The aging signature: a hallmark of induced pluripotent stem cells?

Summary The discovery that somatic cells can be induced into a pluripotent state by the expression of reprogramming factors has enormous potential for therapeutics and human disease modeling. With regard to aging and rejuvenation, the reprogramming process resets an aged, somatic cell to a more yout...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Aging cell Ročník 13; číslo 1; s. 2 - 7
Hlavní autori: Rohani, Leili, Johnson, Adiv A., Arnold, Antje, Stolzing, Alexandra
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: England John Wiley & Sons, Inc 01.02.2014
BlackWell Publishing Ltd
Predmet:
ISSN:1474-9718, 1474-9726, 1474-9726
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Summary The discovery that somatic cells can be induced into a pluripotent state by the expression of reprogramming factors has enormous potential for therapeutics and human disease modeling. With regard to aging and rejuvenation, the reprogramming process resets an aged, somatic cell to a more youthful state, elongating telomeres, rearranging the mitochondrial network, reducing oxidative stress, restoring pluripotency, and making numerous other alterations. The extent to which induced pluripotent stem cell (iPSC)s mime embryonic stem cells is controversial, however, as iPSCs have been shown to harbor an epigenetic memory characteristic of their tissue of origin which may impact their differentiation potential. Furthermore, there are contentious data regarding the extent to which telomeres are elongated, telomerase activity is reconstituted, and mitochondria are reorganized in iPSCs. Although several groups have reported that reprogramming efficiency declines with age and is inhibited by genes upregulated with age, others have successfully generated iPSCs from senescent and centenarian cells. Mixed findings have also been published regarding whether somatic cells generated from iPSCs are subject to premature senescence. Defects such as these would hinder the clinical application of iPSCs, and as such, more comprehensive testing of iPSCs and their potential aging signature should be conducted.
AbstractList The discovery that somatic cells can be induced into a pluripotent state by the expression of reprogramming factors has enormous potential for therapeutics and human disease modeling. With regard to aging and rejuvenation, the reprogramming process resets an aged, somatic cell to a more youthful state, elongating telomeres, rearranging the mitochondrial network, reducing oxidative stress, restoring pluripotency, and making numerous other alterations. The extent to which induced pluripotent stem cell (iPSC)s mime embryonic stem cells is controversial, however, as iPSCs have been shown to harbor an epigenetic memory characteristic of their tissue of origin which may impact their differentiation potential. Furthermore, there are contentious data regarding the extent to which telomeres are elongated, telomerase activity is reconstituted, and mitochondria are reorganized in iPSCs. Although several groups have reported that reprogramming efficiency declines with age and is inhibited by genes upregulated with age, others have successfully generated iPSCs from senescent and centenarian cells. Mixed findings have also been published regarding whether somatic cells generated from iPSCs are subject to premature senescence. Defects such as these would hinder the clinical application of iPSCs, and as such, more comprehensive testing of iPSCs and their potential aging signature should be conducted.The discovery that somatic cells can be induced into a pluripotent state by the expression of reprogramming factors has enormous potential for therapeutics and human disease modeling. With regard to aging and rejuvenation, the reprogramming process resets an aged, somatic cell to a more youthful state, elongating telomeres, rearranging the mitochondrial network, reducing oxidative stress, restoring pluripotency, and making numerous other alterations. The extent to which induced pluripotent stem cell (iPSC)s mime embryonic stem cells is controversial, however, as iPSCs have been shown to harbor an epigenetic memory characteristic of their tissue of origin which may impact their differentiation potential. Furthermore, there are contentious data regarding the extent to which telomeres are elongated, telomerase activity is reconstituted, and mitochondria are reorganized in iPSCs. Although several groups have reported that reprogramming efficiency declines with age and is inhibited by genes upregulated with age, others have successfully generated iPSCs from senescent and centenarian cells. Mixed findings have also been published regarding whether somatic cells generated from iPSCs are subject to premature senescence. Defects such as these would hinder the clinical application of iPSCs, and as such, more comprehensive testing of iPSCs and their potential aging signature should be conducted.
The discovery that somatic cells can be induced into a pluripotent state by the expression of reprogramming factors has enormous potential for therapeutics and human disease modeling. With regard to aging and rejuvenation, the reprogramming process resets an aged, somatic cell to a more youthful state, elongating telomeres, rearranging the mitochondrial network, reducing oxidative stress, restoring pluripotency, and making numerous other alterations. The extent to which induced pluripotent stem cell ( iPSC )s mime embryonic stem cells is controversial, however, as iPSC s have been shown to harbor an epigenetic memory characteristic of their tissue of origin which may impact their differentiation potential. Furthermore, there are contentious data regarding the extent to which telomeres are elongated, telomerase activity is reconstituted, and mitochondria are reorganized in iPSC s. Although several groups have reported that reprogramming efficiency declines with age and is inhibited by genes upregulated with age, others have successfully generated iPSC s from senescent and centenarian cells. Mixed findings have also been published regarding whether somatic cells generated from iPSC s are subject to premature senescence. Defects such as these would hinder the clinical application of iPSC s, and as such, more comprehensive testing of iPSC s and their potential aging signature should be conducted.
The discovery that somatic cells can be induced into a pluripotent state by the expression of reprogramming factors has enormous potential for therapeutics and human disease modeling. With regard to aging and rejuvenation, the reprogramming process resets an aged, somatic cell to a more youthful state, elongating telomeres, rearranging the mitochondrial network, reducing oxidative stress, restoring pluripotency, and making numerous other alterations. The extent to which induced pluripotent stem cell (iPSC)s mime embryonic stem cells is controversial, however, as iPSCs have been shown to harbor an epigenetic memory characteristic of their tissue of origin which may impact their differentiation potential. Furthermore, there are contentious data regarding the extent to which telomeres are elongated, telomerase activity is reconstituted, and mitochondria are reorganized in iPSCs. Although several groups have reported that reprogramming efficiency declines with age and is inhibited by genes upregulated with age, others have successfully generated iPSCs from senescent and centenarian cells. Mixed findings have also been published regarding whether somatic cells generated from iPSCs are subject to premature senescence. Defects such as these would hinder the clinical application of iPSCs, and as such, more comprehensive testing of iPSCs and their potential aging signature should be conducted.
Summary The discovery that somatic cells can be induced into a pluripotent state by the expression of reprogramming factors has enormous potential for therapeutics and human disease modeling. With regard to aging and rejuvenation, the reprogramming process resets an aged, somatic cell to a more youthful state, elongating telomeres, rearranging the mitochondrial network, reducing oxidative stress, restoring pluripotency, and making numerous other alterations. The extent to which induced pluripotent stem cell (iPSC)s mime embryonic stem cells is controversial, however, as iPSCs have been shown to harbor an epigenetic memory characteristic of their tissue of origin which may impact their differentiation potential. Furthermore, there are contentious data regarding the extent to which telomeres are elongated, telomerase activity is reconstituted, and mitochondria are reorganized in iPSCs. Although several groups have reported that reprogramming efficiency declines with age and is inhibited by genes upregulated with age, others have successfully generated iPSCs from senescent and centenarian cells. Mixed findings have also been published regarding whether somatic cells generated from iPSCs are subject to premature senescence. Defects such as these would hinder the clinical application of iPSCs, and as such, more comprehensive testing of iPSCs and their potential aging signature should be conducted. [PUBLICATION ABSTRACT]
Summary The discovery that somatic cells can be induced into a pluripotent state by the expression of reprogramming factors has enormous potential for therapeutics and human disease modeling. With regard to aging and rejuvenation, the reprogramming process resets an aged, somatic cell to a more youthful state, elongating telomeres, rearranging the mitochondrial network, reducing oxidative stress, restoring pluripotency, and making numerous other alterations. The extent to which induced pluripotent stem cell (iPSC)s mime embryonic stem cells is controversial, however, as iPSCs have been shown to harbor an epigenetic memory characteristic of their tissue of origin which may impact their differentiation potential. Furthermore, there are contentious data regarding the extent to which telomeres are elongated, telomerase activity is reconstituted, and mitochondria are reorganized in iPSCs. Although several groups have reported that reprogramming efficiency declines with age and is inhibited by genes upregulated with age, others have successfully generated iPSCs from senescent and centenarian cells. Mixed findings have also been published regarding whether somatic cells generated from iPSCs are subject to premature senescence. Defects such as these would hinder the clinical application of iPSCs, and as such, more comprehensive testing of iPSCs and their potential aging signature should be conducted.
