Cascaded LSTM recurrent neural network for automated sleep stage classification using single-channel EEG signals

Automated evaluation of a subject's neurocognitive performance (NCP) is a relevant topic in neurological and clinical studies. NCP represents the mental/cognitive human capacity in performing a specific task. It is difficult to develop the study protocols as the subject's NCP changes in a...

Full description

Saved in:
Bibliographic Details
Published in:Computers in biology and medicine Vol. 106; pp. 71 - 81
Main Authors: Michielli, Nicola, Acharya, U. Rajendra, Molinari, Filippo
Format: Journal Article
Language:English
Published: United States Elsevier Ltd 01.03.2019
Elsevier Limited
Subjects:
ISSN:0010-4825, 1879-0534, 1879-0534
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Automated evaluation of a subject's neurocognitive performance (NCP) is a relevant topic in neurological and clinical studies. NCP represents the mental/cognitive human capacity in performing a specific task. It is difficult to develop the study protocols as the subject's NCP changes in a known predictable way. Sleep is time-varying NCP and can be used to develop novel NCP techniques. Accurate analysis and interpretation of human sleep electroencephalographic (EEG) signals is needed for proper NCP assessment. In addition, sleep deprivation may cause prominent cognitive risks in performing many common activities such as driving or controlling a generic device; therefore, sleep scoring is a crucial part of the process. In the sleep cycle, the first stage of non-rapid eye movement (NREM) sleep or stage N1 is the transition between wakefulness and drowsiness and becomes relevant for the study of NCP. In this study, a novel cascaded recurrent neural network (RNN) architecture based on long short-term memory (LSTM) blocks, is proposed for the automated scoring of sleep stages using EEG signals derived from a single-channel. Fifty-five time and frequency-domain features were extracted from the EEG signals and fed to feature reduction algorithms to select the most relevant ones. The selected features constituted as the inputs to the LSTM networks. The cascaded architecture is composed of two LSTM RNNs: the first network performed 4-class classification (i.e. the five sleep stages with the merging of stages N1 and REM into a single stage) with a classification rate of 90.8%, and the second one obtained a recognition performance of 83.6% for 2-class classification (i.e. N1 vs REM). The overall percentage of correct classification for five sleep stages is found to be 86.7%. The objective of this work is to improve classification performance in sleep stage N1, as a first step of NCP assessment, and at the same time obtain satisfactory classification results in the other sleep stages. •A novel cascaded RNN architecture with LSTM blocks is proposed for the automated scoring of sleep stages.•A single-channel EEG based automated system.•Use of a publicly available sleep-EDF database.•The method outperforms the state-of-the-art methods in the N1 stage detection.•A first step forward to automated assessment of neurocognitive performance.
AbstractList Automated evaluation of a subject's neurocognitive performance (NCP) is a relevant topic in neurological and clinical studies. NCP represents the mental/cognitive human capacity in performing a specific task. It is difficult to develop the study protocols as the subject's NCP changes in a known predictable way. Sleep is time-varying NCP and can be used to develop novel NCP techniques. Accurate analysis and interpretation of human sleep electroencephalographic (EEG) signals is needed for proper NCP assessment. In addition, sleep deprivation may cause prominent cognitive risks in performing many common activities such as driving or controlling a generic device; therefore, sleep scoring is a crucial part of the process. In the sleep cycle, the first stage of non-rapid eye movement (NREM) sleep or stage N1 is the transition between wakefulness and drowsiness and becomes relevant for the study of NCP. In this study, a novel cascaded recurrent neural network (RNN) architecture based on long short-term memory (LSTM) blocks, is proposed for the automated scoring of sleep stages using EEG signals derived from a single-channel. Fifty-five time and frequency-domain features were extracted from the EEG signals and fed to feature reduction algorithms to select the most relevant ones. The selected features constituted as the inputs to the LSTM networks. The cascaded architecture is composed of two LSTM RNNs: the first network performed 4-class classification (i.e. the five sleep stages with the merging of stages N1 and REM into a single stage) with a classification rate of 90.8%, and the second one obtained a recognition performance of 83.6% for 2-class classification (i.e. N1 vs REM). The overall percentage of correct classification for five sleep stages is found to be 86.7%. The objective of this work is to improve classification performance in sleep stage N1, as a first step of NCP assessment, and at the same time obtain satisfactory classification results in the other sleep stages.Automated evaluation of a subject's neurocognitive performance (NCP) is a relevant topic in neurological and clinical studies. NCP represents the mental/cognitive human capacity in performing a specific task. It is difficult to develop the study protocols as the subject's NCP changes in a known predictable way. Sleep is time-varying NCP and can be used to develop novel NCP techniques. Accurate analysis and interpretation of human sleep electroencephalographic (EEG) signals is needed for proper NCP assessment. In addition, sleep deprivation may cause prominent cognitive risks in performing many common activities such as driving or controlling a generic device; therefore, sleep scoring is a crucial part of the process. In the sleep cycle, the first stage of non-rapid eye movement (NREM) sleep or stage N1 is the transition between wakefulness and drowsiness and becomes relevant for the study of NCP. In this study, a novel cascaded recurrent neural network (RNN) architecture based on long short-term memory (LSTM) blocks, is proposed for the automated scoring of sleep stages using EEG signals derived from a single-channel. Fifty-five time and frequency-domain features were extracted from the EEG signals and fed to feature reduction algorithms to select the most relevant ones. The selected features constituted as the inputs to the LSTM networks. The cascaded architecture is composed of two LSTM RNNs: the first network performed 4-class classification (i.e. the five sleep stages with the merging of stages N1 and REM into a single stage) with a classification rate of 90.8%, and the second one obtained a recognition performance of 83.6% for 2-class classification (i.e. N1 vs REM). The overall percentage of correct classification for five sleep stages is found to be 86.7%. The objective of this work is to improve classification performance in sleep stage N1, as a first step of NCP assessment, and at the same time obtain satisfactory classification results in the other sleep stages.
Automated evaluation of a subject's neurocognitive performance (NCP) is a relevant topic in neurological and clinical studies. NCP represents the mental/cognitive human capacity in performing a specific task. It is difficult to develop the study protocols as the subject's NCP changes in a known predictable way. Sleep is time-varying NCP and can be used to develop novel NCP techniques. Accurate analysis and interpretation of human sleep electroencephalographic (EEG) signals is needed for proper NCP assessment. In addition, sleep deprivation may cause prominent cognitive risks in performing many common activities such as driving or controlling a generic device; therefore, sleep scoring is a crucial part of the process. In the sleep cycle, the first stage of non-rapid eye movement (NREM) sleep or stage N1 is the transition between wakefulness and drowsiness and becomes relevant for the study of NCP. In this study, a novel cascaded recurrent neural network (RNN) architecture based on long short-term memory (LSTM) blocks, is proposed for the automated scoring of sleep stages using EEG signals derived from a single-channel. Fifty-five time and frequency-domain features were extracted from the EEG signals and fed to feature reduction algorithms to select the most relevant ones. The selected features constituted as the inputs to the LSTM networks. The cascaded architecture is composed of two LSTM RNNs: the first network performed 4-class classification (i.e. the five sleep stages with the merging of stages N1 and REM into a single stage) with a classification rate of 90.8%, and the second one obtained a recognition performance of 83.6% for 2-class classification (i.e. N1 vs REM). The overall percentage of correct classification for five sleep stages is found to be 86.7%. The objective of this work is to improve classification performance in sleep stage N1, as a first step of NCP assessment, and at the same time obtain satisfactory classification results in the other sleep stages. •A novel cascaded RNN architecture with LSTM blocks is proposed for the automated scoring of sleep stages.•A single-channel EEG based automated system.•Use of a publicly available sleep-EDF database.•The method outperforms the state-of-the-art methods in the N1 stage detection.•A first step forward to automated assessment of neurocognitive performance.
Automated evaluation of a subject's neurocognitive performance (NCP) is a relevant topic in neurological and clinical studies. NCP represents the mental/cognitive human capacity in performing a specific task. It is difficult to develop the study protocols as the subject's NCP changes in a known predictable way. Sleep is time-varying NCP and can be used to develop novel NCP techniques. Accurate analysis and interpretation of human sleep electroencephalographic (EEG) signals is needed for proper NCP assessment. In addition, sleep deprivation may cause prominent cognitive risks in performing many common activities such as driving or controlling a generic device; therefore, sleep scoring is a crucial part of the process. In the sleep cycle, the first stage of non-rapid eye movement (NREM) sleep or stage N1 is the transition between wakefulness and drowsiness and becomes relevant for the study of NCP. In this study, a novel cascaded recurrent neural network (RNN) architecture based on long short-term memory (LSTM) blocks, is proposed for the automated scoring of sleep stages using EEG signals derived from a single-channel. Fifty-five time and frequency-domain features were extracted from the EEG signals and fed to feature reduction algorithms to select the most relevant ones. The selected features constituted as the inputs to the LSTM networks. The cascaded architecture is composed of two LSTM RNNs: the first network performed 4-class classification (i.e. the five sleep stages with the merging of stages N1 and REM into a single stage) with a classification rate of 90.8%, and the second one obtained a recognition performance of 83.6% for 2-class classification (i.e. N1 vs REM). The overall percentage of correct classification for five sleep stages is found to be 86.7%. The objective of this work is to improve classification performance in sleep stage N1, as a first step of NCP assessment, and at the same time obtain satisfactory classification results in the other sleep stages.
