Epigenetic age prediction
Advanced age is the main common risk factor for cancer, cardiovascular disease and neurodegeneration. Yet, more is known about the molecular basis of any of these groups of diseases than the changes that accompany ageing itself. Progress in molecular ageing research was slow because the tools predic...
Saved in:
| Published in: | Aging cell Vol. 20; no. 9; pp. e13452 - n/a |
|---|---|
| Main Authors: | , |
| Format: | Journal Article |
| Language: | English |
| Published: |
England
John Wiley & Sons, Inc
01.09.2021
John Wiley and Sons Inc |
| Subjects: | |
| ISSN: | 1474-9718, 1474-9726, 1474-9726 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Advanced age is the main common risk factor for cancer, cardiovascular disease and neurodegeneration. Yet, more is known about the molecular basis of any of these groups of diseases than the changes that accompany ageing itself. Progress in molecular ageing research was slow because the tools predicting whether someone aged slowly or fast (biological age) were unreliable. To understand ageing as a risk factor for disease and to develop interventions, the molecular ageing field needed a quantitative measure; a clock for biological age. Over the past decade, a number of age predictors utilising DNA methylation have been developed, referred to as epigenetic clocks. While they appear to estimate biological age, it remains unclear whether the methylation changes used to train the clocks are a reflection of other underlying cellular or molecular processes, or whether methylation itself is involved in the ageing process. The precise aspects of ageing that the epigenetic clocks capture remain hidden and seem to vary between predictors. Nonetheless, the use of epigenetic clocks has opened the door towards studying biological ageing quantitatively, and new clocks and applications, such as forensics, appear frequently. In this review, we will discuss the range of epigenetic clocks available, their strengths and weaknesses, and their applicability to various scientific queries.
Over the past decade, the repertoire of DNA methylation‐based age predictors, known as epigenetic clocks, has grown. Here, we review four main types of epigenetic clocks that have been developed; human‐array based, reduced, composite and non‐human. |
|---|---|
| AbstractList | Advanced age is the main common risk factor for cancer, cardiovascular disease and neurodegeneration. Yet, more is known about the molecular basis of any of these groups of diseases than the changes that accompany ageing itself. Progress in molecular ageing research was slow because the tools predicting whether someone aged slowly or fast (biological age) were unreliable. To understand ageing as a risk factor for disease and to develop interventions, the molecular ageing field needed a quantitative measure; a clock for biological age. Over the past decade, a number of age predictors utilising DNA methylation have been developed, referred to as epigenetic clocks. While they appear to estimate biological age, it remains unclear whether the methylation changes used to train the clocks are a reflection of other underlying cellular or molecular processes, or whether methylation itself is involved in the ageing process. The precise aspects of ageing that the epigenetic clocks capture remain hidden and seem to vary between predictors. Nonetheless, the use of epigenetic clocks has opened the door towards studying biological ageing quantitatively, and new clocks and applications, such as forensics, appear frequently. In this review, we will discuss the range of epigenetic clocks available, their strengths and weaknesses, and their applicability to various scientific queries. Advanced age is the main common risk factor for cancer, cardiovascular disease and neurodegeneration. Yet, more is known about the molecular basis of any of these groups of diseases than the changes that accompany ageing itself. Progress in molecular ageing research was slow because the tools predicting whether someone aged slowly or fast (biological age) were unreliable. To understand ageing as a risk factor for disease and to develop interventions, the molecular ageing field needed a quantitative measure; a clock for biological age. Over the past decade, a number of age predictors utilising DNA methylation have been developed, referred to as epigenetic clocks. While they appear to estimate biological age, it remains unclear whether the methylation changes used to train the clocks are a reflection of other underlying cellular or molecular processes, or whether methylation itself is involved in the ageing process. The precise aspects of ageing that the epigenetic clocks capture remain hidden and seem to vary between predictors. Nonetheless, the use of epigenetic clocks has opened the door towards studying biological ageing quantitatively, and new clocks and applications, such as forensics, appear frequently. In this review, we will discuss the range of epigenetic clocks available, their strengths and weaknesses, and their applicability to various scientific queries.Advanced age is the main common risk factor for cancer, cardiovascular disease and neurodegeneration. Yet, more is known about the molecular basis of any of these groups of diseases than the changes that accompany ageing itself. Progress in molecular ageing research was slow because the tools predicting whether someone aged slowly or fast (biological age) were unreliable. To understand ageing as a risk factor for disease and to develop interventions, the molecular ageing field needed a quantitative measure; a clock for biological age. Over the past decade, a number of age predictors utilising DNA methylation have been developed, referred to as epigenetic clocks. While they appear to estimate biological age, it remains unclear whether the methylation changes used to train the clocks are a reflection of other underlying cellular or molecular processes, or whether methylation itself is involved in the ageing process. The precise aspects of ageing that the epigenetic clocks capture remain hidden and seem to vary between predictors. Nonetheless, the use of epigenetic clocks has opened the door towards studying biological ageing quantitatively, and new clocks and applications, such as forensics, appear frequently. In this review, we will discuss the range of epigenetic clocks available, their strengths and weaknesses, and their applicability to various scientific queries. Advanced age is the main common risk factor for cancer, cardiovascular disease and neurodegeneration. Yet, more is known about the molecular basis of any of these groups of diseases than the changes that accompany ageing itself. Progress in molecular ageing research was slow because the tools predicting whether someone aged slowly or fast (biological age) were unreliable. To understand ageing as a risk factor for disease and to develop interventions, the molecular ageing field needed a quantitative measure; a clock for biological age. Over the past decade, a number of age predictors utilising DNA methylation have been developed, referred to as epigenetic clocks. While they appear to estimate biological age, it remains unclear whether the methylation changes used to train the clocks are a reflection of other underlying cellular or molecular processes, or whether methylation itself is involved in the ageing process. The precise aspects of ageing that the epigenetic clocks capture remain hidden and seem to vary between predictors. Nonetheless, the use of epigenetic clocks has opened the door towards studying biological ageing quantitatively, and new clocks and applications, such as forensics, appear frequently. In this review, we will discuss the range of epigenetic clocks available, their strengths and weaknesses, and their applicability to various scientific queries. Over the past decade, the repertoire of DNA methylation‐based age predictors, known as epigenetic clocks, has grown. Here, we review four main types of epigenetic clocks that have been developed; human‐array based, reduced, composite and non‐human. Advanced age is the main common risk factor for cancer, cardiovascular disease and neurodegeneration. Yet, more is known about the molecular basis of any of these groups of diseases than the changes that accompany ageing itself. Progress in molecular ageing research was slow because the tools predicting whether someone aged slowly or fast (biological age) were unreliable. To understand ageing as a risk factor for disease and to develop interventions, the molecular ageing field needed a quantitative measure; a clock for biological age. Over the past decade, a number of age predictors utilising DNA methylation have been developed, referred to as epigenetic clocks. While they appear to estimate biological age, it remains unclear whether the methylation changes used to train the clocks are a reflection of other underlying cellular or molecular processes, or whether methylation itself is involved in the ageing process. The precise aspects of ageing that the epigenetic clocks capture remain hidden and seem to vary between predictors. Nonetheless, the use of epigenetic clocks has opened the door towards studying biological ageing quantitatively, and new clocks and applications, such as forensics, appear frequently. In this review, we will discuss the range of epigenetic clocks available, their strengths and weaknesses, and their applicability to various scientific queries. Over the past decade, the repertoire of DNA methylation‐based age predictors, known as epigenetic clocks, has grown. Here, we review four main types of epigenetic clocks that have been developed; human‐array based, reduced, composite and non‐human. |
| Audience | Academic |
| Author | Simpson, Daniel J. Chandra, Tamir |
| AuthorAffiliation | 1 MRC Human Genetics Unit MRC Institute of Genetics and Molecular Medicine University of Edinburgh Edinburgh UK |
| AuthorAffiliation_xml | – name: 1 MRC Human Genetics Unit MRC Institute of Genetics and Molecular Medicine University of Edinburgh Edinburgh UK |
| Author_xml | – sequence: 1 givenname: Daniel J. orcidid: 0000-0002-8431-7384 surname: Simpson fullname: Simpson, Daniel J. email: s1684303@sms.ed.ac.uk organization: University of Edinburgh – sequence: 2 givenname: Tamir orcidid: 0000-0002-7935-317X surname: Chandra fullname: Chandra, Tamir email: tamir.chandra@igmm.ed.ac.uk organization: University of Edinburgh |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/34415665$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kc1LwzAYxoMofkwv3ryI4EWEzaRJmuYijDE_YOBFzyFNkxnpktl2yv5737pZnAyTQ0Lye568b54jtBtisAidEjwgMG60seWAUMaTHXRImGB9KZJ0t9uT7AAd1fUbxkRITPfRAWWM8DTlh-hsPPdTG2zjzYWe2ot5ZQtvGh_DMdpzuqztyXrtoZe78fPooT95un8cDSd9wzOS9F0hDUulNtzIHNxNoVOaUCFknmcZ4VQ4J4kAxgiCjbNFkVnONc40gNLRHrpd-c4X-cwWxoam0qWaV36mq6WK2qvNm-Bf1TR-qAyaoJKBwdXaoIrvC1s3auZr-JJSBxsXtUp4SllCiOCAXv5B3-KiCtAeUCIBvxbuqKkurfLBRXjXtKZqKLDIKGffXoMtFMzCzryBhJyH8w3B-e9Guw5_wgDgegWYKtZ1ZV2HEKzapFWbtPpOGmD8Bza-0W1wUIYvt0vISvIJlS3_MVfD0Xiy0nwB-gq3eQ |
