The aging signature: a hallmark of induced pluripotent stem cells?
Summary The discovery that somatic cells can be induced into a pluripotent state by the expression of reprogramming factors has enormous potential for therapeutics and human disease modeling. With regard to aging and rejuvenation, the reprogramming process resets an aged, somatic cell to a more yout...
Uložené v:
| Vydané v: | Aging cell Ročník 13; číslo 1; s. 2 - 7 |
|---|---|
| Hlavní autori: | , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
England
John Wiley & Sons, Inc
01.02.2014
BlackWell Publishing Ltd |
| Predmet: | |
| ISSN: | 1474-9718, 1474-9726, 1474-9726 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Summary
The discovery that somatic cells can be induced into a pluripotent state by the expression of reprogramming factors has enormous potential for therapeutics and human disease modeling. With regard to aging and rejuvenation, the reprogramming process resets an aged, somatic cell to a more youthful state, elongating telomeres, rearranging the mitochondrial network, reducing oxidative stress, restoring pluripotency, and making numerous other alterations. The extent to which induced pluripotent stem cell (iPSC)s mime embryonic stem cells is controversial, however, as iPSCs have been shown to harbor an epigenetic memory characteristic of their tissue of origin which may impact their differentiation potential. Furthermore, there are contentious data regarding the extent to which telomeres are elongated, telomerase activity is reconstituted, and mitochondria are reorganized in iPSCs. Although several groups have reported that reprogramming efficiency declines with age and is inhibited by genes upregulated with age, others have successfully generated iPSCs from senescent and centenarian cells. Mixed findings have also been published regarding whether somatic cells generated from iPSCs are subject to premature senescence. Defects such as these would hinder the clinical application of iPSCs, and as such, more comprehensive testing of iPSCs and their potential aging signature should be conducted. |
|---|---|
| AbstractList | The discovery that somatic cells can be induced into a pluripotent state by the expression of reprogramming factors has enormous potential for therapeutics and human disease modeling. With regard to aging and rejuvenation, the reprogramming process resets an aged, somatic cell to a more youthful state, elongating telomeres, rearranging the mitochondrial network, reducing oxidative stress, restoring pluripotency, and making numerous other alterations. The extent to which induced pluripotent stem cell (iPSC)s mime embryonic stem cells is controversial, however, as iPSCs have been shown to harbor an epigenetic memory characteristic of their tissue of origin which may impact their differentiation potential. Furthermore, there are contentious data regarding the extent to which telomeres are elongated, telomerase activity is reconstituted, and mitochondria are reorganized in iPSCs. Although several groups have reported that reprogramming efficiency declines with age and is inhibited by genes upregulated with age, others have successfully generated iPSCs from senescent and centenarian cells. Mixed findings have also been published regarding whether somatic cells generated from iPSCs are subject to premature senescence. Defects such as these would hinder the clinical application of iPSCs, and as such, more comprehensive testing of iPSCs and their potential aging signature should be conducted.The discovery that somatic cells can be induced into a pluripotent state by the expression of reprogramming factors has enormous potential for therapeutics and human disease modeling. With regard to aging and rejuvenation, the reprogramming process resets an aged, somatic cell to a more youthful state, elongating telomeres, rearranging the mitochondrial network, reducing oxidative stress, restoring pluripotency, and making numerous other alterations. The extent to which induced pluripotent stem cell (iPSC)s mime embryonic stem cells is controversial, however, as iPSCs have been shown to harbor an epigenetic memory characteristic of their tissue of origin which may impact their differentiation potential. Furthermore, there are contentious data regarding the extent to which telomeres are elongated, telomerase activity is reconstituted, and mitochondria are reorganized in iPSCs. Although several groups have reported that reprogramming efficiency declines with age and is inhibited by genes upregulated with age, others have successfully generated iPSCs from senescent and centenarian cells. Mixed findings have also been published regarding whether somatic cells generated from iPSCs are subject to premature senescence. Defects such as these would hinder the clinical application of iPSCs, and as such, more comprehensive testing of iPSCs and their potential aging signature should be conducted. The discovery that somatic cells can be induced into a pluripotent state by the expression of reprogramming factors has enormous potential for therapeutics and human disease modeling. With regard to aging and rejuvenation, the reprogramming process resets an aged, somatic cell to a more youthful state, elongating telomeres, rearranging the mitochondrial network, reducing oxidative stress, restoring pluripotency, and making numerous other alterations. The extent to which induced pluripotent stem cell ( iPSC )s mime embryonic stem cells is controversial, however, as iPSC s have been shown to harbor an epigenetic memory characteristic of their tissue of origin which may impact their differentiation potential. Furthermore, there are contentious data regarding the extent to which telomeres are elongated, telomerase activity is reconstituted, and mitochondria are reorganized in iPSC s. Although several groups have reported that reprogramming efficiency declines with age and is inhibited by genes upregulated with age, others have successfully generated iPSC s from senescent and centenarian cells. Mixed findings have also been published regarding whether somatic cells generated from iPSC s are subject to premature senescence. Defects such as these would hinder the clinical application of iPSC s, and as such, more