Cascaded LSTM recurrent neural network for automated sleep stage classification using single-channel EEG signals
Automated evaluation of a subject's neurocognitive performance (NCP) is a relevant topic in neurological and clinical studies. NCP represents the mental/cognitive human capacity in performing a specific task. It is difficult to develop the study protocols as the subject's NCP changes in a...
Saved in:
| Published in: | Computers in biology and medicine Vol. 106; pp. 71 - 81 |
|---|---|
| Main Authors: | , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
United States
Elsevier Ltd
01.03.2019
Elsevier Limited |
| Subjects: | |
| ISSN: | 0010-4825, 1879-0534, 1879-0534 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Automated evaluation of a subject's neurocognitive performance (NCP) is a relevant topic in neurological and clinical studies. NCP represents the mental/cognitive human capacity in performing a specific task. It is difficult to develop the study protocols as the subject's NCP changes in a known predictable way. Sleep is time-varying NCP and can be used to develop novel NCP techniques. Accurate analysis and interpretation of human sleep electroencephalographic (EEG) signals is needed for proper NCP assessment. In addition, sleep deprivation may cause prominent cognitive risks in performing many common activities such as driving or controlling a generic device; therefore, sleep scoring is a crucial part of the process. In the sleep cycle, the first stage of non-rapid eye movement (NREM) sleep or stage N1 is the transition between wakefulness and drowsiness and becomes relevant for the study of NCP.
In this study, a novel cascaded recurrent neural network (RNN) architecture based on long short-term memory (LSTM) blocks, is proposed for the automated scoring of sleep stages using EEG signals derived from a single-channel. Fifty-five time and frequency-domain features were extracted from the EEG signals and fed to feature reduction algorithms to select the most relevant ones. The selected features constituted as the inputs to the LSTM networks. The cascaded architecture is composed of two LSTM RNNs: the first network performed 4-class classification (i.e. the five sleep stages with the merging of stages N1 and REM into a single stage) with a classification rate of 90.8%, and the second one obtained a recognition performance of 83.6% for 2-class classification (i.e. N1 vs REM). The overall percentage of correct classification for five sleep stages is found to be 86.7%. The objective of this work is to improve classification performance in sleep stage N1, as a first step of NCP assessment, and at the same time obtain satisfactory classification results in the other sleep stages.
•A novel cascaded RNN architecture with LSTM blocks is proposed for the automated scoring of sleep stages.•A single-channel EEG based automated system.•Use of a publicly available sleep-EDF database.•The method outperforms the state-of-the-art methods in the N1 stage detection.•A first step forward to automated assessment of neurocognitive performance. |
|---|---|
| AbstractList | Automated evaluation of a subject's neurocognitive performance (NCP) is a relevant topic in neurological and clinical studies. NCP represents the mental/cognitive human capacity in performing a specific task. It is difficult to develop the study protocols as the subject's NCP changes in a known predictable way. Sleep is time-varying NCP and can be used to develop novel NCP techniques. Accurate analysis and interpretation of human sleep electroencephalographic (EEG) signals is needed for proper NCP assessment. In addition, sleep deprivation may cause prominent cognitive risks in performing many common activities such as driving or controlling a generic device; therefore, sleep scoring is a crucial part of the process. In the sleep cycle, the first stage of non-rapid eye movement (NREM) sleep or stage N1 is the transition between wakefulness and drowsiness and becomes relevant for the study of NCP. In this study, a novel cascaded recurrent neural network (RNN) architecture based on long short-term memory (LSTM) blocks, is proposed for the automated scoring of sleep stages using EEG signals derived from a single-channel. Fifty-five time and frequency-domain features were extracted from the EEG signals and fed to feature reduction algorithms to select the most relevant ones. The selected features constituted as the inputs to the LSTM networks. The cascaded architecture is composed of two LSTM RNNs: the first network performed 4-class classification (i.e. the five sleep stages with the merging of stages N1 and REM into a single stage) with a classification rate of 90.8%, and the second one obtained a recognition performance of 83.6% for 2-class classification (i.e. N1 vs REM). The overall percentage of correct classification for five sleep stages is found to be 86.7%. The objective of this work is to improve classification performance in sleep stage N1, as a first step of NCP assessment, and at the same time obtain satisfactory classification results in the other sleep stages.Automated evaluation of a subject's neurocognitive performance (NCP) is a relevant topic in neurological and clinical studies. NCP represents the mental/cognitive human capacity in performing a specific task. It is difficult to develop the study protocols as the subject's NCP changes in a known predictable way. Sleep is time-varying NCP and can be used to develop novel NCP techniques. Accurate analysis and interpretation of human sleep electroencephalographic (EEG) signals is needed for proper NCP assessment. In addition, sleep deprivation may cause prominent cognitive risks in performing many common activities such as driving or controlling a generic device; therefore, sleep scoring is a crucial part of the process. In the sleep cycle, the first stage of non-rapid eye movement (NREM) sleep or stage N1 is the transition between wakefulness and drowsiness and becomes relevant for the study of NCP. In this study, a novel cascaded recurrent neural network (RNN) architecture based on long short-term memory (LSTM) blocks, is proposed for the automated scoring of sleep stages using EEG signals derived from a single-channel. Fifty-five time and frequency-domain features were extracted from the EEG signals and fed to feature reduction algorithms to select the most relevant ones. The selected features constituted as the inputs to the LSTM networks. The cascaded architecture is composed of two LSTM RNNs: the first network performed 4-class classification (i.e. the five sleep stages with the merging of stages N1 and REM into a single stage) with a classification rate of 90.8%, and the second one obtained a recognition performance of 83.6% for 2-class classification (i.e. N1 vs REM). The overall percentage of correct classification for five sleep stages is found to be 86.7%. The objective of this work is to improve classification performance in sleep stage N1, as a first step of NCP assessment, and at the same time obtain satisfactory classification results in the other sleep stages. Automated evaluation of a subject's neurocognitive performance (NCP) is a relevant topic in neurological and clinical studies. NCP represents the mental/cognitive human capacity in performing a specific task. It is difficult to develop the study protocols as the subject's NCP changes in a known predictable way. Sleep is time-varying NCP and can be used to develop novel NCP techniques. Accurate analysis and interpretation of human sleep electroencephalographic (EEG) signals is needed for proper NCP assessment. In addition, sleep deprivation may cause prominent cognitive risks in performing many common activities such as driving or controlling a generic device; therefore, sleep scoring is a crucial part of the process. In the sleep cycle, the first stage of non-rapid eye movement (NREM) sleep or stage N1 is the transition between wakefulness and drowsiness and becomes relevant for the study of NCP. In this study, a novel cascaded recurrent neural network (RNN) architecture based on long short-term memory (LSTM) blocks, is proposed for the automated scoring of sleep stages using EEG signals derived from a single-channel. Fifty-five time and frequency-domain features were extracted from the EEG signals and fed to feature reduction algorithms to select the most relevant ones. The selected features constituted as the inputs to the LSTM networks. The cascaded architecture is composed of two LSTM RNNs: the first network performed 4-class classification (i.e. the five sleep stages with the merging of stages N1 and REM into a single stage) with a classification rate of 90.8%, and the second one obtained a recognition performance of 83.6% for 2-class classification (i.e. N1 vs REM). The overall percentage of correct classification for five sleep stages is found to be 86.7%. The objective of this work is to improve classification performance in sleep stage N1, as a first step of NCP assessment, and at the same time obtain satisfactory classification results in the other sleep stages. •A novel cascaded RNN architecture with LSTM blocks is proposed for the automated scoring of sleep stages.