Audience Academic
Author Rohani, Leili
Arnold, Antje
Johnson, Adiv A.
Stolzing, Alexandra
Author_xml – sequence: 1
  givenname: Leili
  surname: Rohani
  fullname: Rohani, Leili
  organization: Fraunhofer Institute for Cell Therapy and Immunology
– sequence: 2
  givenname: Adiv A.
  surname: Johnson
  fullname: Johnson, Adiv A.
  organization: University of Arizona
– sequence: 3
  givenname: Antje
  surname: Arnold
  fullname: Arnold, Antje
  organization: Fraunhofer Institute for Cell Therapy and Immunology
– sequence: 4
  givenname: Alexandra
  surname: Stolzing
  fullname: Stolzing, Alexandra
  organization: Fraunhofer Institute for Cell Therapy and Immunology
BackLink https://www.ncbi.nlm.nih.gov/pubmed/24256351$$D View this record in MEDLINE/PubMed
BookMark eNp9kstu1DAUhi3Uil5gwwMgS2wQ0gy-xU5YFE1Hpa00EpuytjzOccYlsYc4AfXt6zBloFWFvfDtO_-5-JyggxADIPSGkjnN46Ox0M4poyV7gY6pUGJWKSYP9ntaHqGTlG4Joaoi_CU6YoIVkhf0GJ3fbACbxocGJ98EM4w9fMIGb0zbdqb_jqPDPtSjhRpv27H32zhAGHAaoMPZb5s-v0KHzrQJXj-sp-jbl4ub5dVs9fXyerlYzWxRUjYDtQYwplpzEAKMqjkwYo3ijq8rAqbIJ1sL4riTspbUMahqBZYWLr9Izk_R2U53O647qG0Oozet3vY-B3qno_H68UvwG93En1pwJktFs8D7B4E-_hghDbrzacrBBIhj0lRURFZSssnXuyfobRz7kNPLlFJK5vLJv1RjWtA-uJj92klULxQpVMmkqDI1f4bKs4bO2_yVzuf7RwZv_010n-GfX8vAhx1g-5hSD26PUKKnltBTS-jfLZFh8gS2fjCDj1ORfPu8Cd2Z_MqR3f1HXC-WF6udzT3zTcdX
CitedBy_id crossref_primary_10_1186_s13287_017_0533_2
crossref_primary_10_1016_j_tig_2016_10_007
crossref_primary_10_3390_antiox13121482
crossref_primary_10_1016_j_ymthe_2022_12_010
crossref_primary_10_1016_j_pnpbp_2017_04_033
crossref_primary_10_1038_nrneurol_2017_45
crossref_primary_10_3389_fsens_2023_1294721
crossref_primary_10_1016_j_wneu_2015_06_057
crossref_primary_10_1016_j_arr_2025_102773
crossref_primary_10_1177_0963689717735407
crossref_primary_10_3390_jcm7110449
crossref_primary_10_1016_j_bbabio_2015_05_021
crossref_primary_10_1007_s40778_018_0140_x
crossref_primary_10_1016_j_wneu_2015_05_076
crossref_primary_10_15407_biotech10_02_007
crossref_primary_10_4103_1673_5374_265544
crossref_primary_10_1016_j_molmed_2016_05_010
crossref_primary_10_1017_S0033291717002124
crossref_primary_10_3389_fbioe_2020_599674
crossref_primary_10_1002_sctm_18_0087
crossref_primary_10_1038_s42003_025_08152_2
crossref_primary_10_1093_hmg_ddy355
crossref_primary_10_1159_000449501
crossref_primary_10_1016_j_stem_2015_11_009
crossref_primary_10_1051_jbio_2016008
crossref_primary_10_3390_biomedicines11051261
crossref_primary_10_1038_s41392_023_01343_5
crossref_primary_10_3390_biomedicines10102649
crossref_primary_10_4252_wjsc_v11_i10_787
crossref_primary_10_1038_s41598_017_09980_x
crossref_primary_10_3390_ani11010234
crossref_primary_10_1016_j_neulet_2019_01_043
crossref_primary_10_1016_j_drudis_2018_10_001
crossref_primary_10_1111_acel_13185
crossref_primary_10_3390_ani14020220
crossref_primary_10_1007_s12015_021_10200_3
crossref_primary_10_1038_nmeth_3507
crossref_primary_10_1155_2020_1061470
crossref_primary_10_1017_erm_2015_16
crossref_primary_10_1161_CIRCRESAHA_114_305567
crossref_primary_10_3390_cells12040538
crossref_primary_10_30773_pi_2025_0101
crossref_primary_10_1039_C9BM01081E
crossref_primary_10_1007_s10522_025_10205_2
crossref_primary_10_1016_j_adcanc_2025_100148
crossref_primary_10_1038_s41598_018_21651_z
crossref_primary_10_3389_fnins_2023_1177040
crossref_primary_10_3390_antiox14030331
crossref_primary_10_1016_j_neuroscience_2016_01_067
crossref_primary_10_1186_s12896_016_0315_4
crossref_primary_10_2217_rme_2017_0101
crossref_primary_10_1016_j_yexcr_2015_08_019
crossref_primary_10_3892_mmr_2019_10419
crossref_primary_10_3390_ijms160613633
crossref_primary_10_18632_aging_101035
crossref_primary_10_1007_s00167_015_3763_9
crossref_primary_10_3389_fnins_2018_00504
crossref_primary_10_1016_j_biotechadv_2016_12_002
crossref_primary_10_1089_rej_2015_1676
crossref_primary_10_1089_scd_2014_0059
crossref_primary_10_3389_fncel_2018_00460
crossref_primary_10_1111_acel_12411
crossref_primary_10_1016_j_preteyeres_2017_01_006
Cites_doi 10.1038/nature08792
10.1371/journal.pone.0027352
10.1126/science.279.5349.349
10.1371/journal.pone.0053771
10.1371/journal.pone.0014095
10.1074/jbc.C400477200
10.1038/cr.2011.16
10.1038/ng.463
10.1038/nmeth.1426
10.1093/nar/gkm681
10.1016/0012-1606(62)90043-X
10.1096/fj.09-148973
10.1038/nature06534
10.1016/j.stem.2008.12.010
10.1016/S0955-0674(02)00380-0
10.1038/345458a0
10.1371/journal.pone.0041572
10.1093/jmcb/mjq044
10.1016/j.bbrc.2006.08.020
10.1126/science.1172482
10.1196/annals.1395.005
10.1634/stemcells.2007-0628
10.1016/j.stem.2009.05.005
10.1089/cell.2011.0004
10.1016/j.cell.2012.01.003
10.1038/ng.830
10.1089/clo.2006.0002
10.1002/stem.307
10.1016/j.molcel.2010.10.002
10.1016/j.cell.2005.01.027
10.1038/nbt.2052
10.1371/journal.pone.0020914
10.1101/gad.173922.111
10.1242/bio.20121586
10.1093/emboj/16.21.6510
10.1038/nrg2937
10.1038/nature08290
10.1038/nrm3448
10.1016/j.stem.2010.08.012
10.1089/rej.2012.1324
10.1002/stem.404
10.1002/stem.321
10.1016/S0960-9822(01)00459-6
10.1371/currents.RRN1274
10.1038/nature10084
10.1126/science.1151526
10.1371/journal.pbio.0050110
10.1038/471046a
10.2217/rme.10.21
10.1016/j.stem.2009.04.005
10.1371/journal.pone.0008124
10.4161/epi.6.1.13390
10.1038/nbt.1783
10.1128/MCB.01868-08
10.18632/aging.100277
10.1038/nbt.1667
10.1038/nature09342
10.1038/ncb1685
10.1016/j.cell.2006.07.024
10.1002/stem.201
ContentType Journal Article
Copyright 2013 The Authors. published by the Anatomical Society and John Wiley & Sons Ltd.
