e_1_2_11_76_1
  article-title: DNA methylation age analysis of rapamycin in common marmosets
  publication-title: bioRxiv
– ident: e_1_2_11_111_1
  doi: 10.1016/j.cell.2013.05.039
– ident: e_1_2_11_17_1
  doi: 10.1186/s13148-020-00899-1
– ident: e_1_2_11_22_1
  doi: 10.1016/S2213-8587(15)00127-8
– ident: e_1_2_11_37_1
  doi: 10.1016/j.legalmed.2020.101763
– ident: e_1_2_11_134_1
  doi: 10.1093/gerona/glaa286
– volume: 12
  start-page: 1
  issue: 1
  year: 2021
  ident: e_1_2_11_184_1
  article-title: DNA methylation predicts age and provides insight into exceptional longevity of bats
  publication-title: Nature Communications
– ident: e_1_2_11_61_1
  doi: 10.1186/gb-2013-14-10-r115
– ident: e_1_2_11_127_1
  doi: 10.1093/ije/dyu277
– ident: e_1_2_11_10_1
  doi: 10.7554/eLife.54870
– ident: e_1_2_11_172_1
  doi: 10.18632/aging.101211
– start-page: 2020.05.07.0829
  year: 2020
  ident: e_1_2_11_74_1
  article-title: Reversing age: Dual species measurement of epigenetic age with a single clock
  publication-title: bioRxiv
– ident: e_1_2_11_118_1
  doi: 10.18632/aging.101684
– volume-title: “SNaPshot™ Multiplex Kit”
  year: 2020
  ident: e_1_2_11_170_1
– start-page: 2021.01.07.4256
  year: 2021
  ident: e_1_2_11_6_1
  article-title: A mammalian methylation array for profiling methylation levels at conserved sequences
  publication-title: bioRxiv
– ident: e_1_2_11_47_1
  doi: 10.1111/acel.12005
– ident: e_1_2_11_53_1
  doi: 10.1016/0014-4827(65)90211-9
– ident: e_1_2_11_197_1
  doi: 10.1038/ncomms14617
– ident: e_1_2_11_82_1
  doi: 10.1242/dev.01255
– ident: e_1_2_11_63_1
  doi: 10.1073/pnas.1412759111
– ident: e_1_2_11_196_1
  doi: 10.1186/s13073-019-0667-1
– ident: e_1_2_11_31_1
  doi: 10.1111/1556-4029.14185
– ident: e_1_2_11_95_1
  doi: 10.1111/acel.13349
– ident: e_1_2_11_186_1
  doi: 10.1073/pnas.96.11.5894
– ident: e_1_2_11_52_1
  doi: 10.1038/346866a0
– ident: e_1_2_11_32_1
  doi: 10.1186/s13148-020-00914-5
– ident: e_1_2_11_138_1
  doi: 10.2337/db13-1459
– ident: e_1_2_11_191_1
  doi: 10.1126/science.aaj2239
– ident: e_1_2_11_58_1
  doi: 10.1186/s13148-020-00905-6
– ident: e_1_2_11_5_1
  doi: 10.1038/nmeth.3728
– ident: e_1_2_11_7_1
  doi: 10.1093/gerona/glw185
– volume: 9
  start-page: 1
  issue: 59201
  year: 2020
  ident: e_1_2_11_103_1
  article-title: A rat epigenetic clock recapitulates phenotypic aging and co‐localizes with heterochromatin
  publication-title: eLife
– ident: e_1_2_11_59_1
  doi: 10.1038/sj.bjc.6603671
– ident: e_1_2_11_4_1
  doi: 10.1111/1755-0998.13111
– ident: e_1_2_11_45_1
  doi: 10.14336/AD.2020.1202
– ident: e_1_2_11_92_1
  doi: 10.1016/0047-6374(77)90043-4
– ident: e_1_2_11_15_1
  doi: 10.1126/science.1078223
– ident: e_1_2_11_192_1
  doi: 10.1158/0008-5472.CAN-19-0924
– ident: e_1_2_11_179_1
  doi: 10.1016/j.dnarep.2014.03.030
– ident: e_1_2_11_40_1
  doi: 10.1016/j.molcel.2018.08.008
– ident: e_1_2_11_176_1
  doi: 10.1038/426620a
– ident: e_1_2_11_185_1
  doi: 10.1016/j.psyneuen.2015.09.020
– ident: e_1_2_11_181_1
  doi: 10.1186/s13059-017-1186-2
– ident: e_1_2_11_86_1
  doi: 10.1016/j.fsigen.2018.09.010
– ident: e_1_2_11_79_1
  doi: 10.1371/journal.pone.0017213
– ident: e_1_2_11_145_1