comprehensive testing of iPSC s and their potential aging signature should be conducted. The discovery that somatic cells can be induced into a pluripotent state by the expression of reprogramming factors has enormous potential for therapeutics and human disease modeling. With regard to aging and rejuvenation, the reprogramming process resets an aged, somatic cell to a more youthful state, elongating telomeres, rearranging the mitochondrial network, reducing oxidative stress, restoring pluripotency, and making numerous other alterations. The extent to which induced pluripotent stem cell (iPSC)s mime embryonic stem cells is controversial, however, as iPSCs have been shown to harbor an epigenetic memory characteristic of their tissue of origin which may impact their differentiation potential. Furthermore, there are contentious data regarding the extent to which telomeres are elongated, telomerase activity is reconstituted, and mitochondria are reorganized in iPSCs. Although several groups have reported that reprogramming efficiency declines with age and is inhibited by genes upregulated with age, others have successfully generated iPSCs from senescent and centenarian cells. Mixed findings have also been published regarding whether somatic cells generated from iPSCs are subject to premature senescence. Defects such as these would hinder the clinical application of iPSCs, and as such, more comprehensive testing of iPSCs and their potential aging signature should be conducted. Summary The discovery that somatic cells can be induced into a pluripotent state by the expression of reprogramming factors has enormous potential for therapeutics and human disease modeling. With regard to aging and rejuvenation, the reprogramming process resets an aged, somatic cell to a more youthful state, elongating telomeres, rearranging the mitochondrial network, reducing oxidative stress, restoring pluripotency, and making numerous other alterations. The extent to which induced pluripotent stem cell (iPSC)s mime embryonic stem cells is controversial, however, as iPSCs have been shown to harbor an epigenetic memory characteristic of their tissue of origin which may impact their differentiation potential. Furthermore, there are contentious data regarding the extent to which telomeres are elongated, telomerase activity is reconstituted, and mitochondria are reorganized in iPSCs. Although several groups have reported that reprogramming efficiency declines with age and is inhibited by genes upregulated with age, others have successfully generated iPSCs from senescent and centenarian cells. Mixed findings have also been published regarding whether somatic cells generated from iPSCs are subject to premature senescence. Defects such as these would hinder the clinical application of iPSCs, and as such, more comprehensive testing of iPSCs and their potential aging signature should be conducted. [PUBLICATION ABSTRACT] Summary The discovery that somatic cells can be induced into a pluripotent state by the expression of reprogramming factors has enormous potential for therapeutics and human disease modeling. With regard to aging and rejuvenation, the reprogramming process resets an aged, somatic cell to a more youthful state, elongating telomeres, rearranging the mitochondrial network, reducing oxidative stress, restoring pluripotency, and making numerous other alterations. The extent to which induced pluripotent stem cell (iPSC)s mime embryonic stem cells is controversial, however, as iPSCs have been shown to harbor an epigenetic memory characteristic of their tissue of origin which may impact their differentiation potential. Furthermore, there are contentious data regarding the extent to which telomeres are elongated, telomerase activity is reconstituted, and mitochondria are reorganized in iPSCs. Although several groups have reported that reprogramming efficiency declines with age and is inhibited by genes upregulated with age, others have successfully generated iPSCs from senescent and centenarian cells. Mixed findings have also been published regarding whether somatic cells generated from iPSCs are subject to premature senescence. Defects such as these would hinder the clinical application of iPSCs, and as such, more comprehensive testing of iPSCs and their potential aging signature should be conducted. |
| Audience | Academic |
| Author | Rohani, Leili Arnold, Antje Johnson, Adiv A. Stolzing, Alexandra |
| Author_xml | – sequence: 1 givenname: Leili surname: Rohani fullname: Rohani, Leili organization: Fraunhofer Institute for Cell Therapy and Immunology – sequence: 2 givenname: Adiv A. surname: Johnson fullname: Johnson, Adiv A. organization: University of Arizona – sequence: 3 givenname: Antje surname: Arnold fullname: Arnold, Antje organization: Fraunhofer Institute for Cell Therapy and Immunology – sequence: 4 givenname: Alexandra surname: Stolzing fullname: Stolzing, Alexandra organization: Fraunhofer Institute for Cell Therapy and Immunology |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/24256351$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kstu1DAUhi3Uil5gwwMgS2wQ0gy-xU5YFE1Hpa00EpuytjzOccYlsYc4AfXt6zBloFWFvfDtO_-5-JyggxADIPSGkjnN46Ox0M4poyV7gY6pUGJWKSYP9ntaHqGTlG4Joaoi_CU6YoIVkhf0GJ3fbACbxocGJ98EM4w9fMIGb0zbdqb_jqPDPtSjhRpv27H32zhAGHAaoMPZb5s-v0KHzrQJXj-sp-jbl4ub5dVs9fXyerlYzWxRUjYDtQYwplpzEAKMqjkwYo3ijq8rAqbIJ1sL4riTspbUMahqBZYWLr9Izk_R2U53O647qG0Oozet3vY-B3qno_H68UvwG93En1pwJktFs8D7B4E-_hghDbrzacrBBIhj0lRURFZSssnXuyfobRz7kNPLlFJK5vLJv1RjWtA-uJj92klULxQpVMmkqDI1f4bKs4bO2_yVzuf7RwZv_010n-GfX8vAhx1g-5hSD26PUKKnltBTS-jfLZFh8gS2fjCDj1ORfPu8Cd2Z_MqR3f1HXC-WF6udzT3zTcdX |
