From Data to Cure: A Comprehensive Exploration of Multi-omics Data Analysis for Targeted Therapies
In the dynamic landscape of targeted therapeutics, drug discovery has pivoted towards understanding underlying disease mechanisms, placing a strong emphasis on molecular perturbations and target identification. This paradigm shift, crucial for drug discovery, is underpinned by big data, a transforma...
Gespeichert in:
| Veröffentlicht in: | Molecular biotechnology Jg. 67; H. 4; S. 1269 - 1289 |
|---|---|
| Hauptverfasser: | , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
New York
Springer US
01.04.2025
Springer Nature B.V |
| Schlagworte: | |
| ISSN: | 1073-6085, 1559-0305, 1559-0305 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | In the dynamic landscape of targeted therapeutics, drug discovery has pivoted towards understanding underlying disease mechanisms, placing a strong emphasis on molecular perturbations and target identification. This paradigm shift, crucial for drug discovery, is underpinned by big data, a transformative force in the current era. Omics data, characterized by its heterogeneity and enormity, has ushered biological and biomedical research into the big data domain. Acknowledging the significance of integrating diverse omics data strata, known as multi-omics studies, researchers delve into the intricate interrelationships among various omics layers. This review navigates the expansive omics landscape, showcasing tailored assays for each molecular layer through genomes to metabolomes. The sheer volume of data generated necessitates sophisticated informatics techniques, with machine-learning (ML) algorithms emerging as robust tools. These datasets not only refine disease classification but also enhance diagnostics and foster the development of targeted therapeutic strategies. Through the integration of high-throughput data, the review focuses on targeting and modeling multiple disease-regulated networks, validating interactions with multiple targets, and enhancing therapeutic potential using network pharmacology approaches. Ultimately, this exploration aims to illuminate the transformative impact of multi-omics in the big data era, shaping the future of biological research. |
|---|---|
| AbstractList | In the dynamic landscape of targeted therapeutics, drug discovery has pivoted towards understanding underlying disease mechanisms, placing a strong emphasis on molecular perturbations and target identification. This paradigm shift, crucial for drug discovery, is underpinned by big data, a transformative force in the current era. Omics data, characterized by its heterogeneity and enormity, has ushered biological and biomedical research into the big data domain. Acknowledging the significance of integrating diverse omics data strata, known as multi-omics studies, researchers delve into the intricate interrelationships among various omics layers. This review navigates the expansive omics landscape, showcasing tailored assays for each molecular layer through genomes to metabolomes. The sheer volume of data generated necessitates sophisticated informatics techniques, with machine-learning (ML) algorithms emerging as robust tools. These datasets not only refine disease classification but also enhance diagnostics and foster the development of targeted therapeutic strategies. Through the integration of high-throughput data, the review focuses on targeting and modeling multiple disease-regulated networks, validating interactions with multiple targets, and enhancing therapeutic potential using network pharmacology approaches. Ultimately, this exploration aims to illuminate the transformative impact of multi-omics in the big data era, shaping the future of biological research. In the dynamic landscape of targeted therapeutics, drug discovery has pivoted towards understanding underlying disease mechanisms, placing a strong emphasis on molecular perturbations and target identification. This paradigm shift, crucial for drug discovery, is underpinned by big data, a transformative force in the current era. Omics data, characterized by its heterogeneity and enormity, has ushered biological and biomedical research into the big data domain. Acknowledging the significance of integrating diverse omics data strata, known as multi-omics studies, researchers delve into the intricate interrelationships among various omics layers. This review navigates the expansive omics landscape, showcasing tailored assays for each molecular layer through genomes to metabolomes. The sheer volume of data generated necessitates sophisticated informatics techniques, with machine-learning (ML) algorithms emerging as robust tools. These datasets not only refine disease classification but also enhance diagnostics and foster the development of targeted therapeutic strategies. Through the integration of high-throughput data, the review focuses on targeting and modeling multiple disease-regulated networks, validating interactions with multiple targets, and enhancing therapeutic potential using network pharmacology approaches. Ultimately, this exploration aims to illuminate the transformative impact of multi-omics in the big data era, shaping the future of biological research. In the dynamic landscape of targeted therapeutics, drug discovery has pivoted towards understanding underlying disease mechanisms, placing a strong emphasis on molecular perturbations and target identification. This paradigm shift, crucial for drug discovery, is underpinned by big data, a transformative force in the current era. Omics data, characterized by its heterogeneity and enormity, has ushered biological and biomedical research into the big data domain. Acknowledging the significance of integrating diverse omics data strata, known as multi-omics studies, researchers delve into the intricate interrelationships among various omics layers. This review navigates the expansive omics landscape, showcasing tailored assays for each molecular layer through genomes to metabolomes. The sheer volume of data generated necessitates sophisticated informatics techniques, with machine-learning (ML) algorithms emerging as robust tools. These datasets not only refine disease classification but also enhance diagnostics and foster the development of targeted therapeutic strategies. Through the integration of high-throughput data, the review focuses on targeting and modeling multiple disease-regulated networks, validating interactions with multiple targets, and enhancing therapeutic potential using network pharmacology approaches. Ultimately, this exploration aims to illuminate the transformative impact of multi-omics in the big data era, shaping the future of biological research.In the dynamic landscape of targeted therapeutics, drug discovery has pivoted towards understanding underlying disease mechanisms, placing a strong emphasis on molecular perturbations and target identification. This paradigm shift, crucial for drug discovery, is underpinned by big data, a transformative force in the current era. Omics data, characterized by its heterogeneity and enormity, has ushered biological and biomedical research into the big data domain. Acknowledging the significance of integrating diverse omics data strata, known as multi-omics studies, researchers delve into the intricate interrelationships among various omics layers. This review navigates the expansive omics landscape, showcasing tailored assays for each molecular layer through genomes to metabolomes. The sheer volume of data generated necessitates sophisticated informatics techniques, with machine-learning (ML) algorithms emerging as robust tools. These datasets not only refine disease classification but also enhance diagnostics and foster the development of targeted therapeutic strategies. Through the integration of high-throughput data, the review focuses on targeting and modeling multiple disease-regulated networks, validating interactions with multiple targets, and enhancing therapeutic potential using network pharmacology approaches. Ultimately, this exploration aims to illuminate the transformative impact of multi-omics in the big data era, shaping the future of biological research. |