AbstractAutomated evaluation of a subject's neurocognitive performance (NCP) is a relevant topic in neurological and clinical studies. NCP represents the mental/cognitive human capacity in performing a specific task. It is difficult to develop the study protocols as the subject's NCP changes in a known predictable way. Sleep is time-varying NCP and can be used to develop novel NCP techniques. Accurate analysis and interpretation of human sleep electroencephalographic (EEG) signals is needed for proper NCP assessment. In addition, sleep deprivation may cause prominent cognitive risks in performing many common activities such as driving or controlling a generic device; therefore, sleep scoring is a crucial part of the process. In the sleep cycle, the first stage of non-rapid eye movement (NREM) sleep or stage N1 is the transition between wakefulness and drowsiness and becomes relevant for the study of NCP. In this study, a novel cascaded recurrent neural network (RNN) architecture based on long short-term memory (LSTM) blocks, is proposed for the automated scoring of sleep stages using EEG signals derived from a single-channel. Fifty-five time and frequency-domain features were extracted from the EEG signals and fed to feature reduction algorithms to select the most relevant ones. The selected features constituted as the inputs to the LSTM networks. The cascaded architecture is composed of two LSTM RNNs: the first network performed 4-class classification (i.e. the five sleep stages with the merging of stages N1 and REM into a single stage) with a classification rate of 90.8%, and the second one obtained a recognition performance of 83.6% for 2-class classification (i.e. N1 vs REM). The overall percentage of correct classification for five sleep stages is found to be 86.7%. The objective of this work is to improve classification performance in sleep stage N1, as a first step of NCP assessment, and at the same time obtain satisfactory classification results in the other sleep stages.
Author Acharya, U. Rajendra
Molinari, Filippo
Michielli, Nicola
Author_xml – sequence: 1
  givenname: Nicola
  surname: Michielli
  fullname: Michielli, Nicola
  organization: Biolab, Department of Electronics and Telecommunications, Politecnico di Torino, Turin, Italy
– sequence: 2
  givenname: U. Rajendra
  surname: Acharya
  fullname: Acharya, U. Rajendra
  organization: Department of Electronics and Computer Engineering, Ngee Ann Polytechnic, Singapore
– sequence: 3
  givenname: Filippo
  surname: Molinari
  fullname: Molinari, Filippo
  email: filippo.molinari@polito.it
  organization: Biolab, Department of Electronics and Telecommunications, Politecnico di Torino, Turin, Italy
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30685634$$D View this record in MEDLINE/PubMed
BookMark eNqNUl2LEzEUDbLidlf_ggR88WVqvmaaeVl0S12Fig-7Poc0c6emm0lqklH235uxuwoFoXDJCZeTk8s59wKd-eABIUzJnBLavNvNTRj2GxsG6OaM0HZOaCn-DM2oXLQVqbk4QzNCKKmEZPU5ukhpRwgRhJMX6JyTRtYNFzO0X-pkdAcdXt_efcERzBgj-Iw9jFG7AvlXiPe4DxHrMYdB58JNDmCPU9ZbwMbplGxvjc42eDwm67d4OhxU5rv2HhxerW5Ka-u1Sy_R874AvHrES_Tt4-pu-alaf735vPywrkwtSa50zXrRkbpt-37Tc2pI20AjCZO1ZrJroeGGyQ3ruWYNE93CSGCCl5bRXBvgl-jtQXcfw48RUlaDTQac0x7CmBSji1bUNa1Zob45ou7CGKdhJ5ZshShQWK8fWeOm2K720Q46PqgnLwvh6kAwMaQUoVfG5j-m5KitU5SoKTy1U__CU1N4itBSvAjII4GnP054en14CsXSnxaiSsaCN9DZEmlWXbCniFwdiRhnfQnW3cMDpL-mUJWYIup2Wq9pu2jLy5VPFr3_v8BpM_wGF_Pllw
CitedBy_id crossref_primary_10_1016_j_bspc_2025_108597
crossref_primary_10_1016_j_compbiomed_2024_108300
crossref_primary_10_1109_JTEHM_2024_3388852
crossref_primary_10_1016_j_compbiomed_2022_105828
crossref_primary_10_1016_j_bspc_2024_106695
crossref_primary_10_1016_j_eswa_2022_116761
crossref_primary_10_1016_j_cmpb_2019_105236
crossref_primary_10_3390_ijerph19095199
crossref_primary_10_1016_j_cmpb_2022_106692
crossref_primary_10_1007_s11760_021_02035_9
crossref_primary_10_1007_s12539_023_00567_x
crossref_primary_10_1007_s11042_025_20833_y
crossref_primary_10_1177_15500594211054990
crossref_primary_10_3390_sym17091461
crossref_primary_10_1109_TNSRE_2020_2966290
crossref_primary_10_1016_j_medengphy_2024_104208
crossref_primary_10_1016_j_future_2020_03_019
crossref_primary_10_1007_s40031_025_01275_4
crossref_primary_10_3389_fneur_2023_1162998
crossref_primary_10_1016_j_bspc_2022_103751
crossref_primary_10_1016_j_cmpb_2021_106063
crossref_primary_10_1016_j_compbiomed_2022_105931
crossref_primary_10_1111_jsr_70149
crossref_primary_10_3390_diagnostics12051235
crossref_primary_10_1016_j_yebeh_2023_109418
crossref_primary_10_1007_s11517_020_02144_6
crossref_primary_10_1016_j_asoc_2022_108416
crossref_primary_10_3390_jpm12020136
crossref_primary_10_1016_j_smrv_2024_101897
crossref_primary_10_1109_TNSRE_2021_3076234
crossref_primary_10_1007_s00521_023_08598_7
crossref_primary_10_3389_fnins_2022_973761
crossref_primary_10_1038_s41598_022_21389_9
crossref_primary_10_1016_j_compbiomed_2023_107501
crossref_primary_10_1109_ACCESS_2021_3066365
crossref_primary_10_1016_j_jneumeth_2024_110250
crossref_primary_10_1007_s11042_022_12551_6
crossref_primary_10_1007_s42979_024_03173_w
crossref_primary_10_1016_j_jbi_2024_104689
crossref_primary_10_1155_2022_7242667
crossref_primary_10_1016_j_suscom_2021_100624
crossref_primary_10_1016_j_bspc_2023_105179
crossref_primary_10_1016_j_compbiomed_2020_103970
crossref_primary_10_1038_s41746_023_00784_0
crossref_primary_10_1155_2021_8222721
crossref_primary_10_1016_j_bbe_2020_01_013
crossref_primary_10_1007_s11325_024_03112_2
crossref_primary_10_3390_ijerph17114152
crossref_primary_10_1109_ACCESS_2019_2928129
crossref_primary_10_1080_10255842_2023_2275547
crossref_primary_10_3389_fninf_2022_872035
crossref_primary_10_1177_20552076231188206
crossref_primary_10_3390_bioengineering10091009
crossref_primary_10_3390_s23104950
crossref_primary_10_1016_j_asr_2023_06_048
crossref_primary_10_3233_JIFS_210603
crossref_primary_10_1080_00295639_2024_2306105
crossref_primary_10_1007_s13755_024_00328_0
crossref_primary_10_1186_s40779_023_00502_7
crossref_primary_10_1007_s00500_019_04515_0
crossref_primary_10_1109_TCDS_2024_3503767
crossref_primary_10_1016_j_optlastec_2023_110384
crossref_primary_10_1109_JBHI_2025_3572886
crossref_primary_10_3390_s23073446
crossref_primary_10_1371_journal_pone_0297582
crossref_primary_10_1016_j_eswa_2021_114887
crossref_primary_10_3390_s20102770
crossref_primary_10_3390_electronics10091079
crossref_primary_10_1016_j_cmpb_2023_107992
crossref_primary_10_1371_journal_pone_0270405
crossref_primary_10_3390_s20174677
crossref_primary_10_7717_peerj_cs_1988
crossref_primary_10_1109_TNSRE_2022_3192988
crossref_primary_10_1109_JBHI_2019_2951346
crossref_primary_10_1186_s12938_020_0747_x
crossref_primary_10_3390_electronics12112394
crossref_primary_10_1016_j_compbiomed_2023_107652
crossref_primary_10_3389_fnhum_2023_1150316
crossref_primary_10_12677_AAM_2023_121004
crossref_primary_10_1016_j_bbe_2020_04_004
crossref_primary_10_1016_j_knosys_2021_106890
crossref_primary_10_1016_j_cmpb_2019_105253
crossref_primary_10_1109_ACCESS_2019_2939038
crossref_primary_10_3390_s21113786
crossref_primary_10_1016_j_heliyon_2023_e22195
crossref_primary_10_1109_TNSRE_2020_3037326
crossref_primary_10_1016_j_jneumeth_2021_109145
crossref_primary_10_1109_JBHI_2023_3284160
crossref_primary_10_1109_ACCESS_2024_3524267
crossref_primary_10_1016_j_bspc_2021_102908