•A single-channel EEG based automated system.•Use of a publicly available sleep-EDF database.•The method outperforms the state-of-the-art methods in the N1 stage detection.•A first step forward to automated assessment of neurocognitive performance. Automated evaluation of a subject's neurocognitive performance (NCP) is a relevant topic in neurological and clinical studies. NCP represents the mental/cognitive human capacity in performing a specific task. It is difficult to develop the study protocols as the subject's NCP changes in a known predictable way. Sleep is time-varying NCP and can be used to develop novel NCP techniques. Accurate analysis and interpretation of human sleep electroencephalographic (EEG) signals is needed for proper NCP assessment. In addition, sleep deprivation may cause prominent cognitive risks in performing many common activities such as driving or controlling a generic device; therefore, sleep scoring is a crucial part of the process. In the sleep cycle, the first stage of non-rapid eye movement (NREM) sleep or stage N1 is the transition between wakefulness and drowsiness and becomes relevant for the study of NCP. In this study, a novel cascaded recurrent neural network (RNN) architecture based on long short-term memory (LSTM) blocks, is proposed for the automated scoring of sleep stages using EEG signals derived from a single-channel. Fifty-five time and frequency-domain features were extracted from the EEG signals and fed to feature reduction algorithms to select the most relevant ones. The selected features constituted as the inputs to the LSTM networks. The cascaded architecture is composed of two LSTM RNNs: the first network performed 4-class classification (i.e. the five sleep stages with the merging of stages N1 and REM into a single stage) with a classification rate of 90.8%, and the second one obtained a recognition performance of 83.6% for 2-class classification (i.e. N1 vs REM). The overall percentage of correct classification for five sleep stages is found to be 86.7%. The objective of this work is to improve classification performance in sleep stage N1, as a first step of NCP assessment, and at the same time obtain satisfactory classification results in the other sleep stages. AbstractAutomated evaluation of a subject's neurocognitive performance (NCP) is a relevant topic in neurological and clinical studies. NCP represents the mental/cognitive human capacity in performing a specific task. It is difficult to develop the study protocols as the subject's NCP changes in a known predictable way. Sleep is time-varying NCP and can be used to develop novel NCP techniques. Accurate analysis and interpretation of human sleep electroencephalographic (EEG) signals is needed for proper NCP assessment. In addition, sleep deprivation may cause prominent cognitive risks in performing many common activities such as driving or controlling a generic device; therefore, sleep scoring is a crucial part of the process. In the sleep cycle, the first stage of non-rapid eye movement (NREM) sleep or stage N1 is the transition between wakefulness and drowsiness and becomes relevant for the study of NCP. In this study, a novel cascaded recurrent neural network (RNN) architecture based on long short-term memory (LSTM) blocks, is proposed for the automated scoring of sleep stages using EEG signals derived from a single-channel. Fifty-five time and frequency-domain features were extracted from the EEG signals and fed to feature reduction algorithms to select the most relevant ones. The selected features constituted as the inputs to the LSTM networks. The cascaded architecture is composed of two LSTM RNNs: the first network performed 4-class classification (i.e. the five sleep stages with the merging of stages N1 and REM into a single stage) with a classification rate of 90.8%, and the second one obtained a recognition performance of 83.6% for 2-class classification (i.e. N1 vs REM). The overall percentage of correct classification for five sleep stages is found to be 86.7%. The objective of this work is to improve classification performance in sleep stage N1, as a first step of NCP assessment, and at the same time obtain satisfactory classification results in the other sleep stages. |
| Author | Acharya, U. Rajendra Molinari, Filippo Michielli, Nicola |
| Author_xml | – sequence: 1 givenname: Nicola surname: Michielli fullname: Michielli, Nicola organization: Biolab, Department of Electronics and Telecommunications, Politecnico di Torino, Turin, Italy – sequence: 2 givenname: U. Rajendra surname: Acharya fullname: Acharya, U. Rajendra organization: Department of Electronics and Computer Engineering, Ngee Ann Polytechnic, Singapore – sequence: 3 givenname: Filippo surname: Molinari fullname: Molinari, Filippo email: filippo.molinari@polito.it organization: Biolab, Department of Electronics and Telecommunications, Politecnico di Torino, Turin, Italy |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30685634$$D View this record in MEDLINE/PubMed |
| BookMark | eNqNUl2LEzEUDbLidlf_ggR88WVqvmaaeVl0S12Fig-7Poc0c6emm0lqklH235uxuwoFoXDJCZeTk8s59wKd-eABIUzJnBLavNvNTRj2GxsG6OaM0HZOaCn-DM2oXLQVqbk4QzNCKKmEZPU5ukhpRwgRhJMX6JyTRtYNFzO0X-pkdAcdXt_efcERzBgj-Iw9jFG7AvlXiPe4DxHrMYdB58JNDmCPU9ZbwMbplGxvjc42eDwm67d4OhxU5rv2HhxerW5Ka-u1Sy_R874AvHrES_Tt4-pu-alaf735vPywrkwtSa50zXrRkbpt-37Tc2pI20AjCZO1ZrJroeGGyQ3ruWYNE93CSGCCl5bRXBvgl-jtQXcfw48RUlaDTQac0x7CmBSji1bUNa1Zob45ou7CGKdhJ5ZshShQWK8fWeOm2K720Q46PqgnLwvh6kAwMaQUoVfG5j-m5KitU5SoKTy1U__CU1N4itBSvAjII4GnP054en14CsXSnxaiSsaCN9DZEmlWXbCniFwdiRhnfQnW3cMDpL-mUJWYIup2Wq9pu2jLy5VPFr3_v8BpM_wGF_Pllw |
| CitedBy_id | crossref_primary_10_1016_j_bspc_2025_108597 crossref_primary_10_1016_j_compbiomed_2024_108300 crossref_primary_10_1109_JTEHM_2024_3388852 crossref_primary_10_1016_j_compbiomed_2022_105828 crossref_primary_10_1016_j_bspc_2024_106695 crossref_primary_10_1016_j_eswa_2022_116761 crossref_primary_10_1016_j_cmpb_2019_105236 crossref_primary_10_3390_ijerph19095199 crossref_primary_10_1016_j_cmpb_2022_106692 crossref_primary_10_1007_s11760_021_02035_9 crossref_primary_10_1007_s12539_023_00567_x crossref_primary_10_1007_s11042_025_20833_y crossref_primary_10_1177_15500594211054990 crossref_primary_10_3390_sym17091461 crossref_primary_10_1109_TNSRE_2020_2966290 crossref_primary_10_1016_j_medengphy_2024_104208 crossref_primary_10_1016_j_future_2020_03_019 crossref_primary_10_1007_s40031_025_01275_4 crossref_primary_10_3389_fneur_2023_1162998 crossref_primary_10_1016_j_bspc_2022_103751 crossref_primary_10_1016_j_cmpb_2021_106063 crossref_primary_10_1016_j_compbiomed_2022_105931 crossref_primary_10_1111_jsr_70149 crossref_primary_10_3390_diagnostics12051235 crossref_primary_10_1016_j_yebeh_2023_109418 crossref_primary_10_1007_s11517_020_02144_6 crossref_primary_10_1016_j_asoc_2022_108416 