2013 The Authors. Aging Cell published by the Anatomical Society and John Wiley & Sons Ltd.
COPYRIGHT 2013 John Wiley & Sons, Inc.
2014 The Anatomical Society and John Wiley & Sons Ltd
2013 The Authors. published by the Anatomical Society and John Wiley & Sons Ltd. 2013
Copyright_xml – notice: 2013 The Authors. published by the Anatomical Society and John Wiley & Sons Ltd.
– notice: 2013 The Authors. Aging Cell published by the Anatomical Society and John Wiley & Sons Ltd.
– notice: COPYRIGHT 2013 John Wiley & Sons, Inc.
– notice: 2014 The Anatomical Society and John Wiley & Sons Ltd
– notice: 2013 The Authors. published by the Anatomical Society and John Wiley & Sons Ltd. 2013
DBID 24P
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QP
7TK
8FE
8FH
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
GNUQQ
HCIFZ
LK8
M7P
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7X8
5PM
DOI 10.1111/acel.12182
DatabaseName Wiley Online Library Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Calcium & Calcified Tissue Abstracts
Neurosciences Abstracts
ProQuest SciTech Collection
ProQuest Natural Science Collection
ProQuest Central (Alumni Edition)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central Korea
ProQuest Central Student
SciTech Premium Collection
ProQuest Biological Science Collection
Biological Science Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Biological Science Collection
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
Biological Science Database
ProQuest SciTech Collection
Neurosciences Abstracts
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
ProQuest Central (New)
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
ProQuest One Academic (New)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
CrossRef


Publicly Available Content Database

MEDLINE

Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1474-9726
EndPage 7
ExternalDocumentID PMC4326871
3182846321
A705782649
24256351
10_1111_acel_12182
ACEL12182
Genre reviewArticle
Research Support, Non-U.S. Gov't
Journal Article
Review
GrantInformation_xml – fundername: German Federal Ministry of Education and Research
  funderid: BMBF 1315883
GroupedDBID ---
.3N
.GA
.Y3
05W
0R~
10A
1OC
23M
24P
2WC
31~
36B
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52W
52X
53G
5GY
5HH
5LA
5VS
66C
6J9
702
7PT
8-0
8-1
8-3
8-4
8-5
8FE
8FH
8UM
930
A01
A03
AAHHS
AAZKR
ABCQN
ABDBF
ABEML
ABJNI
ACCFJ
ACCMX
ACGFO
ACGFS
ACPRK
ACSCC
ACUHS
ACXQS
ADBBV
ADKYN
ADRAZ
ADZMN
ADZOD
AEEZP
AEGXH
AENEX
AEQDE
AFBPY
AFEBI
AFKRA
AFZJQ
AIAGR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AOIJS
AVUZU
BAWUL
BBNVY
BCNDV
BENPR
BFHJK
BHPHI
BY8
CAG
CCPQU
COF
CS3
D-6
D-7
D-E
D-F
DIK
DR2
E3Z
EAD
EAP
EBD
EBS
EJD
EMB
EMK
EMOBN
EST
ESX
F00
F01
F04
F5P
FIJ
GODZA
GROUPED_DOAJ
GX1
HCIFZ
HF~
HOLLA
HZ~
IAO
IHE
IHR
IPNFZ
ITC
IX1
J0M
K.9
KQ8
LC2
LC3
LH4
LK8
LP6
LP7
LW6
M48
M7P
MK4
N04
N05
N9A
O9-
OBS
OIG
OK1
OVD
P2P
P2X
P2Z
P4B
P4D
PIMPY
Q11
ROL
RPM
RX1
SUPJJ
SV3
TEORI
TR2
TUS
UB1
V8K
W8V
WIN
WQJ
WRC
WXI
XG1
YFH
YUY
~IA
~WT
AAMMB
AAYXX
AEFGJ
AFFHD
AGXDD
AIDQK
AIDYY
CITATION
O8X
PHGZM
PHGZT
PQGLB
CGR
CUY
CVF
ECM
EIF
NPM
7QP
7TK
ABUWG
AZQEC
DWQXO
GNUQQ
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
7X8
PUEGO
5PM
ID FETCH-LOGICAL-c5812-e7beeaa9b3e44ea7d3e20ca73f3b90ea520ccd40f3f66d61f2e9d7ec15f20c633
IEDL.DBID 24P
ISICitedReferencesCount 73
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000329760600002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1474-9718
1474-9726
IngestDate Tue Nov 04 01:39:44 EST 2025
Fri Sep 05 10:48:12 EDT 2025
Wed Aug 13 04:48:57 EDT 2025
Sat Nov 29 13:14:36 EST 2025
Sat Nov 29 10:05:11 EST 2025
Wed Feb 19 01:54:52 EST 2025
Sat Nov 29 03:05:11 EST 2025
Tue Nov 18 21:43:02 EST 2025
Wed Jan 22 16:38:18 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords reprogramming