| CitedBy_id | crossref_primary_10_1111_cdep_12488 crossref_primary_10_1016_j_fsigen_2022_102724 crossref_primary_10_3389_fmars_2023_1096909 crossref_primary_10_3390_epigenomes8010003 crossref_primary_10_1016_j_fsigen_2023_102846 crossref_primary_10_1080_20008066_2024_2379144 crossref_primary_10_1016_j_arr_2024_102418 crossref_primary_10_3390_ijms25094967 crossref_primary_10_2217_epi_2022_0457 crossref_primary_10_1038_s42003_024_06609_4 crossref_primary_10_1242_jeb_245851 crossref_primary_10_1016_j_leukres_2024_107620 crossref_primary_10_1073_pnas_2211755120 crossref_primary_10_1186_s12864_022_08771_7 crossref_primary_10_3390_biology14010092 crossref_primary_10_3390_biomedicines12081631 crossref_primary_10_3389_fmars_2022_1005534 crossref_primary_10_1016_j_biocon_2024_110570 crossref_primary_10_1097_MCO_0000000000000810 crossref_primary_10_1111_acel_13960 crossref_primary_10_1038_s41390_025_04110_0 crossref_primary_10_4103_ajim_ajim_46_24 crossref_primary_10_3389_fcell_2023_1121231 crossref_primary_10_3390_cells11244044 crossref_primary_10_1093_molbev_msad279 crossref_primary_10_1111_acel_70098 crossref_primary_10_1016_j_celrep_2025_115958 crossref_primary_10_13005_bbra_3226 crossref_primary_10_3390_foods14030347 crossref_primary_10_1249_MSS_0000000000003498 crossref_primary_10_1007_s11357_025_01514_y crossref_primary_10_1016_j_arr_2024_102432 crossref_primary_10_1016_j_forsciint_2024_111950 crossref_primary_10_1111_acel_14100 crossref_primary_10_1186_s13023_025_03778_1 crossref_primary_10_1111_acel_14104 crossref_primary_10_1080_15592294_2022_2153511 crossref_primary_10_1007_s10802_022_00981_7 crossref_primary_10_1007_s11357_023_00871_w crossref_primary_10_3389_fpubh_2024_1295477 crossref_primary_10_1007_s12024_024_00820_9 crossref_primary_10_1016_j_arr_2023_101956 crossref_primary_10_3389_fendo_2024_1424826 crossref_primary_10_3389_fcell_2022_902857 crossref_primary_10_1016_j_arr_2024_102546 crossref_primary_10_1093_humupd_dmac042 crossref_primary_10_1016_j_it_2023_05_005 crossref_primary_10_3390_cells12202451 crossref_primary_10_1038_s41514_025_00265_6 crossref_primary_10_1038_s41556_025_01739_1 crossref_primary_10_1038_s43587_022_00335_4 crossref_primary_10_3389_fmars_2023_1062151 crossref_primary_10_3390_ijms23136926 crossref_primary_10_20517_jtgg_2024_94 crossref_primary_10_1016_j_ajcnut_2024_08_033 crossref_primary_10_1007_s10964_023_01863_x crossref_primary_10_1051_medsci_2024171 crossref_primary_10_1111_acel_14451 crossref_primary_10_2217_epi_2023_0307 crossref_primary_10_3389_fnmol_2024_1334862 crossref_primary_10_1016_j_fsigen_2023_102923 crossref_primary_10_1002_cam4_71067 crossref_primary_10_1016_j_socscimed_2023_116088 crossref_primary_10_1016_j_fsigen_2025_103331 crossref_primary_10_3390_cells14161249 crossref_primary_10_1186_s13059_025_03562_1 crossref_primary_10_3389_fnut_2024_1373806 crossref_primary_10_1038_s43587_024_00700_5 crossref_primary_10_1073_pnas_2211349119 crossref_primary_10_1016_j_envint_2023_108109 crossref_primary_10_1002_dad2_70010 crossref_primary_10_1111_acel_13527 crossref_primary_10_1111_acel_14058 crossref_primary_10_1007_s10522_023_10041_2 crossref_primary_10_1177_10998004251334415 crossref_primary_10_3390_ijms26146564 crossref_primary_10_1111_joim_13724 crossref_primary_10_3390_ijms25189836 crossref_primary_10_1097_EE9_0000000000000384 crossref_primary_10_1038_s42003_024_07243_w crossref_primary_10_3390_genes15010016 crossref_primary_10_3390_ijms23084119 crossref_primary_10_1016_j_arr_2022_101743 crossref_primary_10_1002_elps_202200250 crossref_primary_10_1016_j_arcmed_2024_103033 crossref_primary_10_1016_j_neubiorev_2023_105238 crossref_primary_10_1016_j_neubiorev_2023_105359 crossref_primary_10_1016_j_semcancer_2024_08_003 crossref_primary_10_1111_eva_13320 crossref_primary_10_1186_s12916_024_03832_y crossref_primary_10_3390_ijms26041738 crossref_primary_10_1093_bib_bbac274 crossref_primary_10_1136_jnnp_2022_330931 crossref_primary_10_1111_1755_0998_14128 crossref_primary_10_1080_17501911_2024_2432851 crossref_primary_10_1111_acel_13866 crossref_primary_10_1371_journal_pgen_1011667 crossref_primary_10_1080_17501911_2024_2432854 crossref_primary_10_1093_eep_dvaf021 crossref_primary_10_1016_j_arr_2025_102884 crossref_primary_10_1111_1753_0407_13596 crossref_primary_10_3390_ijms26115051 crossref_primary_10_3390_genes15040425 crossref_primary_10_3390_ijms25179514 |
| Cites_doi | 10.1093/gerona/gls233 10.1371/journal.pone.0014821 10.1016/j.fsigen.2017.04.020 10.1111/eva.13195 10.1073/pnas.95.10.5607 10.1016/0921-8734(91)90032-7 10.1111/acel.12799 10.1186/gb-2014-15-2-r24 10.1016/j.fsigen.2019.102189 10.1038/nature01298 10.1038/45843 10.1186/s12859-020-3443-8 10.1186/s13059-018-1408-2 10.18632/aging.100908 10.18632/oncotarget.7383 10.1186/s13148-016-0186-5 10.1093/hmg/ddv456 10.1016/j.immuni.2015.03.005 10.1111/acel.12877 10.1016/j.cub.2019.07.011 10.1371/journal.pcbi.1005183 10.1093/gerona/gly223 10.1038/384033a0 10.1038/s41398-019-0548-9 10.18632/aging.102173 10.1038/ncomms9570 10.1016/0014-4827(61)90192-6 10.1038/ncomms15353 10.1111/acel.12325 10.1038/ncomms10561 10.1016/j.cub.2004.03.059 10.1007/s12038-010-0034-2 10.18632/aging.101414 10.2217/epi-2015-0017 10.1093/jn/116.4.641 10.1186/s13073-019-0693-z 10.1080/15592294.2017.1414127 10.1073/pnas.1506264112 10.1186/s13148-017-0315-9 10.1186/s13059-015-0584-6 10.1038/s41591-019-0673-2 10.18632/aging.100864 10.1186/s13059-018-1514-1 10.1016/j.ebiom.2017.03.046 10.1111/j.1467-9868.2005.00503.x 10.1111/j.1474-9726.2011.00784.x 10.1016/j.fsigen.2018.09.003 10.18632/aging.100972 10.1093/genetics/148.2.703 10.18632/aging.101588 10.1186/s13059-017-1203-5 10.1016/j.cell.2016.11.052 10.1038/s41467-017-02697-5 10.1186/s13148-015-0148-3 10.18632/aging.101168 10.1111/acel.12421 10.1007/s11357-017-0001-z 10.2337/db12-0819 10.1186/s13059-016-1064-3 10.1161/01.CIR.0000055014.62083.05 10.1186/s13059-019-1753-9 10.18632/aging.202400 10.1038/s41551-017-0093 10.1111/wrr.12426 10.1038/srep04789 10.1016/j.molcel.2012.10.016 10.1038/nature11861 10.1038/nrm4048 10.1186/s13059-016-0871-x 10.18632/aging.101005 10.1016/j.isci.2020.101199 10.1038/ng863 10.18632/aging.101508 10.1111/1556-4029.14185 10.1186/s13059-016-1030-0 10.1093/infdis/jiv277 10.18632/aging.102892 10.18632/aging.100744 10.18632/aging.100742 10.1016/j.mad.2018.01.002 10.1186/s13059-017-1185-3 10.1002/(SICI)1097-0258(19970228)16:4<385::AID-SIM380>3.0.CO;2-3 10.1016/j.legalmed.2020.101744 10.1098/rstb.2019.0616 10.1016/j.forsciint.2020.110267 10.1177/2633105520942221 10.3390/genes8060152 10.1186/s13148-016-0177-6 10.18632/aging.101217 10.1038/35000656 10.1016/j.cmet.2008.06.011 10.1186/s13148-019-0777-z 10.1038/s41598-019-45197-w 10.1038/s41467-019-12293-4 10.18632/aging.101976 10.1073/pnas.1820843116 10.1038/s41586-020-2975-4 10.1186/s13059-019-1824-y 10.1038/s41598-018-28318-9 10.1016/j.ceb.2016.03.020 10.1186/s13072-018-0191-3 10.1038/ncomms10207 10.1016/j.fsigen.2015.05.001 10.1016/j.cels.2020.06.006 10.1016/j.cell.2013.05.039 10.1186/s13148-020-00899-1 10.1016/S2213-8587(15)00127-8 10.1016/j.legalmed.2020.101763 10.1093/gerona/glaa286 10.1186/gb-2013-14-10-r115 10.1093/ije/dyu277 10.7554/eLife.54870 10.18632/aging.101211 10.18632/aging.101684 10.1111/acel.12005 10.1016/0014-4827(65)90211-9 10.1038/ncomms14617 10.1242/dev.01255 10.1073/pnas.1412759111 10.1186/s13073-019-0667-1 10.1111/acel.13349 10.1073/pnas.96.11.5894 10.1038/346866a0 10.1186/s13148-020-00914-5 10.2337/db13-1459 10.1126/science.aaj2239 10.1186/s13148-020-00905-6 10.1038/nmeth.3728 10.1093/gerona/glw185 10.1038/sj.bjc.6603671 10.1111/1755-0998.13111 10.14336/AD.2020.1202 10.1016/0047-6374(77)90043-4 10.1126/science.1078223 10.1158/0008-5472.CAN-19-0924 10.1016/j.dnarep.2014.03.030 10.1016/j.molcel.2018.08.008 10.1038/426620a 10.1016/j.psyneuen.2015.09.020 10.1186/s13059-017-1186-2 10.1016/j.fsigen.2018.09.010 10.1371/journal.pone.0017213 10.1016/j.cmet.2017.03.016 10.1038/s41467-020-15174-3 10.1093/gerona/gly060 10.1001/jamaoncol.2015.1053 10.1038/s41576-018-0004-3 10.1093/ije/dyw041 10.1111/acel.13100 10.18632/aging.101590 10.18632/aging.100861 10.1186/s12915-015-0118-4 10.1186/s13148-016-0228-z 10.1038/srep17788 10.1016/0092-8674(95)90499-9 10.18632/aging.101020 10.1126/science.1057987 10.1186/s13059-019-1810-4 10.1186/s13059-015-0649-6 10.1093/gerona/glaa101 10.1016/0531-5565(88)90025-3 10.1101/gr.207688.116 10.1093/nar/gku372 10.1111/1755-0998.12247 10.1016/j.biopsych.2020.01.025 10.1038/nature01789 10.1080/15592294.2019.1623634 10.1111/j.1365-2443.2012.01595.x 10.1038/345458a0 10.18632/aging.100395 |
| ContentType | Journal Article |
| Copyright | 2021 The Authors. published by Anatomical Society and John Wiley & Sons Ltd. 2021 The Authors. Aging Cell published by Anatomical Society and John Wiley & Sons Ltd. COPYRIGHT 2021 John Wiley & Sons, Inc. 2021. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: 2021 The Authors. published by Anatomical Society and John Wiley & Sons Ltd. – notice: 2021 The Authors. Aging Cell published by Anatomical Society and John Wiley & Sons Ltd. – notice: COPYRIGHT 2021 John Wiley & Sons, Inc. – notice: 2021. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | 24P AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QP 7TK 7X8 5PM |
| DOI | 10.1111/acel.13452 |
| DatabaseName | Wiley Online Library Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Calcium & Calcified Tissue Abstracts Neurosciences Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Calcium & Calcified Tissue Abstracts Neurosciences Abstracts MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic CrossRef Calcium & Calcified Tissue Abstracts MEDLINE |
| Database_xml | – sequence: 1 dbid: 24P name: Wiley Open Access Collection url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Biology |
| DocumentTitleAlternate | SIMPSON and CHANDRA |
| EISSN | 1474-9726 |
| EndPage | n/a |
| ExternalDocumentID | PMC8441394 A707835475 34415665 10_1111_acel_13452 ACEL13452 |
| Genre | reviewArticle Research Support, Non-U.S. Gov't Journal Article Review |
| GrantInformation_xml | – fundername: Medical Research Council |