crossref_primary_10_3390_jpm12020136 crossref_primary_10_1016_j_smrv_2024_101897 crossref_primary_10_1109_TNSRE_2021_3076234 crossref_primary_10_1007_s00521_023_08598_7 crossref_primary_10_3389_fnins_2022_973761 crossref_primary_10_1038_s41598_022_21389_9 crossref_primary_10_1016_j_compbiomed_2023_107501 crossref_primary_10_1109_ACCESS_2021_3066365 crossref_primary_10_1016_j_jneumeth_2024_110250 crossref_primary_10_1007_s11042_022_12551_6 crossref_primary_10_1007_s42979_024_03173_w crossref_primary_10_1016_j_jbi_2024_104689 crossref_primary_10_1155_2022_7242667 crossref_primary_10_1016_j_suscom_2021_100624 crossref_primary_10_1016_j_bspc_2023_105179 crossref_primary_10_1016_j_compbiomed_2020_103970 crossref_primary_10_1038_s41746_023_00784_0 crossref_primary_10_1155_2021_8222721 crossref_primary_10_1016_j_bbe_2020_01_013 crossref_primary_10_1007_s11325_024_03112_2 crossref_primary_10_3390_ijerph17114152 crossref_primary_10_1109_ACCESS_2019_2928129 crossref_primary_10_1080_10255842_2023_2275547 crossref_primary_10_3389_fninf_2022_872035 crossref_primary_10_1177_20552076231188206 crossref_primary_10_3390_bioengineering10091009 crossref_primary_10_3390_s23104950 crossref_primary_10_1016_j_asr_2023_06_048 crossref_primary_10_3233_JIFS_210603 crossref_primary_10_1080_00295639_2024_2306105 crossref_primary_10_1007_s13755_024_00328_0 crossref_primary_10_1186_s40779_023_00502_7 crossref_primary_10_1007_s00500_019_04515_0 crossref_primary_10_1109_TCDS_2024_3503767 crossref_primary_10_1016_j_optlastec_2023_110384 crossref_primary_10_1109_JBHI_2025_3572886 crossref_primary_10_3390_s23073446 crossref_primary_10_1371_journal_pone_0297582 crossref_primary_10_1016_j_eswa_2021_114887 crossref_primary_10_3390_s20102770 crossref_primary_10_3390_electronics10091079 crossref_primary_10_1016_j_cmpb_2023_107992 crossref_primary_10_1371_journal_pone_0270405 crossref_primary_10_3390_s20174677 crossref_primary_10_7717_peerj_cs_1988 crossref_primary_10_1109_TNSRE_2022_3192988 crossref_primary_10_1109_JBHI_2019_2951346 crossref_primary_10_1186_s12938_020_0747_x crossref_primary_10_3390_electronics12112394 crossref_primary_10_1016_j_compbiomed_2023_107652 crossref_primary_10_3389_fnhum_2023_1150316 crossref_primary_10_12677_AAM_2023_121004 crossref_primary_10_1016_j_bbe_2020_04_004 crossref_primary_10_1016_j_knosys_2021_106890 crossref_primary_10_1016_j_cmpb_2019_105253 crossref_primary_10_1109_ACCESS_2019_2939038 crossref_primary_10_3390_s21113786 crossref_primary_10_1016_j_heliyon_2023_e22195 crossref_primary_10_1109_TNSRE_2020_3037326 crossref_primary_10_1016_j_jneumeth_2021_109145 crossref_primary_10_1109_JBHI_2023_3284160 crossref_primary_10_1109_ACCESS_2024_3524267 crossref_primary_10_1016_j_bspc_2021_102908 crossref_primary_10_1155_2022_6104736 crossref_primary_10_3390_app15126844 crossref_primary_10_1109_JSEN_2023_3339727 crossref_primary_10_3390_e21121149 crossref_primary_10_3390_diagnostics12102510 crossref_primary_10_1007_s10489_021_02422_2 crossref_primary_10_1016_j_brainresbull_2024_111017 crossref_primary_10_1016_j_bspc_2023_104682 crossref_primary_10_1007_s11432_021_3380_1 crossref_primary_10_1016_j_bspc_2021_102581 crossref_primary_10_1016_j_bspc_2023_104688 crossref_primary_10_1016_j_bspc_2020_102279 crossref_primary_10_1016_j_compbiomed_2022_105877 crossref_primary_10_3390_brainsci14111087 crossref_primary_10_1016_j_procs_2020_09_280 crossref_primary_10_1007_s13202_020_00987_1 crossref_primary_10_1016_j_compbiomed_2021_104246 crossref_primary_10_1016_j_eswa_2023_122954 crossref_primary_10_1109_JBHI_2022_3165640 crossref_primary_10_1007_s11517_023_02808_z crossref_primary_10_1016_j_compbiomed_2022_106044 crossref_primary_10_1109_TNSRE_2022_3143162 crossref_primary_10_1109_ACCESS_2022_3163250 crossref_primary_10_3389_fninf_2025_1513374 crossref_primary_10_1016_j_bspc_2024_107264 crossref_primary_10_1080_00207454_2021_1941947 crossref_primary_10_1007_s13246_021_01018_x crossref_primary_10_1109_JBHI_2021_3099295 crossref_primary_10_1007_s10489_021_02597_8 crossref_primary_10_1080_00032719_2020_1788050 crossref_primary_10_1016_j_bspc_2024_106856 crossref_primary_10_1007_s10489_022_04432_0 crossref_primary_10_1109_TNSRE_2021_3117970 crossref_primary_10_1007_s12204_024_2734_z crossref_primary_10_3103_S1060992X24601921 crossref_primary_10_1016_j_cmpb_2019_04_032 crossref_primary_10_1007_s10973_021_10904_1 crossref_primary_10_3389_fncom_2024_1505746 crossref_primary_10_1016_j_bspc_2022_104429 crossref_primary_10_1007_s11571_024_10088_y crossref_primary_10_1007_s40747_023_01290_2 crossref_primary_10_3389_fnins_2025_1525417 crossref_primary_10_1109_TIM_2024_3370799 crossref_primary_10_3390_s20061545 crossref_primary_10_1016_j_heliyon_2024_e41147 crossref_primary_10_3390_s20185234 crossref_primary_10_1016_j_bspc_2023_105351 crossref_primary_10_1007_s13311_021_01014_9 crossref_primary_10_1016_j_bspc_2024_106184 crossref_primary_10_1016_j_compbiomed_2020_103919 crossref_primary_10_1109_ACCESS_2020_2989442 crossref_primary_10_1016_j_jneumeth_2022_109690 crossref_primary_10_1016_j_compbiomed_2022_105653 crossref_primary_10_1109_TIM_2025_3556900 crossref_primary_10_1109_ACCESS_2019_2941867 crossref_primary_10_3390_s21061988 crossref_primary_10_1088_1361_6579_acff35 crossref_primary_10_3390_s24041197 crossref_primary_10_3390_bios14040183 crossref_primary_10_54097_1swr9p34 crossref_primary_10_1088_1741_2552_adb996 crossref_primary_10_1016_j_heliyon_2023_e15258 crossref_primary_10_3390_ijerph16040599 crossref_primary_10_1093_sleep_zsad028 crossref_primary_10_1016_j_ymeth_2021_02_014 crossref_primary_10_1109_TIM_2022_3154838 crossref_primary_10_1016_j_compbiomed_2024_109138 crossref_primary_10_1186_s12911_024_02522_2 crossref_primary_10_3389_fnins_2020_00014 crossref_primary_10_3390_s21227710 crossref_primary_10_3389_fnhum_2021_610890 crossref_primary_10_3390_s23136001 crossref_primary_10_1016_j_patrec_2020_03_009 crossref_primary_10_3390_e24081093 crossref_primary_10_1109_ACCESS_2020_3028182 crossref_primary_10_1016_j_bspc_2025_107553 crossref_primary_10_3233_THC_212847 crossref_primary_10_3390_s22093557 crossref_primary_10_1016_j_eswa_2021_115759 crossref_primary_10_1038_s41598_020_78784_3 crossref_primary_10_1016_j_bspc_2024_107370 crossref_primary_10_1109_TNSRE_2023_3238764 crossref_primary_10_1016_j_bspc_2024_107379 crossref_primary_10_1016_j_cmpb_2019_104992 crossref_primary_10_1007_s13369_022_06617_8 crossref_primary_10_1007_s13369_019_04197_8 crossref_primary_10_1155_2022_9601946 crossref_primary_10_1016_j_bspc_2021_102898 crossref_primary_10_1109_ACCESS_2022_3180730 crossref_primary_10_1016_j_neucom_2020_07_056 crossref_primary_10_1016_j_bspc_2025_108084 crossref_primary_10_1109_JBHI_2022_3208314 crossref_primary_10_1109_TIM_2023_3298402 crossref_primary_10_2147_NSS_S467111 crossref_primary_10_3389_fnins_2022_1044631 crossref_primary_10_1016_j_cmpb_2020_105604 crossref_primary_10_1109_JSEN_2023_3309260 crossref_primary_10_1016_j_neulet_2025_138146 crossref_primary_10_1109_TNSRE_2022_3176004 crossref_primary_10_1007_s13534_023_00305_8 crossref_primary_10_1016_j_bspc_2022_104501 crossref_primary_10_3389_fnhum_2023_1153413 crossref_primary_10_1109_ACCESS_2020_3002548 crossref_primary_10_3390_e22101141 crossref_primary_10_1016_j_cmpb_2021_106091 crossref_primary_10_1515_bmt_2021_0408 crossref_primary_10_1016_j_bspc_2021_102966 crossref_primary_10_1109_TCYB_2023_3253181 crossref_primary_10_1016_j_compbiomed_2019_103387 crossref_primary_10_3389_fpubh_2022_839838 crossref_primary_10_1016_j_artmed_2024_102821 crossref_primary_10_1016_j_cmpb_2023_107471 crossref_primary_10_1109_ACCESS_2020_3027289 crossref_primary_10_3390_app10248963 crossref_primary_10_1109_TNNLS_2022_3145365 crossref_primary_10_1109_TNNLS_2022_3210384 crossref_primary_10_3390_app12125980 crossref_primary_10_1111_mice_12891 crossref_primary_10_1016_j_dsp_2023_104100 crossref_primary_10_1093_sleep_zsac134 crossref_primary_10_1109_TCSII_2020_3014514 crossref_primary_10_3390_app11219948 crossref_primary_10_3390_app9102170 crossref_primary_10_1016_j_inffus_2020_11_008 crossref_primary_10_1016_j_compbiomed_2021_105048 crossref_primary_10_1038_s41598_024_60796_y crossref_primary_10_1016_j_ymssp_2023_110983 crossref_primary_10_1109_JSEN_2022_3155345 crossref_primary_10_3389_fninf_2023_1123376 crossref_primary_10_1007_s11042_022_12512_z crossref_primary_10_1109_ACCESS_2022_3202295 crossref_primary_10_1088_1361_6579_ad02db crossref_primary_10_3389_fncom_2022_1019776 crossref_primary_10_1109_ACCESS_2023_3341419 crossref_primary_10_1111_exsy_12957 crossref_primary_10_1007_s11042_022_13195_2 crossref_primary_10_1007_s13246_022_01112_8 crossref_primary_10_1016_j_bspc_2020_102318 crossref_primary_10_1016_j_bbe_2020_02_002 crossref_primary_10_1155_2022_3491828 crossref_primary_10_1007_s13246_022_01135_1 crossref_primary_10_3390_s25020443 crossref_primary_10_3390_s22228826 crossref_primary_10_1093_sleep_zsad101 crossref_primary_10_1007_s11517_024_03096_x |