differentiation
aging
induced pluripotent stem
epigenetic
telomeres
Language English
License Attribution
http://creativecommons.org/licenses/by/3.0
2013 The Authors. Aging Cell published by the Anatomical Society and John Wiley & Sons Ltd.
This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5812-e7beeaa9b3e44ea7d3e20ca73f3b90ea520ccd40f3f66d61f2e9d7ec15f20c633
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
OpenAccessLink https://onlinelibrary.wiley.com/doi/abs/10.1111%2Facel.12182
PMID 24256351
PQID 1477765636
PQPubID 1036381
PageCount 6
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_4326871
proquest_miscellaneous_1490696623
proquest_journals_1477765636
gale_infotracmisc_A705782649
gale_infotracacademiconefile_A705782649
pubmed_primary_24256351
crossref_primary_10_1111_acel_12182
crossref_citationtrail_10_1111_acel_12182
wiley_primary_10_1111_acel_12182_ACEL12182
PublicationCentury 2000
PublicationDate February 2014
PublicationDateYYYYMMDD 2014-02-01
PublicationDate_xml – month: 02
  year: 2014
  text: February 2014
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
– name: London
– name: Oxford, UK
PublicationTitle Aging cell
PublicationTitleAlternate Aging Cell
PublicationYear 2014
Publisher John Wiley & Sons, Inc
BlackWell Publishing Ltd
Publisher_xml – name: John Wiley & Sons, Inc
– name: BlackWell Publishing Ltd
References 2002; 14
2009; 41
1990; 345
2007; 1100
1962; 4
2010; 467
2010; 464
2011; 13
2008; 10
1998; 279
2011; 12
2012; 15
2011; 471
2012; 13
2011; 3
2013; 8
2012; 148
2011; 6
2007; 35
2009; 27
2011; 474
2010; 40
2009; 29
2005; 280
2005; 120
2010; 24
2012; 1
2010; 28
2008; 26
2007; 9
2011; 21
2011; 43
1997; 16
2007; 5
2009; 460
2009; 4
2011; 25
2001; 11
2006; 126
2012; 7
2008; 451
2010; 5
2007; 318
2011; 29
2006; 348
2010; 7
2009; 324
e_1_2_5_27_1
e_1_2_5_25_1
e_1_2_5_48_1
e_1_2_5_23_1
e_1_2_5_46_1
e_1_2_5_21_1
e_1_2_5_44_1
e_1_2_5_29_1
e_1_2_5_61_1
e_1_2_5_42_1
e_1_2_5_40_1
e_1_2_5_15_1
e_1_2_5_38_1
e_1_2_5_17_1
e_1_2_5_36_1
e_1_2_5_59_1
e_1_2_5_9_1
e_1_2_5_11_1
e_1_2_5_34_1
e_1_2_5_57_1
e_1_2_5_7_1
e_1_2_5_13_1
e_1_2_5_32_1
e_1_2_5_55_1
e_1_2_5_5_1
e_1_2_5_3_1
e_1_2_5_19_1
e_1_2_5_30_1
e_1_2_5_53_1
e_1_2_5_51_1
e_1_2_5_28_1
e_1_2_5_49_1
e_1_2_5_26_1
e_1_2_5_47_1
e_1_2_5_24_1
e_1_2_5_45_1
e_1_2_5_22_1
e_1_2_5_43_1
e_1_2_5_60_1
e_1_2_5_20_1
e_1_2_5_41_1
e_1_2_5_14_1
e_1_2_5_39_1
e_1_2_5_16_1
e_1_2_5_37_1
e_1_2_5_58_1
e_1_2_5_8_1
e_1_2_5_10_1
e_1_2_5_35_1
e_1_2_5_56_1
e_1_2_5_6_1
e_1_2_5_12_1
e_1_2_5_33_1
e_1_2_5_54_1
e_1_2_5_4_1
e_1_2_5_2_1
e_1_2_5_18_1
e_1_2_5_31_1
e_1_2_5_52_1
e_1_2_5_50_1
12473349 - Curr Opin Cell Biol. 2002 Dec;14(6):741-8
20230312 - Regen Med. 2010 May;5(3):345-63
19801979 - Nat Genet. 2009 Nov;41(11):1207-15
15533947 - J Biol Chem. 2005 Jan 14;280(2):861-4
15734677 - Cell. 2005 Feb 25;120(4):437-47
9351832 - EMBO J. 1997 Nov 3;16(21):6510-20
20155819 - Stem Cells. 2010 Apr;28(4):704-12
18157120 - Nat Cell Biol. 2008 Feb;10(2):228-36
19697349 - Stem Cells. 2009 Nov;27(11):2667-74
17386005 - Cloning Stem Cells. 2007 Spring;9(1):3-7
20139967 - Nat Methods. 2010 Mar;7(3):197-9
13903027 - Dev Biol. 1962 Apr;4:256-73
11591326 - Curr Biol. 2001 Oct 2;11(19):1553-8
20354136 - FASEB J. 2010 Aug;24(8):2702-15
19956585 - PLoS One. 2009;4(12):e8124
22056670 - Genes Dev. 2011 Nov 1;25(21):2248-53
16904174 - Cell. 2006 Aug 25;126(4):663-76
20644536 - Nat Biotechnol. 2010 Aug;28(8):848-55
20164838 - Nature. 2010 Mar 11;464(7286):292-6
21368819 - Nature. 2011 Mar 3;471(7336):46-7
17472436 - PLoS Biol. 2007 May;5(5):e110
20965426 - Mol Cell. 2010 Oct 22;40(2):333-44
23098078 - Rejuvenation Res. 2012 Oct;15(5):483-94
21602826 - Nature. 2011 Jun 16;474(7351):399-402
2342578 - Nature. 1990 May 31;345(6274):458-60
21483033 - Aging (Albany NY). 2011 Apr;3(4):380-90
19325077 - Science. 2009 May 8;324(5928):797-801
21228011 - J Mol Cell Biol. 2011 Apr;3(2):91-8
18157115 - Nature. 2008 Jan 10;451(7175):141-6
17913751 - Nucleic Acids Res. 2007;35(22):7417-28
21718107 - Cell Reprogram. 2011 Aug;13(4):361-70
23034453 - Nat Rev Mol Cell Biol. 2012 Nov;13(11):713-26
19398399 - Cell Stem Cell. 2009 May 8;4(5):381-4
21283131 - Cell Res. 2011 May;21(5):779-92
9454332 - Science. 1998 Jan 16;279(5349):349-52
19528227 - Mol Cell Biol. 2009 Aug;29(16):4495-507
19668188 - Nature. 2009 Aug 27;460(7259):1136-9
19200803 - Cell Stem Cell. 2009 Feb 6;4(2):141-54
20644535 - Nature. 2010 Sep 16;467(7313):285-90
21339765 - Nat Rev Genet. 2011 Apr;12(4):231-42
22101343 - PLoS Curr. 2011 Oct 27;3:RRN1274
21698063 - PLoS One. 2011;6(6):e20914
18055443 - Stem Cells. 2008 Feb;26(2):455-64
22265401 - Cell. 2012 Jan 20;148(1-2):46-57
22110631 - PLoS One. 2011;6(11):e27352
21293464 - Nat Biotechnol. 2011 Mar;29(3):279-86
23382851 - PLoS One. 2013;8(1):e53771
22119740 - Nat Biotechnol. 2011 Dec;29(12):1117-9
20888316 - Cell Stem Cell. 2010 Nov 5;7(5):618-30
20073085 - Stem Cells. 2010 Apr;28(4):661-73
23213392 - Biol Open. 2012 Nov 15;1(11):1118-27
19481515 - Cell Stem Cell. 2009 Jun 5;4(6):472-6
20201066 - Stem Cells. 2010 Apr;28(4):721-33
21532572 - Nat Genet. 2011 Jun;43(6):595-600
17460165 - Ann N Y Acad Sci. 2007 Apr;1100:60-74
21124794 - PLoS One. 2010;5(11):e14095
18029452 - Science. 2007 Dec 21;318(5858):1917-20
20861676 - Epigenetics. 2011 Jan;6(1):63-75
22848530 - PLoS One. 2012;7(7):e41572
16920071 - Biochem Biophys Res Commun. 2006 Oct 6;348(4):1472-8
References_xml – volume: 1100
  start-page: 60
  year: 2007
  end-page: 74
  article-title: Cross‐talk between aging and cancer: the epigenetic language
  publication-title: Ann. N. Y. Acad. Sci.
– volume: 7
  start-page: 618
  year: 2010
  end-page: 630
  article-title: Highly efficient reprogramming to pluripotency and directed differentiation of human cells with synthetic modified mRNA
  publication-title: Cell Stem Cell
– volume: 10
  start-page: 228
  year: 2008
  end-page: 236
  article-title: Developmentally regulated transcription of mammalian telomeres by DNA‐dependent RNA polymerase II
  publication-title: Nat. Cell Biol.
– volume: 27
  start-page: 2667
  year: 2009
  end-page: 2674
  article-title: Adenoviral gene delivery can reprogram human fibroblasts to induced pluripotent stem cells
  publication-title: Stem Cells
– volume: 318
  start-page: 1917
  year: 2007
  end-page: 1920
  article-title: Induced pluripotent stem cell lines derived from human somatic cells
  publication-title: Science
– volume: 28
  start-page: 661
  year: 2010
  end-page: 673
  article-title: Human induced pluripotent stem cell lines show stress defense mechanisms and mitochondrial regulation similar to those of human embryonic stem cells
  publication-title: Stem Cells
– volume: 471
  start-page: 46
  year: 2011
  end-page: 47
  article-title: Stem cells: the dark side of induced pluripotency
  publication-title: Nature
– volume: 28
  start-page: 848
  year: 2010
  end-page: 855
  article-title: Cell type of origin influences the molecular and functional properties of mouse induced pluripotent stem cells
  publication-title: Nat. Biotechnol.