crossref_primary_10_1155_2022_6104736
crossref_primary_10_3390_app15126844
crossref_primary_10_1109_JSEN_2023_3339727
crossref_primary_10_3390_e21121149
crossref_primary_10_3390_diagnostics12102510
crossref_primary_10_1007_s10489_021_02422_2
crossref_primary_10_1016_j_brainresbull_2024_111017
crossref_primary_10_1016_j_bspc_2023_104682
crossref_primary_10_1007_s11432_021_3380_1
crossref_primary_10_1016_j_bspc_2021_102581
crossref_primary_10_1016_j_bspc_2023_104688
crossref_primary_10_1016_j_bspc_2020_102279
crossref_primary_10_1016_j_compbiomed_2022_105877
crossref_primary_10_3390_brainsci14111087
crossref_primary_10_1016_j_procs_2020_09_280
crossref_primary_10_1007_s13202_020_00987_1
crossref_primary_10_1016_j_compbiomed_2021_104246
crossref_primary_10_1016_j_eswa_2023_122954
crossref_primary_10_1109_JBHI_2022_3165640
crossref_primary_10_1007_s11517_023_02808_z
crossref_primary_10_1016_j_compbiomed_2022_106044
crossref_primary_10_1109_TNSRE_2022_3143162
crossref_primary_10_1109_ACCESS_2022_3163250
crossref_primary_10_3389_fninf_2025_1513374
crossref_primary_10_1016_j_bspc_2024_107264
crossref_primary_10_1080_00207454_2021_1941947
crossref_primary_10_1007_s13246_021_01018_x
crossref_primary_10_1109_JBHI_2021_3099295
crossref_primary_10_1007_s10489_021_02597_8
crossref_primary_10_1080_00032719_2020_1788050
crossref_primary_10_1016_j_bspc_2024_106856
crossref_primary_10_1007_s10489_022_04432_0
crossref_primary_10_1109_TNSRE_2021_3117970
crossref_primary_10_1007_s12204_024_2734_z
crossref_primary_10_3103_S1060992X24601921
crossref_primary_10_1016_j_cmpb_2019_04_032
crossref_primary_10_1007_s10973_021_10904_1
crossref_primary_10_3389_fncom_2024_1505746
crossref_primary_10_1016_j_bspc_2022_104429
crossref_primary_10_1007_s11571_024_10088_y
crossref_primary_10_1007_s40747_023_01290_2
crossref_primary_10_3389_fnins_2025_1525417
crossref_primary_10_1109_TIM_2024_3370799
crossref_primary_10_3390_s20061545
crossref_primary_10_1016_j_heliyon_2024_e41147
crossref_primary_10_3390_s20185234
crossref_primary_10_1016_j_bspc_2023_105351
crossref_primary_10_1007_s13311_021_01014_9
crossref_primary_10_1016_j_bspc_2024_106184
crossref_primary_10_1016_j_compbiomed_2020_103919
crossref_primary_10_1109_ACCESS_2020_2989442
crossref_primary_10_1016_j_jneumeth_2022_109690
crossref_primary_10_1016_j_compbiomed_2022_105653
crossref_primary_10_1109_TIM_2025_3556900
crossref_primary_10_1109_ACCESS_2019_2941867
crossref_primary_10_3390_s21061988
crossref_primary_10_1088_1361_6579_acff35
crossref_primary_10_3390_s24041197
crossref_primary_10_3390_bios14040183
crossref_primary_10_54097_1swr9p34
crossref_primary_10_1088_1741_2552_adb996
crossref_primary_10_1016_j_heliyon_2023_e15258
crossref_primary_10_3390_ijerph16040599
crossref_primary_10_1093_sleep_zsad028
crossref_primary_10_1016_j_ymeth_2021_02_014
crossref_primary_10_1109_TIM_2022_3154838
crossref_primary_10_1016_j_compbiomed_2024_109138
crossref_primary_10_1186_s12911_024_02522_2
crossref_primary_10_3389_fnins_2020_00014
crossref_primary_10_3390_s21227710
crossref_primary_10_3389_fnhum_2021_610890
crossref_primary_10_3390_s23136001
crossref_primary_10_1016_j_patrec_2020_03_009
crossref_primary_10_3390_e24081093
crossref_primary_10_1109_ACCESS_2020_3028182
crossref_primary_10_1016_j_bspc_2025_107553
crossref_primary_10_3233_THC_212847
crossref_primary_10_3390_s22093557
crossref_primary_10_1016_j_eswa_2021_115759
crossref_primary_10_1038_s41598_020_78784_3
crossref_primary_10_1016_j_bspc_2024_107370
crossref_primary_10_1109_TNSRE_2023_3238764
crossref_primary_10_1016_j_bspc_2024_107379
crossref_primary_10_1016_j_cmpb_2019_104992
crossref_primary_10_1007_s13369_022_06617_8
crossref_primary_10_1007_s13369_019_04197_8
crossref_primary_10_1155_2022_9601946
crossref_primary_10_1016_j_bspc_2021_102898
crossref_primary_10_1109_ACCESS_2022_3180730
crossref_primary_10_1016_j_neucom_2020_07_056
crossref_primary_10_1016_j_bspc_2025_108084
crossref_primary_10_1109_JBHI_2022_3208314
crossref_primary_10_1109_TIM_2023_3298402
crossref_primary_10_2147_NSS_S467111
crossref_primary_10_3389_fnins_2022_1044631
crossref_primary_10_1016_j_cmpb_2020_105604
crossref_primary_10_1109_JSEN_2023_3309260
crossref_primary_10_1016_j_neulet_2025_138146
crossref_primary_10_1109_TNSRE_2022_3176004
crossref_primary_10_1007_s13534_023_00305_8
crossref_primary_10_1016_j_bspc_2022_104501
crossref_primary_10_3389_fnhum_2023_1153413
crossref_primary_10_1109_ACCESS_2020_3002548
crossref_primary_10_3390_e22101141
crossref_primary_10_1016_j_cmpb_2021_106091
crossref_primary_10_1515_bmt_2021_0408
crossref_primary_10_1016_j_bspc_2021_102966
crossref_primary_10_1109_TCYB_2023_3253181
crossref_primary_10_1016_j_compbiomed_2019_103387
crossref_primary_10_3389_fpubh_2022_839838
crossref_primary_10_1016_j_artmed_2024_102821
crossref_primary_10_1016_j_cmpb_2023_107471
crossref_primary_10_1109_ACCESS_2020_3027289
crossref_primary_10_3390_app10248963
crossref_primary_10_1109_TNNLS_2022_3145365
crossref_primary_10_1109_TNNLS_2022_3210384
crossref_primary_10_3390_app12125980
crossref_primary_10_1111_mice_12891
crossref_primary_10_1016_j_dsp_2023_104100
crossref_primary_10_1093_sleep_zsac134
crossref_primary_10_1109_TCSII_2020_3014514
crossref_primary_10_3390_app11219948
crossref_primary_10_3390_app9102170
crossref_primary_10_1016_j_inffus_2020_11_008
crossref_primary_10_1016_j_compbiomed_2021_105048
crossref_primary_10_1038_s41598_024_60796_y
crossref_primary_10_1016_j_ymssp_2023_110983
crossref_primary_10_1109_JSEN_2022_3155345
crossref_primary_10_3389_fninf_2023_1123376
crossref_primary_10_1007_s11042_022_12512_z
crossref_primary_10_1109_ACCESS_2022_3202295
crossref_primary_10_1088_1361_6579_ad02db
crossref_primary_10_3389_fncom_2022_1019776
crossref_primary_10_1109_ACCESS_2023_3341419
crossref_primary_10_1111_exsy_12957
crossref_primary_10_1007_s11042_022_13195_2
crossref_primary_10_1007_s13246_022_01112_8
crossref_primary_10_1016_j_bspc_2020_102318
crossref_primary_10_1016_j_bbe_2020_02_002
crossref_primary_10_1155_2022_3491828
crossref_primary_10_1007_s13246_022_01135_1
crossref_primary_10_3390_s25020443
crossref_primary_10_3390_s22228826
crossref_primary_10_1093_sleep_zsad101
crossref_primary_10_1007_s11517_024_03096_x
Cites_doi 10.1109/78.650093
10.1016/j.compbiomed.2018.07.001
10.1016/j.cmpb.2016.12.004
10.1016/j.neucom.2012.11.003
10.3390/e16126573
10.1159/000441975
10.1016/j.compbiomed.2011.04.001
10.1007/s10916-009-9286-5
10.1142/S0218488598000094
10.1016/j.eswa.2018.03.020
10.1142/S0129065710002589
10.1016/j.compbiomed.2018.04.025
10.1161/01.CIR.101.23.e215
10.1016/0167-8655(94)90127-9
10.1016/S0167-7012(00)00201-3
10.1016/0013-4694(70)90143-4
10.1016/j.bbe.2018.05.005
10.1016/j.cmpb.2005.06.011
10.1109/TPAMI.2005.159
10.1016/j.eswa.2005.04.011
10.1016/j.cmpb.2011.11.005
10.1007/3-540-57868-4_57
10.1016/j.compbiomed.2018.03.016
10.1016/j.bspc.2017.12.001
10.5664/jcsm.2350
10.1016/j.bspc.2015.09.002
10.1093/sleep/20.7.523
10.1162/neco.1997.9.8.1735
10.1016/j.medengphy.2013.07.011
10.2200/S00762ED1V01Y201703HLT037
10.1176/appi.ajp.2013.13010058
10.1016/j.compbiomed.2017.12.023
10.1016/j.jneumeth.2015.01.022
10.1016/j.cmpb.2005.06.012
10.1055/s-0029-1237117
10.1046/j.1440-1819.2001.00810.x
10.1109/TAU.1967.1161901
ContentType Journal Article
Copyright 2019 Elsevier Ltd
Elsevier Ltd
Copyright © 2019 Elsevier Ltd. All rights reserved.