| Author | Abraham, Suzanna Mukherjee, Arnab Singh, Akshita Balaji, S. Mukunthan, K. S. |
| Author_xml | – sequence: 1 givenname: Arnab surname: Mukherjee fullname: Mukherjee, Arnab organization: Department of Biotechnology, Manipal Institute of Technology, Manipal Academy of Higher Education – sequence: 2 givenname: Suzanna surname: Abraham fullname: Abraham, Suzanna organization: Department of Biotechnology, Manipal Institute of Technology, Manipal Academy of Higher Education – sequence: 3 givenname: Akshita surname: Singh fullname: Singh, Akshita organization: Department of Biotechnology, Manipal Institute of Technology, Manipal Academy of Higher Education – sequence: 4 givenname: S. surname: Balaji fullname: Balaji, S. organization: Department of Biotechnology, Manipal Institute of Technology, Manipal Academy of Higher Education – sequence: 5 givenname: K. S. orcidid: 0000-0002-2147-5182 surname: Mukunthan fullname: Mukunthan, K. S. email: mukunthan.ks@manipal.edu, mukunthanselvam@gmail.com organization: Department of Biotechnology, Manipal Institute of Technology, Manipal Academy of Higher Education |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38565775$$D View this record in MEDLINE/PubMed |
| BookMark | eNqFkk1v1DAQhi1URD_gD3BAlrhwCfXEseNwQaulhUqtelnOluNMdl0lcbCTiv57vE3LRw_l5JH9vo_GM-8xORj8gIS8BfYRGCtPI-SM84zlRcYAUiVfkCMQosoYZ-Ig1axMl0yJQ3Ic4w1jOYiCvyKHXAkpylIckfo8-J5-MZOhk6frOeAnuqJr348BdzhEd4v07OfY-WAm5wfqW3o1d5PLfO9sXIyrwXR30UXa-kA3JmxxwoZudhjM6DC-Ji9b00V883CekO_nZ5v1t-zy-uvFenWZWaHYlJUABRioRFVwY1irwEojOVcoWcMBOWemkQXIClvVWMNzJeq6qqxR2GLd8BPyeeGOc91jY3GYgun0GFxvwp32xul_Xwa301t_qwGqXBV5lQgfHgjB_5gxTrp30WLXmQH9HDXP0wirNGD5fynjICXkApL0_RPpjZ9DmllSgUpEXog98N3f3f9u-3FVSaAWgQ0-xoCttm66X0r6jOs0ML1PhV5SoVMq9H0q9J6dP7E-0p818cUUk3jYYvjT9jOuXyvnyJk |
| CitedBy_id | crossref_primary_10_3390_bioengineering12090967 crossref_primary_10_1016_j_cej_2025_166039 crossref_primary_10_3390_proteomes12030025 crossref_primary_10_1016_j_ipha_2025_08_001 crossref_primary_10_3390_antiox14080907 crossref_primary_10_3390_pharmaceutics17091186 crossref_primary_10_1007_s11947_025_03981_9 crossref_primary_10_1016_j_arr_2024_102519 crossref_primary_10_3390_su16177651 crossref_primary_10_1016_j_fbio_2025_107372 crossref_primary_10_3390_dj13050215 crossref_primary_10_1016_j_jot_2025_07_006 crossref_primary_10_1007_s00122_025_04948_2 crossref_primary_10_1007_s42485_025_00190_y crossref_primary_10_3389_fimmu_2025_1548768 crossref_primary_10_3390_genes16070809 crossref_primary_10_3390_cimb47060475 crossref_primary_10_1007_s12018_025_09310_0 crossref_primary_10_3389_fonc_2024_1513654 |
| Cites_doi | 10.1186/s41065-019-0105-9 10.1038/s41598-019-56847-4 10.3390/ijms241914964 10.1371/journal.pcbi.1010357 10.1016/j.ejor.2021.06.053 10.1038/s41598-021-92692-0 10.1038/s41392-023-01399-3 10.1016/B978-0-12-801814-9.00005-2 10.1016/j.bbadis.2020.165822 10.1038/s41431-022-01162-2 10.1371/journal.pcbi.1004765 10.1155/2022/1883698 10.1371/journal.pone.0063644 10.3390/cancers13112528 10.1016/j.rec.2013.04.009 10.1016/j.csbj.2020.05.021 10.1016/j.gde.2019.03.002 10.1371/journal.pcbi.1008006 10.1093/bib/bbx128 10.1007/978-1-4939-0805-9_11 10.1093/nar/gkaa1084 10.1038/clpt.2010.91 10.1016/j.csbj.2016.04.004 10.1007/s11306-014-0651-0 10.1016/j.csbj.2021.08.028 10.1007/978-3-031-13188-2_18 10.1016/B978-0-12-821379-7.00002-3 10.1038/s12276-023-01020-1 10.1038/s42003-018-0268-3 10.1002/lim2.25 10.3389/fmolb.2021.744677 10.1016/j.csbj.2021.06.030 10.1002/pmic.202200013 10.21037/jgo.2020.03.11 10.3390/healthcare11121808 10.1039/c2ib20193c 10.1530/JME-18-0055 10.1186/s40537-023-00798-1 10.1007/978-1-61779-316-5_20 10.3390/ijms21218202 10.1371/journal.pcbi.1007701 10.1038/527S2a 10.3390/metabo12040357 10.1007/s12038-022-00253-y 10.1016/j.coisb.2018.02.002 10.1038/s41576-023-00580-2 10.3389/fbinf.2021.639349 10.1038/s41392-023-01333-7 10.1038/s41467-019-13668-3 10.1016/B978-0-443-15274-0.50222-5 10.1016/j.jpha.2023.05.015 10.1016/j.genrep.2020.100965 10.1038/s41598-022-13719-8 10.1186/s12575-019-0094-0 10.1038/s41592-021-01197-1 10.1093/bioinformatics/btv692 10.1016/B978-0-12-809633-8.20428-7 10.1021/acs.jproteome.2c00473 10.1186/1752-0509-6-S1-S1 10.3390/cells8080798 10.1007/978-981-16-0831-5_12 10.1016/B978-0-12-821618-7.00157-7 10.1016/j.jpha.2020.11.009 10.3389/fonc.2019.00681 10.1038/s41467-019-13825-8 10.1093/nar/gkq1018 10.1002/ajmg.b.32955 10.1016/B978-0-12-384730-0.00436-5 10.3389/fphys.2018.00916 10.1016/j.cels.2021.06.006 10.1016/B978-0-12-822258-4.00020-1 10.1038/s41417-022-00521-x 10.3390/app132111823 10.18632/oncotarget.19481 10.1097/COH.0b013e32833ed742 10.1186/s12920-015-0108-y 10.1016/j.cmpbup.2023.100106 10.1186/1471-2105-13-S14-S6 10.3390/biology12101313 10.1177/1177932219899051 10.1016/B978-0-12-385944-0.00018-6 10.1186/s12859-017-1547-6 10.3390/cancers13153768 10.1016/B978-0-12-817913-0.00017-1 10.1016/B978-0-12-823928-5.00038-4 10.1155/2022/4742986 10.1177/1536867X20909688 10.1186/s12859-023-05383-0 10.1007/978-0-387-78189-1_9 10.1016/j.tranon.2020.100907 10.1021/jm5006463 10.3390/genes14112065 10.1186/s12859-020-03592-5 10.1186/s12864-018-4580-6 10.3389/fgene.2020.610798 10.1371/journal.pone.0260584 10.1007/s10545-018-0139-6 10.1016/j.cels.2021.04.002 10.1038/s41467-022-28524-0 10.1371/journal.pone.0152918 10.1016/j.mgene.2019.100576 10.3389/fgene.2017.00084 10.1016/B978-0-443-15177-4.00016-9 10.1093/bioinformatics/btq182 10.1186/s12935-021-02165-7 10.1038/s41598-021-01253-y 10.1016/j.biotechadv.2021.107739 10.1371/journal.pone.0013180 10.1093/ecco-jcc/jjac127 10.1021/acs.jproteome.7b00595 10.3390/cancers14061573 10.1016/B978-0-12-804659-3.00001-4 10.1007/s11306-018-1451-8 10.3390/math11081777 10.1038/s41525-022-00286-0 10.3389/fphar.2022.935536 10.1038/s41540-023-00305-5 10.1371/journal.pcbi.1011224 10.1016/B978-0-12-821929-4.00004-4 10.3389/fgene.2018.00297 10.1007/978-1-4939-7318-7_2 10.1186/s12918-016-0260-9 10.1038/s41467-019-11812-7 10.1016/j.molmet.2018.01.007 10.1007/978-1-4939-7717-8_7 10.1093/bioinformatics/bty775 10.1371/journal.pone.0274629 10.1111/cbdd.14132 10.3389/fgene.2021.630187 10.3389/fgene.2020.600454 