| CitedBy_id | crossref_primary_10_1186_s13287_017_0533_2 crossref_primary_10_1016_j_tig_2016_10_007 crossref_primary_10_3390_antiox13121482 crossref_primary_10_1016_j_ymthe_2022_12_010 crossref_primary_10_1016_j_pnpbp_2017_04_033 crossref_primary_10_1038_nrneurol_2017_45 crossref_primary_10_3389_fsens_2023_1294721 crossref_primary_10_1016_j_wneu_2015_06_057 crossref_primary_10_1016_j_arr_2025_102773 crossref_primary_10_1177_0963689717735407 crossref_primary_10_3390_jcm7110449 crossref_primary_10_1016_j_bbabio_2015_05_021 crossref_primary_10_1007_s40778_018_0140_x crossref_primary_10_1016_j_wneu_2015_05_076 crossref_primary_10_15407_biotech10_02_007 crossref_primary_10_4103_1673_5374_265544 crossref_primary_10_1016_j_molmed_2016_05_010 crossref_primary_10_1017_S0033291717002124 crossref_primary_10_3389_fbioe_2020_599674 crossref_primary_10_1002_sctm_18_0087 crossref_primary_10_1038_s42003_025_08152_2 crossref_primary_10_1093_hmg_ddy355 crossref_primary_10_1159_000449501 crossref_primary_10_1016_j_stem_2015_11_009 crossref_primary_10_1051_jbio_2016008 crossref_primary_10_3390_biomedicines11051261 crossref_primary_10_1038_s41392_023_01343_5 crossref_primary_10_3390_biomedicines10102649 crossref_primary_10_4252_wjsc_v11_i10_787 crossref_primary_10_1038_s41598_017_09980_x crossref_primary_10_3390_ani11010234 crossref_primary_10_1016_j_neulet_2019_01_043 crossref_primary_10_1016_j_drudis_2018_10_001 crossref_primary_10_1111_acel_13185 crossref_primary_10_3390_ani14020220 crossref_primary_10_1007_s12015_021_10200_3 crossref_primary_10_1038_nmeth_3507 crossref_primary_10_1155_2020_1061470 crossref_primary_10_1017_erm_2015_16 crossref_primary_10_1161_CIRCRESAHA_114_305567 crossref_primary_10_3390_cells12040538 crossref_primary_10_30773_pi_2025_0101 crossref_primary_10_1039_C9BM01081E crossref_primary_10_1007_s10522_025_10205_2 crossref_primary_10_1016_j_adcanc_2025_100148 crossref_primary_10_1038_s41598_018_21651_z crossref_primary_10_3389_fnins_2023_1177040 crossref_primary_10_3390_antiox14030331 crossref_primary_10_1016_j_neuroscience_2016_01_067 crossref_primary_10_1186_s12896_016_0315_4 crossref_primary_10_2217_rme_2017_0101 crossref_primary_10_1016_j_yexcr_2015_08_019 crossref_primary_10_3892_mmr_2019_10419 crossref_primary_10_3390_ijms160613633 crossref_primary_10_18632_aging_101035 crossref_primary_10_1007_s00167_015_3763_9 crossref_primary_10_3389_fnins_2018_00504 crossref_primary_10_1016_j_biotechadv_2016_12_002 crossref_primary_10_1089_rej_2015_1676 crossref_primary_10_1089_scd_2014_0059 crossref_primary_10_3389_fncel_2018_00460 crossref_primary_10_1111_acel_12411 crossref_primary_10_1016_j_preteyeres_2017_01_006 |
| Cites_doi | 10.1038/nature08792 10.1371/journal.pone.0027352 10.1126/science.279.5349.349 10.1371/journal.pone.0053771 10.1371/journal.pone.0014095 10.1074/jbc.C400477200 10.1038/cr.2011.16 10.1038/ng.463 10.1038/nmeth.1426 10.1093/nar/gkm681 10.1016/0012-1606(62)90043-X 10.1096/fj.09-148973 10.1038/nature06534 10.1016/j.stem.2008.12.010 10.1016/S0955-0674(02)00380-0 10.1038/345458a0 10.1371/journal.pone.0041572 10.1093/jmcb/mjq044 10.1016/j.bbrc.2006.08.020 10.1126/science.1172482 10.1196/annals.1395.005 10.1634/stemcells.2007-0628 10.1016/j.stem.2009.05.005 10.1089/cell.2011.0004 10.1016/j.cell.2012.01.003 10.1038/ng.830 10.1089/clo.2006.0002 10.1002/stem.307 10.1016/j.molcel.2010.10.002 10.1016/j.cell.2005.01.027 10.1038/nbt.2052 10.1371/journal.pone.0020914 10.1101/gad.173922.111 10.1242/bio.20121586 10.1093/emboj/16.21.6510 10.1038/nrg2937 10.1038/nature08290 10.1038/nrm3448 10.1016/j.stem.2010.08.012 10.1089/rej.2012.1324 10.1002/stem.404 10.1002/stem.321 10.1016/S0960-9822(01)00459-6 10.1371/currents.RRN1274 10.1038/nature10084 10.1126/science.1151526 10.1371/journal.pbio.0050110 10.1038/471046a 10.2217/rme.10.21 10.1016/j.stem.2009.04.005 10.1371/journal.pone.0008124 10.4161/epi.6.1.13390 10.1038/nbt.1783 10.1128/MCB.01868-08 10.18632/aging.100277 10.1038/nbt.1667 10.1038/nature09342 10.1038/ncb1685 10.1016/j.cell.2006.07.024 10.1002/stem.201 |
| ContentType | Journal Article |
| Copyright | 2013 The Authors. published by the Anatomical Society and John Wiley & Sons Ltd. 2013 The Authors. Aging Cell published by the Anatomical Society and John Wiley & Sons Ltd. COPYRIGHT 2013 John Wiley & Sons, Inc. 2014 The Anatomical Society and John Wiley & Sons Ltd 2013 The Authors. published by the Anatomical Society and John Wiley & Sons Ltd. 2013 |
| Copyright_xml | – notice: 2013 The Authors. published by the Anatomical Society and John Wiley & Sons Ltd. – notice: 2013 The Authors. Aging Cell published by the Anatomical Society and John Wiley & Sons Ltd. – notice: COPYRIGHT 2013 John Wiley & Sons, Inc. – notice: 2014 The Anatomical Society and John Wiley & Sons Ltd – notice: 2013 The Authors. published by the Anatomical Society and John Wiley & Sons Ltd. 2013 |
| DBID | 24P AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QP 7TK 8FE 8FH ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO GNUQQ HCIFZ LK8 M7P PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS 7X8 5PM |
| DOI | 10.1111/acel.12182 |
| DatabaseName | Wiley Online Library Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Calcium & Calcified Tissue Abstracts Neurosciences Abstracts ProQuest SciTech Collection ProQuest Natural Science Collection ProQuest Central (Alumni Edition) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Korea ProQuest Central Student SciTech Premium Collection ProQuest Biological Science Collection Biological Science Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Biological Science Collection ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection Biological Science Database ProQuest SciTech Collection Neurosciences Abstracts ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Academic UKI Edition Natural Science Collection ProQuest Central Korea Biological Science Collection ProQuest Central (New) ProQuest One Academic Calcium & Calcified Tissue Abstracts ProQuest One Academic (New) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic CrossRef Publicly Available Content Database MEDLINE |
| Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Biology |
| EISSN | 1474-9726 |
| EndPage | 7 |
| ExternalDocumentID | PMC4326871 3182846321 A705782649 24256351 10_1111_acel_12182 ACEL12182 |
| Genre | reviewArticle Research Support, Non-U.S. Gov't Journal Article Review |
| GrantInformation_xml | – fundername: German Federal Ministry of Education and Research funderid: BMBF 1315883 |