– volume: 5
  start-page: e14095
  year: 2010
  article-title: Mitochondrial rejuvenation after induced pluripotency
  publication-title: PLoS ONE
– volume: 29
  start-page: 1117
  year: 2011
  end-page: 1119
  article-title: Donor cell type can influence the epigenome and differentiation potential of human induced pluripotent stem cells
  publication-title: Nat. Biotechnol.
– volume: 25
  start-page: 2248
  year: 2011
  end-page: 2253
  article-title: Rejuvenating senescent and centenarian human cells by reprogramming through the pluripotent state
  publication-title: Genes Dev.
– volume: 5
  start-page: 345
  year: 2010
  end-page: 363
  article-title: Spontaneous reversal of the developmental aging of normal human cells following transcriptional reprogramming
  publication-title: Regen. Med.
– volume: 3
  start-page: 91
  year: 2011
  end-page: 98
  article-title: Establishment of induced pluripotent stem cells from aged mice using bone marrow‐derived myeloid cells
  publication-title: J. Mol. Cell. Biol.
– volume: 6
  start-page: e27352
  year: 2011
  article-title: Mitochondrial‐associated cell death mechanisms are reset to an embryonic‐like state in aged donor‐derived iPS cells harboring chromosomal aberrations
  publication-title: PLoS ONE
– volume: 13
  start-page: 713
  year: 2012
  end-page: 726
  article-title: Induced pluripotent stem cells: the new patient?
  publication-title: Nat. Rev. Mol. Cell Biol.
– volume: 279
  start-page: 349
  year: 1998
  end-page: 352
  article-title: Extension of life‐span by introduction of telomerase into normal human cells
  publication-title: Science
– volume: 451
  start-page: 141
  year: 2008
  end-page: 146
  article-title: Reprogramming of human somatic cells to pluripotency with defined factors
  publication-title: Nature
– volume: 9
  start-page: 3
  year: 2007
  end-page: 7
  article-title: Viable offspring derived from fetal and adult mammalian cells
  publication-title: Cloning Stem Cells
– volume: 28
  start-page: 721
  year: 2010
  end-page: 733
  article-title: The senescence‐related mitochondrial/oxidative stress pathway is repressed in human induced pluripotent stem cells
  publication-title: Stem Cells
– volume: 4
  start-page: 472
  year: 2009
  end-page: 476
  article-title: Generation of human induced pluripotent stem cells by direct delivery of reprogramming proteins
  publication-title: Cell Stem Cell
– volume: 3
  start-page: 380
  year: 2011
  end-page: 390
  article-title: Generation of induced pluripotent stem cell lines from 3 distinct laminopathies bearing heterogeneous mutations in lamin A/C
  publication-title: Aging (Albany NY)
– volume: 26
  start-page: 455
  year: 2008
  end-page: 464
  article-title: Downregulation of multiple stress defense mechanisms during differentiation of human embryonic stem cells
  publication-title: Stem Cells
– volume: 28
  start-page: 704
  year: 2010
  end-page: 712
  article-title: Hemangioblastic derivatives from human induced pluripotent stem cells exhibit limited expansion and early senescence
  publication-title: Stem Cells
– volume: 8
  start-page: e53771
  year: 2013
  article-title: Genetically matched human iPS cells reveal that propensity for cartilage and bone differentiation differs with clones, not cell type of origin
  publication-title: PLoS ONE
– volume: 43
  start-page: 595
  year: 2011
  end-page: 600
  article-title: Mutations in DNMT1 cause hereditary sensory neuropathy with dementia and hearing loss
  publication-title: Nat. Genet.
– volume: 464
  start-page: 292
  year: 2010
  end-page: 296
  article-title: Telomere elongation in induced pluripotent stem cells from dyskeratosis congenita patients
  publication-title: Nature
– volume: 126
  start-page: 663
  year: 2006
  end-page: 676
  article-title: Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors
  publication-title: Cell
– volume: 4
  start-page: 141
  year: 2009
  end-page: 154
  article-title: Telomeres acquire embryonic stem cell characteristics in induced pluripotent stem cells
  publication-title: Cell Stem Cell
– volume: 21
  start-page: 779
  year: 2011
  end-page: 792
  article-title: Association of telomere length with authentic pluripotency of ES/iPS cells
  publication-title: Cell Res.
– volume: 6
  start-page: 63
  year: 2011
  end-page: 75
  article-title: Reprogramming of telomeric regions during the generation of human induced pluripotent stem cells and subsequent differentiation into fibroblast‐like derivatives
  publication-title: Epigenetics
– volume: 4
  start-page: 381
  year: 2009
  end-page: 384
  article-title: Generation of induced pluripotent stem cells using recombinant proteins
  publication-title: Cell Stem Cell
– volume: 1
  start-page: 1118
  year: 2012
  end-page: 1127
  article-title: Influences of lamin A levels on induction of pluripotent stem cells
  publication-title: Biol. Open.
– volume: 5
  start-page: e110
  year: 2007
  article-title: Mitochondrial dysfunction accounts for the stochastic heterogeneity in telomere‐dependent senescence
  publication-title: PLoS Biol.
– volume: 12
  start-page: 231
  year: 2011
  end-page: 242
  article-title: Methods for making induced pluripotent stem cells: reprogramming à la carte
  publication-title: Nat. Rev. Genet.
– volume: 29
  start-page: 4495
  year: 2009
  end-page: 4507
  article-title: Mitochondrial dysfunction contributes to oncogene‐induced senescence
  publication-title: Mol. Cell. Biol.
– volume: 11
  start-page: 1553
  year: 2001
  end-page: 1558
  article-title: Nuclear reprogramming of somatic cells by in vitro hybridization with ES cells
  publication-title: Curr. Biol.
– volume: 474
  start-page: 399
  year: 2011
  end-page: 402
  article-title: Telomere shortening and loss of self‐renewal in dyskeratosis congenita induced pluripotent stem cells
  publication-title: Nature
– volume: 460
  start-page: 1136
  year: 2009
  end-page: 1139
  article-title: The Ink4/Arf locus is a barrier for iPS cell reprogramming
  publication-title: Nature
– volume: 345
  start-page: 458
  year: 1990
  end-page: 460
  article-title: Telomeres shorten during ageing of human fibroblasts
  publication-title: Nature
– volume: 7
  start-page: 197
  year: 2010
  end-page: 199
  article-title: A nonviral minicircle vector for deriving human iPS cells
  publication-title: Nat. Methods
– volume: 14
  start-page: 741
  year: 2002
  end-page: 748
  article-title: Nuclear transplantation: lessons from frogs and mice
  publication-title: Curr. Opin. Cell Biol.
– volume: 148
  start-page: 46
  year: 2012
  end-page: 57
  article-title: Aging, rejuvenation, and epigenetic reprogramming: resetting the aging clock
  publication-title: Cell
– volume: 41
  start-page: 1207
  year: 2009
  end-page: 1215
  article-title: DNA methylation protects hematopoietic stem cell multipotency from myeloerythroid restriction
  publication-title: Nat. Genet.
– volume: 24
  start-page: 2702
  year: 2010
  end-page: 2715
  article-title: Robust activation of the human but not mouse telomerase gene during the induction of pluripotency
  publication-title: FASEB J.
– volume: 13
  start-page: 361
  year: 2011
  end-page: 370
  article-title: Early senescence is not an inevitable fate of human‐induced pluripotent stem‐derived cells
  publication-title: Cell Reprogram
– volume: 4
  start-page: 256
  year: 1962
  end-page: 273
  article-title: Adult frogs derived from the nuclei of single somatic cells
  publication-title: Dev. Biol.