  doi: 10.1016/j.cmet.2017.03.016
– ident: e_1_2_11_156_1
  doi: 10.1038/s41467-020-15174-3
– year: 2020
  ident: e_1_2_11_151_1
  article-title: Epigenetic clock and methylation studies in cats
  publication-title: bioRxiv
– volume: 9
  start-page: 1
  issue: 51507
  year: 2020
  ident: e_1_2_11_107_1
  article-title: Longitudinal trajectories, correlations and mortality associations of nine biological ages across 20‐years follow‐up
  publication-title: eLife
– ident: e_1_2_11_128_1
  doi: 10.1093/gerona/gly060
– ident: e_1_2_11_169_1
  doi: 10.1001/jamaoncol.2015.1053
– volume: 46
  start-page: 549
  issue: 2
  year: 2017
  ident: e_1_2_11_159_1
  article-title: The epigenetic clock and physical development during childhood and adolescence: Longitudinal analysis from a UK birth cohort
  publication-title: International Journal of Epidemiology
– ident: e_1_2_11_73_1
  doi: 10.1038/s41576-018-0004-3
– ident: e_1_2_11_125_1
  doi: 10.1093/ije/dyw041
– ident: e_1_2_11_25_1
  doi: 10.1111/acel.13100
– ident: e_1_2_11_171_1
  doi: 10.18632/aging.101590
– ident: e_1_2_11_72_1
  doi: 10.18632/aging.100861
– ident: e_1_2_11_85_1
  doi: 10.1186/s12915-015-0118-4
– ident: e_1_2_11_143_1
  doi: 10.1186/s13148-016-0228-z
– volume: 7
  start-page: 1
  issue: 40675
  year: 2018
  ident: e_1_2_11_136_1
  article-title: A whole lifespan mouse multi‐tissue DNA methylation clock
  publication-title: eLife
– ident: e_1_2_11_188_1
  doi: 10.1038/srep17788
– ident: e_1_2_11_91_1
  doi: 10.1016/0092-8674(95)90499-9
– start-page: 2021.03.07.4342
  year: 2021
  ident: e_1_2_11_147_1
  article-title: Hibernation slows epigenetic aging in yellow‐bellied marmots
  publication-title: bioRxiv
– ident: e_1_2_11_24_1
  doi: 10.18632/aging.101020
– ident: e_1_2_11_168_1
  doi: 10.1126/science.1057987
– start-page: 2021.05.16.4440
  year: 2021
  ident: e_1_2_11_106_1
  article-title: Epigenetic predictors of maximum lifespan and other life history traits in mammals
  publication-title: bioRxiv
– ident: e_1_2_11_39_1
  doi: 10.1186/s13059-019-1810-4
– ident: e_1_2_11_62_1
  doi: 10.1186/s13059-015-0649-6
– ident: e_1_2_11_177_1
  doi: 10.1093/gerona/glaa101
– ident: e_1_2_11_8_1
  doi: 10.1016/0531-5565(88)90025-3
– ident: e_1_2_11_21_1
  doi: 10.1101/gr.207688.116
– ident: e_1_2_11_83_1
  doi: 10.1093/nar/gku372
– ident: e_1_2_11_148_1
  doi: 10.1111/1755-0998.12247
– ident: e_1_2_11_57_1
  doi: 10.1016/j.biopsych.2020.01.025
– ident: e_1_2_11_137_1
  doi: 10.1038/nature01789
– ident: e_1_2_11_162_1
  doi: 10.1080/15592294.2019.1623634
– ident: e_1_2_11_123_1
  doi: 10.1111/j.1365-2443.2012.01595.x
– ident: e_1_2_11_51_1
  doi: 10.1038/345458a0
– start-page: 1
  year: 2020
  ident: e_1_2_11_189_1
  article-title: A DNA methylation clock associated with age‐related illnesses and mortality is accelerated in men with combat PTSD
  publication-title: Molecular Psychiatry
– ident: e_1_2_11_94_1
  doi: 10.18632/aging.100395
SSID ssj0017903
Score 2.637552
SecondaryResourceType review_article
Snippet Advanced age is the main common risk factor for cancer, cardiovascular disease and neurodegeneration. Yet, more is known about the molecular basis of any of...