10.3390/genes10070554 10.1186/s12911-023-02377-z 10.1039/D1MO00467K 10.1016/j.neunet.2022.10.010 10.1016/B978-0-323-91907-4.00012-1 10.1126/science.1075762 10.1016/j.heliyon.2021.e07418 10.1038/s41598-022-26890-9 10.3389/fgene.2020.597888 10.1038/s41598-019-55832-1 10.1016/j.patcog.2023.109871 10.1186/1471-2105-13-S14-S2 10.1093/nar/gkab1062 10.1038/nrg3552 10.1093/bioinformatics/btac405 10.1186/s12916-023-03027-x 10.3389/fcell.2021.793428 10.1093/nar/28.1.27 10.3389/fgene.2020.00381 10.1007/s44230-023-00041-3 10.1016/j.ymben.2016.10.022 10.1016/B978-0-12-821633-0.00010-6 10.1016/B978-0-12-814259-2.00002-9 10.1186/s12915-022-01398-w 10.3389/fendo.2023.1119782 10.1016/j.biopha.2023.114733 10.3389/fgene.2021.709555 10.1371/journal.pcbi.1005986 10.3389/fgene.2021.651546 10.1186/s12859-022-04634-w 10.1186/s13059-016-1139-1 10.1186/s12859-018-2400-2 10.1021/acs.jproteome.0c00657 10.1080/15265161.2021.1991041 10.3390/computers12050091 10.3389/fgene.2023.1256468 10.3389/fgene.2021.805656 10.1016/j.oraloncology.2019.09.003 10.3390/metabo11100687 10.3390/app12178654 10.1093/bfgp/ely030 10.1093/bioinformatics/bty796 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2024 2024. The Author(s). Copyright Springer Nature B.V. Apr 2025 The Author(s) 2024 2024 |
| Copyright_xml | – notice: The Author(s) 2024 – notice: 2024. The Author(s). – notice: Copyright Springer Nature B.V. Apr 2025 – notice: The Author(s) 2024 2024 |
| DBID | C6C AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QL 7QO 7T7 7U9 8FD C1K FR3 H94 K9. M7N P64 7X8 7S9 L.6 5PM |
| DOI | 10.1007/s12033-024-01133-6 |
| DatabaseName | Springer Nature Open Access Journals CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Bacteriology Abstracts (Microbiology B) Biotechnology Research Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Virology and AIDS Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database AIDS and Cancer Research Abstracts ProQuest Health & Medical Complete (Alumni) Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts MEDLINE - Academic AGRICOLA AGRICOLA - Academic PubMed Central (Full Participant titles) |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Virology and AIDS Abstracts Biotechnology Research Abstracts Technology Research Database Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts ProQuest Health & Medical Complete (Alumni) Engineering Research Database Industrial and Applied Microbiology Abstracts (Microbiology A) Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | Virology and AIDS Abstracts AGRICOLA MEDLINE MEDLINE - Academic CrossRef |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Chemistry Biology |
| EISSN | 1559-0305 |
| EndPage | 1289 |
| ExternalDocumentID | PMC11928429 38565775 10_1007_s12033_024_01133_6 |
| Genre | Journal Article Review |
| GrantInformation_xml | – fundername: Manipal Academy of Higher Education, Manipal |
| GroupedDBID | --- -Y2 .86 .VR 06C 06D 0R~ 0VY 123 1N0 2.D 203 28- 29M 2J2 2JN 2JY 2KG 2KM 2LR 2VQ 2~H 30V 3SX 4.4 406 408 40D 40E 53G 5VS 67N 6NX 7X7 88E 88I 8AO 8FE 8FG 8FH 8FI 8FJ 8TC 8UJ 95- 95. 95~ 96X A8Z AAAVM AABHQ AACDK AAHBH AAHNG AAIAL AAIKT AAJBT AAJKR AANXM AANZL AAPKM AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABDBE ABDZT ABECU ABFTV ABHLI ABHQN ABJCF ABJNI ABJOX ABKCH ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABUWG ABWNU ABXPI ACAOD ACBXY ACCUX ACDTI ACGFS ACGOD ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACPRK ACZOJ ADBBV ADHHG ADHIR ADHKG ADKNI ADKPE ADMLS ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEUYN AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFRAH AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHMBA AHSBF AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALIPV ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG AVWKF AXYYD AYFIA AYJHY AZFZN AZQEC B-. BA0 BBNVY BBWZM BDATZ BENPR BGLVJ BGNMA BHPHI BPHCQ BVXVI C6C CAG CCPQU COF CS3 CSCUP DDRTE DNIVK DPUIP DU5 DWQXO EBD EBLON EBS EIOEI EJD EMOBN ESBYG F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC FYUFA G-Y G-Z GGCAI GGRSB GJIRD GNUQQ GNWQR GQ7 H13 HCIFZ HF~ HG6 HMCUK HMJXF HRMNR HVGLF HZ~ I-F IJ- IKXTQ ITM IWAJR IZQ I~X I~Z J-C J0Z JBSCW JZLTJ KOV L6V LK8 LLZTM M1P M2P M4Y M7P M7S MA- ML0 N2Q NB0 NDZJH NF0 NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OVD P19 P2P PF0 PHGZT PQQKQ PROAC PSQYO PT4 PT5 PTHSS Q2X QOK QOR QOS R4E R89 R9I RHV RIG RNI ROL RPX RSV RZK S16 S1Z S26 S27 S28 S3A S3B SAP SBL SCG SCLPG SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SV3 SZN T13 T16 TEORI TSG TSV TUC TUS U2A U9L UG4 UKHRP UOJIU UTJUX UZXMN VC2 VFIZW W48 WK6 WK8 YLTOR ZMTXR ~EX ~KM AAYXX ABBRH ABFSG ABRTQ ACSTC AEZWR AFDZB AFFHD AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR CITATION PHGZM PJZUB PPXIY PQGLB CGR CUY CVF ECM EIF NPM 7QL 7QO 7T7 7U9 8FD C1K FR3 H94 K9. M7N P64 7X8 7S9 L.6 5PM ESTFP |
| ID | FETCH-LOGICAL-c580t-71141a195943aa0f81c6a6338e60d31e330ad64169ef8dca3285bb99ca8efebd3 |
| IEDL.DBID | RSV |
| ISICitedReferencesCount | 26 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001195615400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1073-6085 1559-0305 |
| IngestDate | Tue Nov 04 02:03:27 EST 2025 Fri Sep 05 17:29:27 EDT 2025 Thu Oct 02 11:21:26 EDT 2025 Wed Nov 05 06:12:28 EST 2025 Mon Jul 21 05:57:08 EDT 2025 Sat Nov 29 08:06:21 EST 2025 Tue Nov 18 21:44:31 EST 2025 Sat Mar 22 01:16:58 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 4 |
| Keywords | Targeted therapeutics Big data Network pharmacology Multi-omics Machine learning |
| Language | English |
| License | 2024. The Author(s). Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c580t-71141a195943aa0f81c6a6338e60d31e330ad64169ef8dca3285bb99ca8efebd3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
| ORCID | 0000-0002-2147-5182 |
| OpenAccessLink | https://link.springer.com/10.1007/s12033-024-01133-6 |
| PMID | 38565775 |
| PQID | 3180023456 |
| PQPubID | 55363 |
| PageCount | 21 |
| ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_11928429 proquest_miscellaneous_3200295596 proquest_miscellaneous_3031661251 proquest_journals_3180023456 pubmed_primary_38565775 crossref_citationtrail_10_1007_s12033_024_01133_6 crossref_primary_10_1007_s12033_024_01133_6 springer_journals_10_1007_s12033_024_01133_6 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-04-01 |
| PublicationDateYYYYMMDD | 2025-04-01 |
| PublicationDate_xml | – month: 04 year: 2025 text: 2025-04-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York – name: Switzerland – name: Totowa |
| PublicationTitle | Molecular biotechnology |
| PublicationTitleAbbrev | Mol Biotechnol |
| PublicationTitleAlternate | Mol Biotechnol |
| PublicationYear | 2025 |
| Publisher | Springer US Springer Nature B.V |
| Publisher_xml | – name: Springer US – name: Springer Nature B.V |