Copyright Elsevier Limited Mar 2019
Copyright_xml – notice: 2019 Elsevier Ltd
– notice: Elsevier Ltd
– notice: Copyright © 2019 Elsevier Ltd. All rights reserved.
– notice: Copyright Elsevier Limited Mar 2019
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7RV
7X7
7XB
88E
8AL
8AO
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
8G5
ABUWG
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
GUQSH
HCIFZ
JQ2
K7-
K9.
KB0
LK8
M0N
M0S
M1P
M2O
M7P
M7Z
MBDVC
NAPCQ
P5Z
P62
P64
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
DOI 10.1016/j.compbiomed.2019.01.013
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Nursing & Allied Health Database
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Computing Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Research Library (Alumni Edition)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology Collection
Natural Science Collection
ProQuest One Community College
ProQuest Central Korea
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
Research Library Prep
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Database (Alumni Edition)
ProQuest Biological Science Collection
Computing Database
Health & Medical Collection (Alumni Edition)
Medical Database
Research Library
Biological Science Database
Biochemistry Abstracts 1
Research Library (Corporate)
Nursing & Allied Health Premium
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Research Library Prep
Computer Science Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
SciTech Premium Collection
ProQuest Central China
ProQuest One Applied & Life Sciences
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Advanced Technologies & Aerospace Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
ProQuest Nursing & Allied Health Source (Alumni)
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
Research Library (Alumni Edition)
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
ProQuest Research Library
ProQuest Computing
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest Nursing & Allied Health Source
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Biochemistry Abstracts 1
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

MEDLINE
Research Library Prep


Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1879-0534
EndPage 81
ExternalDocumentID 30685634
10_1016_j_compbiomed_2019_01_013
S0010482519300137
1_s2_0_S0010482519300137
Genre Journal Article
GroupedDBID ---
--K
--M
--Z
-~X
.1-
.55
.DC
.FO
.GJ
.~1
0R~
1B1
1P~
1RT
1~.
1~5
29F
4.4
457
4G.
53G
5GY
5VS
7-5
71M
77I
7RV
7X7
88E
8AO
8FE
8FG
8FH
8FI
8FJ
8G5
8P~
9JN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXUO
AAYFN
AAYWO
ABBOA
ABFNM
ABJNI
ABMAC
ABMZM
ABOCM
ABUWG
ABWVN
ABXDB
ACDAQ
ACGFS
ACIEU
ACIUM
ACIWK
ACLOT
ACNNM
ACPRK
ACRLP
ACRPL
ACVFH
ACZNC
ADBBV
ADCNI
ADEZE
ADJOM
ADMUD
ADNMO
AEBSH
AEIPS
AEKER
AENEX
AEUPX
AEVXI
AFJKZ
AFKRA
AFPUW
AFRAH
AFRHN
AFTJW
AFXIZ
AGHFR
AGQPQ
AGUBO
AGYEJ
AHHHB
AHMBA
AHZHX
AIALX
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
AOUOD
APXCP
ARAPS
ASPBG
AVWKF
AXJTR
AZFZN
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
BKEYQ
BKOJK
BLXMC
BNPGV
BPHCQ
BVXVI
CCPQU
CS3
DU5
DWQXO
EBS
EFJIC
EFKBS
EFLBG
EJD
EMOBN
EO8
EO9
EP2
EP3
EX3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
FYUFA
G-2
G-Q
GBLVA
GBOLZ
GNUQQ
GUQSH
HCIFZ
HLZ
HMCUK
HMK
HMO
HVGLF
HZ~
IHE
J1W
K6V
K7-
KOM
LK8
LX9
M1P
M29
M2O
M41
M7P
MO0
N9A
NAPCQ
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
P62
PC.
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
Q38
R2-
ROL
RPZ
RXW
SAE
SBC
SCC
SDF
SDG
SDP
SEL
SES
SEW
SPC
SPCBC
SSH
SSV
SSZ
SV3
T5K
TAE
UAP
UKHRP
WOW
WUQ
X7M
XPP
Z5R
ZGI
~G-
~HD
AFCTW
AGCQF
AGRNS
ALIPV
RIG
3V.
AACTN
AAIAV
ABLVK
ABYKQ
AFKWA
AHPSJ
AJBFU
AJOXV
AMFUW
LCYCR
M0N
9DU
AAYXX
AFFHD
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7XB
8AL
8FD
8FK
FR3
JQ2
K9.
M7Z
MBDVC
P64
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
ID FETCH-LOGICAL-c580t-a52f4d0599ffbf31c096e680285a28d9e63c28b2f3a2624d7c8e24328bca3ace3
IEDL.DBID K7-
ISICitedReferencesCount 285
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000459843000010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0010-4825
1879-0534
IngestDate Sun Nov 09 12:27:12 EST 2025
Sat Nov 29 14:36:00 EST 2025
Wed Feb 19 02:30:14 EST 2025
Sat Nov 29 05:31:16 EST 2025
Tue Nov 18 22:12:43 EST 2025
Fri Feb 23 02:24:57 EST 2024
Wed Jun 18 06:48:29 EDT 2025
Tue Oct 14 19:33:08 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Long short-term memory
Recurrent neural networks
Sleep analysis
EEG signals
Neurocognitive performance
Language English
License Copyright © 2019 Elsevier Ltd. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c580t-a52f4d0599ffbf31c096e680285a28d9e63c28b2f3a2624d7c8e24328bca3ace3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PMID 30685634
PQID 2178944217
PQPubID 1226355
PageCount 11
ParticipantIDs proquest_miscellaneous_2179455152
proquest_journals_2178944217
pubmed_primary_30685634
crossref_citationtrail_10_1016_j_compbiomed_2019_01_013
crossref_primary_10_1016_j_compbiomed_2019_01_013
elsevier_sciencedirect_doi_10_1016_j_compbiomed_2019_01_013
elsevier_clinicalkeyesjournals_1_s2_0_S0010482519300137
elsevier_clinicalkey_doi_10_1016_j_compbiomed_2019_01_013
PublicationCentury 2000
PublicationDate 2019-03-01
PublicationDateYYYYMMDD 2019-03-01
PublicationDate_xml – month: 03
  year: 2019
  text: 2019-03-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Oxford
PublicationTitle Computers in biology and medicine
PublicationTitleAlternate Comput Biol Med
PublicationYear 2019
Publisher Elsevier Ltd
Elsevier Limited
Publisher_xml – name: Elsevier Ltd
– name: Elsevier Limited
References Reynolds, O'Hara (bib2) 2013; 170
Schuster, Paliwal (bib33) 1997; 45
Sharma, Goyal, V Achuth, Acharya (bib8) 2018; 98
Acharya, Bhat, Faust, Adeli, Chua, Lim, Koh (bib46) 2015; 74
Colten, Altevogt (bib45) 2006
Welch (bib36) 1967; 15
Du, Younan (bib15) 2008
A. Gevins, Non-invasive human neurocognitive performance capability testing method and system, U.S. Pat. (1994).
Peng, Long, Ding (bib12) 2005; 27
Tan, Hagiwara, Pang, Lim, Oh, Adam, Tan, Chen, Acharya (bib48) 2018; 94
Wei, Lin, Wang, Ma (bib30) 2017
Charbonnier, Zoubek, Lesecq, Chapotot (bib25) 2011; 41
Goel, Rao, Durmer, Dinges (bib3) 2009; 29
Jolliffe (bib14) 2011
Goldberg (bib39) 2017; 10
Basheer, Hajmeer (bib43) 2000; 43
Hassan, Bashar, Bhuiyan (bib20) 2015
Acharya, Chua, Chua, Min, Tamura (bib19) 2010; 20
Pudil, Novovičová, Kittler (bib11) 1994; 15
Goldberger, Amaral, Glass, Hausdorff, Ivanov, Mark, Mietus, Moody, Peng, Stanley (bib34) 2000; 101
Hsu, Yang, Wang, Hsu (bib27) 2013; 104
Güler, Übeyli, Güler (bib28) 2005; 29
Acharya, Faust, Kannathal, Chua, Laxminarayan (bib9) 2005; 80
Hassan, Bhuiyan (bib21) 2016; 24
Kannathal, Choo, Acharya, Sadasivan (bib37) 2005; 80
Yildirim (bib47) 2018; 96
Tanaka, Hayashi, Hori (bib5) 1997; 20
Graves (bib40) 2013
Tripathy, Acharya (bib44) 2018; 38
Cover, Thomas (bib38) 2006
Fraiwan, Lweesy, Khasawneh, Wenz, Dickhaus (bib23) 2012; 108
Chung, Gulcehre, Cho, Bengio (bib32) 2014
Huang, Lin, Yang, Ko, Liu, Lin (bib16) 2013
Tagluk, Sezgin, Akin (bib26) 2010; 34
Kingma, Ba (bib42) 2014
(accessed February 24, 2018).