| GroupedDBID | --- .3N .GA .Y3 05W 0R~ 10A 1OC 23M 24P 2WC 31~ 36B 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52R 52S 52T 52W 52X 53G 5GY 5HH 5LA 5VS 66C 6J9 702 7PT 8-0 8-1 8-3 8-4 8-5 8FE 8FH 8UM 930 A01 A03 AAHHS AAZKR ABCQN ABDBF ABEML ABJNI ACCFJ ACCMX ACGFO ACGFS ACPRK ACSCC ACUHS ACXQS ADBBV ADKYN ADRAZ ADZMN ADZOD AEEZP AEGXH AENEX AEQDE AFBPY AFEBI AFKRA AFZJQ AIAGR AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN AOIJS AVUZU BAWUL BBNVY BCNDV BENPR BFHJK BHPHI BY8 CAG CCPQU COF CS3 D-6 D-7 D-E D-F DIK DR2 E3Z EAD EAP EBD EBS EJD EMB EMK EMOBN EST ESX F00 F01 F04 F5P FIJ GODZA GROUPED_DOAJ GX1 HCIFZ HF~ HOLLA HZ~ IAO IHE IHR IPNFZ ITC IX1 J0M K.9 KQ8 LC2 LC3 LH4 LK8 LP6 LP7 LW6 M48 M7P MK4 N04 N05 N9A O9- OBS OIG OK1 OVD P2P P2X P2Z P4B P4D PIMPY Q11 ROL RPM RX1 SUPJJ SV3 TEORI TR2 TUS UB1 V8K W8V WIN WQJ WRC WXI XG1 YFH YUY ~IA ~WT AAMMB AAYXX AEFGJ AFFHD AGXDD AIDQK AIDYY CITATION O8X PHGZM PHGZT PQGLB CGR CUY CVF ECM EIF NPM 7QP 7TK ABUWG AZQEC DWQXO GNUQQ PKEHL PQEST PQQKQ PQUKI PRINS 7X8 PUEGO 5PM |
| ID | FETCH-LOGICAL-c5812-e7beeaa9b3e44ea7d3e20ca73f3b90ea520ccd40f3f66d61f2e9d7ec15f20c633 |
| IEDL.DBID | 24P |
| ISICitedReferencesCount | 73 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000329760600002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1474-9718 1474-9726 |
| IngestDate | Tue Nov 04 01:39:44 EST 2025 Fri Sep 05 10:48:12 EDT 2025 Wed Aug 13 04:48:57 EDT 2025 Sat Nov 29 13:14:36 EST 2025 Sat Nov 29 10:05:11 EST 2025 Wed Feb 19 01:54:52 EST 2025 Sat Nov 29 03:05:11 EST 2025 Tue Nov 18 21:43:02 EST 2025 Wed Jan 22 16:38:18 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Keywords | reprogramming differentiation aging induced pluripotent stem epigenetic telomeres |
| Language | English |
| License | Attribution http://creativecommons.org/licenses/by/3.0 2013 The Authors. Aging Cell published by the Anatomical Society and John Wiley & Sons Ltd. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c5812-e7beeaa9b3e44ea7d3e20ca73f3b90ea520ccd40f3f66d61f2e9d7ec15f20c633 |
| Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 |
| OpenAccessLink | https://onlinelibrary.wiley.com/doi/abs/10.1111%2Facel.12182 |
| PMID | 24256351 |
| PQID | 1477765636 |
| PQPubID | 1036381 |
| PageCount | 6 |
| ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_4326871 proquest_miscellaneous_1490696623 proquest_journals_1477765636 gale_infotracmisc_A705782649 gale_infotracacademiconefile_A705782649 pubmed_primary_24256351 crossref_primary_10_1111_acel_12182 crossref_citationtrail_10_1111_acel_12182 wiley_primary_10_1111_acel_12182_ACEL12182 |
| PublicationCentury | 2000 |
| PublicationDate | February 2014 |
| PublicationDateYYYYMMDD | 2014-02-01 |
| PublicationDate_xml | – month: 02 year: 2014 text: February 2014 |
| PublicationDecade | 2010 |
| PublicationPlace | England |
| PublicationPlace_xml | – name: England – name: London – name: Oxford, UK |
| PublicationTitle | Aging cell |
| PublicationTitleAlternate | Aging Cell |
| PublicationYear | 2014 |
| Publisher | John Wiley & Sons, Inc BlackWell Publishing Ltd |
| Publisher_xml | – name: John Wiley & Sons, Inc – name: BlackWell Publishing Ltd |
| References | 2002; 14 2009; 41 1990; 345 2007; 1100 1962; 4 2010; 467 2010; 464 2011; 13 2008; 10 1998; 279 2011; 12 2012; 15 2011; 471 2012; 13 2011; 3 2013; 8 2012; 148 2011; 6 2007; 35 2009; 27 2011; 474 2010; 40 2009; 29 2005; 280 2005; 120 2010; 24 2012; 1 2010; 28 2008; 26 2007; 9 2011; 21 2011; 43 1997; 16 2007; 5 2009; 460 2009; 4 2011; 25 2001; 11 2006; 126 2012; 7 2008; 451 2010; 5 2007; 318 2011; 29 2006; 348 2010; 7 2009; 324 e_1_2_5_27_1 e_1_2_5_25_1 e_1_2_5_48_1 e_1_2_5_23_1 e_1_2_5_46_1 e_1_2_5_21_1 e_1_2_5_44_1 e_1_2_5_29_1 e_1_2_5_61_1 e_1_2_5_42_1 e_1_2_5_40_1 e_1_2_5_15_1 e_1_2_5_38_1 e_1_2_5_17_1 e_1_2_5_36_1 e_1_2_5_59_1 e_1_2_5_9_1 e_1_2_5_11_1 e_1_2_5_34_1 e_1_2_5_57_1 e_1_2_5_7_1 e_1_2_5_13_1 e_1_2_5_32_1 e_1_2_5_55_1 e_1_2_5_5_1 e_1_2_5_3_1 e_1_2_5_19_1 e_1_2_5_30_1 e_1_2_5_53_1 e_1_2_5_51_1 e_1_2_5_28_1 e_1_2_5_49_1 e_1_2_5_26_1 e_1_2_5_47_1 e_1_2_5_24_1 e_1_2_5_45_1 e_1_2_5_22_1 e_1_2_5_43_1 e_1_2_5_60_1 e_1_2_5_20_1 e_1_2_5_41_1 e_1_2_5_14_1 e_1_2_5_39_1 e_1_2_5_16_1 e_1_2_5_37_1 e_1_2_5_58_1 e_1_2_5_8_1 e_1_2_5_10_1 e_1_2_5_35_1 e_1_2_5_56_1 e_1_2_5_6_1 e_1_2_5_12_1 e_1_2_5_33_1 e_1_2_5_54_1 e_1_2_5_4_1 e_1_2_5_2_1 e_1_2_5_18_1 e_1_2_5_31_1 e_1_2_5_52_1 e_1_2_5_50_1 12473349 - Curr Opin Cell Biol. 2002 Dec;14(6):741-8 20230312 - Regen Med. 2010 May;5(3):345-63 19801979 - Nat Genet. 2009 Nov;41(11):1207-15 15533947 - J Biol Chem. 2005 Jan 14;280(2):861-4 15734677 - Cell. 2005 Feb 25;120(4):437-47 9351832 - EMBO J. 1997 Nov 3;16(21):6510-20 20155819 - Stem Cells. 2010 Apr;28(4):704-12 18157120 - Nat Cell Biol. 2008 Feb;10(2):228-36 19697349 - Stem Cells. 2009 Nov;27(11):2667-74 17386005 - Cloning Stem Cells. 2007 Spring;9(1):3-7 20139967 - Nat Methods. 2010 Mar;7(3):197-9 13903027 - Dev Biol. 1962 Apr;4:256-73 11591326 - Curr Biol. 2001 Oct 2;11(19):1553-8 20354136 - FASEB J. 2010 Aug;24(8):2702-15 19956585 - PLoS One. 2009;4(12):e8124 22056670 - Genes Dev. 2011 Nov 1;25(21):2248-53 16904174 - Cell. 2006 Aug 25;126(4):663-76 20644536 - Nat Biotechnol. 2010 Aug;28(8):848-55 20164838 - Nature. 2010 Mar 11;464(7286):292-6 21368819 - Nature. 2011 Mar 3;471(7336):46-7 17472436 - PLoS Biol. 2007 May;5(5):e110 20965426 - Mol Cell. 2010 Oct 22;40(2):333-44 23098078 - Rejuvenation Res. 2012 Oct;15(5):483-94 21602826 - Nature. 2011 Jun 16;474(7351):399-402 2342578 - Nature. 1990 May 31;345(6274):458-60 21483033 - Aging (Albany NY). 2011 Apr;3(4):380-90 19325077 - Science. 2009 May 8;324(5928):797-801 21228011 - J Mol Cell Biol. 2011 Apr;3(2):91-8 18157115 - Nature. 2008 Jan 10;451(7175):141-6 17913751 - Nucleic Acids Res. 2007;35(22):7417-28 21718107 - Cell Reprogram. 2011 Aug;13(4):361-70 23034453 - Nat Rev Mol Cell Biol. 2012 Nov;13(11):713-26 19398399 - Cell Stem Cell. 2009 May 8;4(5):381-4 21283131 - Cell Res. 2011 May;21(5):779-92 9454332 - Science. 1998 Jan 16;279(5349):349-52 19528227 - Mol Cell Biol. 2009 Aug;29(16):4495-507 19668188 - Nature. 2009 Aug 27;460(7259):1136-9 19200803 - Cell Stem Cell. 2009 Feb 6;4(2):141-54 20644535 - Nature. 2010 Sep 16;467(7313):285-90 21339765 - Nat Rev Genet. 2011 Apr;12(4):231-42 22101343 - PLoS Curr. 2011 Oct 27;3:RRN1274 21698063 - PLoS One. 2011;6(6):e20914 18055443 - Stem Cells. 2008 Feb;26(2):455-64 22265401 - Cell. 2012 Jan 20;148(1-2):46-57 22110631 - PLoS One. 2011;6(11):e27352 21293464 - Nat Biotechnol. 2011 Mar;29(3):279-86 23382851 - PLoS One. 2013;8(1):e53771 22119740 - Nat Biotechnol. 2011 Dec;29(12):1117-9 20888316 - Cell Stem Cell. 2010 Nov 5;7(5):618-30 20073085 - Stem Cells. 2010 Apr;28(4):661-73 23213392 - Biol Open. 2012 Nov 15;1(11):1118-27 19481515 - Cell Stem Cell. 2009 Jun 5;4(6):472-6 20201066 - Stem Cells. 2010 Apr;28(4):721-33 21532572 - Nat Genet. 2011 Jun;43(6):595-600 17460165 - Ann N Y Acad Sci. 2007 Apr;1100:60-74 21124794 - PLoS One. 2010;5(11):e14095 18029452 - Science. 2007 Dec 21;318(5858):1917-20 20861676 - Epigenetics. 2011 Jan;6(1):63-75 22848530 - PLoS One. 2012;7(7):e41572 16920071 - Biochem Biophys Res Commun. 2006 Oct 6;348(4):1472-8 |