| References | NR Anwardeen (1133_CR35) 2023; 24 Z Chen (1133_CR66) 2021; 11 LD Scanlan (1133_CR19) 2024 F Yuan (1133_CR106) 2020; 1866 E Dumitrescu (1133_CR62) 2022; 297 M Krassowski (1133_CR52) 2020; 11 PS Reel (1133_CR44) 2021; 49 H MotieGhader (1133_CR158) 2022; 12 M Rajput (1133_CR145) 2020; 21 K Zhang (1133_CR53) 2018; 12 A Nilsson (1133_CR138) 2017; 43 H Zheng (1133_CR151) 2021; 8 LJ Ewans (1133_CR4) 2022; 30 X Zhou (1133_CR103) 2023; 157 F Crispo (1133_CR171) 2019; 8 J Barallobre-Barreiro (1133_CR177) 2013; 66 CJ Vaske (1133_CR99) 2010; 26 H Hozhabri (1133_CR142) 2022; 17 DS Wishart (1133_CR180) 2022; 50 Y Chen (1133_CR36) 2022; 12 ML Wynn (1133_CR134) 2012; 4 S Qiu (1133_CR160) 2023; 8 T Zhang (1133_CR123) 2017; 8 B Grund (1133_CR51) 2010; 5 KP Shyam (1133_CR55) 2023; 6 D Skerrett-Byrne Anthony (1133_CR17) 2023 D Zuo (1133_CR72) 2023; 23 N Töpfer (1133_CR128) 2015; 6 GP Li (1133_CR143) 2020; 11 XT Yu (1133_CR3) 2018; 1754 I Martínez-Reyes (1133_CR170) 2020; 11 P Mahajan (1133_CR58) 2023; 11 D Shrivastava (1133_CR64) 2020 C Joo (1133_CR88) 2023; 52 G Shi (1133_CR154) 2020; 11 M Pellegrini (1133_CR140) 2019 A Tirosh (1133_CR26) 2020; 11 Y Wang (1133_CR150) 2012; 6 X Xu (1133_CR166) 2023; 55 T Katsila (1133_CR1) 2016; 14 B Banaganapalli (1133_CR125) 2022; 17 G Panditrao (1133_CR130) 2022; 47 CB Messner (1133_CR31) 2023; 23 G Li (1133_CR9) 2019; 10 K Asleh (1133_CR114) 2022; 13 YL Wu (1133_CR167) 2023; 8 X Dong (1133_CR79) 2019; 35 Y Zhang (1133_CR141) 2016; 17 H O’Geen (1133_CR6) 2011; 791 SM Willems (1133_CR2) 2019; 98 V Saint-André (1133_CR129) 2021; 19 Y Wang (1133_CR144) 2022; 22 K Maan (1133_CR175) 2023; 9 D Chicco (1133_CR183) 2023; 19 AM Amin (1133_CR41) 2021; 2 EA Ponomarenko (1133_CR30) 2023; 14 A Subasi (1133_CR96) 2020 J Wang (1133_CR63) 2022; 13372 W Li (1133_CR161) 2023; 13 E Trushina (1133_CR38) 2013; 8 S Park (1133_CR121) 2016; 32 K Kalamohan (1133_CR152) 2019; 21 Y Sun (1133_CR7) 2019; 156 M Sprang (1133_CR94) 2022; 23 Y Matsuoka (1133_CR132) 2014; 1164 JO Onuh (1133_CR34) 2021; 11 X Liu (1133_CR91) 2023; 11 F Al Abir (1133_CR102) 2022; 18 NJ Christensen (1133_CR50) 2022; 38 M Eisenstein (1133_CR181) 2015; 527 NS Maurya (1133_CR22) 2021; 11 L Huang (1133_CR81) 2023; 12 H Belyadi (1133_CR49) 2021 M Yuan (1133_CR124) 2022; 14 JY Lee (1133_CR83) 2018; 14 T Ma (1133_CR43) 2019; 20 M Gul (1133_CR97) 2023; 10 F Sambo (1133_CR77) 2012; 13 I Subramanian (1133_CR56) 2020; 14 G Bidkhori (1133_CR147) 2018; 9 C Liu (1133_CR157) 2020; 16 IA Nellas (1133_CR87) 2023; 144 PK Sharma (1133_CR186) 2021; 1 J Heinemann (1133_CR54) 2014; 10 AB Pavel (1133_CR122) 2016; 10 X Tan (1133_CR174) 2023; 162 K Karađuzović-Hadžiabdić (1133_CR92) 2021 H Attique (1133_CR113) 2022; 2022 D Lee (1133_CR117) 2020; 16 A Groß (1133_CR133) 2019; 2 Z Zeng (1133_CR111) 2021; 22 M González-del Pozo (1133_CR14) 2022; 7 SL Freshour (1133_CR159) 2021; 49 JS Shah (1133_CR82) 2017; 18 S García-Ruiz (1133_CR153) 2021; 12 A Mukherjee (1133_CR155) 2023; 101 Z Ye (1133_CR23) 2021; 12 C Zhang (1133_CR137) 2019; 9 A Nieborak (1133_CR172) 2018; 14 S Wenric (1133_CR67) 2018; 9 R Rachh (1133_CR73) 2021 Z Fang (1133_CR75) 2018; 34 SJ Teran Hidalgo (1133_CR100) 2018; 19 TH Wang (1133_CR105) 2021; 13 FM Alakwaa (1133_CR108) 2018; 17 K Vandereyken (1133_CR184) 2023; 24 Y Şenbabaoğlu (1133_CR127) 2016; 12 Y Zhang (1133_CR71) 2022; 12 H Zhang (1133_CR11) 2021; 1 M Huo (1133_CR169) 2021; 9 I Larsson (1133_CR149) 2020; 11 Y Tan (1133_CR39) 2023; 14 KG Robinson (1133_CR46) 2021; 29 S Chen (1133_CR104) 2023; 11 Q Cui (1133_CR156) 2010; 5 WWB Goh (1133_CR32) 2019; 20 T Hu (1133_CR37) 2018; 14 YR Chen (1133_CR5) 2018; 1675 G Lomberk (1133_CR27) 2019; 10 A Malovini (1133_CR74) 2012; 13 Y Xie (1133_CR78) 2021; 14 JL García-Giménez (1133_CR24) 2019; 15 DK Arrell (1133_CR13) 2010; 88 O Oluwadare (1133_CR8) 2019; 21 D Yadav (1133_CR18) 2018 N Sánchez-Baizán (1133_CR21) 2022; 20 E Graham (1133_CR163) 2018; 41 I Tanaka (1133_CR84) 2021; 21 M Ohlsson (1133_CR33) 2021; 20 A Sawant Dessai (1133_CR176) 2023; 30 HY Liu (1133_CR16) 2019; 9 S Babichev (1133_CR90) 2023; 13 M Schonlau (1133_CR70) 2020; 20 DL Id (1133_CR187) 2022; 18 AJ Izenman (1133_CR61) 2013 A Alyass (1133_CR12) 2015; 8 M Sun (1133_CR48) 2023; 14 M Witting (1133_CR173) 2014; 63 JGT Zañudo (1133_CR135) 2018; 9 G Manning (1133_CR45) 2002; 298 ZR Yang (1133_CR85) 2014; 6 Y Zhao (1133_CR107) 2021; 12 NA Yousri (1133_CR165) 2023; 21 Y Wang (1133_CR148) 2020; 10 S Alseekh (1133_CR10) 2021; 18 M Tognetti (1133_CR146) 2021; 12 JI Castrillo (1133_CR136) 2013 M Ali (1133_CR42) 2023; 12 E Pellegrino (1133_CR68) 2021; 11 A Yaqoob (1133_CR86) 2023; 3 J Gal (1133_CR109) 2020; 18 C Kikutake (1133_CR28) 2016; 11 A Anighoro (1133_CR120) 2014; 57 Z Zhang (1133_CR101) 2019; 18 S Mahapatra (1133_CR126) 2021; 7 C Angermueller (1133_CR89) 2017; 18 SH Shah (1133_CR162) 2015; 8 M Lau (1133_CR69) 2022; 23 N Hubers (1133_CR164) 2023; 195 N Feizi (1133_CR112) 2022; 12 V Dogra (1133_CR76) 2022; 2022 R Kalla (1133_CR25) 2023; 17 M Mann (1133_CR60) 2021; 12 MH Al Mamun (1133_CR59) 2022 L Cocolin (1133_CR20) 2014 U Chandran (1133_CR119) 2017; 2017 M Picard (1133_CR47) 2021; 19 W Jiao (1133_CR110) 2020; 11 S Liu (1133_CR57) 2018; 19 FM Torun (1133_CR80) 2023; 22 K Mitra (1133_CR131) 2013; 14 QY Yu (1133_CR15) 2021; 12 C Chen (1133_CR168) 2022; 13 V Kotu (1133_CR93) 2019 PD Lena (1133_CR116) 2020; 21 S Huang (1133_CR98) 2017; 8 X Zhao (1133_CR115) 2022; 12 M Kanehisa (1133_CR178) 2000; 28 M Park (1133_CR95) 2020; 21 E Patnaik (1133_CR29) 2023; 24 NM Salem (1133_CR65) 2023; 3 Y Li (1133_CR40) 2023; 13 B Mair (1133_CR139) 2019; 54 BB Misra (1133_CR182) 2019; 62 D Croft (1133_CR179) 2011; 39 V Modhukur (1133_CR118) 2021; 13 CW Safarlou (1133_CR185) 2021; 21 |
| References_xml | – volume: 156 start-page: 1 issue: 1 year: 2019 ident: 1133_CR7 publication-title: Hereditas doi: 10.1186/s41065-019-0105-9 – volume: 10 start-page: 1 issue: 1 year: 2020 ident: 1133_CR148 publication-title: Scientific Reports doi: 10.1038/s41598-019-56847-4 – volume: 24 start-page: 14964 issue: 19 year: 2023 ident: 1133_CR29 publication-title: International Journal of Molecular Sciences doi: 10.3390/ijms241914964 – volume: 18 start-page: e1010357 issue: 8 year: 2022 ident: 1133_CR187 publication-title: PLoS Computational Biology doi: 10.1371/journal.pcbi.1010357 – volume: 297 start-page: 1178 issue: 3 year: 2022 ident: 1133_CR62 publication-title: European Journal of Operational Research doi: 10.1016/j.ejor.2021.06.053 – volume: 11 start-page: 1 issue: 1 year: 2021 ident: 1133_CR22 publication-title: Scientific Reports doi: 10.1038/s41598-021-92692-0 – volume: 8 start-page: 1 issue: 1 year: 2023 ident: 1133_CR160 publication-title: Signal Transduction and Targeted Therapy doi: 10.1038/s41392-023-01399-3 – volume: 2017 start-page: 127 year: 2017 ident: 1133_CR119 publication-title: Innovative Approaches in Drug Discovery doi: 10.1016/B978-0-12-801814-9.00005-2 – volume: 1866 start-page: 165822 issue: 8 year: 2020 ident: 1133_CR106 publication-title: Biochimica et Biophysica Acta (BBA): Molecular Basis of Disease doi: 10.1016/j.bbadis.2020.165822 – volume: 30 start-page: 1121 issue: 10 year: 2022 ident: 1133_CR4 publication-title: European Journal of Human Genetics doi: 10.1038/s41431-022-01162-2 – volume: 12 start-page: e1004765 issue: 2 year: 2016 ident: 1133_CR127 publication-title: PLOS Computational Biology doi: 10.1371/journal.pcbi.1004765 – volume: 2022 start-page: 1883698 year: 2022 ident: 1133_CR76 publication-title: Computational Intelligence and Neuroscience doi: 10.1155/2022/1883698 – volume: 8 start-page: e63644 issue: 5 year: 2013 ident: 1133_CR38 publication-title: PLoS ONE doi: 10.1371/journal.pone.0063644 – volume: 13 start-page: 2528 issue: 11 year: 2021 ident: 1133_CR105 publication-title: Cancers doi: 10.3390/cancers13112528 – volume: 66 start-page: 657 issue: 8 year: 2013 ident: 1133_CR177 publication-title: Revista Española de Cardiología (English Edition) doi: 10.1016/j.rec.2013.04.009 – volume: 18 start-page: 1509 year: 2020 ident: 1133_CR109 publication-title: Computational and Structural Biotechnology Journal doi: 10.1016/j.csbj.2020.05.021 – volume: 54 start-page: 64 year: 2019 ident: 1133_CR139 publication-title: Current Opinion in Genetics and Development doi: 10.1016/j.gde.2019.03.002 – volume: 16 start-page: 1 issue: 6 year: 2020 ident: 1133_CR117 publication-title: PLoS Computational Biology doi: 10.1371/journal.pcbi.1008006 – volume: 20 start-page: 347 issue: 1 year: 2019 ident: 1133_CR32 publication-title: Briefings in Bioinformatics doi: 10.1093/bib/bbx128 – volume: 1164 start-page: 121 year: 2014 ident: 1133_CR132 publication-title: Methods in Molecular Biology doi: 10.1007/978-1-4939-0805-9_11 – volume: 49 start-page: D1144 issue: D1 year: 2021 ident: 1133_CR159 publication-title: Nucleic Acids Research doi: 10.1093/nar/gkaa1084 – volume: 88 start-page: 120 issue: 1 year: 2010 ident: 1133_CR13 publication-title: Clinical Pharmacology and Therapeutics doi: 10.1038/clpt.2010.91 – volume: 14 start-page: 177 year: 2016 ident: 1133_CR1 publication-title: Computational and Structural Biotechnology Journal doi: 10.1016/j.csbj.2016.04.004 – volume: 10 start-page: 1121 issue: 6 year: 2014 ident: 1133_CR54 publication-title: Metabolomics doi: 10.1007/s11306-014-0651-0 – volume: 19 start-page: 4884 year: 2021 ident: 1133_CR129 publication-title: Computational and Structural Biotechnology Journal doi: 10.1016/j.csbj.2021.08.028 – volume: 13372 start-page: 364 year: 2022 ident: 1133_CR63 publication-title: Lecture Notes in Computer Science doi: 10.1007/978-3-031-13188-2_18 – start-page: 27 volume-title: Practical machine learning for data analysis using Python year: 2020 ident: 1133_CR96 doi: 10.1016/B978-0-12-821379-7.00002-3 – volume: 55 start-page: 1357 issue: 7 year: 2023 ident: 1133_CR166 publication-title: Experimental and Molecular Medicine doi: 10.1038/s12276-023-01020-1 – volume: 2 start-page: 1 issue: 1 year: 2019 ident: 1133_CR133 publication-title: Communications Biology doi: 10.1038/s42003-018-0268-3 – volume: 2 start-page: e25 issue: 1 year: 2021 ident: 1133_CR41 publication-title: Lifestyle Medicine doi: 10.1002/lim2.25 – volume: 8 start-page: 888 year: 2021 ident: 1133_CR151 publication-title: Frontiers in Molecular Biosciences doi: 10.3389/fmolb.2021.744677 – start-page: 467 volume-title: Feature selection year: 2019 ident: 1133_CR93 – volume: 19 start-page: 3735 year: 2021 ident: 1133_CR47 publication-title: Computational and Structural Biotechnology Journal doi: 10.1016/j.csbj.2021.06.030 – volume: 23 start-page: 2200013 issue: 7–8 year: 2023 ident: 1133_CR31 publication-title: Proteomics doi: 10.1002/pmic.202200013 – volume: 11 start-page: 567 issue: 3 year: 2020 ident: 1133_CR26 publication-title: Journal of Gastrointestinal Oncology doi: 10.21037/jgo.2020.03.11 – volume: 11 start-page: 1808 issue: 12 year: 2023 ident: 1133_CR58 publication-title: Healthcare doi: 10.3390/healthcare11121808 – volume: 4 start-page: 1332 issue: 11 year: 2012 ident: 1133_CR134 publication-title: Integrative Biology: Quantitative Biosciences from Nano to Macro doi: 10.1039/c2ib20193c – volume: 62 start-page: R21 issue: 1 year: 2019 ident: 1133_CR182 publication-title: Journal of Molecular Endocrinology doi: 10.1530/JME-18-0055 – volume: 10 start-page: 1 issue: 1 year: 2023 ident: 1133_CR97 publication-title: Journal of Big Data doi: 10.1186/s40537-023-00798-1 – volume: 791 start-page: 265 year: 2011 ident: 1133_CR6 publication-title: Methods in Molecular Biology (Clifton, NJ) doi: 10.1007/978-1-61779-316-5_20 – volume: 21 start-page: 8202 issue: 21 year: 2020 ident: 1133_CR95 publication-title: International Journal of Molecular Sciences doi: 10.3390/ijms21218202 – volume: 16 start-page: e1007701 issue: 2 year: 2020 ident: 1133_CR157 publication-title: PLoS Computational Biology doi: 10.1371/journal.pcbi.1007701 – volume: 527 start-page: S2 issue: 7576 year: 2015 ident: 1133_CR181 publication-title: Nature doi: 10.1038/527S2a – volume: 12 start-page: 357 issue: 4 year: 2022 ident: 1133_CR36 publication-title: Metabolites doi: 10.3390/metabo12040357 – volume: 47 start-page: 1 issue: 2 year: 2022 ident: 1133_CR130 publication-title: Journal of Biosciences doi: 10.1007/s12038-022-00253-y – volume: 9 start-page: 1 year: 2018 ident: 1133_CR135 publication-title: Current Opinion in Systems Biology doi: 10.1016/j.coisb.2018.02.002 – volume: 24 start-page: 494 issue: 8 year: 2023 ident: 1133_CR184 publication-title: Nature Reviews Genetics doi: 10.1038/s41576-023-00580-2 – volume: 1 start-page: 639349 year: 2021 ident: 1133_CR11 publication-title: Frontiers in Bioinformatics doi: 10.3389/fbinf.2021.639349 – volume: 8 start-page: 1 issue: 1 year: 2023 ident: 1133_CR167 publication-title: Signal Transduction and Targeted Therapy doi: 10.1038/s41392-023-01333-7 – volume: 11 start-page: 102 issue: 1 year: 2020 ident: 1133_CR170 publication-title: Nature Communications doi: 10.1038/s41467-019-13668-3 – volume: 8 start-page: 410 issue: 2 year: 2015 ident: 1133_CR162 publication-title: Circulation: Cardiovascular Genetics – volume: 52 start-page: 1397 year: 2023 ident: 1133_CR88 publication-title: Computer Aided Chemical Engineering doi: 10.1016/B978-0-443-15274-0.50222-5 – volume: 13 start-page: 968 issue: 9 year: 2023 ident: 1133_CR161 publication-title: Journal of Pharmaceutical Analysis doi: 10.1016/j.jpha.2023.05.015 – volume: 12 start-page: 1 year: 2021 ident: 1133_CR107 publication-title: Frontiers in Genetics – volume: 21 start-page: 100965 year: 2020 ident: 1133_CR145 publication-title: Gene Reports doi: 10.1016/j.genrep.2020.100965 – volume: 23 start-page: 1 issue: 6 year: 2022 ident: 1133_CR94 publication-title: BMC Bioinformatics – volume: 12 start-page: 9417 issue: 1 year: 2022 ident: 1133_CR158 publication-title: Scientific Reports doi: 10.1038/s41598-022-13719-8 – volume: 21 start-page: 1 issue: 1 year: 2019 ident: 1133_CR8 publication-title: Biological Procedures Online doi: 10.1186/s12575-019-0094-0 – volume: 18 start-page: 747 issue: 7 year: 2021 ident: 1133_CR10 publication-title: Nature Methods doi: 10.1038/s41592-021-01197-1 – volume: 32 start-page: 1643 issue: 11 year: 2016 ident: 1133_CR121 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btv692 – start-page: 978 volume-title: Encyclopedia of bioinformatics and computational biology: ABC of bioinformatics year: 2019 ident: 1133_CR140 doi: 10.1016/B978-0-12-809633-8.20428-7 – volume: 22 start-page: 359 issue: 2 year: 2023 ident: 1133_CR80 publication-title: Journal of Proteome Research doi: 10.1021/acs.jproteome.2c00473 – volume: 6 start-page: 1 issue: 1 year: 2012 ident: 1133_CR150 