– volume: 40
  start-page: 333
  year: 2010
  end-page: 344
  article-title: The aging stress response
  publication-title: Mol. Cell
– volume: 7
  start-page: e41572
  year: 2012
  article-title: Establishment of induced pluripotent stem cells from centenarians for neurodegenerative disease research
  publication-title: PLoS ONE
– volume: 280
  start-page: 861
  year: 2005
  end-page: 864
  article-title: DNA methyltransferase gene dDnmt2 and longevity of Drosophila
  publication-title: J. Biol. Chem.
– volume: 120
  start-page: 437
  year: 2005
  end-page: 447
  article-title: Understanding the odd science of aging
  publication-title: Cell
– volume: 6
  start-page: e20914
  year: 2011
  article-title: Energy metabolism in human pluripotent stem cells and their differentiated counterparts
  publication-title: PLoS ONE
– volume: 4
  start-page: e8124
  year: 2009
  article-title: Telomere dynamics in human cells reprogrammed to pluripotency
  publication-title: PLoS ONE
– volume: 3
  start-page: RRN1274
  year: 2011
  article-title: Reprogramming efficiency and quality of induced Pluripotent Stem Cells (iPSCs) generated from muscle‐derived fibroblasts of mdx mice at different ages
  publication-title: PLoS Curr.
– volume: 324
  start-page: 797
  year: 2009
  end-page: 801
  article-title: Human induced pluripotent stem cells free of vector and transgene sequences
  publication-title: Science
– volume: 467
  start-page: 285
  year: 2010
  end-page: 290
  article-title: Epigenetic memory in induced pluripotent stem cells
  publication-title: Nature
– volume: 29
  start-page: 279
  year: 2011
  end-page: 286
  article-title: A functionally characterized test set of human induced pluripotent stem cells
  publication-title: Nat. Biotechnol.
– volume: 348
  start-page: 1472
  year: 2006
  end-page: 1478
  article-title: Dynamic changes in mitochondrial biogenesis and antioxidant enzymes during the spontaneous differentiation of human embryonic stem cells
  publication-title: Biochem. Biophys. Res. Commun.
– volume: 35
  start-page: 7417
  year: 2007
  end-page: 7428
  article-title: DNA damage, cellular senescence and organismal ageing: causal or correlative?
  publication-title: Nucleic Acids Res.
– volume: 15
  start-page: 483
  year: 2012
  end-page: 494
  article-title: The role of DNA methylation in aging, rejuvenation, and age‐related disease
  publication-title: Rejuvenation Res.
– volume: 16
  start-page: 6510
  year: 1997
  end-page: 6520
  article-title: Embryonic germ cells induce epigenetic reprogramming of somatic nucleus in hybrid cells
  publication-title: EMBO J.
– ident: e_1_2_5_2_1
  doi: 10.1038/nature08792
– ident: e_1_2_5_41_1
  doi: 10.1371/journal.pone.0027352
– ident: e_1_2_5_6_1
  doi: 10.1126/science.279.5349.349
– ident: e_1_2_5_35_1
  doi: 10.1371/journal.pone.0053771
– ident: e_1_2_5_46_1
  doi: 10.1371/journal.pone.0014095
– ident: e_1_2_5_31_1
  doi: 10.1074/jbc.C400477200
– ident: e_1_2_5_21_1
  doi: 10.1038/cr.2011.16
– ident: e_1_2_5_8_1
  doi: 10.1038/ng.463
– ident: e_1_2_5_22_1
  doi: 10.1038/nmeth.1426
– ident: e_1_2_5_9_1
  doi: 10.1093/nar/gkm681
– ident: e_1_2_5_16_1
  doi: 10.1016/0012-1606(62)90043-X
– ident: e_1_2_5_33_1
  doi: 10.1096/fj.09-148973
– ident: e_1_2_5_36_1
  doi: 10.1038/nature06534
– ident: e_1_2_5_32_1
  doi: 10.1016/j.stem.2008.12.010
– ident: e_1_2_5_20_1
  doi: 10.1016/S0955-0674(02)00380-0
– ident: e_1_2_5_18_1
  doi: 10.1038/345458a0
– ident: e_1_2_5_55_1
  doi: 10.1371/journal.pone.0041572
– ident: e_1_2_5_10_1
  doi: 10.1093/jmcb/mjq044
– ident: e_1_2_5_11_1
  doi: 10.1016/j.bbrc.2006.08.020
– ident: e_1_2_5_58_1
  doi: 10.1126/science.1172482
– ident: e_1_2_5_13_1
  doi: 10.1196/annals.1395.005
– ident: e_1_2_5_43_1
  doi: 10.1634/stemcells.2007-0628
– ident: e_1_2_5_24_1
  doi: 10.1016/j.stem.2009.05.005
– ident: e_1_2_5_14_1
  doi: 10.1089/cell.2011.0004
– ident: e_1_2_5_42_1
  doi: 10.1016/j.cell.2012.01.003
– ident: e_1_2_5_28_1
  doi: 10.1038/ng.830
– ident: e_1_2_5_54_1
  doi: 10.1089/clo.2006.0002
– ident: e_1_2_5_3_1
  doi: 10.1002/stem.307
– ident: e_1_2_5_17_1
  doi: 10.1016/j.molcel.2010.10.002
– ident: e_1_2_5_27_1
  doi: 10.1016/j.cell.2005.01.027
– ident: e_1_2_5_26_1
  doi: 10.1038/nbt.2052
– ident: e_1_2_5_50_1
  doi: 10.1371/journal.pone.0020914
– ident: e_1_2_5_29_1
  doi: 10.1101/gad.173922.111
– ident: e_1_2_5_61_1
  doi: 10.1242/bio.20121586
– ident: e_1_2_5_47_1
  doi: 10.1093/emboj/16.21.6510
– ident: e_1_2_5_15_1
  doi: 10.1038/nrg2937
– ident: e_1_2_5_30_1
  doi: 10.1038/nature08290
– ident: e_1_2_5_5_1
  doi: 10.1038/nrm3448
– ident: e_1_2_5_53_1
  doi: 10.1016/j.stem.2010.08.012
– ident: e_1_2_5_23_1
  doi: 10.1089/rej.2012.1324
– ident: e_1_2_5_40_1
  doi: 10.1002/stem.404
– ident: e_1_2_5_12_1
  doi: 10.1002/stem.321
– ident: e_1_2_5_48_1
  doi: 10.1016/S0960-9822(01)00459-6
– ident: e_1_2_5_52_1
  doi: 10.1371/currents.RRN1274
– ident: e_1_2_5_4_1
  doi: 10.1038/nature10084
– ident: e_1_2_5_57_1
  doi: 10.1126/science.1151526
– ident: e_1_2_5_37_1
  doi: 10.1371/journal.pbio.0050110
– ident: e_1_2_5_38_1
  doi: 10.1038/471046a
– ident: e_1_2_5_51_1
  doi: 10.2217/rme.10.21
– ident: e_1_2_5_60_1
  doi: 10.1016/j.stem.2009.04.005
– ident: e_1_2_5_45_1
  doi: 10.1371/journal.pone.0008124
– ident: e_1_2_5_56_1
  doi: 10.4161/epi.6.1.13390
– ident: e_1_2_5_7_1
  doi: 10.1038/nbt.1783
– ident: e_1_2_5_34_1
  doi: 10.1128/MCB.01868-08
– ident: e_1_2_5_19_1
  doi: 10.18632/aging.100277
– ident: e_1_2_5_39_1
  doi: 10.1038/nbt.1667
– ident: e_1_2_5_25_1
  doi: 10.1038/nature09342
– ident: e_1_2_5_44_1
  doi: 10.1038/ncb1685
– ident: e_1_2_5_49_1