| GroupedDBID | --- .3N .GA .Y3 05W 0R~ 10A 1OC 23M 24P 2WC 31~ 36B 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52R 52S 52T 52W 52X 53G 5GY 5HH 5LA 5VS 66C 6J9 702 7PT 8-0 8-1 8-3 8-4 8-5 8FE 8FH 8UM 930 A01 A03 AAHHS AAZKR ABCQN ABDBF ABEML ABJNI ACCFJ ACCMX ACGFO ACGFS ACPRK ACSCC ACUHS ACXQS ADBBV ADKYN ADRAZ ADZMN ADZOD AEEZP AEGXH AENEX AEQDE AFBPY AFEBI AFKRA AFZJQ AIAGR AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN AOIJS AVUZU BAWUL BBNVY BCNDV BENPR BFHJK BHPHI BY8 CAG CCPQU COF CS3 D-6 D-7 D-E D-F DIK DR2 E3Z EAD EAP EBD EBS EJD EMB EMK EMOBN EST ESX F00 F01 F04 F5P FIJ GODZA GROUPED_DOAJ GX1 HCIFZ HF~ HOLLA HZ~ IAO IHE IHR IPNFZ ITC IX1 J0M K.9 KQ8 LC2 LC3 LH4 LK8 LP6 LP7 LW6 M48 M7P MK4 N04 N05 N9A O9- OBS OIG OK1 OVD P2P P2X P2Z P4B P4D PIMPY Q11 ROL RPM RX1 SUPJJ SV3 TEORI TR2 TUS UB1 V8K W8V WIN WQJ WRC WXI XG1 YFH YUY ~IA ~WT AAMMB AAYXX AEFGJ AFFHD AGXDD AIDQK AIDYY CITATION O8X PHGZM PHGZT PQGLB CGR CUY CVF ECM EIF NPM 7QP 7TK 7X8 PUEGO 5PM |
| ID | FETCH-LOGICAL-c5812-fd9c469ac5c9b903cda6323779bb881537ff917c46c710cfedd8e55a08aa639f3 |
| IEDL.DBID | 24P |
| ISICitedReferencesCount | 122 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000686581400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1474-9718 1474-9726 |
| IngestDate | Tue Nov 04 02:03:28 EST 2025 Wed Oct 01 15:05:43 EDT 2025 Wed Aug 13 03:42:41 EDT 2025 Sat Nov 29 13:37:20 EST 2025 Sat Nov 29 10:17:53 EST 2025 Mon Jul 21 06:06:09 EDT 2025 Sat Nov 29 03:05:17 EST 2025 Tue Nov 18 21:17:11 EST 2025 Wed Jan 22 16:27:36 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 9 |
| Keywords | mortality epigenetic clocks ageing minimised clocks composite predictors |
| Language | English |
| License | Attribution 2021 The Authors. Aging Cell published by Anatomical Society and John Wiley & Sons Ltd. This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c5812-fd9c469ac5c9b903cda6323779bb881537ff917c46c710cfedd8e55a08aa639f3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
| ORCID | 0000-0002-8431-7384 0000-0002-7935-317X |
| OpenAccessLink | https://onlinelibrary.wiley.com/doi/abs/10.1111%2Facel.13452 |
| PMID | 34415665 |
| PQID | 2572413256 |
| PQPubID | 1036381 |
| PageCount | 20 |
| ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_8441394 proquest_miscellaneous_2563421175 proquest_journals_2572413256 gale_infotracmisc_A707835475 gale_infotracacademiconefile_A707835475 pubmed_primary_34415665 crossref_primary_10_1111_acel_13452 crossref_citationtrail_10_1111_acel_13452 wiley_primary_10_1111_acel_13452_ACEL13452 |
| PublicationCentury | 2000 |
| PublicationDate | September 2021 |
| PublicationDateYYYYMMDD | 2021-09-01 |
| PublicationDate_xml | – month: 09 year: 2021 text: September 2021 |
| PublicationDecade | 2020 |
| PublicationPlace | England |
| PublicationPlace_xml | – name: England – name: London – name: Hoboken |
| PublicationTitle | Aging cell |
| PublicationTitleAlternate | Aging Cell |
| PublicationYear | 2021 |
| Publisher | John Wiley & Sons, Inc John Wiley and Sons Inc |
| Publisher_xml | – name: John Wiley & Sons, Inc – name: John Wiley and Sons Inc |
| References | 1990; 345 1990; 346 2020; 20 2015b; 7 2019; 11 2013; 68 2019b; 11 2019; 10 2013; 62 2019; 12 2019; 14 2020; 15 2019; 18 2020; 12 2012; 17 1996; 384 2020; 11 2012; 11 2005; 67 2020; 19 2018; 7 2017; 72 2018; 174 2018; 9 2018; 8 2021; 76 2019; 20 2000; 403 2019; 25 2014; 15 2014; 14 2016; 40 2019; 29 2014; 19 2020; 88 2016a; 17 1998; 95 2018; 37 2016; 45 2019; 9 1986; 116 2010; 35 2019; 38 2016; 167 2007; 96 1965; 37 2011; 3 2016; 17 2011; 6 2003; 299 2016; 15 2016; 13 2016; 12 2014; 42 2018; 19 2016; 5 2016; 7 2018; 17 2015; 112 1988; 23 1998; 148 2020; 23 2020; 311 2020; 21 2018; 11 2018; 10 2016; 8 2016; 25 2016; 24 2018; 13 2017; 8 2017; 1 2021; 20 2017; 46 2008; 8 2014; 63 1999; 401 2017; 356 2017; 9 2004; 131 2013; 14 2014; 4 2017; 39 2001; 292 2015; 212 2015; 42 2020; 9 2020; 47 1997; 16 2020; 375 1999; 96 2020; 44 2018; 71 2013; 153 2016b; 8 2019a; 11 2015; 13 2015; 1 2015; 6 2015; 17 2015; 16 1991; 256 2015; 5 2015; 3 2013; 49 2002; 30 2019; 74 2017; 25 2017; 27 2017; 21 2020; 80 2020; 588 2017; 29 2003 2014; 111 2015; 7 2015b; 44 2021; 14 2015a; 16 2021; 10 2003; 426 2021; 12 1995; 80 2003; 424 2021 2020 2004; 14 2015a; 14 2015c; 7 2019 2020; 117 2016; 63 2013; 493 2017; 18 2020; 65 2003; 421 1961; 25 1977; 6 e_1_2_11_70_1 e_1_2_11_93_1 e_1_2_11_200_1 e_1_2_11_186_1 e_1_2_11_32_1 e_1_2_11_55_1 e_1_2_11_78_1 e_1_2_11_29_1 Sailer L. L. (e_1_2_11_155_1) 2020 e_1_2_11_125_1 e_1_2_11_4_1 e_1_2_11_148_1 e_1_2_11_102_1 e_1_2_11_163_1 e_1_2_11_140_1 e_1_2_11_197_1 e_1_2_11_20_1 e_1_2_11_89_1 e_1_2_11_43_1 e_1_2_11_17_1 e_1_2_11_113_1 e_1_2_11_174_1 e_1_2_11_92_1 e_1_2_11_187_1 e_1_2_11_31_1 e_1_2_11_54_1 e_1_2_11_126_1 e_1_2_11_28_1 Simpkin A. J. (e_1_2_11_159_1) 2017; 46 e_1_2_11_5_1 e_1_2_11_141_1 e_1_2_11_164_1 Prado N. A. (e_1_2_11_149_1) 2020 e_1_2_11_190_1 e_1_2_11_80_1 e_1_2_11_198_1 e_1_2_11_88_1 e_1_2_11_65_1 e_1_2_11_114_1 e_1_2_11_16_1 e_1_2_11_137_1 e_1_2_11_39_1 Li X. (e_1_2_11_107_1) 2020; 9 e_1_2_11_152_1 e_1_2_11_175_1 Huh C. J. (e_1_2_11_77_1) 2016; 5 e_1_2_11_180_1 e_1_2_11_72_1 Meer M. V. (e_1_2_11_136_1) 2018; 7 e_1_2_11_188_1 e_1_2_11_57_1 Yang R. (e_1_2_11_189_1) 2020 e_1_2_11_34_1 e_1_2_11_95_1 e_1_2_11_11_1 e_1_2_11_104_1 Horvath S. (e_1_2_11_66_1) 2020 e_1_2_11_127_1 e_1_2_11_2_1 Little T. (e_1_2_11_110_1) 2020 e_1_2_11_165_1 e_1_2_11_142_1 e_1_2_11_83_1 e_1_2_11_191_1 e_1_2_11_60_1 e_1_2_11_45_1 e_1_2_11_199_1 e_1_2_11_68_1 e_1_2_11_22_1 e_1_2_11_138_1 e_1_2_11_19_1 e_1_2_11_176_1 e_1_2_11_153_1 e_1_2_11_130_1 Horvath S. (e_1_2_11_75_1) 2020 Lemaître J. F. (e_1_2_11_100_1) 2020 e_1_2_11_94_1 e_1_2_11_181_1 e_1_2_11_71_1 e_1_2_11_10_1 e_1_2_11_56_1 e_1_2_11_79_1 e_1_2_11_33_1 FOXO BioScience (e_1_2_11_42_1) 2020 e_1_2_11_105_1 e_1_2_11_128_1 e_1_2_11_3_1 e_1_2_11_143_1 e_1_2_11_120_1 e_1_2_11_82_1 e_1_2_11_192_1 e_1_2_11_21_1 e_1_2_11_44_1 e_1_2_11_67_1 e_1_2_11_18_1 e_1_2_11_139_1 e_1_2_11_116_1 e_1_2_11_177_1 e_1_2_11_131_1 Thermo Fisher (e_1_2_11_170_1) 2020 e_1_2_11_182_1 e_1_2_11_36_1 e_1_2_11_51_1 e_1_2_11_97_1 e_1_2_11_13_1 e_1_2_11_118_1 e_1_2_11_48_1 e_1_2_11_121_1 e_1_2_11_167_1 e_1_2_11_144_1 Schachtschneider K. M. (e_1_2_11_157_1) 2020 Arneson A. (e_1_2_11_6_1) 2021 e_1_2_11_193_1 e_1_2_11_47_1 e_1_2_11_24_1 e_1_2_11_62_1 e_1_2_11_129_1 e_1_2_11_8_1 e_1_2_11_85_1 e_1_2_11_117_1 e_1_2_11_59_1 e_1_2_11_178_1 e_1_2_11_132_1 Pinho G. M. (e_1_2_11_147_1) 2021 e_1_2_11_50_1 e_1_2_11_183_1 e_1_2_11_58_1 e_1_2_11_119_1 e_1_2_11_35_1 e_1_2_11_73_1 e_1_2_11_12_1 e_1_2_11_96_1 Katrinli S. (e_1_2_11_90_1) 2020 e_1_2_11_122_1 e_1_2_11_145_1 e_1_2_11_168_1 e_1_2_11_160_1 e_1_2_11_61_1 e_1_2_11_194_1 e_1_2_11_46_1 e_1_2_11_69_1 e_1_2_11_9_1 e_1_2_11_23_1 e_1_2_11_84_1 e_1_2_11_156_1 e_1_2_11_179_1 e_1_2_11_133_1 Levine M. (e_1_2_11_103_1) 2020; 9 Horvath S. (e_1_2_11_76_1) 2020 e_1_2_11_171_1 e_1_2_11_91_1 e_1_2_11_30_1 e_1_2_11_99_1 Ross K. M. (e_1_2_11_154_1) 2020; 12 e_1_2_11_53_1 e_1_2_11_27_1 e_1_2_11_169_1 e_1_2_11_146_1 e_1_2_11_123_1 Lu A. T. (e_1_2_11_115_1) 2021 e_1_2_11_161_1 e_1_2_11_41_1 e_1_2_11_87_1 e_1_2_11_108_1 e_1_2_11_64_1 Wilkinson G. S. (e_1_2_11_184_1) 2021; 12 e_1_2_11_15_1 e_1_2_11_111_1 e_1_2_11_134_1 e_1_2_11_38_1 e_1_2_11_172_1 Raj K. (e_1_2_11_151_1) 2020 e_1_2_11_185_1 e_1_2_11_14_1 e_1_2_11_52_1 e_1_2_11_98_1 e_1_2_11_7_1 e_1_2_11_26_1 e_1_2_11_49_1 e_1_2_11_101_1 e_1_2_11_124_1 e_1_2_11_162_1 Li C. Z. (e_1_2_11_106_1) 2021 Jasinska A. J. (e_1_2_11_81_1) 2020 Sugrue V. J. (e_1_2_11_166_1) 2021; 10 Zhang J. M. (e_1_2_11_195_1) 2019 e_1_2_11_196_1 e_1_2_11_25_1 e_1_2_11_40_1 e_1_2_11_63_1 e_1_2_11_86_1 e_1_2_11_109_1 e_1_2_11_158_1 e_1_2_11_37_1 Horvath S. (e_1_2_11_74_1) 2020 e_1_2_11_135_1 e_1_2_11_112_1 e_1_2_11_150_1 e_1_2_11_173_1 |
| References_xml | – volume: 167 start-page: 1719 issue: 7 year: 2016 end-page: 1733 article-title: In vivo amelioration of age‐associated hallmarks by partial reprogramming publication-title: Cell – volume: 47 start-page: 101744 year: 2020 article-title: Evaluation of marker selection methods and statistical models for chronological age prediction based on DNA methylation publication-title: Legal Medicine – volume: 7 start-page: 1159 issue: 12 year: 2015b end-page: 1170 article-title: Decreased epigenetic age of PBMCs from Italian semi‐supercentenarians and their offspring publication-title: Aging – volume: 112 start-page: E4104 issue: 30 year: 2015 end-page: E4110 article-title: Quantification of biological aging in young adults publication-title: Proceedings of the National Academy of Sciences of the United States of America – volume: 8 start-page: 1485 issue: 7 year: 2016b end-page: 1512 article-title: Huntington’s disease accelerates epigenetic aging of human brain and disrupts DNA methylation levels publication-title: Aging – volume: 9 start-page: 1 issue: 1 year: 2017 end-page: 6 article-title: Individual CpG sites that are associated with age and life expectancy become hypomethylated upon aging publication-title: Clinical Epigenetics – volume: 8 start-page: 1844 issue: 9 year: 2016 end-page: 1865 article-title: DNA methylation‐based measures of biological age: Meta‐analysis predicting time to death publication-title: Aging – volume: 17 start-page: 173 year: 2015 end-page: 179 article-title: Development of a forensically useful age prediction method based on DNA methylation analysis publication-title: Forensic Science International: Genetics – volume: 401 start-page: 301 issue: 6750 year: 1999 end-page: 304 article-title: The thymine glycosylase MBD4 can bind to the product of deamination at methylated CpG sites publication-title: Nature – volume: 424 start-page: 277 issue: 6946 year: 2003 end-page: 284 article-title: Genes that act downstream of DAF‐16 to influence the lifespan of Caenorhabditis elegans publication-title: Nature – volume: 8 start-page: 9998 issue: 1 year: 2018 article-title: Estimation of chimpanzee age based on DNA methylation publication-title: Scientific Reports – volume: 6 start-page: 1 issue: 1 year: 2015 end-page: 14 article-title: The transcriptional landscape of age in human peripheral blood publication-title: Nature Communications – volume: 3 start-page: 1018 issue: 10 year: 2011 end-page: 1027 article-title: Epigenetic‐aging‐signature to determine age in different tissues publication-title: Aging – volume: 131 start-page: 3897 issue: 16 year: 2004 end-page: 3906 article-title: The TOR pathway inter‐ acts with the insulin signaling pathway to regulate larval development, metabolism and life span publication-title: Development – volume: 29 start-page: R786 issue: 16 year: 2019 end-page: R787 article-title: Age‐related clonal haemopoiesis is associated with increased epigenetic age publication-title: Current Biology – volume: 116 start-page: 641 issue: 4 year: 1986 end-page: 6541 article-title: The retardation of aging in mice by dietary restriction: Longevity, cancer, immunity and lifetime energy intake publication-title: Journal of Nutrition – volume: 67 start-page: 301 issue: 2 year: 2005 end-page: 320 article-title: Regularization and