| Cites_doi | 10.1109/78.650093 10.1016/j.compbiomed.2018.07.001 10.1016/j.cmpb.2016.12.004 10.1016/j.neucom.2012.11.003 10.3390/e16126573 10.1159/000441975 10.1016/j.compbiomed.2011.04.001 10.1007/s10916-009-9286-5 10.1142/S0218488598000094 10.1016/j.eswa.2018.03.020 10.1142/S0129065710002589 10.1016/j.compbiomed.2018.04.025 10.1161/01.CIR.101.23.e215 10.1016/0167-8655(94)90127-9 10.1016/S0167-7012(00)00201-3 10.1016/0013-4694(70)90143-4 10.1016/j.bbe.2018.05.005 10.1016/j.cmpb.2005.06.011 10.1109/TPAMI.2005.159 10.1016/j.eswa.2005.04.011 10.1016/j.cmpb.2011.11.005 10.1007/3-540-57868-4_57 10.1016/j.compbiomed.2018.03.016 10.1016/j.bspc.2017.12.001 10.5664/jcsm.2350 10.1016/j.bspc.2015.09.002 10.1093/sleep/20.7.523 10.1162/neco.1997.9.8.1735 10.1016/j.medengphy.2013.07.011 10.2200/S00762ED1V01Y201703HLT037 10.1176/appi.ajp.2013.13010058 10.1016/j.compbiomed.2017.12.023 10.1016/j.jneumeth.2015.01.022 10.1016/j.cmpb.2005.06.012 10.1055/s-0029-1237117 10.1046/j.1440-1819.2001.00810.x 10.1109/TAU.1967.1161901 |
| ContentType | Journal Article |
| Copyright | 2019 Elsevier Ltd Elsevier Ltd Copyright © 2019 Elsevier Ltd. All rights reserved. Copyright Elsevier Limited Mar 2019 |
| Copyright_xml | – notice: 2019 Elsevier Ltd – notice: Elsevier Ltd – notice: Copyright © 2019 Elsevier Ltd. All rights reserved. – notice: Copyright Elsevier Limited Mar 2019 |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7RV 7X7 7XB 88E 8AL 8AO 8FD 8FE 8FG 8FH 8FI 8FJ 8FK 8G5 ABUWG AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ GUQSH HCIFZ JQ2 K7- K9. KB0 LK8 M0N M0S M1P M2O M7P M7Z MBDVC NAPCQ P5Z P62 P64 PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 |
| DOI | 10.1016/j.compbiomed.2019.01.013 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Nursing & Allied Health Database Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Computing Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Research Library (Alumni Edition) ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Technology Collection Natural Science Collection ProQuest One Community College ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student Research Library Prep SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database ProQuest Health & Medical Complete (Alumni) Nursing & Allied Health Database (Alumni Edition) ProQuest Biological Science Collection Computing Database Health & Medical Collection (Alumni Edition) Medical Database Research Library Biological Science Database Biochemistry Abstracts 1 Research Library (Corporate) Nursing & Allied Health Premium Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Research Library Prep Computer Science Database ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection SciTech Premium Collection ProQuest Central China ProQuest One Applied & Life Sciences Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) Advanced Technologies & Aerospace Collection ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Nursing & Allied Health Premium ProQuest Health & Medical Complete ProQuest One Academic UKI Edition ProQuest Nursing & Allied Health Source (Alumni) Engineering Research Database ProQuest One Academic ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing Research Library (Alumni Edition) ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea ProQuest Research Library ProQuest Computing ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest Nursing & Allied Health Source ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library Biochemistry Abstracts 1 ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic MEDLINE Research Library Prep |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine |
| EISSN | 1879-0534 |
| EndPage | 81 |
| ExternalDocumentID | 30685634 10_1016_j_compbiomed_2019_01_013 S0010482519300137 1_s2_0_S0010482519300137 |
| Genre | Journal Article |
| GroupedDBID | --- --K --M --Z -~X .1- .55 .DC .FO .GJ .~1 0R~ 1B1 1P~ 1RT 1~. 1~5 29F 4.4 457 4G. 53G 5GY 5VS 7-5 71M 77I 7RV 7X7 88E 8AO 8FE 8FG 8FH 8FI 8FJ 8G5 8P~ 9JN AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AATTM AAXKI AAXUO AAYFN AAYWO ABBOA ABFNM ABJNI ABMAC ABMZM ABOCM ABUWG ABWVN ABXDB ACDAQ ACGFS ACIEU ACIUM ACIWK ACLOT ACNNM ACPRK ACRLP ACRPL ACVFH ACZNC ADBBV ADCNI ADEZE ADJOM ADMUD ADNMO AEBSH AEIPS AEKER AENEX AEUPX AEVXI AFJKZ AFKRA AFPUW AFRAH AFRHN AFTJW AFXIZ AGHFR AGQPQ AGUBO AGYEJ AHHHB AHMBA AHZHX AIALX AIEXJ AIGII AIIUN AIKHN AITUG AJRQY AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX AOUOD APXCP ARAPS ASPBG AVWKF AXJTR AZFZN AZQEC BBNVY BENPR BGLVJ BHPHI BKEYQ BKOJK BLXMC BNPGV BPHCQ BVXVI CCPQU CS3 DU5 DWQXO EBS EFJIC EFKBS EFLBG EJD EMOBN EO8 EO9 EP2 EP3 EX3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN FYUFA G-2 G-Q GBLVA GBOLZ GNUQQ GUQSH HCIFZ HLZ HMCUK HMK HMO HVGLF HZ~ IHE J1W K6V K7- KOM LK8 LX9 M1P M29 M2O M41 M7P MO0 N9A NAPCQ O-L O9- OAUVE OZT P-8 P-9 P2P P62 PC. PHGZM PHGZT PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO Q38 R2- ROL RPZ RXW SAE SBC SCC SDF SDG SDP SEL SES SEW SPC SPCBC SSH SSV SSZ SV3 T5K TAE UAP UKHRP WOW WUQ X7M XPP Z5R ZGI ~G- ~HD AFCTW AGCQF AGRNS ALIPV RIG 3V. AACTN AAIAV ABLVK ABYKQ AFKWA AHPSJ AJBFU AJOXV AMFUW LCYCR M0N 9DU AAYXX AFFHD CITATION CGR CUY CVF ECM EIF NPM 7XB 8AL 8FD 8FK FR3 JQ2 K9. M7Z MBDVC P64 PKEHL PQEST PQUKI PRINS Q9U 7X8 |
| ID | FETCH-LOGICAL-c580t-a52f4d0599ffbf31c096e680285a28d9e63c28b2f3a2624d7c8e24328bca3ace3 |
| IEDL.DBID | K7- |
| ISICitedReferencesCount | 285 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000459843000010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0010-4825 1879-0534 |
| IngestDate | Sun Nov 09 12:27:12 EST 2025 Sat Nov 29 14:36:00 EST 2025 Wed Feb 19 02:30:14 EST 2025 Sat Nov 29 05:31:16 EST 2025 Tue Nov 18 22:12:43 EST 2025 Fri Feb 23 02:24:57 EST 2024 Wed Jun 18 06:48:29 EDT 2025 Tue Oct 14 19:33:08 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Long short-term memory Recurrent neural networks Sleep analysis EEG signals Neurocognitive performance |
| Language | English |
| License | Copyright © 2019 Elsevier Ltd. All rights reserved. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c580t-a52f4d0599ffbf31c096e680285a28d9e63c28b2f3a2624d7c8e24328bca3ace3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| PMID | 30685634 |
| PQID | 2178944217 |
| PQPubID | 1226355 |
| PageCount | 11 |
| ParticipantIDs | proquest_miscellaneous_2179455152 proquest_journals_2178944217 pubmed_primary_30685634 crossref_citationtrail_10_1016_j_compbiomed_2019_01_013 crossref_primary_10_1016_j_compbiomed_2019_01_013 elsevier_sciencedirect_doi_10_1016_j_compbiomed_2019_01_013 elsevier_clinicalkeyesjournals_1_s2_0_S0010482519300137 elsevier_clinicalkey_doi_10_1016_j_compbiomed_2019_01_013 |
| PublicationCentury | 2000 |
| PublicationDate | 2019-03-01 |
| PublicationDateYYYYMMDD | 2019-03-01 |
| PublicationDate_xml | – month: 03 year: 2019 text: 2019-03-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States – name: Oxford |
| PublicationTitle | Computers in biology and medicine |
| PublicationTitleAlternate | Comput Biol Med |
| PublicationYear | 2019 |
| Publisher | Elsevier Ltd Elsevier Limited |