Hochreiter, Schmidhuber (bib31) 1997; 9
Sors, Bonnet, Mirek, Vercueil, Payen (bib29) 2018; 42
Seifpour, Niknazar, Mikaeili, Nasrabadi (bib18) 2018; 104
Rodríguez-Sotelo, Osorio-Forero, Jiménez-Rodríguez, Cuesta-Frau, Cirugeda-Roldán, Peluffo (bib22) 2014; 16
Garcés Correa, Orosco, Laciar (bib4) 2014; 36
Faust, Shenfield, Kareem, San, Fujita, Acharya (bib49) 2018; 102
Rosenberg, Van Hout (bib7) 2013; 9
Hori, Sugita, Koga, Shirakawa, Inoue, Uchida, Kuwahara, Kousaka, Kobayashi, Tsuji, Terashima, Fukuda, Fukuda (bib6) 2001; 55
Shuyuan, Bei, Jian, Qunfeng, Junzhong, Nakamura (bib24) 2015
Kononenko (bib13) 1994
Lajnef, Chaibi, Ruby, Aguera, Eichenlaub, Samet, Kachouri, Jerbi (bib17) 2015; 250
Hochreiter (bib41) 1998; 06
Hjorth (bib35) 1970; 29
Boostani, Karimzadeh, Nami (bib10) 2017; 140
Hassan (10.1016/j.compbiomed.2019.01.013_bib20) 2015
Tagluk (10.1016/j.compbiomed.2019.01.013_bib26) 2010; 34
Tan (10.1016/j.compbiomed.2019.01.013_bib48) 2018; 94
Colten (10.1016/j.compbiomed.2019.01.013_bib45) 2006
Garcés Correa (10.1016/j.compbiomed.2019.01.013_bib4) 2014; 36
Fraiwan (10.1016/j.compbiomed.2019.01.013_bib23) 2012; 108
Rosenberg (10.1016/j.compbiomed.2019.01.013_bib7) 2013; 9
Hori (10.1016/j.compbiomed.2019.01.013_bib6) 2001; 55
Wei (10.1016/j.compbiomed.2019.01.013_bib30) 2017
Seifpour (10.1016/j.compbiomed.2019.01.013_bib18) 2018; 104
Basheer (10.1016/j.compbiomed.2019.01.013_bib43) 2000; 43
Goel (10.1016/j.compbiomed.2019.01.013_bib3) 2009; 29
Yildirim (10.1016/j.compbiomed.2019.01.013_bib47) 2018; 96
Hassan (10.1016/j.compbiomed.2019.01.013_bib21) 2016; 24
Tanaka (10.1016/j.compbiomed.2019.01.013_bib5) 1997; 20
Tripathy (10.1016/j.compbiomed.2019.01.013_bib44) 2018; 38
Shuyuan (10.1016/j.compbiomed.2019.01.013_bib24) 2015
Charbonnier (10.1016/j.compbiomed.2019.01.013_bib25) 2011; 41
Lajnef (10.1016/j.compbiomed.2019.01.013_bib17) 2015; 250
Faust (10.1016/j.compbiomed.2019.01.013_bib49) 2018; 102
Chung (10.1016/j.compbiomed.2019.01.013_bib32)
Kingma (10.1016/j.compbiomed.2019.01.013_bib42)
Schuster (10.1016/j.compbiomed.2019.01.013_bib33) 1997; 45
Acharya (10.1016/j.compbiomed.2019.01.013_bib46) 2015; 74
Hochreiter (10.1016/j.compbiomed.2019.01.013_bib41) 1998; 06
Peng (10.1016/j.compbiomed.2019.01.013_bib12) 2005; 27
Pudil (10.1016/j.compbiomed.2019.01.013_bib11) 1994; 15
Jolliffe (10.1016/j.compbiomed.2019.01.013_bib14) 2011
Boostani (10.1016/j.compbiomed.2019.01.013_bib10) 2017; 140
Reynolds (10.1016/j.compbiomed.2019.01.013_bib2) 2013; 170
Hochreiter (10.1016/j.compbiomed.2019.01.013_bib31) 1997; 9
Graves (10.1016/j.compbiomed.2019.01.013_bib40)
Acharya (10.1016/j.compbiomed.2019.01.013_bib9) 2005; 80
Güler (10.1016/j.compbiomed.2019.01.013_bib28) 2005; 29
Goldberger (10.1016/j.compbiomed.2019.01.013_bib34) 2000; 101
Sharma (10.1016/j.compbiomed.2019.01.013_bib8) 2018; 98
Du (10.1016/j.compbiomed.2019.01.013_bib15) 2008
Welch (10.1016/j.compbiomed.2019.01.013_bib36) 1967; 15
Acharya (10.1016/j.compbiomed.2019.01.013_bib19) 2010; 20
10.1016/j.compbiomed.2019.01.013_bib1
Kannathal (10.1016/j.compbiomed.2019.01.013_bib37) 2005; 80
Huang (10.1016/j.compbiomed.2019.01.013_bib16) 2013
Sors (10.1016/j.compbiomed.2019.01.013_bib29) 2018; 42
Hjorth (10.1016/j.compbiomed.2019.01.013_bib35) 1970; 29
Rodríguez-Sotelo (10.1016/j.compbiomed.2019.01.013_bib22) 2014; 16
Goldberg (10.1016/j.compbiomed.2019.01.013_bib39) 2017; 10
Kononenko (10.1016/j.compbiomed.2019.01.013_bib13) 1994
Cover (10.1016/j.compbiomed.2019.01.013_bib38) 2006
Hsu (10.1016/j.compbiomed.2019.01.013_bib27) 2013; 104
References_xml – volume: 24
  start-page: 1
  year: 2016
  end-page: 10
  ident: bib21
  article-title: Computer-aided sleep staging using complete ensemble empirical mode decomposition with adaptive noise and bootstrap aggregating
  publication-title: Biomed. Signal Process. Control
– volume: 29
  start-page: 506
  year: 2005
  end-page: 514
  ident: bib28
  article-title: Recurrent neural networks employing Lyapunov exponents for EEG signals classification
  publication-title: Expert Syst. Appl.
– volume: 42
  start-page: 107
  year: 2018
  end-page: 114
  ident: bib29
  article-title: A convolutional neural network for sleep stage scoring from raw single-channel EEG
  publication-title: Biomed. Signal Process. Control
– volume: 27
  start-page: 1226
  year: 2005
  end-page: 1238
  ident: bib12
  article-title: Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 102
  start-page: 327
  year: 2018
  end-page: 335
  ident: bib49
  article-title: Automated detection of atrial fibrillation using long short-term memory network with RR interval signals
  publication-title: Comput. Biol. Med.
– volume: 80
  start-page: 187
  year: 2005
  end-page: 194
  ident: bib37
  article-title: Entropies for detection of epilepsy in EEG
  publication-title: Comput. Methods Progr. Biomed.
– volume: 38
  start-page: 890
  year: 2018
  end-page: 902
  ident: bib44
  article-title: Use of features from RR-time series and EEG signals for automated classification of sleep stages in deep neural network framework
  publication-title: Biocybern. Biomed. Eng.
– year: 2006
  ident: bib38
  article-title: Elements of Information Theory
– volume: 55
  start-page: 305
  year: 2001
  end-page: 310
  ident: bib6
  article-title: Proposed supplements and amendments to “A manual of standardized terminology, techniques and scoring system for sleep stages of human subjects”, the rechtschaffen & Kales (1968) standard
  publication-title: Psychiatr. Clin. Neurosci.
– volume: 20
  start-page: 523
  year: 1997
  end-page: 534
  ident: bib5
  article-title: Topographical characteristics and principal component structure of the hypnagogic EEG
  publication-title: Sleep
– start-page: 88
  year: 2017
  end-page: 95
  ident: bib30
  article-title: Time-frequency convolutional neural network for automatic sleep stage classification based on single-channel EEG
  publication-title: 2017 IEEE 29th Int. Conf. Tools with Artif. Intell
– reference: A. Gevins, Non-invasive human neurocognitive performance capability testing method and system, U.S. Pat. (1994).
– volume: 104
  start-page: 277
  year: 2018
  end-page: 293
  ident: bib18
  article-title: A new automatic sleep staging system based on statistical behavior of local extrema using single channel EEG signal
  publication-title: Expert Syst. Appl.
– volume: 20
  start-page: 509
  year: 2010
  end-page: 521
  ident: bib19
  article-title: Analysis and automatic identification of sleep stages using higher order spectra
  publication-title: Int. J. Neural Syst.
– volume: 34
  start-page: 717
  year: 2010
  end-page: 725
  ident: bib26
  article-title: Estimation of sleep stages by an artificial neural network employing EEG, EMG and EOG
  publication-title: J. Med. Syst.
– volume: 101
  start-page: e215
  year: 2000
  end-page: e220
  ident: bib34
  article-title: PhysioBank, PhysioToolkit, and PhysioNet
  publication-title: Circulation
– year: 2014
  ident: bib42
  article-title: Adam: a method for stochastic optimization
– start-page: 2238
  year: 2015
  end-page: 2243
  ident: bib20
  article-title: On the classification of sleep states by means of statistical and spectral features from single channel Electroencephalogram
  publication-title: 2015 Int. Conf. Adv. Comput. Commun. Informatics
– year: 2013
  ident: bib40
  article-title: Generating sequences with recurrent neural networks
– start-page: 171
  year: 1994
  end-page: 182
  ident: bib13
  article-title: Estimating attributes: analysis and extensions of RELIEF
  publication-title: Lect. Notes Comput. Sci
– volume: 29
  start-page: 306
  year: 1970
  end-page: 310
  ident: bib35
  article-title: EEG analysis based on time domain properties
  publication-title: Electroencephalogr. Clin. Neurophysiol.