variable selection via the elastic net publication-title: Journal of the Royal Statistical Society: Series B (Statistical Methodology) – volume: 42 start-page: 613 issue: 4 year: 2015 end-page: 626 article-title: The methylcytosine dioxygenase Tet2 promotes DNA demethylation and activation of cytokine gene expression in T cells publication-title: Immunity – start-page: 2020.09.21.306613 year: 2020 article-title: Epigenetic clock and DNA methylation studies of roe deer in the wild publication-title: bioRxiv – volume: 9 start-page: 1 year: 2020 end-page: 56 article-title: Quantification of the pace of biological aging in humans through a blood test, the DunedinPoAm DNA methylation algorithm publication-title: eLife – volume: 1 start-page: 7 year: 2017 article-title: Biophysical and biomolecular determination of cellular age in humans publication-title: Nature Biomedical Engineering – volume: 17 start-page: 27 issue: 1 year: 2016 article-title: Variation in 5‐hydroxymethylcytosine across human cortex and cerebellum publication-title: Genome Biology – volume: 7 start-page: 334 issue: 5 year: 2015 end-page: 339 article-title: Epigenetic age analysis of children who seem to evade aging publication-title: Aging – volume: 14 start-page: 1263 issue: 5 year: 2021 end-page: 1273 article-title: An epigenetic clock to estimate the age of living beluga whales publication-title: Evolutionary Applications – volume: 6 issue: 1 year: 2015 article-title: NSD1 mutations generate a genome‐wide DNA methylation signature publication-title: Nature Communications – volume: 111 start-page: 15538 issue: 43 year: 2014 end-page: 15543 article-title: Obesity accelerates epigenetic aging of human liver publication-title: Proceedings of the National Academy of Sciences of the United States of America – volume: 5 start-page: 1 issue: 1 year: 2015 end-page: 10 article-title: A novel strategy for forensic age prediction by DNA methylation and support vector regression model publication-title: Scientific Reports – start-page: 2020.09.09.289801 year: 2020 article-title: Epigenetic clock and methylation studies in vervet monkeys publication-title: bioRxiv – year: 2003 article-title: C‐reactive protein, the metabolic syndrome, and risk of incident cardiovascular events: An 8‐year follow‐up of 14 719 initially healthy American women publication-title: Circulation – volume: 8 start-page: 1 issue: 1 year: 2017 end-page: 14 article-title: Genetic architecture of epigenetic and neuronal ageing rates in human brain regions publication-title: Nature Communications – volume: 5 start-page: 1 issue: e18648 year: 2016 end-page: 14 article-title: Maintenance of age in human neurons generated by microRNA‐based neuronal conversion of fibroblasts publication-title: eLife – volume: 39 start-page: 475 issue: 5‐6 year: 2017 article-title: A longitudinal study of DNA methylation as a potential mediator of age‐related diabetes risk publication-title: GeroScience – volume: 62 start-page: 987 issue: 3 year: 2013 end-page: 992 article-title: Insights into the molecular mechanism for type 2 diabetes susceptibility at the KCNQ1 locus from temporal changes in imprinting status in human islets publication-title: Diabetes – start-page: 2020.09.22.308882 year: 2020 article-title: Epigenetic clock and methylation studies in elephants publication-title: bioRxiv – volume: 10 start-page: 1 issue: e64932 year: 2021 end-page: 20 article-title: Castration delays epigenetic aging and feminizes DNA methylation at androgen‐regulated loci publication-title: eLife – volume: 19 start-page: 136 issue: 1 year: 2018 article-title: Epigenetic prediction of complex traits and death publication-title: Genome Biology – volume: 6 issue: 2 year: 2011 article-title: Age‐related differences in plasma proteins: How plasma proteins change from neonates to adults publication-title: PLoS One – volume: 12 start-page: 4394 issue: 5 year: 2020 end-page: 4406 article-title: DNA methylation clocks as a predictor for ageing and age estimation in naked mole‐rats, publication-title: Aging – volume: 18 start-page: 68 issue: 1 year: 2017 article-title: Multi‐tissue DNA methylation age predictor in mouse publication-title: Genome Biology – volume: 4 start-page: 4789 issue: 1 year: 2014 article-title: Epigenome rejuvenation: HP1 mobility as a measure of pluripotent and senescent chromatin ground states publication-title: Scientific Reports – volume: 44 start-page: 1388 issue: 4 year: 2015b end-page: 1396 article-title: The epigenetic clock is correlated with physical and cognitive fitness in the Lothian Birth Cohort 1936 publication-title: International Journal of Epidemiology – volume: 18 issue: 1 year: 2017 article-title: Diverse interventions that extend mouse lifespan suppress shared age‐associated epigenetic changes at critical gene regulatory regions publication-title: Genome Biology – volume: 6 start-page: 413 year: 1977 end-page: 429 article-title: Aging in the nematode : Major biological and environmental factors influencing life span publication-title: Mechanisms of Ageing and Development – volume: 40 start-page: 161 year: 2016 end-page: 167 article-title: Chromosome organisation during ageing and senescence publication-title: Current Opinion in Cell Biology – volume: 12 start-page: 1 issue: 1 year: 2021 end-page: 13 article-title: DNA methylation predicts age and provides insight into exceptional longevity of bats publication-title: Nature Communications – volume: 11 start-page: 1 issue: 1 year: 2020 end-page: 12 article-title: Transient non‐integrative expression of nuclear reprogramming factors promotes multifaceted amelioration of aging in human cells publication-title: Nature Communications – volume: 46 start-page: 549 issue: 2 year: 2017 end-page: 558 article-title: The epigenetic clock and physical development during childhood and adolescence: Longitudinal analysis from a UK birth cohort publication-title: International Journal of Epidemiology – volume: 14 start-page: 912 issue: 9 year: 2019 end-page: 926 article-title: Human epigenetic ageing is logarithmic with time across the entire lifespan publication-title: Epigenetics – volume: 12 start-page: 115 issue: 1 year: 2020 article-title: Epigenetic measures of ageing predict the prevalence and incidence of leading causes of death and disease burden publication-title: Clinical Epigenetics – start-page: 2020.07.16.203687 year: 2020 article-title: Methylation‐based age estimation in a wild mouse publication-title: bioRxiv – volume: 17 issue: 5 year: 2018 article-title: Plasma proteomic signature of age in healthy humans publication-title: Aging Cell – start-page: 2020.09.29.319509 year: 2020 article-title: Epigenetic clock and DNA methylation analysis of porcine models of aging and obesity publication-title: bioRxiv – volume: 8 start-page: 394 issue: 2 year: 2016 end-page: 401 article-title: DNA methylation levels at individual age‐associated CpG sites can be indicative for life expectancy publication-title: Aging – volume: 7 start-page: 8524 issue: 8 year: 2016 end-page: 8531 article-title: Epigenetic clock analyses of cellular senescence and ageing publication-title: Oncotarget – volume: 11 start-page: 183 issue: 1 year: 2019 article-title: Effect of tobacco smoking on the epigenetic age of human respiratory organs publication-title: Clinical Epigenetics – volume: 9 start-page: 1 issue: e59201 year: 2020 end-page: 19 article-title: A rat epigenetic clock recapitulates phenotypic aging and co‐localizes with heterochromatin publication-title: eLife – volume: 493 start-page: 338 issue: 7432 year: 2013 end-page: 345 article-title: MTOR is a key modulator of ageing and age‐related disease publication-title: Nature – volume: 17 start-page: 337 issue: 5 year: 2012 end-page: 343 article-title: Epigenetic rejuvenation publication-title: Genes to Cells – volume: 7 start-page: 1 issue: 1 year: 2016 end-page: 9 article-title: Genetic variants near MLST8 and DHX57 affect the epigenetic age of the cerebellum publication-title: Nature Communications – volume: 37 start-page: 215 year: 2018 end-page: 226 article-title: DNA methylation‐based age prediction using massively parallel sequencing data and multiple machine learning models publication-title: Forensic Science International: Genetics – volume: 45 start-page: 424 issue: 2 year: 2016 end-page: 432 article-title: The epigenetic clock and telomere length are independently associated with chronological age and mortality publication-title: International Journal of Epidemiology – volume: 37 start-page: 614 issue: 3 year: 1965 end-page: 636 article-title: The limited in vitro lifetime of human diploid cell strains publication-title: Experimental Cell Research – volume: 7 start-page: 113 issue: 1 year: 2015 article-title: DNA methylation changes of whole blood cells in response to active smoking exposure in adults: A systematic review of DNA methylation studies publication-title: Clinical Epigenetics – volume: 9 start-page: 1055 issue: 3 year: 2017 end-page: 1068 article-title: An epigenetic aging clock for dogs and wolves publication-title: Aging – volume: 9 start-page: 387 issue: 1 year: 2018 article-title: GWAS of epigenetic aging rates in blood reveals a critical role for TERT publication-title: Nature Communications – volume: 117 start-page: 23329 issue: 38 year: 2020 end-page: 23335 article-title: The PedBE clock accurately estimates DNA methylation age in pediatric buccal cells publication-title: Proceedings of the National Academy of Sciences – volume: 19 start-page: 33 issue: 1 year: 2018 article-title: Comparison of whole‐genome bisulfite sequencing library preparation strategies identifies sources of biases affecting DNA methylation data publication-title: Genome Biology – volume: 15 start-page: R24 issue: 2 year: 2014 article-title: Aging of blood can be tracked by DNA methylation changes at just three CpG sites publication-title: Genome Biology – volume: 292 start-page: 107 issue: 5514 year: 2001 end-page: 110 article-title: A mutant Drosophila insulin receptor homolog that extends life‐span and impairs neuroendocrine function publication-title: Science – year: 2020 article-title: Epigenetic clock and methylation studies in cats publication-title: bioRxiv – year: 2020 article-title: Pair bonding slows epigenetic aging and alters methylation in brains of prairie voles publication-title: bioRxiv – volume: 421 start-page: 182 issue: 6919 year: 2003 end-page: 187 article-title: IGF‐1 receptor regulates lifespan and resistance to oxidative stress in mice publication-title: Nature – volume: 25 start-page: 585 issue: 3 year: 1961 end-page: 621 article-title: The serial cultivation of human diploid cell strains publication-title: Experimental Cell Research – volume: 44 start-page: 102189 