| References_xml | – volume: 1100 start-page: 60 year: 2007 end-page: 74 article-title: Cross‐talk between aging and cancer: the epigenetic language publication-title: Ann. N. Y. Acad. Sci. – volume: 7 start-page: 618 year: 2010 end-page: 630 article-title: Highly efficient reprogramming to pluripotency and directed differentiation of human cells with synthetic modified mRNA publication-title: Cell Stem Cell – volume: 10 start-page: 228 year: 2008 end-page: 236 article-title: Developmentally regulated transcription of mammalian telomeres by DNA‐dependent RNA polymerase II publication-title: Nat. Cell Biol. – volume: 27 start-page: 2667 year: 2009 end-page: 2674 article-title: Adenoviral gene delivery can reprogram human fibroblasts to induced pluripotent stem cells publication-title: Stem Cells – volume: 318 start-page: 1917 year: 2007 end-page: 1920 article-title: Induced pluripotent stem cell lines derived from human somatic cells publication-title: Science – volume: 28 start-page: 661 year: 2010 end-page: 673 article-title: Human induced pluripotent stem cell lines show stress defense mechanisms and mitochondrial regulation similar to those of human embryonic stem cells publication-title: Stem Cells – volume: 471 start-page: 46 year: 2011 end-page: 47 article-title: Stem cells: the dark side of induced pluripotency publication-title: Nature – volume: 28 start-page: 848 year: 2010 end-page: 855 article-title: Cell type of origin influences the molecular and functional properties of mouse induced pluripotent stem cells publication-title: Nat. Biotechnol. – volume: 5 start-page: e14095 year: 2010 article-title: Mitochondrial rejuvenation after induced pluripotency publication-title: PLoS ONE – volume: 29 start-page: 1117 year: 2011 end-page: 1119 article-title: Donor cell type can influence the epigenome and differentiation potential of human induced pluripotent stem cells publication-title: Nat. Biotechnol. – volume: 25 start-page: 2248 year: 2011 end-page: 2253 article-title: Rejuvenating senescent and centenarian human cells by reprogramming through the pluripotent state publication-title: Genes Dev. – volume: 5 start-page: 345 year: 2010 end-page: 363 article-title: Spontaneous reversal of the developmental aging of normal human cells following transcriptional reprogramming publication-title: Regen. Med. – volume: 3 start-page: 91 year: 2011 end-page: 98 article-title: Establishment of induced pluripotent stem cells from aged mice using bone marrow‐derived myeloid cells publication-title: J. Mol. Cell. Biol. – volume: 6 start-page: e27352 year: 2011 article-title: Mitochondrial‐associated cell death mechanisms are reset to an embryonic‐like state in aged donor‐derived iPS cells harboring chromosomal aberrations publication-title: PLoS ONE – volume: 13 start-page: 713 year: 2012 end-page: 726 article-title: Induced pluripotent stem cells: the new patient? publication-title: Nat. Rev. Mol. Cell Biol. – volume: 279 start-page: 349 year: 1998 end-page: 352 article-title: Extension of life‐span by introduction of telomerase into normal human cells publication-title: Science – volume: 451 start-page: 141 year: 2008 end-page: 146 article-title: Reprogramming of human somatic cells to pluripotency with defined factors publication-title: Nature – volume: 9 start-page: 3 year: 2007 end-page: 7 article-title: Viable offspring derived from fetal and adult mammalian cells publication-title: Cloning Stem Cells – volume: 28 start-page: 721 year: 2010 end-page: 733 article-title: The senescence‐related mitochondrial/oxidative stress pathway is repressed in human induced pluripotent stem cells publication-title: Stem Cells – volume: 4 start-page: 472 year: 2009 end-page: 476 article-title: Generation of human induced pluripotent stem cells by direct delivery of reprogramming proteins publication-title: Cell Stem Cell – volume: 3 start-page: 380 year: 2011 end-page: 390 article-title: Generation of induced pluripotent stem cell lines from 3 distinct laminopathies bearing heterogeneous mutations in lamin A/C publication-title: Aging (Albany NY) – volume: 26 start-page: 455 year: 2008 end-page: 464 article-title: Downregulation of multiple stress defense mechanisms during differentiation of human embryonic stem cells publication-title: Stem Cells – volume: 28 start-page: 704 year: 2010 end-page: 712 article-title: Hemangioblastic derivatives from human induced pluripotent stem cells exhibit limited expansion and early senescence publication-title: Stem Cells – volume: 8 start-page: e53771 year: 2013 article-title: Genetically matched human iPS cells reveal that propensity for cartilage and bone differentiation differs with clones, not cell type of origin publication-title: PLoS ONE – volume: 43 start-page: 595 year: 2011 end-page: 600 article-title: Mutations in DNMT1 cause hereditary sensory neuropathy with dementia and hearing loss publication-title: Nat. Genet. – volume: 464 start-page: 292 year: 2010 end-page: 296 article-title: Telomere elongation in induced pluripotent stem cells from dyskeratosis congenita patients publication-title: Nature – volume: 126 start-page: 663 year: 2006 end-page: 676 article-title: Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors publication-title: Cell – volume: 4 start-page: 141 year: 2009 end-page: 154 article-title: Telomeres acquire embryonic stem cell characteristics in induced pluripotent stem cells publication-title: Cell Stem Cell – volume: 21 start-page: 779 year: 2011 end-page: 792 article-title: Association of telomere length with authentic pluripotency of ES/iPS cells publication-title: Cell Res. – volume: 6 start-page: 63 year: 2011 end-page: 75 article-title: Reprogramming of telomeric regions