| Publisher_xml | – name: Elsevier Ltd – name: Elsevier Limited |
| References | Reynolds, O'Hara (bib2) 2013; 170 Schuster, Paliwal (bib33) 1997; 45 Sharma, Goyal, V Achuth, Acharya (bib8) 2018; 98 Acharya, Bhat, Faust, Adeli, Chua, Lim, Koh (bib46) 2015; 74 Colten, Altevogt (bib45) 2006 Welch (bib36) 1967; 15 Du, Younan (bib15) 2008 A. Gevins, Non-invasive human neurocognitive performance capability testing method and system, U.S. Pat. (1994). Peng, Long, Ding (bib12) 2005; 27 Tan, Hagiwara, Pang, Lim, Oh, Adam, Tan, Chen, Acharya (bib48) 2018; 94 Wei, Lin, Wang, Ma (bib30) 2017 Charbonnier, Zoubek, Lesecq, Chapotot (bib25) 2011; 41 Goel, Rao, Durmer, Dinges (bib3) 2009; 29 Jolliffe (bib14) 2011 Goldberg (bib39) 2017; 10 Basheer, Hajmeer (bib43) 2000; 43 Hassan, Bashar, Bhuiyan (bib20) 2015 Acharya, Chua, Chua, Min, Tamura (bib19) 2010; 20 Pudil, Novovičová, Kittler (bib11) 1994; 15 Goldberger, Amaral, Glass, Hausdorff, Ivanov, Mark, Mietus, Moody, Peng, Stanley (bib34) 2000; 101 Hsu, Yang, Wang, Hsu (bib27) 2013; 104 Güler, Übeyli, Güler (bib28) 2005; 29 Acharya, Faust, Kannathal, Chua, Laxminarayan (bib9) 2005; 80 Hassan, Bhuiyan (bib21) 2016; 24 Kannathal, Choo, Acharya, Sadasivan (bib37) 2005; 80 Yildirim (bib47) 2018; 96 Tanaka, Hayashi, Hori (bib5) 1997; 20 Graves (bib40) 2013 Tripathy, Acharya (bib44) 2018; 38 Cover, Thomas (bib38) 2006 Fraiwan, Lweesy, Khasawneh, Wenz, Dickhaus (bib23) 2012; 108 Chung, Gulcehre, Cho, Bengio (bib32) 2014 Huang, Lin, Yang, Ko, Liu, Lin (bib16) 2013 Tagluk, Sezgin, Akin (bib26) 2010; 34 Kingma, Ba (bib42) 2014 (accessed February 24, 2018). Hochreiter, Schmidhuber (bib31) 1997; 9 Sors, Bonnet, Mirek, Vercueil, Payen (bib29) 2018; 42 Seifpour, Niknazar, Mikaeili, Nasrabadi (bib18) 2018; 104 Rodríguez-Sotelo, Osorio-Forero, Jiménez-Rodríguez, Cuesta-Frau, Cirugeda-Roldán, Peluffo (bib22) 2014; 16 Garcés Correa, Orosco, Laciar (bib4) 2014; 36 Faust, Shenfield, Kareem, San, Fujita, Acharya (bib49) 2018; 102 Rosenberg, Van Hout (bib7) 2013; 9 Hori, Sugita, Koga, Shirakawa, Inoue, Uchida, Kuwahara, Kousaka, Kobayashi, Tsuji, Terashima, Fukuda, Fukuda (bib6) 2001; 55 Shuyuan, Bei, Jian, Qunfeng, Junzhong, Nakamura (bib24) 2015 Kononenko (bib13) 1994 Lajnef, Chaibi, Ruby, Aguera, Eichenlaub, Samet, Kachouri, Jerbi (bib17) 2015; 250 Hochreiter (bib41) 1998; 06 Hjorth (bib35) 1970; 29 Boostani, Karimzadeh, Nami (bib10) 2017; 140 Hassan (10.1016/j.compbiomed.2019.01.013_bib20) 2015 Tagluk (10.1016/j.compbiomed.2019.01.013_bib26) 2010; 34 Tan (10.1016/j.compbiomed.2019.01.013_bib48) 2018; 94 Colten (10.1016/j.compbiomed.2019.01.013_bib45) 2006 Garcés Correa (10.1016/j.compbiomed.2019.01.013_bib4) 2014; 36 Fraiwan (10.1016/j.compbiomed.2019.01.013_bib23) 2012; 108 Rosenberg (10.1016/j.compbiomed.2019.01.013_bib7) 2013; 9 Hori (10.1016/j.compbiomed.2019.01.013_bib6) 2001; 55 Wei (10.1016/j.compbiomed.2019.01.013_bib30) 2017 Seifpour (10.1016/j.compbiomed.2019.01.013_bib18) 2018; 104 Basheer (10.1016/j.compbiomed.2019.01.013_bib43) 2000; 43 Goel (10.1016/j.compbiomed.2019.01.013_bib3) 2009; 29 Yildirim (10.1016/j.compbiomed.2019.01.013_bib47) 2018; 96 Hassan (10.1016/j.compbiomed.2019.01.013_bib21) 2016; 24 Tanaka (10.1016/j.compbiomed.2019.01.013_bib5) 1997; 20 Tripathy (10.1016/j.compbiomed.2019.01.013_bib44) 2018; 38 Shuyuan (10.1016/j.compbiomed.2019.01.013_bib24) 2015 Charbonnier (10.1016/j.compbiomed.2019.01.013_bib25) 2011; 41 Lajnef (10.1016/j.compbiomed.2019.01.013_bib17) 2015; 250 Faust (10.1016/j.compbiomed.2019.01.013_bib49) 2018; 102 Chung (10.1016/j.compbiomed.2019.01.013_bib32) Kingma (10.1016/j.compbiomed.2019.01.013_bib42) Schuster (10.1016/j.compbiomed.2019.01.013_bib33) 1997; 45 Acharya (10.1016/j.compbiomed.2019.01.013_bib46) 2015; 74 Hochreiter (10.1016/j.compbiomed.2019.01.013_bib41) 1998; 06 Peng (10.1016/j.compbiomed.2019.01.013_bib12) 2005; 27 Pudil (10.1016/j.compbiomed.2019.01.013_bib11) 1994; 15 Jolliffe (10.1016/j.compbiomed.2019.01.013_bib14) 2011 Boostani (10.1016/j.compbiomed.2019.01.013_bib10) 2017; 140 Reynolds (10.1016/j.compbiomed.2019.01.013_bib2) 2013; 170 Hochreiter (10.1016/j.compbiomed.2019.01.013_bib31) 1997; 9 Graves (10.1016/j.compbiomed.2019.01.013_bib40) Acharya (10.1016/j.compbiomed.2019.01.013_bib9) 2005; 80 Güler (10.1016/j.compbiomed.2019.01.013_bib28) 2005; 29 Goldberger (10.1016/j.compbiomed.2019.01.013_bib34) 2000; 101 Sharma (10.1016/j.compbiomed.2019.01.013_bib8) 2018; 98 Du (10.1016/j.compbiomed.2019.01.013_bib15) 2008 Welch (10.1016/j.compbiomed.2019.01.013_bib36) 1967; 15 Acharya (10.1016/j.compbiomed.2019.01.013_bib19) 2010; 20 10.1016/j.compbiomed.2019.01.013_bib1 Kannathal (10.1016/j.compbiomed.2019.01.013_bib37) 2005; 80 Huang (10.1016/j.compbiomed.2019.01.013_bib16) 2013 Sors (10.1016/j.compbiomed.2019.01.013_bib29) 2018; 42 Hjorth (10.1016/j.compbiomed.2019.01.013_bib35) 1970; 29 Rodríguez-Sotelo (10.1016/j.compbiomed.2019.01.013_bib22) 2014; 16 Goldberg (10.1016/j.compbiomed.2019.01.013_bib39) 2017; 10 Kononenko (10.1016/j.compbiomed.2019.01.013_bib13) 1994 Cover (10.1016/j.compbiomed.2019.01.013_bib38) 2006 Hsu (10.1016/j.compbiomed.2019.01.013_bib27) 2013; 104 |
| References_xml | – volume: 24 start-page: 1 year: 2016 end-page: 10 ident: bib21 article-title: Computer-aided sleep staging using complete ensemble empirical mode decomposition with adaptive noise and bootstrap aggregating publication-title: Biomed. Signal Process. Control – volume: 29 start-page: 506 year: 2005 end-page: 514 ident: bib28 article-title: Recurrent neural networks employing Lyapunov exponents for EEG signals classification publication-title: Expert Syst. Appl. – volume: 42 start-page: 107 year: 2018 end-page: 114 ident: bib29 article-title: A convolutional neural network for sleep stage scoring from raw single-channel EEG publication-title: Biomed. Signal Process. Control – volume: 27 start-page: 1226 year: 2005 end-page: 1238 ident: bib12 article-title: Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – volume: 102 start-page: 327 year: 2018 end-page: 335 ident: bib49 article-title: Automated detection of atrial fibrillation using long short-term memory network with RR interval signals publication-title: Comput. Biol. Med. – volume: 80 start-page: 187 year: 2005 end-page: 194 ident: bib37 article-title: Entropies for detection of epilepsy in EEG publication-title: Comput. Methods Progr. Biomed. – volume: 38 start-page: 890 year: 2018 end-page: 902 ident: bib44 article-title: Use of features from RR-time series and EEG signals for automated classification of sleep stages in deep neural network framework publication-title: Biocybern. Biomed. Eng. – year: 2006 ident: bib38 article-title: Elements of Information Theory – volume: 55 start-page: 305 year: 2001 end-page: 310 ident: bib6 article-title: Proposed supplements and amendments to “A manual of standardized terminology, techniques and scoring system for sleep stages of human subjects”, the rechtschaffen & Kales (1968) standard publication-title: Psychiatr. Clin. Neurosci. – volume: 20 start-page: 523 year: 1997 end-page: 534 ident: bib5 article-title: Topographical characteristics and principal component structure of the hypnagogic EEG publication-title: Sleep – start-page: 88 year: 2017 end-page: 95 ident: bib30 article-title: Time-frequency convolutional neural network for automatic sleep stage classification based on single-channel EEG publication-title: 2017 IEEE 29th Int. Conf. Tools with Artif. Intell – reference: A. Gevins, Non-invasive human neurocognitive performance capability testing method and system, U.S. Pat. (1994). – volume: 104 start-page: 277 year: 2018 end-page: 293 ident: bib18 article-title: A new automatic sleep staging system based on statistical behavior of local extrema using single channel EEG signal publication-title: Expert Syst. Appl. – volume: 20 start-page: 509 year: 2010 end-page: 521 ident: bib19 article-title: Analysis and automatic identification of sleep stages using higher order spectra publication-title: Int. J. Neural Syst. – volume: 34 start-page: 717 year: 2010 end-page: 725 