year: 2020 article-title: Novel multiplex strategy for DNA methylation‐based age prediction from small amounts of DNA via Pyrosequencing publication-title: Forensic Science International: Genetics – volume: 426 start-page: 620 issue: 6967 year: 2003 end-page: 620 article-title: Influence of TOR kinase on lifespan in publication-title: Nature – volume: 63 start-page: 155 year: 2016 end-page: 162 article-title: Accelerated DNA methylation age: Associations with PTSD and neural integrity publication-title: Psychoneuroendocrinology – volume: 356 start-page: 6337 year: 2017 article-title: Impact of cytosine methylation on DNA binding specificities of human transcription factors publication-title: Science – volume: 11 start-page: 5895 issue: 16 year: 2019b end-page: 5923 article-title: DNA methylation‐based estimator of telomere length publication-title: Aging – volume: 12 start-page: 1 issue: 120 year: 2020 end-page: 11 article-title: Epigenetic age and pregnancy outcomes: GrimAge acceleration is associated with shorter gestational length and lower birthweight publication-title: Clinical Epigenetics – start-page: 2021.01.07.425637 year: 2021 article-title: A mammalian methylation array for profiling methylation levels at conserved sequences publication-title: bioRxiv – volume: 71 start-page: 882 issue: 6 year: 2018 end-page: 895 article-title: Molecular cell review DNA methylation clocks in aging: Categories, causes and consequences publication-title: Molecular Cell – volume: 11 start-page: 303 year: 2019a end-page: 327 article-title: DNA methylation GrimAge strongly predicts lifespan and healthspan publication-title: Aging – volume: 96 start-page: 5894 year: 1999 end-page: 5896 article-title: DNA demethylation publication-title: Proceedings of the National Academy of Sciences of the United States of America – volume: 10 start-page: 1758 issue: 7 year: 2018 end-page: 1775 article-title: Epigenetic clock for skin and blood cells applied to Hutchinson Gilford Progeria Syndrome and ex vivo studies publication-title: Aging – volume: 10 start-page: 2800 issue: 10 year: 2018 end-page: 2815 article-title: Epigenetic ageing is distinct from senescence‐mediated ageing and is not prevented by telomerase expression publication-title: Aging – volume: 76 start-page: 741 issue: 5 year: 2021 end-page: 749 article-title: GrimAge outperforms other epigenetic clocks in the prediction of age‐related clinical phenotypes and all‐cause mortality publication-title: The Journals of Gerontology: Series A – volume: 148 start-page: 703 issue: 2 year: 1998 end-page: 717 article-title: An insulin‐like signaling pathway affects both longevity and reproduction in Caenorhabditis elegans publication-title: Genetics – year: 2020 – volume: 10 start-page: 573 issue: 4 year: 2018 end-page: 591 article-title: An epigenetic biomarker of aging for lifespan and healthspan publication-title: Aging – volume: 9 start-page: 1143 issue: 4 year: 2017 end-page: 1152 article-title: Accelerated epigenetic aging in Werner syndrome publication-title: Aging – volume: 19 start-page: 371 issue: 6 year: 2018 end-page: 384 article-title: DNA methylation‐based biomarkers and the epigenetic clock theory of ageing publication-title: Nature Reviews Genetics – volume: 14 start-page: 491 issue: 3 year: 2015a end-page: 495 article-title: Accelerated epigenetic aging in Down syndrome publication-title: Aging Cell – start-page: 463265 year: 2019 article-title: Valid post‐clustering differential analysis for single‐cell RNA‐Seq publication-title: bioRxiv – volume: 19 start-page: 14 year: 2014 end-page: 26 article-title: Base excision repair: A critical player in many games publication-title: DNA Repair – volume: 12 start-page: 1005183 issue: 11 year: 2016 article-title: A statistical frame‐work to identify deviation from time linearity in epigenetic aging publication-title: PLoS Computational Biology – volume: 1 start-page: 476 issue: 4 year: 2015 end-page: 485 article-title: Correlation of smoking‐associated DNA methylation changes in buccal cells with DNA methylation changes in epithelial cancer publication-title: JAMA Oncology – volume: 16 start-page: 385 issue: 4 year: 1997 end-page: 395 article-title: The lasso method for variable selection in the cox model publication-title: Statistics in Medicine – volume: 8 start-page: 14617 year: 2017 article-title: DNA methylation signatures in peripheral blood strongly predict all‐cause mortality publication-title: Nature Communications – volume: 12 start-page: 1 year: 2020 article-title: Highly accurate skin‐specific methylome analysis algorithm as a platform to screen and validate therapeutics for healthy aging publication-title: Clinical Epigenetics – volume: 6 issue: 6 year: 2011 article-title: Epigenetic predictor of age publication-title: PLoS One – volume: 21 start-page: 108 issue: 1 year: 2020 article-title: MethylNet: An automated and modular deep learning approach for DNA methylation analysis publication-title: BMC Bioinformatics – volume: 16 start-page: 1 issue: 1 year: 2015 end-page: 5 article-title: Erratum to DNA methylation age of human tissues and cell types [Genome Biology, 14, R115, (2013)] publication-title: Genome Biology – volume: 8 start-page: 152 issue: 6 year: 2017 article-title: DNA methylation profiling of human prefrontal cortex neurons in heroin users shows significant difference between genomic contexts of hyper‐ and hypomethylation and a younger epigenetic age publication-title: Genes – volume: 47 start-page: 101763 year: 2020 article-title: Age prediction in living: Forensic epigenetic age estimation based on blood samples publication-title: Legal Medicine – volume: 68 start-page: 667 issue: 6 year: 2013 end-page: 674 article-title: Modeling the rate of senescence: can estimated biological age predict mortality more accurately than chronological age? publication-title: Journals of Gerontology Series A: Biomedical Sciences and Medical Sciences – start-page: 1 year: 2020 end-page: 8 article-title: Evaluating the impact of trauma and PTSD on epigenetic prediction of lifespan and neural integrity publication-title: Neuropsychopharmacology – volume: 299 start-page: 572 issue: 5606 year: 2003 end-page: 574 article-title: Extended longevity in mice lacking the insulin receptor in adipose tissue publication-title: Science – volume: 96 start-page: 1020 issue: 7 year: 2007 end-page: 1024 article-title: Telomere and telomerase in stem cells publication-title: British Journal of Cancer – volume: 384 start-page: 33 issue: 6604 year: 1996 article-title: Dwarf mice and the ageing process publication-title: Nature – volume: 15 start-page: 263310552094222 year: 2020 article-title: DNA methylation clocks and their predictive capacity for aging phenotypes and healthspan publication-title: Neuroscience Insights – volume: 35 start-page: 315 issue: 2 year: 2010 end-page: 319 article-title: Nuclear reprogramming and epigenetic rejuvenation publication-title: Journal of Biosciences – volume: 18 start-page: 57 issue: 1 year: 2017 article-title: Epigenetic aging signatures in mice livers are slowed by dwarfism, calorie restriction and rapamycin treatment publication-title: Genome Biology – volume: 9 start-page: 419 issue: 2 year: 2017 end-page: 446 article-title: Epigenetic clock analysis of diet, exercise, education, and lifestyle factors publication-title: Aging – volume: 65 start-page: 465 issue: 2 year: 2020 end-page: 470 article-title: Age Estimation Based on DNA Methylation Using Blood Samples From Deceased Individuals publication-title: Journal of Forensic Sciences – volume: 7 start-page: 1 issue: e.40675 year: 2018 end-page: 16 article-title: A whole lifespan mouse multi‐tissue DNA methylation clock publication-title: eLife – volume: 16 start-page: 593 issue: 10 year: 2015 end-page: 610 article-title: Epigenetic regulation of ageing: Linking environmental inputs to genomic stability publication-title: Nature Reviews Molecular Cell Biology – volume: 95 start-page: 5607 year: 1998 end-page: 5610 article-title: The rate of telomere sequence loss in human leukocytes varies with age publication-title: Proceedings of the National Academy of Sciences of the United States of America – volume: 13 start-page: 229 issue: 3 year: 2016 end-page: 232 article-title: Parallel single‐cell sequencing links transcriptional and epigenetic heterogeneity publication-title: Nature Methods – volume: 11 start-page: 1132 issue: 6 year: 2012 end-page: 1134 article-title: Methylation ofELOVL2gene as a new epigenetic marker of age publication-title: Aging Cell – volume: 18 start-page: 1 issue: 1 year: 2019 end-page: 7 article-title: Partial reprogramming induces a steady decline in epigenetic age before loss of somatic identity publication-title: Aging Cell – volume: 10 start-page: 4361 issue: 1 year: 2019 article-title: Ageing affects DNA methylation drift and transcriptional cell‐to‐cell variability in mouse muscle stem cells publication-title: Nature Communications – start-page: 2021.05.16.444078 year: 2021 article-title: Epigenetic predictors of maximum lifespan and other life history traits in mammals publication-title: bioRxiv – volume: 25 start-page: 1843 issue: 12 year: 2019 end-page: 1850 article-title: Undulating changes in human plasma proteome profiles across the lifespan publication-title: Nature Medicine – volume: 11 start-page: 176 issue: 2 year: 2020 end-page: 185 article-title: Quantitative translation of dog‐to‐human aging by conserved remodeling of the DNA methylome publication-title: Cell Systems – volume: 80 start-page: 485 issue: 3 year: 1995 end-page: 496 article-title: Mutation in the silencing gene S/R4 can delay aging in publication-title: Cell – volume: 153 start-page: 1194 issue: 6 year: 2013 article-title: The hallmarks of aging publication-title: Cell – volume: 38 start-page: 1 year: 2019 end-page: 8 article-title: DNA methylation of the ELOVL2, FHL2, KLF14, C1orf132/MIR29B2C, and TRIM59 genes for age prediction from blood, saliva, and buccal swab samples publication-title: Forensic Science International: Genetics – volume: 88 start-page: 224 issue: 3 year: 2020 end-page: 235 article-title: Schizophrenia and epigenetic aging biomarkers: Increased mortality, reduced cancer risk, and unique clozapine effects publication-title: Biological Psychiatry – volume: 8 start-page: 705 issue: 5 year: 2016 end-page: 719 article-title: Epigenetic drift, epigenetic clocks and cancer risk publication-title: Epigenomics – volume: 346 start-page: 866 issue: 6287 year: 1990 end-page: 868 article-title: Telomere reduction in human colorectal carcinoma and with ageing publication-title: Nature – volume: 12 start-page: 1 issue: 1 year: 2019 end-page: 11 article-title: An epigenome‐wide association study of sex‐ specific