during the generation of human induced pluripotent stem cells and subsequent differentiation into fibroblast‐like derivatives publication-title: Epigenetics – volume: 4 start-page: 381 year: 2009 end-page: 384 article-title: Generation of induced pluripotent stem cells using recombinant proteins publication-title: Cell Stem Cell – volume: 1 start-page: 1118 year: 2012 end-page: 1127 article-title: Influences of lamin A levels on induction of pluripotent stem cells publication-title: Biol. Open. – volume: 5 start-page: e110 year: 2007 article-title: Mitochondrial dysfunction accounts for the stochastic heterogeneity in telomere‐dependent senescence publication-title: PLoS Biol. – volume: 12 start-page: 231 year: 2011 end-page: 242 article-title: Methods for making induced pluripotent stem cells: reprogramming à la carte publication-title: Nat. Rev. Genet. – volume: 29 start-page: 4495 year: 2009 end-page: 4507 article-title: Mitochondrial dysfunction contributes to oncogene‐induced senescence publication-title: Mol. Cell. Biol. – volume: 11 start-page: 1553 year: 2001 end-page: 1558 article-title: Nuclear reprogramming of somatic cells by in vitro hybridization with ES cells publication-title: Curr. Biol. – volume: 474 start-page: 399 year: 2011 end-page: 402 article-title: Telomere shortening and loss of self‐renewal in dyskeratosis congenita induced pluripotent stem cells publication-title: Nature – volume: 460 start-page: 1136 year: 2009 end-page: 1139 article-title: The Ink4/Arf locus is a barrier for iPS cell reprogramming publication-title: Nature – volume: 345 start-page: 458 year: 1990 end-page: 460 article-title: Telomeres shorten during ageing of human fibroblasts publication-title: Nature – volume: 7 start-page: 197 year: 2010 end-page: 199 article-title: A nonviral minicircle vector for deriving human iPS cells publication-title: Nat. Methods – volume: 14 start-page: 741 year: 2002 end-page: 748 article-title: Nuclear transplantation: lessons from frogs and mice publication-title: Curr. Opin. Cell Biol. – volume: 148 start-page: 46 year: 2012 end-page: 57 article-title: Aging, rejuvenation, and epigenetic reprogramming: resetting the aging clock publication-title: Cell – volume: 41 start-page: 1207 year: 2009 end-page: 1215 article-title: DNA methylation protects hematopoietic stem cell multipotency from myeloerythroid restriction publication-title: Nat. Genet. – volume: 24 start-page: 2702 year: 2010 end-page: 2715 article-title: Robust activation of the human but not mouse telomerase gene during the induction of pluripotency publication-title: FASEB J. – volume: 13 start-page: 361 year: 2011 end-page: 370 article-title: Early senescence is not an inevitable fate of human‐induced pluripotent stem‐derived cells publication-title: Cell Reprogram – volume: 4 start-page: 256 year: 1962 end-page: 273 article-title: Adult frogs derived from the nuclei of single somatic cells publication-title: Dev. Biol. – volume: 40 start-page: 333 year: 2010 end-page: 344 article-title: The aging stress response publication-title: Mol. Cell – volume: 7 start-page: e41572 year: 2012 article-title: Establishment of induced pluripotent stem cells from centenarians for neurodegenerative disease research publication-title: PLoS ONE – volume: 280 start-page: 861 year: 2005 end-page: 864 article-title: DNA methyltransferase gene dDnmt2 and longevity of Drosophila publication-title: J. Biol. Chem. – volume: 120 start-page: 437 year: 2005 end-page: 447 article-title: Understanding the odd science of aging publication-title: Cell – volume: 6 start-page: e20914 year: 2011 article-title: Energy metabolism in human pluripotent stem cells and their differentiated counterparts publication-title: PLoS ONE – volume: 4 start-page: e8124 year: 2009 article-title: Telomere dynamics in human cells reprogrammed to pluripotency publication-title: PLoS ONE – volume: 3 start-page: RRN1274 year: 2011 article-title: Reprogramming efficiency and quality of induced Pluripotent Stem Cells (iPSCs) generated from muscle‐derived fibroblasts of mdx mice at different ages publication-title: PLoS Curr. – volume: 324 start-page: 797 year: 2009 end-page: 801 article-title: Human induced pluripotent stem cells free of vector and transgene sequences publication-title: Science – volume: 467 start-page: 285 year: 2010 end-page: 290 article-title: Epigenetic memory in induced pluripotent stem cells publication-title: Nature – volume: 29 start-page: 279 year: 2011 end-page: 286 article-title: A functionally characterized test set of human induced pluripotent stem cells publication-title: Nat. Biotechnol. – volume: 348 start-page: 1472 year: 2006 end-page: 1478 article-title: Dynamic changes in mitochondrial biogenesis and antioxidant enzymes during the spontaneous differentiation of human embryonic stem cells publication-title: Biochem. Biophys. Res. Commun. – volume: 35 start-page: 7417 year: 2007 end-page: 7428 article-title: DNA damage, cellular senescence and organismal ageing: causal or correlative? publication-title: Nucleic Acids Res. – volume: 15 start-page: 483 year: 2012 end-page: 494 article-title: The role of DNA methylation in aging, rejuvenation, and age‐related disease publication-title: Rejuvenation Res. – volume: 16 start-page: 6510 year: 1997 end-page: 6520 article-title: Embryonic germ cells induce epigenetic reprogramming of somatic nucleus in hybrid cells publication-title: EMBO J. – ident: e_1_2_5_2_1 doi: 10.1038/nature08792 – ident: e_1_2_5_41_1 doi: 10.1371/journal.pone.0027352 – ident: e_1_2_5_6_1 doi: 10.1126/science.279.5349.349 – ident: e_1_2_5_35_1 doi: 10.1371/journal.pone.0053771 – ident: e_1_2_5_46_1 doi: 10.1371/journal.pone.0014095 – ident: e_1_2_5_31_1 doi: 10.1074/jbc.C400477200 – ident: e_1_2_5_21_1 doi: 10.1038/cr.2011.16 – ident: e_1_2_5_8_1 doi: 10.1038/ng.463 – ident: e_1_2_5_22_1 doi: 10.1038/nmeth.1426 – ident: e_1_2_5_9_1 doi: 10.1093/nar/gkm681 – ident: e_1_2_5_16_1 doi: 10.1016/0012-1606(62)90043-X – ident: e_1_2_5_33_1 doi: 10.1096/fj.09-148973 – ident: e_1_2_5_36_1 doi: 10.1038/nature06534 – ident: e_1_2_5_32_1 doi: 10.1016/j.stem.2008.12.010 – ident: e_1_2_5_20_1 doi: 10.1016/S0955-0674(02)00380-0 – ident: e_1_2_5_18_1 doi: 10.1038/345458a0 – ident: e_1_2_5_55_1 doi: 