ident: bib26 article-title: Estimation of sleep stages by an artificial neural network employing EEG, EMG and EOG publication-title: J. Med. Syst. – volume: 101 start-page: e215 year: 2000 end-page: e220 ident: bib34 article-title: PhysioBank, PhysioToolkit, and PhysioNet publication-title: Circulation – year: 2014 ident: bib42 article-title: Adam: a method for stochastic optimization – start-page: 2238 year: 2015 end-page: 2243 ident: bib20 article-title: On the classification of sleep states by means of statistical and spectral features from single channel Electroencephalogram publication-title: 2015 Int. Conf. Adv. Comput. Commun. Informatics – year: 2013 ident: bib40 article-title: Generating sequences with recurrent neural networks – start-page: 171 year: 1994 end-page: 182 ident: bib13 article-title: Estimating attributes: analysis and extensions of RELIEF publication-title: Lect. Notes Comput. Sci – volume: 29 start-page: 306 year: 1970 end-page: 310 ident: bib35 article-title: EEG analysis based on time domain properties publication-title: Electroencephalogr. Clin. Neurophysiol. – volume: 98 start-page: 58 year: 2018 end-page: 75 ident: bib8 article-title: An accurate sleep stages classification system using a new class of optimally time-frequency localized three-band wavelet filter bank publication-title: Comput. Biol. Med. – reference: (accessed February 24, 2018). – start-page: 392 year: 2008 end-page: 399 ident: bib15 publication-title: Dimensionality Reduction and Linear Discriminant Analysis for Hyperspectral Image Classification BT - Knowledge-Based Intelligent Information and Engineering Systems – volume: 45 start-page: 2673 year: 1997 end-page: 2681 ident: bib33 article-title: Bidirectional recurrent neural networks publication-title: IEEE Trans. Signal Process. – volume: 94 start-page: 19 year: 2018 end-page: 26 ident: bib48 article-title: Application of stacked convolutional and long short-term memory network for accurate identification of CAD ECG signals publication-title: Comput. Biol. Med. – year: 2006 ident: bib45 article-title: Sleep Disorders and Sleep Deprivation: an Unmet Public Health Problem – start-page: 1094 year: 2011 end-page: 1096 ident: bib14 publication-title: Principal Component Analysis BT - International Encyclopedia of Statistical Science – year: 2014 ident: bib32 article-title: Empirical evaluation of gated recurrent neural networks on sequence modeling – volume: 10 start-page: 1 year: 2017 end-page: 309 ident: bib39 article-title: Neural network methods for natural language processing publication-title: Synth. Lect. Hum. Lang. Technol. – volume: 9 start-page: 81 year: 2013 end-page: 87 ident: bib7 article-title: The American Academy of sleep medicine inter-scorer reliability program: sleep stage scoring publication-title: J. Clin. Sleep Med. – volume: 140 start-page: 77 year: 2017 end-page: 91 ident: bib10 article-title: A comparative review on sleep stage classification methods in patients and healthy individuals publication-title: Comput. Methods Progr. Biomed. – volume: 250 start-page: 94 year: 2015 end-page: 105 ident: bib17 article-title: Learning machines and sleeping brains: automatic sleep stage classification using decision-tree multi-class support vector machines publication-title: J. Neurosci. Methods – volume: 108 start-page: 10 year: 2012 end-page: 19 ident: bib23 article-title: Automated sleep stage identification system based on time–frequency analysis of a single EEG channel and random forest classifier publication-title: Comput. Methods Progr. Biomed. – start-page: 1 year: 2013 end-page: 5 ident: bib16 article-title: Applying the fuzzy c-means based dimension reduction to improve the sleep classification system publication-title: 2013 IEEE Int. Conf. Fuzzy Syst – volume: 29 start-page: 320 year: 2009 end-page: 339 ident: bib3 article-title: Neurocognitive consequences of sleep deprivation publication-title: Semin. Neurol. – volume: 41 start-page: 380 year: 2011 end-page: 389 ident: bib25 article-title: Self-evaluated automatic classifier as a decision-support tool for sleep/wake staging publication-title: Comput. Biol. Med. – volume: 9 year: 1997 ident: bib31 article-title: Long short-term memory publication-title: Neural Comput. – volume: 96 start-page: 189 year: 2018 end-page: 202 ident: bib47 article-title: A novel wavelet sequence based on deep bidirectional LSTM network model for ECG signal classification publication-title: Comput. Biol. Med. – volume: 80 start-page: 37 year: 2005 end-page: 45 ident: bib9 article-title: Non-linear analysis of EEG signals at various sleep stages publication-title: Comput. Methods Progr. Biomed. – start-page: 1222 year: 2015 end-page: 1227 ident: bib24 article-title: An improved K-means clustering algorithm for sleep stages classification publication-title: 2015 54th Annu. Conf. Soc. Instrum. Control Eng. Japan – volume: 06 start-page: 107 year: 1998 end-page: 116 ident: bib41 article-title: The vanishing gradient problem during learning recurrent neural nets and problem solutions publication-title: Int. J. Uncertain. Fuzziness Knowledge-Based Syst. – volume: 15 start-page: 1119 year: 1994 end-page: 1125 ident: bib11 article-title: Floating search methods in feature selection publication-title: Pattern Recogn. Lett. – volume: 170 start-page: 1099 year: 2013 end-page: 1101 ident: bib2 article-title: DSM-5 sleep-wake disorders classification: overview for use in clinical practice publication-title: Am. J. Psychiatry – volume: 15 start-page: 70 year: 1967 end-page: 73 ident: bib36 article-title: The use of fast Fourier transform for the estimation of power spectra: a method based on time averaging over short, modified periodograms publication-title: IEEE Trans. Audio Electroacoust. – volume: 36 start-page: 244 year: 2014 end-page: 249 ident: bib4 article-title: Automatic detection of drowsiness in EEG records based on multimodal analysis publication-title: Med. Eng. Phys. – volume: 74 start-page: 268 year: 2015 end-page: 287 ident: bib46 article-title: Nonlinear dynamics measures for automated EEG-based sleep stage detection publication-title: Eur. Neurol. – volume: 16 start-page: 6573 year: 2014 end-page: 6589 ident: bib22 article-title: Automatic sleep stages classification using EEG entropy features and unsupervised pattern analysis techniques publication-title: Entropy – volume: 104 start-page: 105 year: 2013 end-page: 114 ident: bib27 article-title: Automatic sleep stage recurrent neural classifier using energy features of EEG signals publication-title: Neurocomputing – volume: 43 start-page: 3 year: 2000 end-page: 31 ident: bib43 article-title: Artificial neural networks: fundamentals, computing, design, and application publication-title: J. Microbiol. Methods – volume: 45 start-page: 2673 year: 1997 ident: 10.1016/j.compbiomed.2019.01.013_bib33 article-title: Bidirectional recurrent neural networks publication-title: IEEE Trans. Signal Process. doi: 10.1109/78.650093 – volume: 102 start-page: 327 year: 2018 ident: 10.1016/j.compbiomed.2019.01.013_bib49 article-title: Automated detection of atrial fibrillation using long short-term memory network with RR interval signals publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2018.07.001 – start-page: 1094 year: 2011 ident: 10.1016/j.compbiomed.2019.01.013_bib14 – volume: 140 start-page: 77 year: 2017 ident: 10.1016/j.compbiomed.2019.01.013_bib10 article-title: A comparative review on sleep stage classification methods in patients and healthy individuals publication-title: Comput. Methods Progr. Biomed. doi: 10.1016/j.cmpb.2016.12.004 – start-page: 392 year: 2008 ident: 10.1016/j.compbiomed.2019.01.013_bib15 – volume: 104 start-page: 105 year: 2013 ident: 10.1016/j.compbiomed.2019.01.013_bib27 article-title: Automatic sleep stage recurrent neural classifier using energy features of EEG signals publication-title: Neurocomputing doi: 10.1016/j.neucom.2012.11.003 – ident: 10.1016/j.compbiomed.2019.01.013_bib40 – volume: 16 start-page: 6573 year: 2014 ident: 