publication-title: BMC Systems Biology doi: 10.1186/1752-0509-6-S1-S1 – volume: 8 start-page: 798 issue: 8 year: 2019 ident: 1133_CR171 publication-title: Cells doi: 10.3390/cells8080798 – volume: 1 start-page: 281 issue: 1 year: 2021 ident: 1133_CR186 publication-title: Omics Technologies for Sustainable Agriculture and Global Food Security doi: 10.1007/978-981-16-0831-5_12 – start-page: 363 volume-title: Encyclopedia of cell biology year: 2023 ident: 1133_CR17 doi: 10.1016/B978-0-12-821618-7.00157-7 – volume: 11 start-page: 505 issue: 4 year: 2021 ident: 1133_CR66 publication-title: Journal of Pharmaceutical Analysis doi: 10.1016/j.jpha.2020.11.009 – volume: 17 start-page: 533 issue: 7 year: 2016 ident: 1133_CR141 publication-title: BMC Bioinformatics – volume: 9 start-page: 681 year: 2019 ident: 1133_CR137 publication-title: Frontiers in Oncology doi: 10.3389/fonc.2019.00681 – volume: 11 start-page: 1 issue: 1 year: 2020 ident: 1133_CR110 publication-title: Nature Communications doi: 10.1038/s41467-019-13825-8 – volume: 39 start-page: D691 year: 2011 ident: 1133_CR179 publication-title: Nucleic Acids Research doi: 10.1093/nar/gkq1018 – volume: 22 start-page: 1 issue: 12 year: 2022 ident: 1133_CR144 publication-title: BMC Bioinformatics – volume: 195 start-page: e32955 year: 2023 ident: 1133_CR164 publication-title: American Journal of Medical Genetics Part B: Neuropsychiatric Genetics doi: 10.1002/ajmg.b.32955 – start-page: 803 volume-title: Encyclopedia of food microbiology year: 2014 ident: 1133_CR20 doi: 10.1016/B978-0-12-384730-0.00436-5 – volume: 9 start-page: 916 year: 2018 ident: 1133_CR147 publication-title: Frontiers in Physiology doi: 10.3389/fphys.2018.00916 – volume: 12 start-page: 759 issue: 8 year: 2021 ident: 1133_CR60 publication-title: Cell Systems doi: 10.1016/j.cels.2021.06.006 – start-page: 327 volume-title: Epigenetics in cardiovascular disease year: 2021 ident: 1133_CR92 doi: 10.1016/B978-0-12-822258-4.00020-1 – volume: 30 start-page: 548 issue: 4 year: 2023 ident: 1133_CR176 publication-title: Cancer Gene Therapy doi: 10.1038/s41417-022-00521-x – volume: 13 start-page: 11823 issue: 21 year: 2023 ident: 1133_CR90 publication-title: Applied Sciences doi: 10.3390/app132111823 – volume: 8 start-page: 58050 issue: 35 year: 2017 ident: 1133_CR123 publication-title: Oncotarget doi: 10.18632/oncotarget.19481 – volume: 5 start-page: 473 issue: 6 year: 2010 ident: 1133_CR51 publication-title: Current Opinion in HIV and AIDS doi: 10.1097/COH.0b013e32833ed742 – volume: 8 start-page: 1 issue: 1 year: 2015 ident: 1133_CR12 publication-title: BMC Medical Genomics doi: 10.1186/s12920-015-0108-y – volume: 3 start-page: 100106 year: 2023 ident: 1133_CR65 publication-title: Computer Methods and Programs in Biomedicine Update doi: 10.1016/j.cmpbup.2023.100106 – volume: 13 start-page: 1 year: 2012 ident: 1133_CR74 publication-title: BMC Bioinformatics doi: 10.1186/1471-2105-13-S14-S6 – volume: 12 start-page: 1313 issue: 10 year: 2023 ident: 1133_CR81 publication-title: Biology doi: 10.3390/biology12101313 – volume: 14 start-page: 117793221989905 year: 2020 ident: 1133_CR56 publication-title: Bioinformatics and Biology Insights doi: 10.1177/1177932219899051 – start-page: 343 volume-title: Handbook of systems biology year: 2013 ident: 1133_CR136 doi: 10.1016/B978-0-12-385944-0.00018-6 – volume: 18 start-page: 1 issue: 1 year: 2017 ident: 1133_CR82 publication-title: BMC Bioinformatics doi: 10.1186/s12859-017-1547-6 – volume: 13 start-page: 1 issue: 15 year: 2021 ident: 1133_CR118 publication-title: Cancers doi: 10.3390/cancers13153768 – start-page: 175 volume-title: Smart healthcare for disease diagnosis and prevention year: 2020 ident: 1133_CR64 doi: 10.1016/B978-0-12-817913-0.00017-1 – volume: 29 start-page: 513 year: 2021 ident: 1133_CR46 publication-title: Medical Epigenetics doi: 10.1016/B978-0-12-823928-5.00038-4 – volume: 2022 start-page: 4742986 year: 2022 ident: 1133_CR113 publication-title: Computational Intelligence and Neuroscience doi: 10.1155/2022/4742986 – volume: 20 start-page: 3 issue: 1 year: 2020 ident: 1133_CR70 publication-title: Stata Journal doi: 10.1177/1536867X20909688 – volume: 24 start-page: 250 issue: 1 year: 2023 ident: 1133_CR35 publication-title: BMC Bioinformatics doi: 10.1186/s12859-023-05383-0 – start-page: 281 volume-title: Modern multivariate statistical techniques year: 2013 ident: 1133_CR61 doi: 10.1007/978-0-387-78189-1_9 – volume: 14 start-page: 100907 issue: 1 year: 2021 ident: 1133_CR78 publication-title: Translational Oncology doi: 10.1016/j.tranon.2020.100907 – volume: 57 start-page: 7874 issue: 19 year: 2014 ident: 1133_CR120 publication-title: Journal of Medicinal Chemistry doi: 10.1021/jm5006463 – volume: 14 start-page: 2065 issue: 11 year: 2023 ident: 1133_CR30 publication-title: Genes doi: 10.3390/genes14112065 – volume: 21 start-page: 1 issue: 1 year: 2020 ident: 1133_CR116 publication-title: BMC Bioinformatics doi: 10.1186/s12859-020-03592-5 – volume: 19 start-page: 1 issue: 1 year: 2018 ident: 1133_CR100 publication-title: BMC Genomics doi: 10.1186/s12864-018-4580-6 – volume: 11 start-page: 610798 year: 2020 ident: 1133_CR52 publication-title: Frontiers in Genetics doi: 10.3389/fgene.2020.610798 – volume: 17 start-page: e0260584 issue: 1 year: 2022 ident: 1133_CR142 publication-title: PLoS ONE doi: 10.1371/journal.pone.0260584 – volume: 41 start-page: 435 issue: 3 year: 2018 ident: 1133_CR163 publication-title: Journal of Inherited Metabolic Disease doi: 10.1007/s10545-018-0139-6 – volume: 12 start-page: 401 issue: 5 year: 2021 ident: 1133_CR146 publication-title: Cell Systems doi: 10.1016/j.cels.2021.04.002 – volume: 22 start-page: 1 issue: 4 year: 2021 ident: 1133_CR111 publication-title: BMC Bioinformatics – volume: 12 start-page: 1 year: 2022 ident: 1133_CR115 publication-title: Frontiers in Oncology – volume: 13 start-page: 1 issue: 1 year: 2022 ident: 1133_CR114 publication-title: Nature Communications doi: 10.1038/s41467-022-28524-0 – volume: 11 start-page: e0152918 issue: 4 year: 2016 ident: 1133_CR28 publication-title: PLoS ONE doi: 10.1371/journal.pone.0152918 – volume: 20 start-page: 1 issue: 11 year: 2019 ident: 1133_CR43 publication-title: BMC Genomics – volume: 21 start-page: 100576 year: 2019 ident: 1133_CR152 publication-title: Meta Gene doi: 10.1016/j.mgene.2019.100576 – volume: 8 start-page: 1 year: 2017 ident: 1133_CR98 publication-title: Frontiers in Genetics doi: 10.3389/fgene.2017.00084 – volume: 6 start-page: 271 year: 2023 ident: 1133_CR55 publication-title: Phospholipases in Physiology and Pathology doi: 10.1016/B978-0-443-15177-4.00016-9 – volume: 26 start-page: i237 issue: 12 year: 2010 ident: 1133_CR99 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btq182 – volume: 21 start-page: 1 issue: 1 year: 2021 ident: 1133_CR84 publication-title: Cancer Cell International doi: 10.1186/s12935-021-02165-7 – volume: 11 start-page: 1 issue: 1 year: 2021 ident: 1133_CR68 publication-title: Scientific Reports doi: 10.1038/s41598-021-01253-y – volume: 49 start-page: 107739 year: 2021 ident: 1133_CR44 publication-title: Biotechnology Advances doi: 10.1016/j.biotechadv.2021.107739 – volume: 5 start-page: 13180 issue: 10 year: 2010 ident: 1133_CR156 publication-title: PLoS ONE doi: 10.1371/journal.pone.0013180 – volume: 17 start-page: 170 issue: 2 year: 2023 ident: 1133_CR25 publication-title: Journal of Crohn’s and Colitis doi: 10.1093/ecco-jcc/jjac127 – volume: 17 start-page: 337 issue: 1 year: 2018 ident: 1133_CR108 publication-title: Journal of Proteome Research doi: 10.1021/acs.jproteome.7b00595 – volume: 14 start-page: 1573 issue: 6 year: 2022 ident: 1133_CR124 publication-title: Cancers doi: 10.3390/cancers14061573 – volume: 12 start-page: 113 issue: 9 year: 2018 ident: 1133_CR53 publication-title: BMC Systems Biology – start-page: 3 volume-title: Omics technologies and bio-engineering: Towards improving quality of life year: 2018 ident: 1133_CR18 doi: 10.1016/B978-0-12-804659-3.00001-4 – volume: 14 start-page: 153 issue: 12 year: 2018 ident: 1133_CR83 publication-title: Metabolomics doi: 10.1007/s11306-018-1451-8 – volume: 11 start-page: 1 issue: 8 year: 2023 ident: 1133_CR104 publication-title: Mathematics doi: 10.3390/math11081777 – volume: 7 start-page: 1 issue: 1 year: 2022 ident: 1133_CR14 publication-title: NPJ Genomic Medicine doi: 10.1038/s41525-022-00286-0 – volume: 13 start-page: 935536 year: 2022 ident: 1133_CR168 publication-title: Frontiers in Pharmacology doi: 10.3389/fphar.2022.935536 – volume: 9 start-page: 1 issue: 1 year: 2023 ident: 1133_CR175 publication-title: NPJ Systems Biology and Applications doi: 10.1038/s41540-023-00305-5 – volume: 19 start-page: e1011224 issue: 7 year: 2023 ident: 1133_CR183 publication-title: PLOS Computational Biology doi: 10.1371/journal.pcbi.1011224 – start-page: 169 volume-title: Machine learning guide for oil and gas using Python year: 2021 ident: 1133_CR49 doi: 10.1016/B978-0-12-821929-4.00004-4 – volume: 9 start-page: 297 year: 2018 ident: 1133_CR67 publication-title: Frontiers in Genetics doi: 10.3389/fgene.2018.00297 – volume: 1675 start-page: 31 year: 2018 ident: 1133_CR5 publication-title: Methods in Molecular Biology doi: 10.1007/978-1-4939-7318-7_2 – volume: 10 start-page: 16 issue: 1 year: 2016 ident: 1133_CR122 publication-title: BMC Systems Biology doi: 10.1186/s12918-016-0260-9 – start-page: 883 volume-title: Reference module in biomedical sciences year: 2024 ident: 1133_CR19 – volume: 10 start-page: 1 issue: 1 year: 2019 ident: 1133_CR27 publication-title: Nature Communications doi: 10.1038/s41467-019-11812-7 – volume: 11 start-page: 1 year: 2023 ident: 1133_CR91 publication-title: Frontiers in Bioengineering and Biotechnology – volume: 14 start-page: 39 year: 2018 ident: 1133_CR172 publication-title: Molecular Metabolism doi: 10.1016/j.molmet.2018.01.007 – volume: 1754 start-page: 109 year: 2018 ident: 1133_CR3 publication-title: Methods in Molecular Biology (Clifton, NJ) doi: 10.1007/978-1-4939-7717-8_7 – volume: 34 start-page: 3801 issue: 22 year: 2018 ident: 1133_CR75 publication-title: Bioinformatics doi: 10.1093/bioinformatics/bty775 – volume: 17 start-page: e0274629 issue: 10 year: 2022 ident: 1133_CR125 publication-title: PLoS ONE doi: 10.1371/journal.pone.0274629 – volume: 101 start-page: 1027 issue: 5 year: 2023 ident: 1133_CR155 publication-title: Chemical Biology and Drug Design doi: 10.1111/cbdd.14132 – volume: 12 start-page: 630187 year: 2021 ident: 1133_CR153 publication-title: Frontiers in Genetics doi: 10.3389/fgene.2021.630187 – volume: 11 start-page: 1339 year: 2020 ident: 1133_CR143 publication-title: Frontiers in Genetics doi: 10.3389/fgene.2020.600454 – volume: 10 start-page: 554 issue: 7 year: 2019 ident: 1133_CR9 publication-title: Genes doi: 10.3390/genes10070554 – volume: 23 start-page: 1 issue: 1 year: 2023 ident: 1133_CR72 publication-title: BMC Medical Informatics and Decision Making doi: 10.1186/s12911-023-02377-z – volume: 18 start-page: 652 issue: 7 year: 2022 ident: 1133_CR102 publication-title: Molecular Omics doi: 10.1039/D1MO00467K – volume: 157 start-page: 114 year: 2023 ident: 1133_CR103 publication-title: Neural Networks doi: 10.1016/j.neunet.2022.10.010 – start-page: 301 volume-title: Big data analytics for healthcare: Datasets, techniques, life cycles, management, and applications year: 2022 ident: 1133_CR59 doi: 10.1016/B978-0-323-91907-4.00012-1 – volume: 298 start-page: 1912 issue: 5600 year: 2002 ident: 1133_CR45 publication-title: Science doi: 10.1126/science.1075762 – volume: 7 start-page: e07418 issue: 7 year: 2021 ident: 1133_CR126 publication-title: Heliyon doi: 10.1016/j.heliyon.2021.e07418 – volume: 13 start-page: 1 issue: 1 year: 2023 ident: 1133_CR40 publication-title: Scientific Reports doi: 10.1038/s41598-022-26890-9 – volume: 11 start-page: 597888 year: 2020 ident: 1133_CR154 publication-title: Frontiers in Genetics doi: 10.3389/fgene.2020.597888 – volume: 9 start-page: 1 issue: 1 year: 2019 ident: 1133_CR16 publication-title: Scientific Reports doi: 10.1038/s41598-019-55832-1 – volume: 144 start-page: 109871 year: 2023 ident: 1133_CR87 publication-title: Pattern Recognition doi: 10.1016/j.patcog.2023.109871 – volume: 13 start-page: 1 year: 2012 ident: 1133_CR77 publication-title: BMC Bioinformatics doi: 10.1186/1471-2105-13-S14-S2 – volume: 50 start-page: D622 issue: D1 year: 2022 ident: 1133_CR180 publication-title: Nucleic Acids Research doi: 10.1093/nar/gkab1062 – volume: 14 start-page: 719 issue: 10 year: 2013 ident: 1133_CR131 publication-title: Nature Reviews Genetics doi: 10.1038/nrg3552 – volume: 38 start-page: 3749 issue: 15 year: 2022 ident: 1133_CR50 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btac405 – volume: 21 start-page: 1 issue: 1 year: 2023 ident: 1133_CR165 publication-title: BMC Medicine doi: 10.1186/s12916-023-03027-x – volume: 9 start-page: 793428 year: 2021 ident: 1133_CR169 publication-title: Frontiers in Cell and Developmental Biology doi: 10.3389/fcell.2021.793428 – volume: 28 start-page: 27 issue: 1 year: 2000 ident: 1133_CR178 publication-title: Nucleic Acids Research doi: 10.1093/nar/28.1.27 – volume: 11 start-page: 381 year: 2020 ident: 1133_CR149 publication-title: Frontiers in Genetics doi: 10.3389/fgene.2020.00381 – volume: 63 start-page: 421 year: 2014 ident: 1133_CR173 publication-title: Comprehensive Analytical Chemistry – volume: 3 start-page: 588 issue: 4 year: 2023 ident: 1133_CR86 publication-title: Human-Centric Intelligent Systems doi: 10.1007/s44230-023-00041-3 – volume: 43 start-page: 103 year: 2017 ident: 1133_CR138 publication-title: Metabolic Engineering doi: 10.1016/j.ymben.2016.10.022 – start-page: 247 volume-title: Demystifying big data, machine learning, and deep learning for healthcare analytics year: 2021 ident: 1133_CR73 doi: 10.1016/B978-0-12-821633-0.00010-6 – volume: 15 start-page: 21 year: 2019 ident: 1133_CR24 publication-title: Prognostic Epigenetics doi: 10.1016/B978-0-12-814259-2.00002-9 – volume: 20 start-page: 1 issue: 1 year: 2022 ident: 1133_CR21 publication-title: BMC Biology doi: 10.1186/s12915-022-01398-w – volume: 14 start-page: 1119782 year: 2023 ident: 1133_CR39 publication-title: Frontiers in Endocrinology doi: 10.3389/fendo.2023.1119782 – volume: 162 start-page: 114733 year: 2023 ident: 1133_CR174 