SourceID pubmedcentral
proquest
gale
pubmed
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e13452
SubjectTerms Age
ageing
Aging
Aging - genetics
Animals
Biomarkers
Cardiovascular diseases
Cognitive ability
composite predictors
Datasets
Disease
DNA methylation
Epigenesis, Genetic - genetics
epigenetic clocks
Epigenetic inheritance
Epigenetics
Fibroblasts
Forensic science
Health aspects
Humans
Methylation
minimised clocks
mortality
Neurodegeneration
Review
Reviews
Risk factors
Title Epigenetic age prediction
URI https://onlinelibrary.wiley.com/doi/abs/10.1111%2Facel.13452
https://www.ncbi.nlm.nih.gov/pubmed/34415665
https://www.proquest.com/docview/2572413256
https://www.proquest.com/docview/2563421175
https://pubmed.ncbi.nlm.nih.gov/PMC8441394
Volume 20
WOSCitedRecordID wos000686581400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1474-9726
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017903
  issn: 1474-9718
  databaseCode: DOA
  dateStart: 20140101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVPQU
  databaseName: Biological Science Database
  customDbUrl:
  eissn: 1474-9726
  dateEnd: 20221231
  omitProxy: false
  ssIdentifier: ssj0017903
  issn: 1474-9718
  databaseCode: M7P
  dateStart: 20190101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1474-9726
  dateEnd: 20221231
  omitProxy: false
  ssIdentifier: ssj0017903
  issn: 1474-9718
  databaseCode: BENPR
  dateStart: 20190101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 1474-9726
  dateEnd: 20221231
  omitProxy: false
  ssIdentifier: ssj0017903
  issn: 1474-9718
  databaseCode: PIMPY
  dateStart: 20190101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVWIB
  databaseName: Wiley Online Library Open Access
  customDbUrl:
  eissn: 1474-9726
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017903
  issn: 1474-9718
  databaseCode: WIN
  dateStart: 20020101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
– providerCode: PRVWIB
  databaseName: Wiley Open Access Collection
  customDbUrl:
  eissn: 1474-9726
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017903
  issn: 1474-9718
  databaseCode: 24P
  dateStart: 20020101
  isFulltext: true