  doi: 10.1016/j.cell.2006.07.024
– ident: e_1_2_5_59_1
  doi: 10.1002/stem.201
– reference: 21602826 - Nature. 2011 Jun 16;474(7351):399-402
– reference: 9454332 - Science. 1998 Jan 16;279(5349):349-52
– reference: 20965426 - Mol Cell. 2010 Oct 22;40(2):333-44
– reference: 19481515 - Cell Stem Cell. 2009 Jun 5;4(6):472-6
– reference: 20644535 - Nature. 2010 Sep 16;467(7313):285-90
– reference: 20139967 - Nat Methods. 2010 Mar;7(3):197-9
– reference: 21483033 - Aging (Albany NY). 2011 Apr;3(4):380-90
– reference: 22056670 - Genes Dev. 2011 Nov 1;25(21):2248-53
– reference: 22265401 - Cell. 2012 Jan 20;148(1-2):46-57
– reference: 20155819 - Stem Cells. 2010 Apr;28(4):704-12
– reference: 16904174 - Cell. 2006 Aug 25;126(4):663-76
– reference: 20164838 - Nature. 2010 Mar 11;464(7286):292-6
– reference: 18055443 - Stem Cells. 2008 Feb;26(2):455-64
– reference: 22119740 - Nat Biotechnol. 2011 Dec;29(12):1117-9
– reference: 19668188 - Nature. 2009 Aug 27;460(7259):1136-9
– reference: 15533947 - J Biol Chem. 2005 Jan 14;280(2):861-4
– reference: 22110631 - PLoS One. 2011;6(11):e27352
– reference: 19956585 - PLoS One. 2009;4(12):e8124
– reference: 17472436 - PLoS Biol. 2007 May;5(5):e110
– reference: 19398399 - Cell Stem Cell. 2009 May 8;4(5):381-4
– reference: 21698063 - PLoS One. 2011;6(6):e20914
– reference: 21228011 - J Mol Cell Biol. 2011 Apr;3(2):91-8
– reference: 21283131 - Cell Res. 2011 May;21(5):779-92
– reference: 21368819 - Nature. 2011 Mar 3;471(7336):46-7
– reference: 19325077 - Science. 2009 May 8;324(5928):797-801
– reference: 11591326 - Curr Biol. 2001 Oct 2;11(19):1553-8
– reference: 19528227 - Mol Cell Biol. 2009 Aug;29(16):4495-507
– reference: 23098078 - Rejuvenation Res. 2012 Oct;15(5):483-94
– reference: 18029452 - Science. 2007 Dec 21;318(5858):1917-20
– reference: 23213392 - Biol Open. 2012 Nov 15;1(11):1118-27
– reference: 20354136 - FASEB J. 2010 Aug;24(8):2702-15
– reference: 18157115 - Nature. 2008 Jan 10;451(7175):141-6
– reference: 21293464 - Nat Biotechnol. 2011 Mar;29(3):279-86
– reference: 20073085 - Stem Cells. 2010 Apr;28(4):661-73
– reference: 17913751 - Nucleic Acids Res. 2007;35(22):7417-28
– reference: 20230312 - Regen Med. 2010 May;5(3):345-63
– reference: 20888316 - Cell Stem Cell. 2010 Nov 5;7(5):618-30
– reference: 2342578 - Nature. 1990 May 31;345(6274):458-60
– reference: 18157120 - Nat Cell Biol. 2008 Feb;10(2):228-36
– reference: 15734677 - Cell. 2005 Feb 25;120(4):437-47
– reference: 21339765 - Nat Rev Genet. 2011 Apr;12(4):231-42
– reference: 20201066 - Stem Cells. 2010 Apr;28(4):721-33
– reference: 12473349 - Curr Opin Cell Biol. 2002 Dec;14(6):741-8
– reference: 9351832 - EMBO J. 1997 Nov 3;16(21):6510-20
– reference: 17386005 - Cloning Stem Cells. 2007 Spring;9(1):3-7
– reference: 23382851 - PLoS One. 2013;8(1):e53771
– reference: 19200803 - Cell Stem Cell. 2009 Feb 6;4(2):141-54
– reference: 21124794 - PLoS One. 2010;5(11):e14095
– reference: 16920071 - Biochem Biophys Res Commun. 2006 Oct 6;348(4):1472-8
– reference: 17460165 - Ann N Y Acad Sci. 2007 Apr;1100:60-74
– reference: 20644536 - Nat Biotechnol. 2010 Aug;28(8):848-55
– reference: 19801979 - Nat Genet. 2009 Nov;41(11):1207-15
– reference: 19697349 - Stem Cells. 2009 Nov;27(11):2667-74
– reference: 22848530 - PLoS One. 2012;7(7):e41572
– reference: 21532572 - Nat Genet. 2011 Jun;43(6):595-600
– reference: 20861676 - Epigenetics. 2011 Jan;6(1):63-75
– reference: 23034453 - Nat Rev Mol Cell Biol. 2012 Nov;13(11):713-26
– reference: 22101343 - PLoS Curr. 2011 Oct 27;3:RRN1274
– reference: 13903027 - Dev Biol. 1962 Apr;4:256-73
– reference: 21718107 - Cell Reprogram. 2011 Aug;13(4):361-70
SSID ssj0017903
Score 2.3798308
SecondaryResourceType review_article
Snippet Summary The discovery that somatic cells can be induced into a pluripotent state by the expression of reprogramming factors has enormous potential for...
The discovery that somatic cells can be induced into a pluripotent state by the expression of reprogramming factors has enormous potential for therapeutics and...
Summary The discovery that somatic cells can be induced into a pluripotent state by the expression of reprogramming factors has enormous potential for...
SourceID pubmedcentral
proquest
gale
pubmed
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2
SubjectTerms Aging
Aging - physiology
Animals
Cellular Reprogramming
Cellular Senescence
differentiation
Embryonic stem cells
epigenetic
Epigenetic inheritance
Genes
Humans
induced pluripotent stem
Induced Pluripotent Stem Cells - cytology
Induced Pluripotent Stem Cells - metabolism
Mitochondria - metabolism
Oxidative Stress
reprogramming
Review
Stem cells
Telomerase
Telomeres
SummonAdditionalLinks – databaseName: Biological Science Database
  dbid: M7P
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3Na9VAEB-0KvTitzVtlRUFUQgm2c3u217Ks7R4kNKDQm9hs5nQ4jN5vg_B_96ZTV5sSunFW8JOQpL52Jndye8H8M5iql2WYZxXUsXKuUlcIjleqSqLOpGm1nUgmzCnp5Pzc3vWL7gt-7bKTUwMgbpqPa-Rf0qVMYaSD6kP579iZo3i3dWeQuMu3GOUBBla986GXQRjAzMyXapiS0G4hyflTh7nccbICpNsNCFdD8tX5qXrPZNXc9kwGZ08-t_XeAwP-zRUTDu7eQJ3sHkKDzpiyj_P4DNZjwj8RYIbPAL454FwgplXfrrFD9HWgop5MotKzGdrCjwt5d4rwajQgvcClofP4fvJ8bejL3HPthD7nGb5GE2J6JwtJSqFzlQSs8Q7I2tZ2gRdTme-Ukkta60rndYZ2sqgT_OaRrSUL2CraRt8CcJrb_IKHUULqayjmzmZl6Z2eTkpdVZG8GHzyQvfQ5EzI8as2JQkrJ4iqCeCt4PsvAPguFHqPWuuYK-kO3nX_1xAz8P4VsXUJIzbr5WNYH8kSd7kx8MbvRW9Ny-Lf0qL4M0wzFdyh1qD7ZplbKKpdsxkBDudqQzPy2UdJXZpBGZkRIMAY3yPR5rLi4D1rSi9ppo2go_B3G75BMX06PhrONq9_R32YJuyPtW1nu_D1mqxxldw3_9eXS4Xr4MH_QUzdiQ5
  priority: 102
  providerName: ProQuest
Title The aging signature: a hallmark of induced pluripotent stem cells?