10.1016/j.compbiomed.2019.01.013_bib22 article-title: Automatic sleep stages classification using EEG entropy features and unsupervised pattern analysis techniques publication-title: Entropy doi: 10.3390/e16126573 – volume: 74 start-page: 268 year: 2015 ident: 10.1016/j.compbiomed.2019.01.013_bib46 article-title: Nonlinear dynamics measures for automated EEG-based sleep stage detection publication-title: Eur. Neurol. doi: 10.1159/000441975 – year: 2006 ident: 10.1016/j.compbiomed.2019.01.013_bib38 – volume: 41 start-page: 380 year: 2011 ident: 10.1016/j.compbiomed.2019.01.013_bib25 article-title: Self-evaluated automatic classifier as a decision-support tool for sleep/wake staging publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2011.04.001 – volume: 34 start-page: 717 year: 2010 ident: 10.1016/j.compbiomed.2019.01.013_bib26 article-title: Estimation of sleep stages by an artificial neural network employing EEG, EMG and EOG publication-title: J. Med. Syst. doi: 10.1007/s10916-009-9286-5 – volume: 06 start-page: 107 year: 1998 ident: 10.1016/j.compbiomed.2019.01.013_bib41 article-title: The vanishing gradient problem during learning recurrent neural nets and problem solutions publication-title: Int. J. Uncertain. Fuzziness Knowledge-Based Syst. doi: 10.1142/S0218488598000094 – start-page: 1222 year: 2015 ident: 10.1016/j.compbiomed.2019.01.013_bib24 article-title: An improved K-means clustering algorithm for sleep stages classification – volume: 104 start-page: 277 year: 2018 ident: 10.1016/j.compbiomed.2019.01.013_bib18 article-title: A new automatic sleep staging system based on statistical behavior of local extrema using single channel EEG signal publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2018.03.020 – volume: 20 start-page: 509 year: 2010 ident: 10.1016/j.compbiomed.2019.01.013_bib19 article-title: Analysis and automatic identification of sleep stages using higher order spectra publication-title: Int. J. Neural Syst. doi: 10.1142/S0129065710002589 – volume: 98 start-page: 58 year: 2018 ident: 10.1016/j.compbiomed.2019.01.013_bib8 article-title: An accurate sleep stages classification system using a new class of optimally time-frequency localized three-band wavelet filter bank publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2018.04.025 – volume: 101 start-page: e215 year: 2000 ident: 10.1016/j.compbiomed.2019.01.013_bib34 article-title: PhysioBank, PhysioToolkit, and PhysioNet publication-title: Circulation doi: 10.1161/01.CIR.101.23.e215 – volume: 15 start-page: 1119 year: 1994 ident: 10.1016/j.compbiomed.2019.01.013_bib11 article-title: Floating search methods in feature selection publication-title: Pattern Recogn. Lett. doi: 10.1016/0167-8655(94)90127-9 – start-page: 88 year: 2017 ident: 10.1016/j.compbiomed.2019.01.013_bib30 article-title: Time-frequency convolutional neural network for automatic sleep stage classification based on single-channel EEG – volume: 43 start-page: 3 year: 2000 ident: 10.1016/j.compbiomed.2019.01.013_bib43 article-title: Artificial neural networks: fundamentals, computing, design, and application publication-title: J. Microbiol. Methods doi: 10.1016/S0167-7012(00)00201-3 – volume: 29 start-page: 306 year: 1970 ident: 10.1016/j.compbiomed.2019.01.013_bib35 article-title: EEG analysis based on time domain properties publication-title: Electroencephalogr. Clin. Neurophysiol. doi: 10.1016/0013-4694(70)90143-4 – volume: 38 start-page: 890 year: 2018 ident: 10.1016/j.compbiomed.2019.01.013_bib44 article-title: Use of features from RR-time series and EEG signals for automated classification of sleep stages in deep neural network framework publication-title: Biocybern. Biomed. Eng. doi: 10.1016/j.bbe.2018.05.005 – start-page: 1 year: 2013 ident: 10.1016/j.compbiomed.2019.01.013_bib16 article-title: Applying the fuzzy c-means based dimension reduction to improve the sleep classification system – volume: 80 start-page: 37 year: 2005 ident: 10.1016/j.compbiomed.2019.01.013_bib9 article-title: Non-linear analysis of EEG signals at various sleep stages publication-title: Comput. Methods Progr. Biomed. doi: 10.1016/j.cmpb.2005.06.011 – start-page: 2238 year: 2015 ident: 10.1016/j.compbiomed.2019.01.013_bib20 article-title: On the classification of sleep states by means of statistical and spectral features from single channel Electroencephalogram – volume: 27 start-page: 1226 year: 2005 ident: 10.1016/j.compbiomed.2019.01.013_bib12 article-title: Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2005.159 – volume: 29 start-page: 506 year: 2005 ident: 10.1016/j.compbiomed.2019.01.013_bib28 article-title: Recurrent neural networks employing Lyapunov exponents for EEG signals classification publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2005.04.011 – volume: 108 start-page: 10 year: 2012 ident: 10.1016/j.compbiomed.2019.01.013_bib23 article-title: Automated sleep stage identification system based on time–frequency analysis of a single EEG channel and random forest classifier publication-title: Comput. Methods Progr. Biomed. doi: 10.1016/j.cmpb.2011.11.005 – start-page: 171 year: 1994 ident: 10.1016/j.compbiomed.2019.01.013_bib13 article-title: Estimating attributes: analysis and extensions of RELIEF doi: 10.1007/3-540-57868-4_57 – volume: 96 start-page: 189 year: 2018 ident: 10.1016/j.compbiomed.2019.01.013_bib47 article-title: A novel wavelet sequence based on deep bidirectional LSTM network model for ECG signal classification publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2018.03.016 – volume: 42 start-page: 107 year: 2018 ident: 10.1016/j.compbiomed.2019.01.013_bib29 article-title: A convolutional neural network for sleep stage scoring from raw single-channel EEG publication-title: Biomed. Signal Process. Control doi: 10.1016/j.bspc.2017.12.001 – volume: 9 start-page: 81 year: 2013 ident: 10.1016/j.compbiomed.2019.01.013_bib7 article-title: The American Academy of sleep medicine inter-scorer reliability program: sleep stage scoring publication-title: J. Clin. Sleep Med. doi: 10.5664/jcsm.2350 – volume: 24 start-page: 1 year: 2016 ident: 10.1016/j.compbiomed.2019.01.013_bib21 article-title: Computer-aided sleep staging using complete ensemble empirical mode decomposition with adaptive noise and bootstrap aggregating publication-title: Biomed. Signal Process. Control doi: 10.1016/j.bspc.2015.09.002 – ident: 10.1016/j.compbiomed.2019.01.013_bib42 – volume: 20 start-page: 523 year: 1997 ident: 10.1016/j.compbiomed.2019.01.013_bib5 article-title: Topographical characteristics and principal component structure of the hypnagogic EEG publication-title: Sleep doi: 10.1093/sleep/20.7.523 – volume: 9 year: 1997 ident: 10.1016/j.compbiomed.2019.01.013_bib31 article-title: Long short-term memory publication-title: Neural Comput. doi: 10.1162/neco.1997.9.8.1735 – volume: 36 start-page: 244 year: 2014 ident: 10.1016/j.compbiomed.2019.01.013_bib4 article-title: Automatic detection of drowsiness in EEG records based on multimodal analysis publication-title: Med. Eng. Phys. doi: 10.1016/j.medengphy.2013.07.011 – volume: 10 start-page: 1 year: 2017 ident: 10.1016/j.compbiomed.2019.01.013_bib39 article-title: Neural network methods for natural language processing publication-title: Synth. Lect. Hum. Lang. Technol. doi: 10.2200/S00762ED1V01Y201703HLT037 – year: 2006 ident: 10.1016/j.compbiomed.2019.01.013_bib45 – volume: 170 start-page: 1099 year: 2013 ident: 10.1016/j.compbiomed.2019.01.013_bib2 article-title: DSM-5 sleep-wake disorders classification: overview for use in clinical practice publication-title: Am. J. Psychiatry doi: 10.1176/appi.ajp.2013.13010058 – volume: 94 start-page: 19 year: 2018 ident: 10.1016/j.compbiomed.2019.01.013_bib48 article-title: Application of stacked convolutional and long short-term memory network for accurate identification of CAD ECG signals publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2017.12.023 – ident: 10.1016/j.compbiomed.2019.01.013_bib1 – volume: 250 start-page: 94 year: 2015 ident: 10.1016/j.compbiomed.2019.01.013_bib17 