chronological ageing publication-title: Genome Medicine – start-page: 2021.03.07.434299 year: 2021 article-title: Hibernation slows epigenetic aging in yellow‐bellied marmots publication-title: bioRxiv – volume: 20 issue: 5 year: 2021 article-title: Epigenetic clock and methylation study of oocytes from a bovine model of reproductive aging publication-title: Aging Cell – volume: 588 start-page: 124 issue: 7836 year: 2020 end-page: 129 article-title: Reprogramming to recover youthful epigenetic information and restore vision publication-title: Nature – volume: 11 start-page: 3238 issue: 10 year: 2019 end-page: 3249 article-title: Rapamycin retards epigenetic ageing of keratinocytes independently of its effects on replicative senescence, proliferation and differentiation publication-title: Aging – volume: 14 start-page: 976 issue: 5 year: 2014 end-page: 987 article-title: Epigenetic estimation of age in humpback whales publication-title: Molecular Ecology Resources – volume: 9 start-page: 1 year: 2019 article-title: Evaluation of six blood‐based age prediction models using DNA methylation analysis by pyrosequencing publication-title: Scientific Reports – start-page: 2020.09.21.307108 year: 2020 article-title: Epigenetic clock and methylation studies in the rhesus macaque publication-title: bioRxiv – start-page: 2020.11.21.392779 year: 2020 article-title: DNA methylation age analysis of rapamycin in common marmosets publication-title: bioRxiv – volume: 20 issue: 1 year: 2019 article-title: Screening for genes that accelerate the epigenetic aging clock in humans reveals a role for the H3K36 methyltransferase NSD1 publication-title: Genome Biology – volume: 74 start-page: 57 issue: 1 year: 2019 end-page: 61 article-title: Tracking the epigenetic clock across the human life course: A meta‐analysis of longitudinal cohort data publication-title: The Journals of Gerontology: Series A – volume: 19 start-page: 2 year: 2020 article-title: The lipid elongation enzyme ELOVL2 is a molecular regulator of aging in the retina publication-title: Aging Cell – volume: 15 start-page: 149 issue: 1 year: 2016 end-page: 154 article-title: DNA methylation age is associated with mortality in a longitudinal Danish twin study publication-title: Aging Cell – volume: 7 start-page: 1198 issue: 12 year: 2015 end-page: 1211 article-title: Epigenetic age of the pre‐frontal cortex is associated with neuritic plaques, amyloid load, and Alzheimer’s disease related cognitive functioning publication-title: Aging – volume: 13 start-page: 85 issue: 1 year: 2018 end-page: 94 article-title: Faster ticking rate of the epigenetic clock is associated with faster pubertal development in girls publication-title: Epigenetics – volume: 74 start-page: 91 issue: 1 year: 2019 end-page: 98 article-title: Effects of Vitamin D 3 supplementation on epigenetic aging in overweight and obese African Americans with suboptimal Vitamin D status: A randomized clinical trial publication-title: Journals of Gerontology ‐ Series A Biological Sciences and Medical Sciences – volume: 12 start-page: 125 issue: 1 year: 2020 article-title: PRDM8 reveals aberrant DNA methylation in aging syndromes and is relevant for hematopoietic and neuronal differentiation publication-title: Clinical Epigenetics – volume: 24 start-page: 489 issue: 3 year: 2016 end-page: 500 article-title: AGE‐induced keratinocyte MMP‐9 expression is linked to TET2‐mediated CpG demethylation publication-title: Wound Repair and Regeneration – volume: 311 start-page: 110267 year: 2020 article-title: DNA methylation age estimation in blood samples of living and deceased individuals using a multiplex SNaPshot assay publication-title: Forensic Science International – start-page: 2020.11.29.402891 year: 2020 article-title: DNA methylation study of age and sex in baboons and four other primates publication-title: bioRxiv – start-page: 2020.05.07.082917 year: 2020 article-title: Reversing age: Dual species measurement of epigenetic age with a single clock publication-title: bioRxiv – volume: 375 start-page: 20190616 issue: 1811 year: 2020 article-title: Age‐associated epigenetic change in chimpanzees and humans publication-title: Philosophical Transactions of the Royal Society B: Biological Sciences – volume: 20 start-page: 1 issue: 1 year: 2019 end-page: 24 article-title: DNA methylation aging clocks: Challenges and recommendations publication-title: Genome Biology – volume: 20 start-page: 387 issue: 2 year: 2020 end-page: 397 article-title: A clockwork fish: Age prediction using DNA methylation‐based biomarkers in the European seabass publication-title: Molecular Ecology Resources – volume: 23 start-page: 223 issue: 4‐5 year: 1988 end-page: 239 article-title: Biomarkers of aging publication-title: Experimental Gerontology – start-page: 1 year: 2020 end-page: 11 article-title: A DNA methylation clock associated with age‐related illnesses and mortality is accelerated in men with combat PTSD publication-title: Molecular Psychiatry – start-page: 2021.01.18.426733 year: 2021 article-title: Universal DNA methylation age across mammalian tissues publication-title: bioRxiv – volume: 8 issue: 1 year: 2016 article-title: Epigenetic associations of type 2 diabetes and BMI in an Arab population publication-title: Clinical Epigenetics – volume: 16 start-page: 25 issue: 1 year: 2015a article-title: DNA methylation age of blood predicts all‐cause mortality in later life publication-title: Genome Biology – volume: 14 start-page: 885 issue: 10 year: 2004 end-page: 890 article-title: Regulation of lifespan in Drosophila by modulation of genes in the TOR signaling pathway publication-title: Current Biology – volume: 25 start-page: 954 issue: 4 year: 2017 end-page: 960 article-title: Using DNA methylation profiling to evaluate biological age and longevity interventions publication-title: Cell Metabolism – volume: 10 start-page: 2832 issue: 10 year: 2018 end-page: 2854 article-title: A multi‐tissue full lifespan epigenetic clock for mice publication-title: Aging – volume: 9 start-page: 1 issue: E51507 year: 2020 end-page: 20 article-title: Longitudinal trajectories, correlations and mortality associations of nine biological ages across 20‐years follow‐up publication-title: eLife – volume: 256 start-page: 45 issue: 1 year: 1991 end-page: 48 article-title: In vivo loss of telomeric repeats with age in humans publication-title: Mutation Research DNAging – volume: 63 start-page: 2962 issue: 9 year: 2014 end-page: 2976 article-title: Altered DNA methylation and differential expression of genes influencing metabolism and inflammation in adipose tissue from subjects with type 2 diabetes publication-title: Diabetes – volume: 12 start-page: 24817 year: 2020 end-page: 24835 article-title: A DNA methylation age predictor for zebrafish publication-title: Aging – volume: 49 start-page: 359 issue: 2 year: 2013 end-page: 367 article-title: Genome‐wide methylation profiles reveal quantitative views of human aging rates publication-title: Molecular Cell – volume: 17 start-page: 205 issue: 1 year: 2016 article-title: Correlation of an epigenetic mitotic clock with cancer risk publication-title: Genome Biology – volume: 345 start-page: 458 issue: 6274 year: 1990 end-page: 460 article-title: Telomeres shorten during ageing of human fibroblasts publication-title: Nature – volume: 3 start-page: 526 issue: 7 year: 2015 end-page: 534 article-title: Epigenome‐wide association of DNA methylation markers in peripheral blood from Indian Asians and Europeans with incident type 2 diabetes: A nested case‐control study publication-title: The Lancet Diabetes and Endocrinology – volume: 9 start-page: 1 issue: 1 year: 2019 end-page: 14 article-title: Epigenome‐wide association study of depression symptomatology in elderly monozygotic twins publication-title: Translational Psychiatry – volume: 72 start-page: 1015 issue: 8 year: 2017 end-page: 1023 article-title: Systemic age‐associated DNA hypermethylation of ELOVL2 Gene. In vivo and in vitro evidences of a cell replication process publication-title: Journals of Gerontology ‐ Series A Biological Sciences and Medical Sciences – volume: 11 start-page: 366 issue: 2 year: 2012 end-page: 369 article-title: Monitoring of cellular senescence by DNA‐methylation at specific CpG sites publication-title: Aging Cell – volume: 8 start-page: 64 issue: 1 year: 2016 article-title: Epigenetic age acceleration predicts cancer, cardiovascular, and all‐cause mortality in a German case cohort publication-title: Clinical Epigenetics – volume: 17 start-page: 171 issue: 1 year: 2016a article-title: An epigenetic clock analysis of race/ethnicity, sex, and coronary heart disease publication-title: Genome Biology – volume: 21 start-page: 29 year: 2017 end-page: 36 article-title: Biological age predictors publication-title: EBioMedicine – volume: 12 start-page: 1252 issue: 5 year: 2021 article-title: DeepMAge: A methylation aging clock developed with deep learning publication-title: Aging and Disease – volume: 30 start-page: 365 issue: 4 year: 2002 end-page: 366 article-title: Haploinsufficiency of NSD1 causes Sotos syndrome publication-title: Nature Genetics – volume: 13 start-page: 7 issue: 1 year: 2015 article-title: Aging and DNA methylation publication-title: BMC Biology – volume: 8 start-page: 1 issue: 1 year: 2016 end-page: 8 article-title: Frailty is associated with the epigenetic clock but not with telomere length in a German cohort publication-title: Clinical Epigenetics – volume: 27 start-page: 545 issue: 4 year: 2017 end-page: 552 article-title: Time‐dependent genetic effects on gene expression implicate aging processes publication-title: Genome Research – volume: 80 start-page: 367 issue: 3 year: 2020 end-page: 374 article-title: Epigenetic aging: More than just a clock when it comes to cancer publication-title: Cancer Research – volume: 11 start-page: 54 issue: 1 year: 2019 article-title: Improved precision of epigenetic clock estimates across tissues and its implication for biological ageing publication-title: Genome Medicine – volume: 8 start-page: 1034 issue: 5 year: 2016 end-page: 1048 article-title: Epigenetic age predictions based on buccal swabs are more precise in combination with cell type‐specific DNA methylation signatures publication-title: Aging – volume: 11 start-page: 25 issue: 1 year: 2018 article-title: Age‐related DNA methylation changes are tissue‐specific with ELOVL2 promoter methylation as exception publication-title: Epigenetics and Chromatin – volume: 25 start-page: 191 issue: 1 year: 2016 end-page: 201 article-title: Prenatal and early life influences on epigenetic age in children: A study of mother‐offspring pairs from two cohort studies publication-title: Human Molecular Genetics – volume: 174 