URI https://onlinelibrary.wiley.com/doi/abs/10.1111%2Facel.12182
https://www.ncbi.nlm.nih.gov/pubmed/24256351
https://www.proquest.com/docview/1477765636
https://www.proquest.com/docview/1490696623
https://pubmed.ncbi.nlm.nih.gov/PMC4326871
Volume 13
WOSCitedRecordID wos000329760600002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1474-9726
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017903
  issn: 1474-9718
  databaseCode: DOA
  dateStart: 20140101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVPQU
  databaseName: ProQuest Biological Science Database (NC LIVE)
  customDbUrl:
  eissn: 1474-9726
  dateEnd: 20141231
  omitProxy: false
  ssIdentifier: ssj0017903
  issn: 1474-9718
  databaseCode: M7P
  dateStart: 20140201
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1474-9726
  dateEnd: 20141231
  omitProxy: false
  ssIdentifier: ssj0017903
  issn: 1474-9718
  databaseCode: BENPR
  dateStart: 20140201
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 1474-9726
  dateEnd: 20141231
  omitProxy: false
  ssIdentifier: ssj0017903
  issn: 1474-9718
  databaseCode: PIMPY
  dateStart: 20140201
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVWIB
  databaseName: Wiley Online Library Free Content
  customDbUrl:
  eissn: 1474-9726
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017903
  issn: 1474-9718
  databaseCode: WIN
  dateStart: 20020101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
– providerCode: PRVWIB
  databaseName: Wiley Online Library Open Access
  customDbUrl:
  eissn: 1474-9726
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017903
  issn: 1474-9718
  databaseCode: 24P
  dateStart: 20020101
  isFulltext: true
  titleUrlDefault: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3ri9QwEB-OWwW_-H5UzyWiIAqFtkmTRgTZO_bwQJciiuunkqYpHq7dYx-C_70zabduDxHEL6VlpiWdzkxmkulvAJ5pF0uTJC5MKy5CYUwWlg4NrxSVdjLiqpa1bzahZrNsPtf5Abze_QvT4kP0C25kGd5fk4Gbcr1n5Ma6BWEjZOiAR3HMM2rckIi830NQ2vdFjoUSoUYX3IGTUh3P73sH09Flp7w3K12umNyPZP1UdHrj_17iJlzvQlA2aXXmFhy45jZcbZtS_rwDx6g5zPcuYlTc4YE_XzHDqOvKd7P6xpY1w0QeVaJiF4stOp0lxt0bRojQjPYB1m_uwqfT6ceTt2HXaSG0Kc7woVOlc8bokjshnFEVd0lkjeI1L3XkTIpXthJRzWspKxnXidOVcjZOa6RIzu_BYbNs3ANgVlqVVs6gp-BCG3yY4WmpapOWWSmTMoAXO4EXtoMhp24Yi2KXjpBMCi-TAJ72vBct-MYfuZ7TdyvIIvFJ1nQ_FuB4CNuqmKiIMPul0AEcDTjRkuyQvPvyRWfJa0yNlFIY9HIZwJOeTHdSdVrjllvi0ZHEvDHhAdxvFaUfL6V0GNTFAaiBCvUMhO89pDTnXz3Ot8DQGvPZAF56FfqLCIrJyfSdP3v4L8yP4BrGf6ItQj-Cw81q6x7DFftjc75ejb014VHNszGMjqez_MPYL1mMqUAWKaP87H3-Ba8-n81-AdmaKZk
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1bb9MwFD6aOhC8cL8EBhgBQiBFpLFjx0hoKmPTqnVVH4a0PQXHcURFSUovoP0pfiPn5FLWCe1tD7y18knkJJ_PJT75PoCX2nWlCUPnRxkXvjAm9lOHCy8VmXYy4CqXeSU2oYbD-PhYjzbgd_stDLVVtj6xctRZaekd-buuUEph8sHl9vSHT6pRtLvaSmjUsDhwp7-wZJt_6H_C5_sqDPd2j3b2_UZVwLcRRjPfqdQ5Y3TKnRDOqIy7MLBG8ZynOnAmwn82E0HOcykz2c1DpzPlbDfKcUTSC1B0-ZsCwR53YHPUPxydrPYtlK60mHGywtfo9htCVOodMtZNiMshDtdC4PlAcCYSnu_SPJs9V-Fv7-b_duNuwY0m0Wa9emXchg1X3IGrtfTm6V34iOuDVQpNjFpYKnrT98ww0pb5bmbfWJmzcZEh8DM2nSzRtZZYXSwY8V4z2u2Yb9-Dz5dyAfehU5SFewjMSquizBn0h1xogyczPEpVbqI0TmWYevCmfcSJbcjWSfNjkrRFF8EhqeDgwYuV7bSmGPmn1WtCSkJ-B89kTfP5BM6HGLySngpImUAK7cHWmiX6C7s-3OIkafzVPPkLEg-er4bpSOrBK1y5JBsdSKyOQ-7Bgxqaq_lS4Yqpa9cDtQbalQGxmK-PFOOvFZu5wAICq3YP3lbwvuAWJL2d3UH169HF1_AMru0fHQ6SQX948BiuY44r6kb7LegsZkv3BK7Yn4vxfPa0Wb8Mvlw28v8AiduFWg
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3di9QwEB_k_MAXvz-qp0YUxINC26TJxhdZz1sUj2UfFO6tpOkUD9fush-C_70zabduDxHEt5ZMQjqZmcw0k98AvLSYapdlGOeVVLFybhSXSIpXqsqiTqSpdR2KTZjpdHR2Zmddbg7fhWnxIfofbqwZwV6zguOyqve03HmcMzjCiCzwZZWblIU6U7P-EMHYUBg5VUbFlmxwh07KiTy_-w72o4tWeW9bupgyue_Khr1ocvM_v-IW3OicUDFupeY2XMLmDlxty1L-vAvvSHZEqF4kOL0jQH--EU5w3ZXvbvVNLGpBoTwJRSWW8y2ZnQV53hvBmNCCTwLWb-_Bl8nJ5-MPcVdrIfY57fExmhLROVtKVAqdqSRmiXdG1rK0Cbqc3nylklrWWlc6rTO0lUGf5jW1aCnvw0GzaPAhCK-9ySt0ZCukso4GczIvTe3yclTqrIzg9Y7jhe-AyLkexrzYBSTMkyLwJIIXPe2yhd_4I9UrXriCdZJG8q67WkDzYXSrYmwSRu3XykZwOKAkXfLD5t3SF50uryk4MsaQ2yt1BM_7Zu7J-WkNLrZMYxNNkWMmI3jQSko_Xw7qyK1LIzADGeoJGOF72NKcfw1I34qca4poIzgKMvQXFhTj45PT8PToX4ifwbXZ-0lx-nH66TFcJ2dQtRnph3CwWW3xCVzxPzbn69XToFm_AKgJJds
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+aging+signature%3A+a+hallmark+of+induced+pluripotent+stem+cells%3F&rft.jtitle=Aging+cell&rft.au=Rohani%2C+Leili&rft.au=Johnson%2C+Adiv+A&rft.au=Arnold%2C+Antje&rft.au=Stolzing%2C+Alexandra&rft.date=2014-02-01&rft.pub=John+Wiley+%26+Sons%2C+Inc&rft.issn=1474-9718&rft.volume=13&rft.issue=1&rft.spage=2&rft_id=info:doi/10.1111%2Facel.12182&rft.externalDocID=A705782649
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1474-9718&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1474-9718&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1474-9718&client=summon