article-title: Learning machines and sleeping brains: automatic sleep stage classification using decision-tree multi-class support vector machines publication-title: J. Neurosci. Methods doi: 10.1016/j.jneumeth.2015.01.022 – volume: 80 start-page: 187 year: 2005 ident: 10.1016/j.compbiomed.2019.01.013_bib37 article-title: Entropies for detection of epilepsy in EEG publication-title: Comput. Methods Progr. Biomed. doi: 10.1016/j.cmpb.2005.06.012 – volume: 29 start-page: 320 year: 2009 ident: 10.1016/j.compbiomed.2019.01.013_bib3 article-title: Neurocognitive consequences of sleep deprivation publication-title: Semin. Neurol. doi: 10.1055/s-0029-1237117 – volume: 55 start-page: 305 year: 2001 ident: 10.1016/j.compbiomed.2019.01.013_bib6 article-title: Proposed supplements and amendments to “A manual of standardized terminology, techniques and scoring system for sleep stages of human subjects”, the rechtschaffen & Kales (1968) standard publication-title: Psychiatr. Clin. Neurosci. doi: 10.1046/j.1440-1819.2001.00810.x – ident: 10.1016/j.compbiomed.2019.01.013_bib32 – volume: 15 start-page: 70 year: 1967 ident: 10.1016/j.compbiomed.2019.01.013_bib36 article-title: The use of fast Fourier transform for the estimation of power spectra: a method based on time averaging over short, modified periodograms publication-title: IEEE Trans. Audio Electroacoust. doi: 10.1109/TAU.1967.1161901 |
| SSID | ssj0004030 |
| Score | 2.6419525 |
| Snippet | Automated evaluation of a subject's neurocognitive performance (NCP) is a relevant topic in neurological and clinical studies. NCP represents the... AbstractAutomated evaluation of a subject's neurocognitive performance (NCP) is a relevant topic in neurological and clinical studies. NCP represents the... |
| SourceID | proquest pubmed crossref elsevier |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 71 |
| SubjectTerms | Adult Algorithms Classification Cognition Cognitive ability Drowsiness EEG EEG signals Electroencephalography Event-related potentials Eye movements Feature extraction Female Human performance Humans Internal Medicine Long short-term memory Male Neural networks Neural Networks, Computer Neurocognitive performance NREM sleep Other Principal components analysis Protocol (computers) Recurrent neural networks REM sleep Signal Processing, Computer-Assisted Sleep Sleep analysis Sleep and wakefulness Sleep deprivation Sleep Stages - physiology Wakefulness |
| Title | Cascaded LSTM recurrent neural network for automated sleep stage classification using single-channel EEG signals |
| URI | https://www.clinicalkey.com/#!/content/1-s2.0-S0010482519300137 https://www.clinicalkey.es/playcontent/1-s2.0-S0010482519300137 https://dx.doi.org/10.1016/j.compbiomed.2019.01.013 https://www.ncbi.nlm.nih.gov/pubmed/30685634 https://www.proquest.com/docview/2178944217 https://www.proquest.com/docview/2179455152 |
| Volume | 106 |
| WOSCitedRecordID | wos000459843000010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1879-0534 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0004030 issn: 0010-4825 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVPQU databaseName: Advanced Technologies & Aerospace Database customDbUrl: eissn: 1879-0534 dateEnd: 20231231 omitProxy: false ssIdentifier: ssj0004030 issn: 0010-4825 databaseCode: P5Z dateStart: 20030101 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: Biological Science Database customDbUrl: eissn: 1879-0534 dateEnd: 20231231 omitProxy: false ssIdentifier: ssj0004030 issn: 0010-4825 databaseCode: M7P dateStart: 20030101 isFulltext: true titleUrlDefault: http://search.proquest.com/biologicalscijournals providerName: ProQuest – providerCode: PRVPQU databaseName: Computer Science Database customDbUrl: eissn: 1879-0534 dateEnd: 20231231 omitProxy: false ssIdentifier: ssj0004030 issn: 0010-4825 databaseCode: K7- dateStart: 20030101 isFulltext: true titleUrlDefault: http://search.proquest.com/compscijour providerName: ProQuest – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1879-0534 dateEnd: 20231231 omitProxy: false ssIdentifier: ssj0004030 issn: 0010-4825 databaseCode: 7X7 dateStart: 20030101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: Nursing & Allied Health Database customDbUrl: eissn: 1879-0534 dateEnd: 20231231 omitProxy: false ssIdentifier: ssj0004030 issn: 0010-4825 databaseCode: 7RV dateStart: 20030101 isFulltext: true titleUrlDefault: https://search.proquest.com/nahs providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1879-0534 dateEnd: 20231231 omitProxy: false ssIdentifier: ssj0004030 issn: 0010-4825 databaseCode: BENPR dateStart: 20030101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Research Library customDbUrl: eissn: 1879-0534 dateEnd: 20231231 omitProxy: false ssIdentifier: ssj0004030 issn: 0010-4825 databaseCode: M2O dateStart: 20030101 isFulltext: true titleUrlDefault: https://search.proquest.com/pqrl providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwELfYhhAvfH8URmUkXiMS24lt8YBg6kBiLdU2pooXy7GdCVSlpWn5-7lzkvaFoUpI1VVqfEmTu5x_tn93JuRNEaxQFSuSwpUwQLEywCsVRMK1Amv7yvJIxrw6k5OJms30tJtwazpaZR8TY6D2C4dz5G8BOistBHy9X_5KcNcoXF3tttA4IEcZYxn6-ReZ7PIiU96moECsETAU6pg8Lb8LKdttijsSvHQs3pnxm7qnm-Bn7IZO7__vDTwg9zoASj-0HvOQ3Ar1I3Jn3C2xPybLE9sgZ97Ts4vLMV3hfDxWcKJY-RIU65Y3TgHsUrtZLwDxQttmHsKSAtK8DtQhIEcGUjQ6RWb9NUUxDwnmGddhTkejTxSpI-D8T8i309Hlyeek25YhcblK14nNWSU81nWpqrLimYNRUCgUAJXcMuV1KLhjqmQVt6xgwkunAhMcfnKWWxf4U3JYL-rwnFAN6JPrUmoNLUThbcZSlzouvS8zX7EBkb01jOtqluPWGXPTk9N-mp0dDdrRpBl8-IBkW81lW7djDx3dG9z0eakQSQ10Lnvoyr_phqYLCY3JTMNMai5iRaSYMMxjUdcBebfV7FBPi2b2vO5x721me6mdqw3I6-1hiBu4GGTrsNjENloAXM7hIT9rPXr7oGAYqfKCixf_PvlLchf_ScvIOyaH69UmvCK33e_1j2Y1JAfy_ArlTEaphuTo42gyPR_GlxTkmH1FKacgp_n3P1yLRII |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LbxMxELZKQcCFNyVQwEhwXLFrO2tbCCFUUlo1iZAaUG7Ga3srqmgTsgmIP8VvZGZfuVCUSw9IUSIlnt3Ensc38TdjQl6mwQqVszRKXQYJipUBTCqIiGsFq-1zyysy5pehHI_VdKo_7ZDfbS0M0ipbn1g5aj93-B_5a4DOSgsBL-8W3yM8NQp3V9sjNGq1OAm_fkLKVr49_gDr-4qxw8Hk4ChqThWIXF_Fq8j2WS48tiXJ8yzniQMQH1IFcbZvmfI6pNwxlbGcW5Yy4aVTgQkObznLrQscrnuFXAU_LpFCJqdyU4cZ87rkBXybgNSrYQ7VfDKkiNcl9Ugo01Wz0IRfFA4vgrtV2Du8_b9N2B1yqwHY9H1tEXfJTijukeujhkJwnywObIk1AZ4OTycjusT9BuxQRbGzJwgWNS-eApindr2aA6KHseUshAUFJH0WqMOEAxlWlVJTrBw4o_g0CxHWURdhRgeDjxSpMWDcD8jnS_m9D8luMS_CI0I1oGuuM6k1jBCptwmLXey49D5LfM56RLarb1zTkx2PBpmZlnx3bjZ6Y1BvTJzAg_dI0kku6r4kW8joVsFMW3cLkcJA8NxCVv5NNpSNyytNYkpmYnNadXyqCqJ51bS2R950kg2qq9Halvfdb7XbdLfaqHaPvOg-Br-Im122CPN1NUYLSAf6MMl7tQV1EwVpsuqnXDz-98WfkxtHk9HQDI_HJ0_ITfxWNftwn-yuluvwlFxzP1bfyuWzyg1Q8vWyzegP8JmarQ |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1bb9MwFLbGQBMv3C-FAUaCx2iJ7SS2EEJoa2FaV1XaQBMvnuM4E6hKS9OC-Gv8Os6xk_aFob7sAalqpdYnF-dcvlN_55iQV5kzQlYsizJbQIJicgcm5UTElYSnXVaGezLm52E-GsmzMzXeIr-7WhikVXY-0TvqcmrxP_I9gM5SCQEfe1VLixgfDN7Nvke4gxSutHbbaQQVOXK_fkL61rw9PIBn_ZqxQf90_2PU7jAQ2VTGi8ikrBIltiipqqLiiQVA7zIJMTc1TJbKZdwyWbCKG5YxUeZWOiY4fGUNN9ZxOO41cj2HHBMTv3H6ZV2TGfNQ_gJ-TkAa1rKIArcM6eKhvB7JZco3Dk34ZaHxMujrQ-Dg9v88eXfIrRZ40_fBUu6SLVffIzvHLbXgPpntmwZrBUo6PDk9pnNch8DOVRQ7foJgHfjyFEA-NcvFFJA-jG0mzs0oIOwLRy0mIsi88spOsaLgguLbxEVYX127Ce33P1CkzIDRPyCfruR-H5Ltelq7x4QqQN1cFblSMEJkpUlYbGPL87IskrJiPZJ3mqBt26sdtwyZ6I6U902vdUijDuk4gRfvkWQlOQv9SjaQUZ2y6a4eFyKIhqC6gWz-N1nXtK6w0YlumI71ie8E5QuluW9m2yNvVpIt2gsobsPz7naarlenWqt5j7xc_Qz-EhfBTO2mSz9GCUgTUpjkR8GaVhMF6bNMMy6e_PvgL8gOWI8eHo6OnpKbeFGBlLhLthfzpXtGbtgfi6_N_Ln3CJScX7UV_QGt-6Og |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Cascaded+LSTM+recurrent+neural+network+for+automated+sleep+stage+classification+using+single-channel+EEG+signals&rft.jtitle=Computers+in+biology+and+medicine&rft.au=Michielli%2C+Nicola&rft.au=Acharya%2C+U.+Rajendra&rft.au=Molinari%2C+Filippo&rft.date=2019-03-01&rft.issn=0010-4825&rft.volume=106&rft.spage=71&rft.epage=81&rft_id=info:doi/10.1016%2Fj.compbiomed.2019.01.013&rft.externalDBID=ECK1-s2.0-S0010482519300137&rft.externalDocID=1_s2_0_S0010482519300137 |
| thumbnail_m | http://cvtisr.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fcdn.clinicalkey.com%2Fck-thumbnails%2F00104825%2FS0010482519X00025%2Fcov150h.gif |