– volume: 98
  start-page: 58
  year: 2018
  end-page: 75
  ident: bib8
  article-title: An accurate sleep stages classification system using a new class of optimally time-frequency localized three-band wavelet filter bank
  publication-title: Comput. Biol. Med.
– reference: (accessed February 24, 2018).
– start-page: 392
  year: 2008
  end-page: 399
  ident: bib15
  publication-title: Dimensionality Reduction and Linear Discriminant Analysis for Hyperspectral Image Classification BT - Knowledge-Based Intelligent Information and Engineering Systems
– volume: 45
  start-page: 2673
  year: 1997
  end-page: 2681
  ident: bib33
  article-title: Bidirectional recurrent neural networks
  publication-title: IEEE Trans. Signal Process.
– volume: 94
  start-page: 19
  year: 2018
  end-page: 26
  ident: bib48
  article-title: Application of stacked convolutional and long short-term memory network for accurate identification of CAD ECG signals
  publication-title: Comput. Biol. Med.
– year: 2006
  ident: bib45
  article-title: Sleep Disorders and Sleep Deprivation: an Unmet Public Health Problem
– start-page: 1094
  year: 2011
  end-page: 1096
  ident: bib14
  publication-title: Principal Component Analysis BT - International Encyclopedia of Statistical Science
– year: 2014
  ident: bib32
  article-title: Empirical evaluation of gated recurrent neural networks on sequence modeling
– volume: 10
  start-page: 1
  year: 2017
  end-page: 309
  ident: bib39
  article-title: Neural network methods for natural language processing
  publication-title: Synth. Lect. Hum. Lang. Technol.
– volume: 9
  start-page: 81
  year: 2013
  end-page: 87
  ident: bib7
  article-title: The American Academy of sleep medicine inter-scorer reliability program: sleep stage scoring
  publication-title: J. Clin. Sleep Med.
– volume: 140
  start-page: 77
  year: 2017
  end-page: 91
  ident: bib10
  article-title: A comparative review on sleep stage classification methods in patients and healthy individuals
  publication-title: Comput. Methods Progr. Biomed.
– volume: 250
  start-page: 94
  year: 2015
  end-page: 105
  ident: bib17
  article-title: Learning machines and sleeping brains: automatic sleep stage classification using decision-tree multi-class support vector machines
  publication-title: J. Neurosci. Methods
– volume: 108
  start-page: 10
  year: 2012
  end-page: 19
  ident: bib23
  article-title: Automated sleep stage identification system based on time–frequency analysis of a single EEG channel and random forest classifier
  publication-title: Comput. Methods Progr. Biomed.
– start-page: 1
  year: 2013
  end-page: 5
  ident: bib16
  article-title: Applying the fuzzy c-means based dimension reduction to improve the sleep classification system
  publication-title: 2013 IEEE Int. Conf. Fuzzy Syst
– volume: 29
  start-page: 320
  year: 2009
  end-page: 339
  ident: bib3
  article-title: Neurocognitive consequences of sleep deprivation
  publication-title: Semin. Neurol.
– volume: 41
  start-page: 380
  year: 2011
  end-page: 389
  ident: bib25
  article-title: Self-evaluated automatic classifier as a decision-support tool for sleep/wake staging
  publication-title: Comput. Biol. Med.
– volume: 9
  year: 1997
  ident: bib31
  article-title: Long short-term memory
  publication-title: Neural Comput.
– volume: 96
  start-page: 189
  year: 2018
  end-page: 202
  ident: bib47
  article-title: A novel wavelet sequence based on deep bidirectional LSTM network model for ECG signal classification
  publication-title: Comput. Biol. Med.
– volume: 80
  start-page: 37
  year: 2005
  end-page: 45
  ident: bib9
  article-title: Non-linear analysis of EEG signals at various sleep stages
  publication-title: Comput. Methods Progr. Biomed.
– start-page: 1222
  year: 2015
  end-page: 1227
  ident: bib24
  article-title: An improved K-means clustering algorithm for sleep stages classification
  publication-title: 2015 54th Annu. Conf. Soc. Instrum. Control Eng. Japan
– volume: 06
  start-page: 107
  year: 1998
  end-page: 116
  ident: bib41
  article-title: The vanishing gradient problem during learning recurrent neural nets and problem solutions
  publication-title: Int. J. Uncertain. Fuzziness Knowledge-Based Syst.
– volume: 15
  start-page: 1119
  year: 1994
  end-page: 1125
  ident: bib11
  article-title: Floating search methods in feature selection
  publication-title: Pattern Recogn. Lett.
– volume: 170
  start-page: 1099
  year: 2013
  end-page: 1101
  ident: bib2
  article-title: DSM-5 sleep-wake disorders classification: overview for use in clinical practice
  publication-title: Am. J. Psychiatry
– volume: 15
  start-page: 70
  year: 1967
  end-page: 73
  ident: bib36
  article-title: The use of fast Fourier transform for the estimation of power spectra: a method based on time averaging over short, modified periodograms
  publication-title: IEEE Trans. Audio Electroacoust.
– volume: 36
  start-page: 244
  year: 2014
  end-page: 249
  ident: bib4
  article-title: Automatic detection of drowsiness in EEG records based on multimodal analysis
  publication-title: Med. Eng. Phys.
– volume: 74
  start-page: 268
  year: 2015
  end-page: 287
  ident: bib46
  article-title: Nonlinear dynamics measures for automated EEG-based sleep stage detection
  publication-title: Eur. Neurol.
– volume: 16
  start-page: 6573
  year: 2014
  end-page: 6589
  ident: bib22
  article-title: Automatic sleep stages classification using EEG entropy features and unsupervised pattern analysis techniques
  publication-title: Entropy
– volume: 104
  start-page: 105
  year: 2013
  end-page: 114
  ident: bib27
  article-title: Automatic sleep stage recurrent neural classifier using energy features of EEG signals
  publication-title: Neurocomputing
– volume: 43
  start-page: 3
  year: 2000
  end-page: 31
  ident: bib43
  article-title: Artificial neural networks: fundamentals, computing, design, and application
  publication-title: J. Microbiol. Methods
– volume: 45
  start-page: 2673
  year: 1997
  ident: 10.1016/j.compbiomed.2019.01.013_bib33
  article-title: Bidirectional recurrent neural networks
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/78.650093
– volume: 102
  start-page: 327
  year: 2018
  ident: 10.1016/j.compbiomed.2019.01.013_bib49
  article-title: Automated detection of atrial fibrillation using long short-term memory network with RR interval signals
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2018.07.001
– start-page: 1094
  year: 2011
  ident: 10.1016/j.compbiomed.2019.01.013_bib14
– volume: 140
  start-page: 77
  year: 2017
  ident: 10.1016/j.compbiomed.2019.01.013_bib10
  article-title: A comparative review on sleep stage classification methods in patients and healthy individuals
  publication-title: Comput. Methods Progr. Biomed.
  doi: 10.1016/j.cmpb.2016.12.004
– start-page: 392
  year: 2008
  ident: 10.1016/j.compbiomed.2019.01.013_bib15
– volume: 104
  start-page: 105
  year: 2013
  ident: 10.1016/j.compbiomed.2019.01.013_bib27
  article-title: Automatic sleep stage recurrent neural classifier using energy features of EEG signals
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2012.11.003
– ident: 10.1016/j.compbiomed.2019.01.013_bib40
– volume: 16
  start-page: 6573
  year: 2014
  ident: 10.1016/j.compbiomed.2019.01.013_bib22
  article-title: Automatic sleep stages classification using EEG entropy features and unsupervised pattern analysis techniques
  publication-title: Entropy
  doi: 10.3390/e16126573
– volume: 74
  start-page: 268
  year: 2015
  ident: 10.1016/j.compbiomed.2019.01.013_bib46
  article-title: Nonlinear dynamics measures for automated EEG-based sleep stage detection
  publication-title: Eur. Neurol.
  doi: 10.1159/000441975
– year: 2006
  ident: 10.1016/j.compbiomed.2019.01.013_bib38
– volume: 41
  start-page: 380
  year: 2011
  ident: 10.1016/j.compbiomed.2019.01.013_bib25
  article-title: Self-evaluated automatic classifier as a decision-support tool for sleep/wake staging
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2011.04.001
– volume: 34
  start-page: 717
  year: 2010
  ident: 10.1016/j.compbiomed.2019.01.013_bib26
  article-title: Estimation of sleep stages by an artificial neural network employing EEG, EMG and EOG
  publication-title: J. Med. Syst.
  doi: 10.1007/s10916-009-9286-5
– volume: 06
  start-page: 107
  year: 1998
  ident: 10.1016/j.compbiomed.2019.01.013_bib41
  article-title: The vanishing gradient problem during learning recurrent neural nets and problem solutions
  publication-title: Int. J. Uncertain. Fuzziness Knowledge-Based Syst.