10.1371/journal.pone.0041572 – ident: e_1_2_5_10_1 doi: 10.1093/jmcb/mjq044 – ident: e_1_2_5_11_1 doi: 10.1016/j.bbrc.2006.08.020 – ident: e_1_2_5_58_1 doi: 10.1126/science.1172482 – ident: e_1_2_5_13_1 doi: 10.1196/annals.1395.005 – ident: e_1_2_5_43_1 doi: 10.1634/stemcells.2007-0628 – ident: e_1_2_5_24_1 doi: 10.1016/j.stem.2009.05.005 – ident: e_1_2_5_14_1 doi: 10.1089/cell.2011.0004 – ident: e_1_2_5_42_1 doi: 10.1016/j.cell.2012.01.003 – ident: e_1_2_5_28_1 doi: 10.1038/ng.830 – ident: e_1_2_5_54_1 doi: 10.1089/clo.2006.0002 – ident: e_1_2_5_3_1 doi: 10.1002/stem.307 – ident: e_1_2_5_17_1 doi: 10.1016/j.molcel.2010.10.002 – ident: e_1_2_5_27_1 doi: 10.1016/j.cell.2005.01.027 – ident: e_1_2_5_26_1 doi: 10.1038/nbt.2052 – ident: e_1_2_5_50_1 doi: 10.1371/journal.pone.0020914 – ident: e_1_2_5_29_1 doi: 10.1101/gad.173922.111 – ident: e_1_2_5_61_1 doi: 10.1242/bio.20121586 – ident: e_1_2_5_47_1 doi: 10.1093/emboj/16.21.6510 – ident: e_1_2_5_15_1 doi: 10.1038/nrg2937 – ident: e_1_2_5_30_1 doi: 10.1038/nature08290 – ident: e_1_2_5_5_1 doi: 10.1038/nrm3448 – ident: e_1_2_5_53_1 doi: 10.1016/j.stem.2010.08.012 – ident: e_1_2_5_23_1 doi: 10.1089/rej.2012.1324 – ident: e_1_2_5_40_1 doi: 10.1002/stem.404 – ident: e_1_2_5_12_1 doi: 10.1002/stem.321 – ident: e_1_2_5_48_1 doi: 10.1016/S0960-9822(01)00459-6 – ident: e_1_2_5_52_1 doi: 10.1371/currents.RRN1274 – ident: e_1_2_5_4_1 doi: 10.1038/nature10084 – ident: e_1_2_5_57_1 doi: 10.1126/science.1151526 – ident: e_1_2_5_37_1 doi: 10.1371/journal.pbio.0050110 – ident: e_1_2_5_38_1 doi: 10.1038/471046a – ident: e_1_2_5_51_1 doi: 10.2217/rme.10.21 – ident: e_1_2_5_60_1 doi: 10.1016/j.stem.2009.04.005 – ident: e_1_2_5_45_1 doi: 10.1371/journal.pone.0008124 – ident: e_1_2_5_56_1 doi: 10.4161/epi.6.1.13390 – ident: e_1_2_5_7_1 doi: 10.1038/nbt.1783 – ident: e_1_2_5_34_1 doi: 10.1128/MCB.01868-08 – ident: e_1_2_5_19_1 doi: 10.18632/aging.100277 – ident: e_1_2_5_39_1 doi: 10.1038/nbt.1667 – ident: e_1_2_5_25_1 doi: 10.1038/nature09342 – ident: e_1_2_5_44_1 doi: 10.1038/ncb1685 – ident: e_1_2_5_49_1 doi: 10.1016/j.cell.2006.07.024 – ident: e_1_2_5_59_1 doi: 10.1002/stem.201 – reference: 21602826 - Nature. 2011 Jun 16;474(7351):399-402 – reference: 9454332 - Science. 1998 Jan 16;279(5349):349-52 – reference: 20965426 - Mol Cell. 2010 Oct 22;40(2):333-44 – reference: 19481515 - Cell Stem Cell. 2009 Jun 5;4(6):472-6 – reference: 20644535 - Nature. 2010 Sep 16;467(7313):285-90 – reference: 20139967 - Nat Methods. 2010 Mar;7(3):197-9 – reference: 21483033 - Aging (Albany NY). 2011 Apr;3(4):380-90 – reference: 22056670 - Genes Dev. 2011 Nov 1;25(21):2248-53 – reference: 22265401 - Cell. 2012 Jan 20;148(1-2):46-57 – reference: 20155819 - Stem Cells. 2010 Apr;28(4):704-12 – reference: 16904174 - Cell. 2006 Aug 25;126(4):663-76 – reference: 20164838 - Nature. 2010 Mar 11;464(7286):292-6 – reference: 18055443 - Stem Cells. 2008 Feb;26(2):455-64 – reference: 22119740 - Nat Biotechnol. 2011 Dec;29(12):1117-9 – reference: 19668188 - Nature. 2009 Aug 27;460(7259):1136-9 – reference: 15533947 - J Biol Chem. 2005 Jan 14;280(2):861-4 – reference: 22110631 - PLoS One. 2011;6(11):e27352 – reference: 19956585 - PLoS One. 2009;4(12):e8124 – reference: 17472436 - PLoS Biol. 2007 May;5(5):e110 – reference: 19398399 - Cell Stem Cell. 2009 May 8;4(5):381-4 – reference: 21698063 - PLoS One. 2011;6(6):e20914 – reference: 21228011 - J Mol Cell Biol. 2011 Apr;3(2):91-8 – reference: 21283131 - Cell Res. 2011 May;21(5):779-92 – reference: 21368819 - Nature. 2011 Mar 3;471(7336):46-7 – reference: 19325077 - Science. 2009 May 8;324(5928):797-801 – reference: 11591326 - Curr Biol. 2001 Oct 2;11(19):1553-8 – reference: 19528227 - Mol Cell Biol. 2009 Aug;29(16):4495-507 – reference: 23098078 - Rejuvenation Res. 2012 Oct;15(5):483-94 – reference: 18029452 - Science. 2007 Dec 21;318(5858):1917-20 – reference: 23213392 - Biol Open. 2012 Nov 15;1(11):1118-27 – reference: 20354136 - FASEB J. 2010 Aug;24(8):2702-15 – reference: 18157115 - Nature. 2008 Jan 10;451(7175):141-6 – reference: 21293464 - Nat Biotechnol. 2011 Mar;29(3):279-86 – reference: 20073085 - Stem Cells. 2010 Apr;28(4):661-73 – reference: 17913751 - Nucleic Acids Res. 2007;35(22):7417-28 – reference: 20230312 - Regen Med. 2010 May;5(3):345-63 – reference: 20888316 - Cell Stem Cell. 2010 Nov 5;7(5):618-30 – reference: 2342578 - Nature. 1990 May 31;345(6274):458-60 – reference: 18157120 - Nat Cell Biol. 2008 Feb;10(2):228-36 – reference: 15734677 - Cell. 2005 Feb 25;120(4):437-47 – reference: 21339765 - Nat Rev Genet. 2011 Apr;12(4):231-42 – reference: 20201066 - Stem Cells. 2010 Apr;28(4):721-33 – reference: 12473349 - Curr Opin Cell Biol. 2002 Dec;14(6):741-8 – reference: 9351832 - EMBO J. 1997 Nov 3;16(21):6510-20 – reference: 17386005 - Cloning Stem Cells. 2007 Spring;9(1):3-7 – reference: 23382851 - PLoS One. 2013;8(1):e53771 – reference: 19200803 - Cell Stem Cell. 2009 Feb 6;4(2):141-54 – reference: 21124794 - PLoS One. 2010;5(11):e14095 – reference: 16920071 - Biochem Biophys Res Commun. 2006 Oct 6;348(4):1472-8 – reference: 17460165 - Ann N Y Acad Sci. 2007 Apr;1100:60-74 – reference: 20644536 - Nat Biotechnol. 2010 Aug;28(8):848-55 – reference: 19801979 - Nat Genet. 2009 Nov;41(11):1207-15 – reference: 19697349 - Stem Cells. 2009 Nov;27(11):2667-74 – reference: 22848530 - PLoS One. 2012;7(7):e41572 – reference: 21532572 - Nat Genet. 2011 Jun;43(6):595-600 – reference: 20861676 - Epigenetics. 2011 Jan;6(1):63-75 – reference: 23034453 - Nat Rev Mol Cell Biol. 2012 Nov;13(11):713-26 – reference: 22101343 - PLoS Curr. 2011 Oct 27;3:RRN1274 – reference: 13903027 - Dev Biol. 1962 Apr;4:256-73 – reference: 21718107 - Cell Reprogram. 2011 Aug;13(4):361-70 |
| SSID | ssj0017903 |
| Score | 2.3798308 |
| SecondaryResourceType | review_article |
| Snippet | Summary
The discovery that somatic cells can be induced into a pluripotent state by the expression of reprogramming factors has enormous potential for... The discovery that somatic cells can be induced into a pluripotent state by the expression of reprogramming factors has enormous potential for therapeutics and... Summary The discovery that somatic cells can be induced into a pluripotent state by the expression of reprogramming factors has enormous potential for... |