  titleUrlDefault: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3ra9swED9K08G-bG338taGjA7GBh5xJFsS7EtaUlZogyl7ZJ-MfLZYobghaQf773cnO25cxqD0S0i4k2M97iWdfgfwTjpM8kSIkMyNCKXFIenB3ISaGqhCJrreyv5-qqZTPZuZdAM-r-7C1PgQ7YYbS4bX1yzgNl-uCbnF8vJTJGRMCrgXRUJz4YaRTNszBGV8XeRIKhkaUsENOCnn8dy27Ziju0p5zSrdzZhc92S9KTp--rBObMOTxgUdjOs1swMbZbULj-qilH-eQTCZM0InX24ckLIZzBd8lsPz9xy-HU--Hn0JmwIKIcZkuENXGKTw12KMJqfRwMImYsQQg3muNek65RyFa8SD5GigK4tCl3Fsh9oSo3HiBWxWV1X5CgZDjYWjZygtIukcaiMplrEYRTZy5CQF8GE1jhk26OJc5OIyW0UZ3NXMdzWAg5Z3XmNq_JPrPU9HxoJGT0Lb3Beg92HIqmzMOEUilor-e6_DSQKCXfJqQrNGQJcZaSo-USSHL4C3LZlbctJZVV7dME8i5IixTAN4Wc9_-75C-siXKKqzMloGhu3uUqqLXx6-W1NTYWQAH_3K-M8QZOOjyan_9vo-zG_g8Ygzb3wm3B5sXi9uyn3Ywt_XF8tF3wsJfaqZ7kPvcDJNz_t-J6LPea9E6aUnZ-lP-vXjZPoXcsgYYw
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3rS9xAEB-KD_SLr9qaqu2JhaKQcrndJLsfDzlReh5-0NZvy2aSpYLE43yA_31nNrl4kSKI3wI7u9nXvHZnfwPwXTpMskSIkNSNCKXFLsnBTIeKKqS5TFR1lP17mI5G6upKn9exOfwWpsKHaA7cmDO8vGYG5wPpGS63WNz8jISMSQLPS7I0OHPDn9NRc4mQap8YOZKpDDXJ4BqdlAN5nuu29NFLqTyjll6GTM6asl4XHa--cxRrsFIboZ1-tWvW4UNRbsBilZby6SMEgzFjdPLzxg6Jm854wrc5vIKbcHk8uDg6CesUCiHGpLpDl2skB9hijDqj6cDcJqLHIINZphRJu9Q5ctiIBsnUQFfkuSri2HaVJULtxCeYK2_LYgs6XYW5ozZSJSLpHCotyZuxGEU2cmQmBXAwnUiDNb44p7m4MVM_g4dq_FAD2G9oxxWqxn-pfvB6GGY1aglt_WKA-sOgVabPSEUilin9e6dFSSyC7eLpipqaRe8MySq-UySTL4C9pphrcthZWdw-ME0iZI_RTAP4XG2Apr9Cet-XStLW1mgIGLi7XVJe__UA3oqqCi0DOPRb45UpMP2jwdB_fXkL8TdYOrk4G5rh6ejXNiz3OA7Hx8XtwNz95KHYhQV8vL--m3z1HPMPMEUVjg
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3da9swED9Gt5W9bOu6rd66NaOFsoJHHMmW9Bi6hI2FkIe29E3IZ4sGihvSD9h_vzvZ8eIyCqNvBp1kfdyndPoJ4EB6zPJMiJjMjYilwz7pwdzEmiqoQma63so-m6jpVJ-fm1mTm8N3YWp8iHbDjSUj6GsW8HJR-DUpd1hefkuETEkDP5WpSpipB3LWHiIoEx5GTqSSsSEd3KCTciLP37ode3RfK6-Zpfspk-uubLBF41ePHMVreNk4ob1hzTVb8KSs3sDz-lnK39sQjRaM0cnXG3ukbnqLJZ_m8Aq-hdPx6OT4R9w8oRBjSqY79oVBCoAdpmhymg4sXCYGDDKY51qTtlPeU8BGNEiuBvqyKHSZpq6vHREaL97BRnVVlTvQ62ssPLWhtEik96iNpGjGYZK4xJObFMHX1URabPDF-ZmLS7uKM3ioNgw1gv2WdlGjavyT6pDXw7KoUUvomhsD1B8GrbJDRioSqVT0790OJYkIdotXK2obEb22pKv4TJFcvgi-tMVck9POqvLqlmkyIQeMZhrB-5oB2v4KGWJfKlEd1mgJGLi7W1LNLwKAt6aqwsgIjgJrPDAFdng8moSvD_9DvAebs-9jO_k5_fURXgw4DSekxe3Cxs3ytvwEz_DuZn69_BwE5g8PBxSl
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Epigenetic+age+prediction&rft.jtitle=Aging+cell&rft.au=Simpson%2C+Daniel+J&rft.au=Chandra%2C+Tamir&rft.date=2021-09-01&rft.pub=John+Wiley+%26+Sons%2C+Inc&rft.issn=1474-9718&rft.volume=20&rft.issue=9&rft_id=info:doi/10.1111%2Facel.13452&rft.externalDocID=A707835475
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1474-9718&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1474-9718&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1474-9718&client=summon