  doi: 10.1142/S0218488598000094
– start-page: 1222
  year: 2015
  ident: 10.1016/j.compbiomed.2019.01.013_bib24
  article-title: An improved K-means clustering algorithm for sleep stages classification
– volume: 104
  start-page: 277
  year: 2018
  ident: 10.1016/j.compbiomed.2019.01.013_bib18
  article-title: A new automatic sleep staging system based on statistical behavior of local extrema using single channel EEG signal
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2018.03.020
– volume: 20
  start-page: 509
  year: 2010
  ident: 10.1016/j.compbiomed.2019.01.013_bib19
  article-title: Analysis and automatic identification of sleep stages using higher order spectra
  publication-title: Int. J. Neural Syst.
  doi: 10.1142/S0129065710002589
– volume: 98
  start-page: 58
  year: 2018
  ident: 10.1016/j.compbiomed.2019.01.013_bib8
  article-title: An accurate sleep stages classification system using a new class of optimally time-frequency localized three-band wavelet filter bank
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2018.04.025
– volume: 101
  start-page: e215
  year: 2000
  ident: 10.1016/j.compbiomed.2019.01.013_bib34
  article-title: PhysioBank, PhysioToolkit, and PhysioNet
  publication-title: Circulation
  doi: 10.1161/01.CIR.101.23.e215
– volume: 15
  start-page: 1119
  year: 1994
  ident: 10.1016/j.compbiomed.2019.01.013_bib11
  article-title: Floating search methods in feature selection
  publication-title: Pattern Recogn. Lett.
  doi: 10.1016/0167-8655(94)90127-9
– start-page: 88
  year: 2017
  ident: 10.1016/j.compbiomed.2019.01.013_bib30
  article-title: Time-frequency convolutional neural network for automatic sleep stage classification based on single-channel EEG
– volume: 43
  start-page: 3
  year: 2000
  ident: 10.1016/j.compbiomed.2019.01.013_bib43
  article-title: Artificial neural networks: fundamentals, computing, design, and application
  publication-title: J. Microbiol. Methods
  doi: 10.1016/S0167-7012(00)00201-3
– volume: 29
  start-page: 306
  year: 1970
  ident: 10.1016/j.compbiomed.2019.01.013_bib35
  article-title: EEG analysis based on time domain properties
  publication-title: Electroencephalogr. Clin. Neurophysiol.
  doi: 10.1016/0013-4694(70)90143-4
– volume: 38
  start-page: 890
  year: 2018
  ident: 10.1016/j.compbiomed.2019.01.013_bib44
  article-title: Use of features from RR-time series and EEG signals for automated classification of sleep stages in deep neural network framework
  publication-title: Biocybern. Biomed. Eng.
  doi: 10.1016/j.bbe.2018.05.005
– start-page: 1
  year: 2013
  ident: 10.1016/j.compbiomed.2019.01.013_bib16
  article-title: Applying the fuzzy c-means based dimension reduction to improve the sleep classification system
– volume: 80
  start-page: 37
  year: 2005
  ident: 10.1016/j.compbiomed.2019.01.013_bib9
  article-title: Non-linear analysis of EEG signals at various sleep stages
  publication-title: Comput. Methods Progr. Biomed.
  doi: 10.1016/j.cmpb.2005.06.011
– start-page: 2238
  year: 2015
  ident: 10.1016/j.compbiomed.2019.01.013_bib20
  article-title: On the classification of sleep states by means of statistical and spectral features from single channel Electroencephalogram
– volume: 27
  start-page: 1226
  year: 2005
  ident: 10.1016/j.compbiomed.2019.01.013_bib12
  article-title: Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2005.159
– volume: 29
  start-page: 506
  year: 2005
  ident: 10.1016/j.compbiomed.2019.01.013_bib28
  article-title: Recurrent neural networks employing Lyapunov exponents for EEG signals classification
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2005.04.011
– volume: 108
  start-page: 10
  year: 2012
  ident: 10.1016/j.compbiomed.2019.01.013_bib23
  article-title: Automated sleep stage identification system based on time–frequency analysis of a single EEG channel and random forest classifier
  publication-title: Comput. Methods Progr. Biomed.
  doi: 10.1016/j.cmpb.2011.11.005
– start-page: 171
  year: 1994
  ident: 10.1016/j.compbiomed.2019.01.013_bib13
  article-title: Estimating attributes: analysis and extensions of RELIEF
  doi: 10.1007/3-540-57868-4_57
– volume: 96
  start-page: 189
  year: 2018
  ident: 10.1016/j.compbiomed.2019.01.013_bib47
  article-title: A novel wavelet sequence based on deep bidirectional LSTM network model for ECG signal classification
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2018.03.016
– volume: 42
  start-page: 107
  year: 2018
  ident: 10.1016/j.compbiomed.2019.01.013_bib29
  article-title: A convolutional neural network for sleep stage scoring from raw single-channel EEG
  publication-title: Biomed. Signal Process. Control
  doi: 10.1016/j.bspc.2017.12.001
– volume: 9
  start-page: 81
  year: 2013
  ident: 10.1016/j.compbiomed.2019.01.013_bib7
  article-title: The American Academy of sleep medicine inter-scorer reliability program: sleep stage scoring
  publication-title: J. Clin. Sleep Med.
  doi: 10.5664/jcsm.2350
– volume: 24
  start-page: 1
  year: 2016
  ident: 10.1016/j.compbiomed.2019.01.013_bib21
  article-title: Computer-aided sleep staging using complete ensemble empirical mode decomposition with adaptive noise and bootstrap aggregating
  publication-title: Biomed. Signal Process. Control
  doi: 10.1016/j.bspc.2015.09.002
– ident: 10.1016/j.compbiomed.2019.01.013_bib42
– volume: 20
  start-page: 523
  year: 1997
  ident: 10.1016/j.compbiomed.2019.01.013_bib5
  article-title: Topographical characteristics and principal component structure of the hypnagogic EEG
  publication-title: Sleep
  doi: 10.1093/sleep/20.7.523
– volume: 9
  year: 1997
  ident: 10.1016/j.compbiomed.2019.01.013_bib31
  article-title: Long short-term memory
  publication-title: Neural Comput.
  doi: 10.1162/neco.1997.9.8.1735
– volume: 36
  start-page: 244
  year: 2014
  ident: 10.1016/j.compbiomed.2019.01.013_bib4
  article-title: Automatic detection of drowsiness in EEG records based on multimodal analysis
  publication-title: Med. Eng. Phys.
  doi: 10.1016/j.medengphy.2013.07.011
– volume: 10
  start-page: 1
  year: 2017
  ident: 10.1016/j.compbiomed.2019.01.013_bib39
  article-title: Neural network methods for natural language processing
  publication-title: Synth. Lect. Hum. Lang. Technol.
  doi: 10.2200/S00762ED1V01Y201703HLT037
– year: 2006
  ident: 10.1016/j.compbiomed.2019.01.013_bib45
– volume: 170
  start-page: 1099
  year: 2013
  ident: 10.1016/j.compbiomed.2019.01.013_bib2
  article-title: DSM-5 sleep-wake disorders classification: overview for use in clinical practice
  publication-title: Am. J. Psychiatry
  doi: 10.1176/appi.ajp.2013.13010058
– volume: 94
  start-page: 19
  year: 2018
  ident: 10.1016/j.compbiomed.2019.01.013_bib48
  article-title: Application of stacked convolutional and long short-term memory network for accurate identification of CAD ECG signals
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2017.12.023
– ident: 10.1016/j.compbiomed.2019.01.013_bib1
– volume: 250
  start-page: 94
  year: 2015
  ident: 10.1016/j.compbiomed.2019.01.013_bib17
  article-title: Learning machines and sleeping brains: automatic sleep stage classification using decision-tree multi-class support vector machines
  publication-title: J. Neurosci. Methods
  doi: 10.1016/j.jneumeth.2015.01.022
– volume: 80
  start-page: 187
  year: 2005
  ident: 10.1016/j.compbiomed.2019.01.013_bib37
  article-title: Entropies for detection of epilepsy in EEG
  publication-title: Comput. Methods Progr. Biomed.
  doi: 10.1016/j.cmpb.2005.06.012
– volume: 29
  start-page: 320
  year: 2009
  ident: 10.1016/j.compbiomed.2019.01.013_bib3
  article-title: Neurocognitive consequences of sleep deprivation
  publication-title: Semin. Neurol.
  doi: 10.1055/s-0029-1237117
– volume: 55
  start-page: 305
  year: 2001
  ident: 10.1016/j.compbiomed.2019.01.013_bib6
  article-title: Proposed supplements and amendments to “A manual of standardized terminology, techniques and scoring system for sleep stages of human subjects”, the rechtschaffen & Kales (1968) standard
  publication-title: Psychiatr. Clin. Neurosci.
  doi: 10.1046/j.1440-1819.2001.00810.x
– ident: 10.1016/j.compbiomed.2019.01.013_bib32
– volume: 15
  start-page: 70
  year: 1967
  ident: 10.1016/j.compbiomed.2019.01.013_bib36
  article-title: The use of fast Fourier transform for the estimation of power spectra: a method based on time averaging over short, modified periodograms
  publication-title: IEEE Trans. Audio Electroacoust.
  doi: 10.1109/TAU.1967.1161901
SSID ssj0004030
Score 2.6419525
Snippet Automated evaluation of a subject's neurocognitive performance (NCP) is a relevant topic in neurological and clinical studies. NCP represents the...