| SourceID | pubmedcentral proquest gale pubmed crossref wiley |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 2 |
| SubjectTerms | Aging Aging - physiology Animals Cellular Reprogramming Cellular Senescence differentiation Embryonic stem cells epigenetic Epigenetic inheritance Genes Humans induced pluripotent stem Induced Pluripotent Stem Cells - cytology Induced Pluripotent Stem Cells - metabolism Mitochondria - metabolism Oxidative Stress reprogramming Review Stem cells Telomerase Telomeres |
| SummonAdditionalLinks | – databaseName: Biological Science Database dbid: M7P link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3Na9VAEB-0KvTitzVtlRUFUQgm2c3u217Ks7R4kNKDQm9hs5nQ4jN5vg_B_96ZTV5sSunFW8JOQpL52Jndye8H8M5iql2WYZxXUsXKuUlcIjleqSqLOpGm1nUgmzCnp5Pzc3vWL7gt-7bKTUwMgbpqPa-Rf0qVMYaSD6kP579iZo3i3dWeQuMu3GOUBBla986GXQRjAzMyXapiS0G4hyflTh7nccbICpNsNCFdD8tX5qXrPZNXc9kwGZ08-t_XeAwP-zRUTDu7eQJ3sHkKDzpiyj_P4DNZjwj8RYIbPAL454FwgplXfrrFD9HWgop5MotKzGdrCjwt5d4rwajQgvcClofP4fvJ8bejL3HPthD7nGb5GE2J6JwtJSqFzlQSs8Q7I2tZ2gRdTme-Ukkta60rndYZ2sqgT_OaRrSUL2CraRt8CcJrb_IKHUULqayjmzmZl6Z2eTkpdVZG8GHzyQvfQ5EzI8as2JQkrJ4iqCeCt4PsvAPguFHqPWuuYK-kO3nX_1xAz8P4VsXUJIzbr5WNYH8kSd7kx8MbvRW9Ny-Lf0qL4M0wzFdyh1qD7ZplbKKpdsxkBDudqQzPy2UdJXZpBGZkRIMAY3yPR5rLi4D1rSi9ppo2go_B3G75BMX06PhrONq9_R32YJuyPtW1nu_D1mqxxldw3_9eXS4Xr4MH_QUzdiQ5 priority: 102 providerName: ProQuest |
| Title | The aging signature: a hallmark of induced pluripotent stem cells? |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1111%2Facel.12182 https://www.ncbi.nlm.nih.gov/pubmed/24256351 https://www.proquest.com/docview/1477765636 https://www.proquest.com/docview/1490696623 https://pubmed.ncbi.nlm.nih.gov/PMC4326871 |
| Volume | 13 |
| WOSCitedRecordID | wos000329760600002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1474-9726 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017903 issn: 1474-9718 databaseCode: DOA dateStart: 20140101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVPQU databaseName: ProQuest Biological Science Database (NC LIVE) customDbUrl: eissn: 1474-9726 dateEnd: 20141231 omitProxy: false ssIdentifier: ssj0017903 issn: 1474-9718 databaseCode: M7P dateStart: 20140201 isFulltext: true titleUrlDefault: http://search.proquest.com/biologicalscijournals providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1474-9726 dateEnd: 20141231 omitProxy: false ssIdentifier: ssj0017903 issn: 1474-9718 databaseCode: BENPR dateStart: 20140201 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 1474-9726 dateEnd: 20141231 omitProxy: false ssIdentifier: ssj0017903 issn: 1474-9718 databaseCode: PIMPY dateStart: 20140201 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest – providerCode: PRVWIB databaseName: Wiley Online Library Free Content customDbUrl: eissn: 1474-9726 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017903 issn: 1474-9718 databaseCode: WIN dateStart: 20020101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell – providerCode: PRVWIB databaseName: Wiley Online Library Open Access customDbUrl: eissn: 1474-9726 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017903 issn: 1474-9718 databaseCode: 24P dateStart: 20020101 isFulltext: true titleUrlDefault: https://authorservices.wiley.com/open-science/open-access/browse-journals.html providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3ri9QwEB-OWwW_-H5UzyWiIAqFtkmTRgTZO_bwQJciiuunkqYpHq7dYx-C_70zabduDxHEL6VlpiWdzkxmkulvAJ5pF0uTJC5MKy5CYUwWlg4NrxSVdjLiqpa1bzahZrNsPtf5Abze_QvT4kP0C25kGd5fk4Gbcr1n5Ma6BWEjZOiAR3HMM2rckIi830NQ2vdFjoUSoUYX3IGTUh3P73sH09Flp7w3K12umNyPZP1UdHrj_17iJlzvQlA2aXXmFhy45jZcbZtS_rwDx6g5zPcuYlTc4YE_XzHDqOvKd7P6xpY1w0QeVaJiF4stOp0lxt0bRojQjPYB1m_uwqfT6ceTt2HXaSG0Kc7woVOlc8bokjshnFEVd0lkjeI1L3XkTIpXthJRzWspKxnXidOVcjZOa6RIzu_BYbNs3ANgVlqVVs6gp-BCG3yY4WmpapOWWSmTMoAXO4EXtoMhp24Yi2KXjpBMCi-TAJ72vBct-MYfuZ7TdyvIIvFJ1nQ_FuB4CNuqmKiIMPul0AEcDTjRkuyQvPvyRWfJa0yNlFIY9HIZwJOeTHdSdVrjllvi0ZHEvDHhAdxvFaUfL6V0GNTFAaiBCvUMhO89pDTnXz3Ot8DQGvPZAF56FfqLCIrJyfSdP3v4L8yP4BrGf6ItQj-Cw81q6x7DFftjc75ejb014VHNszGMjqez_MPYL1mMqUAWKaP87H3-Ba8-n81-AdmaKZk |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1bb9MwFD6aOhC8cL8EBhgBQiBFpLFjx0hoKmPTqnVVH4a0PQXHcURFSUovoP0pfiPn5FLWCe1tD7y18knkJJ_PJT75PoCX2nWlCUPnRxkXvjAm9lOHCy8VmXYy4CqXeSU2oYbD-PhYjzbgd_stDLVVtj6xctRZaekd-buuUEph8sHl9vSHT6pRtLvaSmjUsDhwp7-wZJt_6H_C5_sqDPd2j3b2_UZVwLcRRjPfqdQ5Y3TKnRDOqIy7MLBG8ZynOnAmwn82E0HOcykz2c1DpzPlbDfKcUTSC1B0-ZsCwR53YHPUPxydrPYtlK60mHGywtfo9htCVOodMtZNiMshDtdC4PlAcCYSnu_SPJs9V-Fv7-b_duNuwY0m0Wa9emXchg1X3IGrtfTm6V34iOuDVQpNjFpYKnrT98ww0pb5bmbfWJmzcZEh8DM2nSzRtZZYXSwY8V4z2u2Yb9-Dz5dyAfehU5SFewjMSquizBn0h1xogyczPEpVbqI0TmWYevCmfcSJbcjWSfNjkrRFF8EhqeDgwYuV7bSmGPmn1WtCSkJ-B89kTfP5BM6HGLySngpImUAK7cHWmiX6C7s-3OIkafzVPPkLEg-er4bpSOrBK1y5JBsdSKyOQ-7Bgxqaq_lS4Yqpa9cDtQbalQGxmK-PFOOvFZu5wAICq3YP3lbwvuAWJL2d3UH169HF1_AMru0fHQ6SQX948BiuY44r6kb7LegsZkv3BK7Yn4vxfPa0Wb8Mvlw28v8AiduFWg |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3di9QwEB_k_MAXvz-qp0YUxINC26TJxhdZz1sUj2UfFO6tpOkUD9fush-C_70zabduDxHEt5ZMQjqZmcw0k98AvLSYapdlGOeVVLFybhSXSIpXqsqiTqSpdR2KTZjpdHR2Zmddbg7fhWnxIfofbqwZwV6zguOyqve03HmcMzjCiCzwZZWblIU6U7P-EMHYUBg5VUbFlmxwh07KiTy_-w72o4tWeW9bupgyue_Khr1ocvM_v-IW3OicUDFupeY2XMLmDlxty1L-vAvvSHZEqF4kOL0jQH--EU5w3ZXvbvVNLGpBoTwJRSWW8y2ZnQV53hvBmNCCTwLWb-_Bl8nJ5-MPcVdrIfY57fExmhLROVtKVAqdqSRmiXdG1rK0Cbqc3nylklrWWlc6rTO0lUGf5jW1aCnvw0GzaPAhCK-9ySt0ZCukso4GczIvTe3yclTqrIzg9Y7jhe-AyLkexrzYBSTMkyLwJIIXPe2yhd_4I9UrXriCdZJG8q67WkDzYXSrYmwSRu3XykZwOKAkXfLD5t3SF50uryk4MsaQ2yt1BM_7Zu7J-WkNLrZMYxNNkWMmI3jQSko_Xw7qyK1LIzADGeoJGOF72NKcfw1I34qca4poIzgKMvQXFhTj45PT8PToX4ifwbXZ-0lx-nH66TFcJ2dQtRnph3CwWW3xCVzxPzbn69XToFm_AKgJJds |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+aging+signature%3A+a+hallmark+of+induced+pluripotent+stem+cells%3F&rft.jtitle=Aging+cell&rft.au=Rohani%2C+Leili&rft.au=Johnson%2C+Adiv+A&rft.au=Arnold%2C+Antje&rft.au=Stolzing%2C+Alexandra&rft.date=2014-02-01&rft.pub=John+Wiley+%26+Sons%2C+Inc&rft.issn=1474-9718&rft.volume=13&rft.issue=1&rft.spage=2&rft_id=info:doi/10.1111%2Facel.12182&rft.externalDocID=A705782649 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1474-9718&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1474-9718&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1474-9718&client=summon |