start-page: 18 year: 2018 end-page: 29 article-title: Back to the future: Epigenetic clock plasticity towards healthy aging publication-title: Mechanisms of Ageing and Development – volume: 7 start-page: 294 issue: 5 year: 2015c end-page: 306 article-title: The cerebellum ages slowly according to the epigenetic clock publication-title: Aging – volume: 403 start-page: 501 issue: 6769 year: 2000 end-page: 502 article-title: Demethylation of the zygotic paternal genome publication-title: Nature – year: 2020 article-title: Epigenetic clock and leukocyte telomere length are associated with vitamin D status, but not with functional assessments and frailty in the berlin aging study II publication-title: The Journals of Gerontology: Series A – volume: 42 start-page: 6956 issue: 11 year: 2014 end-page: 6971 article-title: TET1 is a maintenance DNA demethylase that prevents methylation spreading in differentiated cells publication-title: Nucleic Acids Research – volume: 29 start-page: 250 year: 2017 end-page: 256 article-title: Independent validation of DNA‐based approaches for age prediction in blood publication-title: Forensic Science International: Genetics – volume: 212 start-page: 1563 issue: 10 year: 2015 end-page: 1573 article-title: HIV‐1 infection accelerates age according to the epigenetic clock publication-title: Journal of Infectious Diseases – volume: 20 start-page: 1 year: 2019 article-title: Systematic underestimation of the epigenetic clock and age acceleration in older subjects publication-title: Genome Biology – volume: 23 start-page: 101199 issue: 6 year: 2020 article-title: Human gut microbiome aging clock based on taxonomic profiling and deep learning publication-title: iScience – volume: 8 start-page: 157 issue: 2 year: 2008 end-page: 168 article-title: Resveratrol delays age‐related deterioration and mimics transcriptional aspects of dietary restriction without extending life span publication-title: Cell Metabolism – volume: 14 year: 2013 article-title: DNA methylation age of human tissues and cell types publication-title: Genome Biology – volume: 5 start-page: 1 issue: 18648 year: 2016 ident: e_1_2_11_77_1 article-title: Maintenance of age in human neurons generated by microRNA‐based neuronal conversion of fibroblasts publication-title: eLife – ident: e_1_2_11_101_1 doi: 10.1093/gerona/gls233 – start-page: 2020.09.29.3195 year: 2020 ident: e_1_2_11_157_1 article-title: Epigenetic clock and DNA methylation analysis of porcine models of aging and obesity publication-title: bioRxiv – ident: e_1_2_11_16_1 doi: 10.1371/journal.pone.0014821 – ident: e_1_2_11_27_1 doi: 10.1016/j.fsigen.2017.04.020 – ident: e_1_2_11_18_1 doi: 10.1111/eva.13195 – ident: e_1_2_11_43_1 doi: 10.1073/pnas.95.10.5607 – start-page: 2020.09.22.3088 year: 2020 ident: e_1_2_11_149_1 article-title: Epigenetic clock and methylation studies in elephants publication-title: bioRxiv – ident: e_1_2_11_109_1 doi: 10.1016/0921-8734(91)90032-7 – ident: e_1_2_11_167_1 doi: 10.1111/acel.12799 – ident: e_1_2_11_182_1 doi: 10.1186/gb-2014-15-2-r24 – ident: e_1_2_11_41_1 doi: 10.1016/j.fsigen.2019.102189 – volume-title: FOXO BioScience, Formerly Known as Life Epigenetics, An nounces New Infinium Mouse Methylation Array in Strategic Collaboration with Van Andel Institute year: 2020 ident: e_1_2_11_42_1 – ident: e_1_2_11_60_1 doi: 10.1038/nature01298 – ident: e_1_2_11_55_1 doi: 10.1038/45843 – ident: e_1_2_11_105_1 doi: 10.1186/s12859-020-3443-8 – ident: e_1_2_11_140_1 doi: 10.1186/s13059-018-1408-2 – ident: e_1_2_11_108_1 doi: 10.18632/aging.100908 – ident: e_1_2_11_112_1 doi: 10.18632/oncotarget.7383 – ident: e_1_2_11_19_1 doi: 10.1186/s13148-016-0186-5 – start-page: 2021.01.18.4267 year: 2021 ident: e_1_2_11_115_1 article-title: Universal DNA methylation age across mammalian tissues publication-title: bioRxiv – ident: e_1_2_11_158_1 doi: 10.1093/hmg/ddv456 – ident: e_1_2_11_78_1 doi: 10.1016/j.immuni.2015.03.005 – ident: e_1_2_11_141_1 doi: 10.1111/acel.12877 – ident: e_1_2_11_153_1 doi: 10.1016/j.cub.2019.07.011 – ident: e_1_2_11_163_1 doi: 10.1371/journal.pcbi.1005183 – ident: e_1_2_11_26_1 doi: 10.1093/gerona/gly223 – ident: e_1_2_11_20_1 doi: 10.1038/384033a0 – volume: 10 start-page: 1 issue: 64932 year: 2021 ident: e_1_2_11_166_1 article-title: Castration delays epigenetic aging and feminizes DNA methylation at androgen‐regulated loci publication-title: eLife – ident: e_1_2_11_164_1 doi: 10.1038/s41398-019-0548-9 – ident: e_1_2_11_119_1 doi: 10.18632/aging.102173 – ident: e_1_2_11_144_1 doi: 10.1038/ncomms9570 – ident: e_1_2_11_54_1 doi: 10.1016/0014-4827(61)90192-6 – ident: e_1_2_11_116_1 doi: 10.1038/ncomms15353 – ident: e_1_2_11_64_1 doi: 10.1111/acel.12325 – ident: e_1_2_11_117_1 doi: 10.1038/ncomms10561 – ident: e_1_2_11_89_1 doi: 10.1016/j.cub.2004.03.059 – start-page: 2020.09.09.2898 year: 2020 ident: e_1_2_11_81_1 article-title: Epigenetic clock and methylation studies in vervet monkeys publication-title: bioRxiv – ident: e_1_2_11_160_1 doi: 10.1007/s12038-010-0034-2 – ident: e_1_2_11_104_1 doi: 10.18632/aging.101414 – ident: e_1_2_11_199_1 doi: 10.2217/epi-2015-0017 – ident: e_1_2_11_183_1 doi: 10.1093/jn/116.4.641 – ident: e_1_2_11_133_1 doi: 10.1186/s13073-019-0693-z – ident: e_1_2_11_14_1 doi: 10.1080/15592294.2017.1414127 – ident: e_1_2_11_11_1 doi: 10.1073/pnas.1506264112 – ident: e_1_2_11_194_1 doi: 10.1186/s13148-017-0315-9 – ident: e_1_2_11_126_1 doi: 10.1186/s13059-015-0584-6 – ident: e_1_2_11_99_1 doi: 10.1038/s41591-019-0673-2 – ident: e_1_2_11_102_1 doi: 10.18632/aging.100864 – ident: e_1_2_11_132_1 doi: 10.1186/s13059-018-1514-1 – ident: e_1_2_11_87_1 doi: 10.1016/j.ebiom.2017.03.046 – ident: e_1_2_11_200_1 doi: 10.1111/j.1467-9868.2005.00503.x – ident: e_1_2_11_93_1 doi: 10.1111/j.1474-9726.2011.00784.x – ident: e_1_2_11_3_1 doi: 10.1016/j.fsigen.2018.09.003 – ident: e_1_2_11_38_1 doi: 10.18632/aging.100972 – volume: 12 start-page: 1 issue: 120 year: 2020 ident: e_1_2_11_154_1 article-title: Epigenetic age and pregnancy outcomes: GrimAge acceleration is associated with shorter gestational length and lower birthweight publication-title: Clinical Epigenetics – ident: e_1_2_11_174_1 doi: 10.1093/genetics/148.2.703 – ident: e_1_2_11_88_1 doi: 10.18632/aging.101588 – ident: e_1_2_11_165_1 doi: 10.1186/s13059-017-1203-5 – ident: e_1_2_11_139_1 doi: 10.1016/j.cell.2016.11.052 – ident: e_1_2_11_120_1 doi: 10.1038/s41467-017-02697-5 – ident: e_1_2_11_46_1 doi: 10.1186/s13148-015-0148-3 – start-page: 2020.09.21.3071 year: 2020 ident: e_1_2_11_75_1 article-title: Epigenetic clock and methylation studies in the rhesus macaque publication-title: bioRxiv – ident: e_1_2_11_150_1 doi: 10.18632/aging.101168 – ident: e_1_2_11_29_1 doi: 10.1111/acel.12421 – ident: e_1_2_11_48_1 doi: 10.1007/s11357-017-0001-z – ident: e_1_2_11_175_1 doi: 10.2337/db12-0819 – ident: e_1_2_11_190_1 doi: 10.1186/s13059-016-1064-3 – ident: e_1_2_11_152_1 doi: 10.1161/01.CIR.0000055014.62083.05 – ident: e_1_2_11_129_1 doi: 10.1186/s13059-019-1753-9 – ident: e_1_2_11_131_1 doi: 10.18632/aging.202400 – ident: e_1_2_11_146_1 doi: 10.1038/s41551-017-0093 – ident: e_1_2_11_198_1 doi: 10.1111/wrr.12426 – ident: e_1_2_11_124_1 doi: 10.1038/srep04789 – ident: e_1_2_11_50_1 doi: 10.1016/j.molcel.2012.10.016 – ident: e_1_2_11_84_1 doi: 10.1038/nature11861 – ident: e_1_2_11_12_1 doi: 10.1038/nrm4048 – ident: e_1_2_11_121_1 doi: 10.1186/s13059-016-0871-x – ident: e_1_2_11_67_1 doi: 10.18632/aging.101005 – ident: e_1_2_11_44_1 doi: 10.1016/j.isci.2020.101199 – ident: e_1_2_11_97_1 doi: 10.1038/ng863 – start-page: 463265 year: 2019 ident: e_1_2_11_195_1 article-title: Valid post‐clustering differential analysis for single‐cell RNA‐Seq publication-title: bioRxiv – ident: e_1_2_11_71_1 doi: 10.18632/aging.101508 – ident: e_1_2_11_35_1 doi: 10.1111/1556-4029.14185 – ident: e_1_2_11_65_1 doi: 10.1186/s13059-016-1030-0 – start-page: 2020.09.21.3066 year: 2020 ident: e_1_2_11_100_1 article-title: Epigenetic clock and DNA methylation studies of roe deer in the wild publication-title: bioRxiv – ident: e_1_2_11_68_1 doi: 10.1093/infdis/jiv277 – ident: e_1_2_11_113_1 doi: 10.18632/aging.102892 – year: 2020 ident: e_1_2_11_155_1 article-title: Pair bonding slows epigenetic aging and alters methylation in brains of prairie voles publication-title: bioRxiv – ident: e_1_2_11_178_1 doi: 10.18632/aging.100744 – ident: e_1_2_11_70_1 doi: 10.18632/aging.100742 – start-page: 1 year: 2020 ident: e_1_2_11_90_1 article-title: Evaluating the impact of trauma and PTSD on epigenetic prediction of lifespan and neural integrity publication-title: Neuropsychopharmacology – start-page: 2020.11.29.4028 year: 2020 ident: e_1_2_11_66_1 article-title: DNA methylation study of age and sex in baboons and four other primates publication-title: bioRxiv – ident: e_1_2_11_34_1 doi: 10.1016/j.mad.2018.01.002 – ident: e_1_2_11_30_1 doi: 10.1186/s13059-017-1185-3 – ident: e_1_2_11_173_1 doi: 10.1002/(SICI)1097-0258(19970228)16:4<385::AID-SIM380>3.0.CO;2-3 – ident: e_1_2_11_98_1 doi: 10.1016/j.legalmed.2020.101744 – start-page: 2020.07.16.2036 year: 2020 ident: e_1_2_11_110_1 article-title: Methylation‐based age estimation in a wild mouse publication-title: bioRxiv – ident: e_1_2_11_49_1 doi: 10.1098/rstb.2019.0616 – ident: e_1_2_11_36_1 doi: 10.1016/j.forsciint.2020.110267 – ident: e_1_2_11_13_1 doi: 10.1177/2633105520942221 – ident: e_1_2_11_96_1 doi: 10.3390/genes8060152 – ident: e_1_2_11_2_1 doi: 10.1186/s13148-016-0177-6 – ident: e_1_2_11_122_1 doi: 10.18632/aging.101217 – ident: e_1_2_11_130_1 doi: 10.1038/35000656 – ident: e_1_2_11_142_1 doi: 10.1016/j.cmet.2008.06.011 – ident: e_1_2_11_187_1 doi: 10.1186/s13148-019-0777-z – ident: e_1_2_11_33_1 doi: 10.1038/s41598-019-45197-w – ident: e_1_2_11_56_1 doi: 10.1038/s41467-019-12293-4 – ident: e_1_2_11_69_1 doi: 10.18632/aging.101976 – ident: e_1_2_11_135_1 doi: 10.1073/pnas.1820843116 – ident: e_1_2_11_114_1 doi: 10.1038/s41586-020-2975-4 – ident: e_1_2_11_9_1 doi: 10.1186/s13059-019-1824-y – ident: e_1_2_11_80_1 doi: 10.1038/s41598-018-28318-9 – ident: e_1_2_11_23_1 doi: 10.1016/j.ceb.2016.03.020 – ident: e_1_2_11_161_1 doi: 10.1186/s13072-018-0191-3 – ident: e_1_2_11_28_1 doi: 10.1038/ncomms10207 – ident: e_1_2_11_193_1 doi: 10.1016/j.fsigen.2015.05.001 – ident: e_1_2_11_180_1 doi: 10.1016/j.cels.2020.06.006 – start-page: 2020.11.21.3927 year: 2020 ident: e_1_2_11_76_1 article-title: DNA methylation age analysis of rapamycin in common marmosets publication-title: bioRxiv – ident: e_1_2_11_111_1 doi: 10.1016/j.cell.2013.05.039 – ident: e_1_2_11_17_1 doi: 10.1186/s13148-020-00899-1 – ident: e_1_2_11_22_1 doi: 10.1016/S2213-8587(15)00127-8 – ident: e_1_2_11_37_1 doi: 10.1016/j.legalmed.2020.101763 – ident: e_1_2_11_134_1 doi: 10.1093/gerona/glaa286 – volume: 12 start-page: 1 issue: 1 year: 2021 ident: e_1_2_11_184_1 article-title: DNA methylation predicts age and provides insight into exceptional longevity of bats publication-title: Nature Communications – ident: e_1_2_11_61_1 doi: 10.1186/gb-2013-14-10-r115 – ident: e_1_2_11_127_1 doi: 10.1093/ije/dyu277 – ident: e_1_2_11_10_1 doi: 10.7554/eLife.54870 – ident: e_1_2_11_172_1 doi: 10.18632/aging.101211 – start-page: 2020.05.07.0829 year: 2020 ident: e_1_2_11_74_1 article-title: Reversing age: Dual species measurement of epigenetic age with a single clock publication-title: bioRxiv – ident: e_1_2_11_118_1 doi: 10.18632/aging.101684 – volume-title: “SNaPshot™ Multiplex Kit” year: 2020 ident: e_1_2_11_170_1 – start-page: 2021.01.07.4256 year: 2021 ident: e_1_2_11_6_1 article-title: A mammalian methylation array for profiling methylation levels at conserved sequences publication-title: bioRxiv – ident: e_1_2_11_47_1 doi: 10.1111/acel.12005 – ident: e_1_2_11_53_1 doi: 10.1016/0014-4827(65)90211-9 – ident: e_1_2_11_197_1 doi: 10.1038/ncomms14617 – ident: e_1_2_11_82_1 doi: 10.1242/dev.01255 – ident: e_1_2_11_63_1 doi: 10.1073/pnas.1412759111 – ident: e_1_2_11_196_1 doi: 10.1186/s13073-019-0667-1 – ident: e_1_2_11_31_1 doi: 10.1111/1556-4029.14185 – ident: e_1_2_11_95_1 doi: 10.1111/acel.13349 – ident: e_1_2_11_186_1 doi: 10.1073/pnas.96.11.5894 – ident: e_1_2_11_52_1 doi: 10.1038/346866a0 – ident: e_1_2_11_32_1 doi: 10.1186/s13148-020-00914-5 – ident: e_1_2_11_138_1 doi: 10.2337/db13-1459 – ident: e_1_2_11_191_1 doi: 10.1126/science.aaj2239 – ident: e_1_2_11_58_1 doi: 10.1186/s13148-020-00905-6 – ident: e_1_2_11_5_1 doi: 10.1038/nmeth.3728 – ident: e_1_2_11_7_1 doi: 10.1093/gerona/glw185 – volume: 9 start-page: 1 issue: 59201 year: 2020 ident: e_1_2_11_103_1 article-title: A rat epigenetic clock recapitulates phenotypic aging and co‐localizes with heterochromatin publication-title: eLife – ident: e_1_2_11_59_1 doi: 10.1038/sj.bjc.6603671 – ident: e_1_2_11_4_1 doi: 10.1111/1755-0998.13111 – ident: e_1_2_11_45_1 doi: 10.14336/AD.2020.1202 – ident: e_1_2_11_92_1 doi: 10.1016/0047-6374(77)90043-4 – ident: e_1_2_11_15_1 doi: 10.1126/science.1078223 – ident: e_1_2_11_192_1 doi: 10.1158/0008-5472.CAN-19-0924 – ident: e_1_2_11_179_1 doi: 10.1016/j.dnarep.2014.03.030 – ident: e_1_2_11_40_1 doi: 10.1016/j.molcel.2018.08.008 – ident: e_1_2_11_176_1 doi: 10.1038/426620a – ident: e_1_2_11_185_1 doi: 10.1016/j.psyneuen.2015.09.020 – ident: e_1_2_11_181_1 doi: 10.1186/s13059-017-1186-2 – ident: e_1_2_11_86_1 doi: 10.1016/j.fsigen.2018.09.010 – ident: e_1_2_11_79_1 doi: 10.1371/journal.pone.0017213 – ident: e_1_2_11_145_1 doi: 10.1016/j.cmet.2017.03.016 – ident: e_1_2_11_156_1 doi: 10.1038/s41467-020-15174-3 – year: 2020 ident: e_1_2_11_151_1 article-title: Epigenetic clock and methylation studies in cats publication-title: bioRxiv – volume: 9 start-page: 1 issue: 51507 year: 2020 ident: e_1_2_11_107_1 article-title: Longitudinal trajectories, correlations and mortality associations of nine biological ages across 20‐years follow‐up publication-title: eLife – ident: e_1_2_11_128_1 doi: 10.1093/gerona/gly060 – ident: e_1_2_11_169_1 doi: 10.1001/jamaoncol.2015.1053 – volume: 46 start-page: 549 issue: 2 year: 2017 ident: e_1_2_11_159_1 article-title: The epigenetic clock and physical development during childhood and adolescence: Longitudinal analysis from a UK birth cohort publication-title: International Journal of Epidemiology – ident: e_1_2_11_73_1 doi: 10.1038/s41576-018-0004-3 – ident: e_1_2_11_125_1 doi: 10.1093/ije/dyw041 – ident: e_1_2_11_25_1 doi: 10.1111/acel.13100 – ident: e_1_2_11_171_1 doi: 10.18632/aging.101590 – ident: e_1_2_11_72_1 doi: 10.18632/aging.100861 – ident: e_1_2_11_85_1 doi: 10.1186/s12915-015-0118-4 – ident: e_1_2_11_143_1 doi: 10.1186/s13148-016-0228-z – volume: 7 start-page: 1 issue: 40675 year: 2018 ident: e_1_2_11_136_1 article-title: A whole lifespan mouse multi‐tissue DNA methylation clock publication-title: eLife – ident: e_1_2_11_188_1 doi: 10.1038/srep17788 – ident: e_1_2_11_91_1 doi: 10.1016/0092-8674(95)90499-9 – start-page: 2021.03.07.4342 year: 2021 ident: e_1_2_11_147_1 article-title: Hibernation slows epigenetic aging in yellow‐bellied marmots publication-title: bioRxiv – ident: e_1_2_11_24_1 doi: 10.18632/aging.101020 – ident: e_1_2_11_168_1 doi: 10.1126/science.1057987 – start-page: 2021.05.16.4440 year: 2021 ident: e_1_2_11_106_1 article-title: Epigenetic predictors of maximum lifespan and other life history traits in mammals publication-title: bioRxiv – ident: e_1_2_11_39_1 doi: 10.1186/s13059-019-1810-4 – ident: e_1_2_11_62_1 doi: 10.1186/s13059-015-0649-6 – ident: e_1_2_11_177_1 doi: 10.1093/gerona/glaa101 – ident: e_1_2_11_8_1 doi: 10.1016/0531-5565(88)90025-3 – ident: e_1_2_11_21_1 doi: 10.1101/gr.207688.116 – ident: e_1_2_11_83_1 doi: 10.1093/nar/gku372 – ident: e_1_2_11_148_1 doi: 10.1111/1755-0998.12247 – ident: e_1_2_11_57_1 doi: 10.1016/j.biopsych.2020.01.025 – ident: e_1_2_11_137_1 doi: 10.1038/nature01789 – ident: e_1_2_11_162_1 doi: 10.1080/15592294.2019.1623634 – ident: e_1_2_11_123_1 doi: 10.1111/j.1365-2443.2012.01595.x – ident: e_1_2_11_51_1 doi: 10.1038/345458a0 – start-page: 1 year: 2020 ident: e_1_2_11_189_1 article-title: A DNA methylation clock associated with age‐related illnesses and mortality is accelerated in men with combat PTSD publication-title: Molecular Psychiatry – ident: e_1_2_11_94_1 doi: 10.18632/aging.100395 |
| SSID | ssj0017903 |
| Score | 2.637552 |
| SecondaryResourceType | review_article |
| Snippet | Advanced age is the main common risk factor for cancer, cardiovascular disease and neurodegeneration. Yet, more is known about the molecular basis of any of... |
| SourceID | pubmedcentral proquest gale pubmed crossref wiley |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | e13452 |
| SubjectTerms | Age ageing Aging Aging - genetics Animals Biomarkers Cardiovascular diseases Cognitive ability composite predictors Datasets Disease DNA methylation Epigenesis, Genetic - genetics epigenetic clocks Epigenetic inheritance Epigenetics Fibroblasts Forensic science Health aspects Humans Methylation minimised clocks mortality Neurodegeneration Review Reviews Risk factors |
| Title | Epigenetic age prediction |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1111%2Facel.13452 https://www.ncbi.nlm.nih.gov/pubmed/34415665 https://www.proquest.com/docview/2572413256 https://www.proquest.com/docview/2563421175 https://pubmed.ncbi.nlm.nih.gov/PMC8441394 |
| Volume | 20 |
| WOSCitedRecordID | wos000686581400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1474-9726 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017903 issn: 1474-9718 databaseCode: DOA dateStart: 20140101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVPQU databaseName: Biological Science Database customDbUrl: eissn: 1474-9726 dateEnd: 20221231 omitProxy: false ssIdentifier: ssj0017903 issn: 1474-9718 databaseCode: M7P dateStart: 20190101 isFulltext: true titleUrlDefault: http://search.proquest.com/biologicalscijournals providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1474-9726 dateEnd: 20221231 omitProxy: false ssIdentifier: ssj0017903 issn: 1474-9718 databaseCode: BENPR dateStart: 20190101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 1474-9726 dateEnd: 20221231 omitProxy: false ssIdentifier: ssj0017903 issn: 1474-9718 databaseCode: PIMPY dateStart: 20190101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest – providerCode: PRVWIB databaseName: Wiley Online Library Open Access customDbUrl: eissn: 1474-9726 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017903 issn: 1474-9718 databaseCode: WIN dateStart: 20020101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell – providerCode: PRVWIB databaseName: Wiley Open Access Collection customDbUrl: eissn: 1474-9726 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017903 issn: 1474-9718 databaseCode: 24P dateStart: 20020101 isFulltext: true titleUrlDefault: https://authorservices.wiley.com/open-science/open-access/browse-journals.html providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3ra9swED9K08G-bG338taGjA7GBh5xJFsS7EtaUlZogyl7ZJ-MfLZYobghaQf773cnO25cxqD0S0i4k2M97iWdfgfwTjpM8kSIkMyNCKXFIenB3ISaGqhCJrreyv5-qqZTPZuZdAM-r-7C1PgQ7YYbS4bX1yzgNl-uCbnF8vJTJGRMCrgXRUJz4YaRTNszBGV8XeRIKhkaUsENOCnn8dy27Ziju0p5zSrdzZhc92S9KTp--rBObMOTxgUdjOs1swMbZbULj-qilH-eQTCZM0InX24ckLIZzBd8lsPz9xy-HU--Hn0JmwIKIcZkuENXGKTw12KMJqfRwMImYsQQg3muNek65RyFa8SD5GigK4tCl3Fsh9oSo3HiBWxWV1X5CgZDjYWjZygtIukcaiMplrEYRTZy5CQF8GE1jhk26OJc5OIyW0UZ3NXMdzWAg5Z3XmNq_JPrPU9HxoJGT0Lb3Beg92HIqmzMOEUilor-e6_DSQKCXfJqQrNGQJcZaSo-USSHL4C3LZlbctJZVV7dME8i5IixTAN4Wc9_-75C-siXKKqzMloGhu3uUqqLXx6-W1NTYWQAH_3K-M8QZOOjyan_9vo-zG_g8Ygzb3wm3B5sXi9uyn3Ywt_XF8tF3wsJfaqZ7kPvcDJNz_t-J6LPea9E6aUnZ-lP-vXjZPoXcsgYYw |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3rS9xAEB-KD_SLr9qaqu2JhaKQcrndJLsfDzlReh5-0NZvy2aSpYLE43yA_31nNrl4kSKI3wI7u9nXvHZnfwPwXTpMskSIkNSNCKXFLsnBTIeKKqS5TFR1lP17mI5G6upKn9exOfwWpsKHaA7cmDO8vGYG5wPpGS63WNz8jISMSQLPS7I0OHPDn9NRc4mQap8YOZKpDDXJ4BqdlAN5nuu29NFLqTyjll6GTM6asl4XHa--cxRrsFIboZ1-tWvW4UNRbsBilZby6SMEgzFjdPLzxg6Jm854wrc5vIKbcHk8uDg6CesUCiHGpLpDl2skB9hijDqj6cDcJqLHIINZphRJu9Q5ctiIBsnUQFfkuSri2HaVJULtxCeYK2_LYgs6XYW5ozZSJSLpHCotyZuxGEU2cmQmBXAwnUiDNb44p7m4MVM_g4dq_FAD2G9oxxWqxn-pfvB6GGY1aglt_WKA-sOgVabPSEUilin9e6dFSSyC7eLpipqaRe8MySq-UySTL4C9pphrcthZWdw-ME0iZI_RTAP4XG2Apr9Cet-XStLW1mgIGLi7XVJe__UA3oqqCi0DOPRb45UpMP2jwdB_fXkL8TdYOrk4G5rh6ejXNiz3OA7Hx8XtwNz95KHYhQV8vL--m3z1HPMPMEUVjg |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3da9swED9Gt5W9bOu6rd66NaOFsoJHHMmW9Bi6hI2FkIe29E3IZ4sGihvSD9h_vzvZ8eIyCqNvBp1kfdyndPoJ4EB6zPJMiJjMjYilwz7pwdzEmiqoQma63so-m6jpVJ-fm1mTm8N3YWp8iHbDjSUj6GsW8HJR-DUpd1hefkuETEkDP5WpSpipB3LWHiIoEx5GTqSSsSEd3KCTciLP37ode3RfK6-Zpfspk-uubLBF41ePHMVreNk4ob1hzTVb8KSs3sDz-lnK39sQjRaM0cnXG3ukbnqLJZ_m8Aq-hdPx6OT4R9w8oRBjSqY79oVBCoAdpmhymg4sXCYGDDKY51qTtlPeU8BGNEiuBvqyKHSZpq6vHREaL97BRnVVlTvQ62ssPLWhtEik96iNpGjGYZK4xJObFMHX1URabPDF-ZmLS7uKM3ioNgw1gv2WdlGjavyT6pDXw7KoUUvomhsD1B8GrbJDRioSqVT0790OJYkIdotXK2obEb22pKv4TJFcvgi-tMVck9POqvLqlmkyIQeMZhrB-5oB2v4KGWJfKlEd1mgJGLi7W1LNLwKAt6aqwsgIjgJrPDAFdng8moSvD_9DvAebs-9jO_k5_fURXgw4DSekxe3Cxs3ytvwEz_DuZn69_BwE5g8PBxSl |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Epigenetic+age+prediction&rft.jtitle=Aging+cell&rft.au=Simpson%2C+Daniel+J&rft.au=Chandra%2C+Tamir&rft.date=2021-09-01&rft.pub=John+Wiley+%26+Sons%2C+Inc&rft.issn=1474-9718&rft.volume=20&rft.issue=9&rft_id=info:doi/10.1111%2Facel.13452&rft.externalDocID=A707835475 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1474-9718&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1474-9718&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1474-9718&client=summon |