AbstractAutomated evaluation of a subject's neurocognitive performance (NCP) is a relevant topic in neurological and clinical studies. NCP represents the...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 71
SubjectTerms Adult
Algorithms
Classification
Cognition
Cognitive ability
Drowsiness
EEG
EEG signals
Electroencephalography
Event-related potentials
Eye movements
Feature extraction
Female
Human performance
Humans
Internal Medicine
Long short-term memory
Male
Neural networks
Neural Networks, Computer
Neurocognitive performance
NREM sleep
Other
Principal components analysis
Protocol (computers)
Recurrent neural networks
REM sleep
Signal Processing, Computer-Assisted
Sleep
Sleep analysis
Sleep and wakefulness
Sleep deprivation
Sleep Stages - physiology
Wakefulness
Title Cascaded LSTM recurrent neural network for automated sleep stage classification using single-channel EEG signals
URI https://www.clinicalkey.com/#!/content/1-s2.0-S0010482519300137
https://www.clinicalkey.es/playcontent/1-s2.0-S0010482519300137
https://dx.doi.org/10.1016/j.compbiomed.2019.01.013
https://www.ncbi.nlm.nih.gov/pubmed/30685634
https://www.proquest.com/docview/2178944217
https://www.proquest.com/docview/2179455152
Volume 106
WOSCitedRecordID wos000459843000010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1879-0534
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004030
  issn: 0010-4825
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 1879-0534
  dateEnd: 20231231
  omitProxy: false
  ssIdentifier: ssj0004030
  issn: 0010-4825
  databaseCode: P5Z
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Biological Science Database
  customDbUrl:
  eissn: 1879-0534
  dateEnd: 20231231
  omitProxy: false
  ssIdentifier: ssj0004030
  issn: 0010-4825
  databaseCode: M7P
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Computer Science Database
  customDbUrl:
  eissn: 1879-0534
  dateEnd: 20231231
  omitProxy: false
  ssIdentifier: ssj0004030
  issn: 0010-4825
  databaseCode: K7-
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/compscijour
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1879-0534
  dateEnd: 20231231
  omitProxy: false
  ssIdentifier: ssj0004030
  issn: 0010-4825
  databaseCode: 7X7
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Nursing & Allied Health Database
  customDbUrl:
  eissn: 1879-0534
  dateEnd: 20231231
  omitProxy: false
  ssIdentifier: ssj0004030
  issn: 0010-4825
  databaseCode: 7RV
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/nahs
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1879-0534
  dateEnd: 20231231
  omitProxy: false
  ssIdentifier: ssj0004030
  issn: 0010-4825
  databaseCode: BENPR
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Research Library
  customDbUrl:
  eissn: 1879-0534
  dateEnd: 20231231
  omitProxy: false
  ssIdentifier: ssj0004030
  issn: 0010-4825
  databaseCode: M2O
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/pqrl
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwELfYhhAvfH8URmUkXiMS24lt8YBg6kBiLdU2pooXy7GdCVSlpWn5-7lzkvaFoUpI1VVqfEmTu5x_tn93JuRNEaxQFSuSwpUwQLEywCsVRMK1Amv7yvJIxrw6k5OJms30tJtwazpaZR8TY6D2C4dz5G8BOistBHy9X_5KcNcoXF3tttA4IEcZYxn6-ReZ7PIiU96moECsETAU6pg8Lb8LKdttijsSvHQs3pnxm7qnm-Bn7IZO7__vDTwg9zoASj-0HvOQ3Ar1I3Jn3C2xPybLE9sgZ97Ts4vLMV3hfDxWcKJY-RIU65Y3TgHsUrtZLwDxQttmHsKSAtK8DtQhIEcGUjQ6RWb9NUUxDwnmGddhTkejTxSpI-D8T8i309Hlyeek25YhcblK14nNWSU81nWpqrLimYNRUCgUAJXcMuV1KLhjqmQVt6xgwkunAhMcfnKWWxf4U3JYL-rwnFAN6JPrUmoNLUThbcZSlzouvS8zX7EBkb01jOtqluPWGXPTk9N-mp0dDdrRpBl8-IBkW81lW7djDx3dG9z0eakQSQ10Lnvoyr_phqYLCY3JTMNMai5iRaSYMMxjUdcBebfV7FBPi2b2vO5x721me6mdqw3I6-1hiBu4GGTrsNjENloAXM7hIT9rPXr7oGAYqfKCixf_PvlLchf_ScvIOyaH69UmvCK33e_1j2Y1JAfy_ArlTEaphuTo42gyPR_GlxTkmH1FKacgp_n3P1yLRII
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LbxMxELZKQcCFNyVQwEhwXLFrO2tbCCFUUlo1iZAaUG7Ga3srqmgTsgmIP8VvZGZfuVCUSw9IUSIlnt3Ensc38TdjQl6mwQqVszRKXQYJipUBTCqIiGsFq-1zyysy5pehHI_VdKo_7ZDfbS0M0ipbn1g5aj93-B_5a4DOSgsBL-8W3yM8NQp3V9sjNGq1OAm_fkLKVr49_gDr-4qxw8Hk4ChqThWIXF_Fq8j2WS48tiXJ8yzniQMQH1IFcbZvmfI6pNwxlbGcW5Yy4aVTgQkObznLrQscrnuFXAU_LpFCJqdyU4cZ87rkBXybgNSrYQ7VfDKkiNcl9Ugo01Wz0IRfFA4vgrtV2Du8_b9N2B1yqwHY9H1tEXfJTijukeujhkJwnywObIk1AZ4OTycjusT9BuxQRbGzJwgWNS-eApindr2aA6KHseUshAUFJH0WqMOEAxlWlVJTrBw4o_g0CxHWURdhRgeDjxSpMWDcD8jnS_m9D8luMS_CI0I1oGuuM6k1jBCptwmLXey49D5LfM56RLarb1zTkx2PBpmZlnx3bjZ6Y1BvTJzAg_dI0kku6r4kW8joVsFMW3cLkcJA8NxCVv5NNpSNyytNYkpmYnNadXyqCqJ51bS2R950kg2qq9Halvfdb7XbdLfaqHaPvOg-Br-Im122CPN1NUYLSAf6MMl7tQV1EwVpsuqnXDz-98WfkxtHk9HQDI_HJ0_ITfxWNftwn-yuluvwlFxzP1bfyuWzyg1Q8vWyzegP8JmarQ
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1bb9MwFLbGQBMv3C-FAUaCx2iJ7SS2EEJoa2FaV1XaQBMvnuM4E6hKS9OC-Gv8Os6xk_aFob7sAalqpdYnF-dcvlN_55iQV5kzQlYsizJbQIJicgcm5UTElYSnXVaGezLm52E-GsmzMzXeIr-7WhikVXY-0TvqcmrxP_I9gM5SCQEfe1VLixgfDN7Nvke4gxSutHbbaQQVOXK_fkL61rw9PIBn_ZqxQf90_2PU7jAQ2VTGi8ikrBIltiipqqLiiQVA7zIJMTc1TJbKZdwyWbCKG5YxUeZWOiY4fGUNN9ZxOO41cj2HHBMTv3H6ZV2TGfNQ_gJ-TkAa1rKIArcM6eKhvB7JZco3Dk34ZaHxMujrQ-Dg9v88eXfIrRZ40_fBUu6SLVffIzvHLbXgPpntmwZrBUo6PDk9pnNch8DOVRQ7foJgHfjyFEA-NcvFFJA-jG0mzs0oIOwLRy0mIsi88spOsaLgguLbxEVYX127Ce33P1CkzIDRPyCfruR-H5Ltelq7x4QqQN1cFblSMEJkpUlYbGPL87IskrJiPZJ3mqBt26sdtwyZ6I6U902vdUijDuk4gRfvkWQlOQv9SjaQUZ2y6a4eFyKIhqC6gWz-N1nXtK6w0YlumI71ie8E5QuluW9m2yNvVpIt2gsobsPz7naarlenWqt5j7xc_Qz-EhfBTO2mSz9GCUgTUpjkR8GaVhMF6bNMMy6e_PvgL8gOWI8eHo6OnpKbeFGBlLhLthfzpXtGbtgfi6_N_Ln3CJScX7UV_QGt-6Og
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Cascaded+LSTM+recurrent+neural+network+for+automated+sleep+stage+classification+using+single-channel+EEG+signals&rft.jtitle=Computers+in+biology+and+medicine&rft.au=Michielli%2C+Nicola&rft.au=Acharya%2C+U.+Rajendra&rft.au=Molinari%2C+Filippo&rft.date=2019-03-01&rft.issn=0010-4825&rft.volume=106&rft.spage=71&rft.epage=81&rft_id=info:doi/10.1016%2Fj.compbiomed.2019.01.013&rft.externalDBID=ECK1-s2.0-S0010482519300137&rft.externalDocID=1_s2_0_S0010482519300137
thumbnail_m http://cvtisr.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fcdn.clinicalkey.com%2Fck-thumbnails%2F00104825%2FS0010482519X00025%2Fcov150h.gif