publication-title: Biomedicine and Pharmacotherapy doi: 10.1016/j.biopha.2023.114733 – volume: 12 start-page: 709555 year: 2021 ident: 1133_CR15 publication-title: Frontiers in Genetics doi: 10.3389/fgene.2021.709555 – volume: 14 start-page: e1005986 issue: 3 year: 2018 ident: 1133_CR37 publication-title: PLOS Computational Biology doi: 10.1371/journal.pcbi.1005986 – volume: 6 start-page: 49 year: 2015 ident: 1133_CR128 publication-title: Frontiers in Plant Science – volume: 12 start-page: 651546 year: 2021 ident: 1133_CR23 publication-title: Frontiers in Genetics doi: 10.3389/fgene.2021.651546 – volume: 23 start-page: 1 issue: 1 year: 2022 ident: 1133_CR69 publication-title: BMC Bioinformatics doi: 10.1186/s12859-022-04634-w – volume: 18 start-page: 1 issue: 1 year: 2017 ident: 1133_CR89 publication-title: Genome Biology doi: 10.1186/s13059-016-1139-1 – volume: 19 start-page: 396 issue: 1 year: 2018 ident: 1133_CR57 publication-title: BMC Bioinformatics doi: 10.1186/s12859-018-2400-2 – volume: 20 start-page: 1252 issue: 2 year: 2021 ident: 1133_CR33 publication-title: Journal of Proteome Research doi: 10.1021/acs.jproteome.0c00657 – volume: 21 start-page: 73 issue: 12 year: 2021 ident: 1133_CR185 publication-title: The American Journal of Bioethics doi: 10.1080/15265161.2021.1991041 – volume: 12 start-page: 91 issue: 5 year: 2023 ident: 1133_CR42 publication-title: Computers doi: 10.3390/computers12050091 – volume: 14 start-page: 1256468 year: 2023 ident: 1133_CR48 publication-title: Frontiers in Genetics doi: 10.3389/fgene.2023.1256468 – volume: 12 start-page: 1 year: 2022 ident: 1133_CR112 publication-title: Frontiers in Genetics doi: 10.3389/fgene.2021.805656 – volume: 98 start-page: 8 year: 2019 ident: 1133_CR2 publication-title: Oral Oncology doi: 10.1016/j.oraloncology.2019.09.003 – volume: 11 start-page: 687 issue: 10 year: 2021 ident: 1133_CR34 publication-title: Metabolites doi: 10.3390/metabo11100687 – volume: 12 start-page: 8654 issue: 17 year: 2022 ident: 1133_CR71 publication-title: Applied Sciences doi: 10.3390/app12178654 – volume: 6 start-page: 1 year: 2014 ident: 1133_CR85 publication-title: Comprehensive Biomedical Physics – volume: 18 start-page: 41 issue: 1 year: 2019 ident: 1133_CR101 publication-title: Briefings in Functional Genomics doi: 10.1093/bfgp/ely030 – volume: 35 start-page: 1278 issue: 8 year: 2019 ident: 1133_CR79 publication-title: Bioinformatics doi: 10.1093/bioinformatics/bty796 |
| SSID | ssj0021543 |
| Score | 2.5263293 |
| SecondaryResourceType | review_article |
| Snippet | In the dynamic landscape of targeted therapeutics, drug discovery has pivoted towards understanding underlying disease mechanisms, placing a strong emphasis on... |
| SourceID | pubmedcentral proquest pubmed crossref springer |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 1269 |
| SubjectTerms | Algorithms artificial intelligence Big Data Biochemistry Biological analysis Biological research Biological Techniques biomedical research Biotechnology Cell Biology Chemistry Chemistry and Materials Science Computational Biology - methods Data analysis data collection diagnostic techniques domain Drug development Drug discovery Drug Discovery - methods drugs genome Genomics - methods Heterogeneity Human Genetics Humans Informatics landscapes Machine Learning Medical research metabolome Metabolomics - methods Molecular Targeted Therapy Multiomics Pharmacology Protein Science R&D Research & development Review Paper therapeutics |
| Title | From Data to Cure: A Comprehensive Exploration of Multi-omics Data Analysis for Targeted Therapies |
| URI | https://link.springer.com/article/10.1007/s12033-024-01133-6 https://www.ncbi.nlm.nih.gov/pubmed/38565775 https://www.proquest.com/docview/3180023456 https://www.proquest.com/docview/3031661251 https://www.proquest.com/docview/3200295596 https://pubmed.ncbi.nlm.nih.gov/PMC11928429 |
| Volume | 67 |
| WOSCitedRecordID | wos001195615400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAVX databaseName: SpringerLink Journals customDbUrl: eissn: 1559-0305 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0021543 issn: 1073-6085 databaseCode: RSV dateStart: 19970101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB7xKKIcoF1oWaDISL2BpWSdtR1uaGHFoUKo3aK9RU7sCCRIUDZbiX_P2HksCwUJzh5H8WvmG83MNwA_bWzKi6WiWqQBDXhsKBqFgGqtWdpHpRy6lP-rX-LiQo7H4WVdFDZpst2bkKTT1LNit57tO4Y2Bd1f9KwoX4RlNHfSPsfff65aNwtBQZVWL1AGEUVdKvP_b8yboxcY82Wq5LN4qTNDw42PLeALrNewk5xU9-QrLJisAytVI8qHDqwOmr5vHVh7QlG4CfGwyO_IqSoVKXMymBbmmJwQq0UKc10lv5Mqj88dMclT4mp6qa12nlQTG-ITggCZjFzqudFk5Cq_0FHfgr_Ds9HgnNZ9GWjSl15JBfpQvrKsNAFTykuln3DF0dc13NPMN4x5SnNEeqFJpU4U68l-HIdhoqRJTazZN1jK8sxsA1FxrAVDDOf3TOALL1RoUZUIQsG4UJx3wW-OJ0pq0nLbO-M2mtEt212NcFcjt6sRzjls59xXlB1vSu81px7Vz3cSoaKzYAbBZRcO2mE8BxtNUZnJpyiD6pA7fPiGjE2BsRx_-J3v1UVqf4lJG3EW_S7IuSvWClji7_mR7ObaEYD7CMslAokuHDU3bfbvry91533iu_C5Z5sduzSlPVgqi6n5AZ-Sf-XNpNiHRTGW--7lPQKRmCSI |
| linkProvider | Springer Nature |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dT9swED8NNgR72Fj5KmPDk3gDS0md2s7eULeKaV2FoEO8RU7sCKQtQWk6af89Z-ejdDAkeM7Zcvxx9zvd7-4ADmxsyoulolqkAQ14bCgahYBqrVnaR6UcOsr_xUiMx_LyMjytk8KmDdu9CUk6TT1PduvZvmNoU9D9Rc-K8iV4GaDFskS-s_OL1s1CUFDR6gXKIKKoU2UenmPRHN3DmPepkv_ES50ZGr593g-sw5sadpLj6p68gxcm68BK1YjybwdWB03ftw68vlOicAPiYZH_Jl9UqUiZk8GsMJ_JMbFapDBXFfmdVDw-d8QkT4nL6aU223laDWwKnxAEyGTiqOdGk4nL_EJHfRN-Dr9OBie07stAk770SirQh_KVrUoTMKW8VPoJVxx9XcM9zXzDmKc0R6QXmlTqRLGe7MdxGCZKmtTEmm3BcpZnZgeIimMtGGI4v2cCX3ihQouqRBAKxoXivAt-czxRUhctt70zfkXzcst2VyPc1cjtaoRjDtsxN1XJjkel95pTj-rnO41Q0Vkwg-CyC5_az3gONpqiMpPPUAbVIXf48BEZS4GxNf5wnu3qIrVLYtJGnEW_C3LhirUCtvD34pfs-soVAPcRlksEEl04am7afO3__9Xdp4nvw-rJ5McoGn0bf38Paz3b-NhRlvZguSxm5gO8Sv6U19Pio3t_t2lnJoQ |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwED-NARs88NF9FQYYiTewltSp7fA2dVQgpmoSZdpb5MSONmlLpjSdtP9-ZztJV8YmIZ5zthz77Pud7u53AJ9sbCpIpaJa5BGNeGooGoWIaq1ZPsRHOXYp_8eHYjKRJyfx0a0qfpft3oYkfU2DZWkq6r1Lne8tCt8GtgcZ2hd0hdHLovwRPI5s0yDrr_867lwuBAg-xV6gDKKLpmzm73Msm6Y7ePNu2uQfsVNnksYv__9nXsGLBo6Sfa8_r2HFFD146htUXvdgfdT2g-vB81vUhRuQjqvyghyoWpG6JKN5Zb6SfWJfl8qc-qR44vP73NGTMieu1pfaKuiZH9gSohAEzmTqUtKNJlNXEYYO_Cb8Hn-bjr7Tpl8DzYYyqKlA3ypUlq0mYkoFuQwzrjj6wIYHmoWGsUBpjggwNrnUmWIDOUzTOM6UNLlJNduC1aIszA4QlaZaMMR24cBEoQhihZZWiSgWjAvFeR_C9qiSrCEztz01zpMFDbPd1QR3NXG7muCYz92YS0_l8aD0bqsBSXOtZwk-gBbkIOjsw8fuM56DjbKowpRzlMFnkjvc-ICMTY2x3H84z7ZXqm5JTNpItBj2QS6pWydgCcGXvxRnp44YPES4LhFg9OFLq3WLtd__q2_-TfwDrB0djJPDH5Ofb-HZwPZDdplMu7BaV3PzDp5kV_XZrHrvruINVfQvaA |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=From+Data+to+Cure%3A+A+Comprehensive+Exploration+of+Multi-omics+Data+Analysis+for+Targeted+Therapies&rft.jtitle=Molecular+biotechnology&rft.au=Mukherjee%2C+Arnab&rft.au=Abraham%2C+Suzanna&rft.au=Singh%2C+Akshita&rft.au=Balaji%2C+S.&rft.date=2025-04-01&rft.issn=1073-6085&rft.eissn=1559-0305&rft.volume=67&rft.issue=4&rft.spage=1269&rft.epage=1289&rft_id=info:doi/10.1007%2Fs12033-024-01133-6&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s12033_024_01133_6 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1073-6085&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1073-6085&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1073-6085&client=summon |