Laparoscopic distal gastrectomy skill evaluation from video: a new artificial intelligence-based instrument identification system

The advent of Artificial Intelligence (AI)-based object detection technology has made identification of position coordinates of surgical instruments from videos possible. This study aimed to find kinematic differences by surgical skill level. An AI algorithm was developed to identify X and Y coordin...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Scientific Reports Ročník 14; číslo 1; s. 12432 - 8
Hlavní autori: Matsumoto, Shiro, Kawahira, Hiroshi, Fukata, Kyohei, Doi, Yasunori, Kobayashi, Nao, Hosoya, Yoshinori, Sata, Naohiro
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: London Springer Science and Business Media LLC 30.05.2024
Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Predmet:
ISSN:2045-2322, 2045-2322
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract The advent of Artificial Intelligence (AI)-based object detection technology has made identification of position coordinates of surgical instruments from videos possible. This study aimed to find kinematic differences by surgical skill level. An AI algorithm was developed to identify X and Y coordinates of surgical instrument tips accurately from video. Kinematic analysis including fluctuation analysis was performed on 18 laparoscopic distal gastrectomy videos from three expert and three novice surgeons (3 videos/surgeon, 11.6 h, 1,254,010 frames). Analysis showed the expert surgeon cohort moved more efficiently and regularly, with significantly less operation time and total travel distance. Instrument tip movement did not differ in velocity, acceleration, or jerk between skill levels. The evaluation index of fluctuation β was significantly higher in experts. ROC curve cutoff value at 1.4 determined sensitivity and specificity of 77.8% for experts and novices. Despite the small sample, this study suggests AI-based object detection with fluctuation analysis is promising because skill evaluation can be calculated in real time with potential for peri-operational evaluation.
AbstractList Abstract The advent of Artificial Intelligence (AI)-based object detection technology has made identification of position coordinates of surgical instruments from videos possible. This study aimed to find kinematic differences by surgical skill level. An AI algorithm was developed to identify X and Y coordinates of surgical instrument tips accurately from video. Kinematic analysis including fluctuation analysis was performed on 18 laparoscopic distal gastrectomy videos from three expert and three novice surgeons (3 videos/surgeon, 11.6 h, 1,254,010 frames). Analysis showed the expert surgeon cohort moved more efficiently and regularly, with significantly less operation time and total travel distance. Instrument tip movement did not differ in velocity, acceleration, or jerk between skill levels. The evaluation index of fluctuation β was significantly higher in experts. ROC curve cutoff value at 1.4 determined sensitivity and specificity of 77.8% for experts and novices. Despite the small sample, this study suggests AI-based object detection with fluctuation analysis is promising because skill evaluation can be calculated in real time with potential for peri-operational evaluation.
The advent of Artificial Intelligence (AI)-based object detection technology has made identification of position coordinates of surgical instruments from videos possible. This study aimed to find kinematic differences by surgical skill level. An AI algorithm was developed to identify X and Y coordinates of surgical instrument tips accurately from video. Kinematic analysis including fluctuation analysis was performed on 18 laparoscopic distal gastrectomy videos from three expert and three novice surgeons (3 videos/surgeon, 11.6 h, 1,254,010 frames). Analysis showed the expert surgeon cohort moved more efficiently and regularly, with significantly less operation time and total travel distance. Instrument tip movement did not differ in velocity, acceleration, or jerk between skill levels. The evaluation index of fluctuation β was significantly higher in experts. ROC curve cutoff value at 1.4 determined sensitivity and specificity of 77.8% for experts and novices. Despite the small sample, this study suggests AI-based object detection with fluctuation analysis is promising because skill evaluation can be calculated in real time with potential for peri-operational evaluation.The advent of Artificial Intelligence (AI)-based object detection technology has made identification of position coordinates of surgical instruments from videos possible. This study aimed to find kinematic differences by surgical skill level. An AI algorithm was developed to identify X and Y coordinates of surgical instrument tips accurately from video. Kinematic analysis including fluctuation analysis was performed on 18 laparoscopic distal gastrectomy videos from three expert and three novice surgeons (3 videos/surgeon, 11.6 h, 1,254,010 frames). Analysis showed the expert surgeon cohort moved more efficiently and regularly, with significantly less operation time and total travel distance. Instrument tip movement did not differ in velocity, acceleration, or jerk between skill levels. The evaluation index of fluctuation β was significantly higher in experts. ROC curve cutoff value at 1.4 determined sensitivity and specificity of 77.8% for experts and novices. Despite the small sample, this study suggests AI-based object detection with fluctuation analysis is promising because skill evaluation can be calculated in real time with potential for peri-operational evaluation.
The advent of Artificial Intelligence (AI)-based object detection technology has made identification of position coordinates of surgical instruments from videos possible. This study aimed to find kinematic differences by surgical skill level. An AI algorithm was developed to identify X and Y coordinates of surgical instrument tips accurately from video. Kinematic analysis including fluctuation analysis was performed on 18 laparoscopic distal gastrectomy videos from three expert and three novice surgeons (3 videos/surgeon, 11.6 h, 1,254,010 frames). Analysis showed the expert surgeon cohort moved more efficiently and regularly, with significantly less operation time and total travel distance. Instrument tip movement did not differ in velocity, acceleration, or jerk between skill levels. The evaluation index of fluctuation β was significantly higher in experts. ROC curve cutoff value at 1.4 determined sensitivity and specificity of 77.8% for experts and novices. Despite the small sample, this study suggests AI-based object detection with fluctuation analysis is promising because skill evaluation can be calculated in real time with potential for peri-operational evaluation.
The advent of Artificial Intelligence (AI)-based object detection technology has made identification of position coordinates of surgical instruments from videos possible. This study aimed to find kinematic differences by surgical skill level. An AI algorithm was developed to identify X and Y coordinates of surgical instrument tips accurately from video. Kinematic analysis including fluctuation analysis was performed on 18 laparoscopic distal gastrectomy videos from three expert and three novice surgeons (3 videos/surgeon, 11.6 h, 1,254,010 frames). Analysis showed the expert surgeon cohort moved more efficiently and regularly, with significantly less operation time and total travel distance. Instrument tip movement did not differ in velocity, acceleration, or jerk between skill levels. The evaluation index of fluctuation β was significantly higher in experts. ROC curve cutoff value at 1.4 determined sensitivity and specificity of 77.8% for experts and novices. Despite the small sample, this study suggests AI-based object detection with fluctuation analysis is promising because skill evaluation can be calculated in real time with potential for peri-operational evaluation.
ArticleNumber 12432
Author Hiroshi Kawahira
Naohiro Sata
Yasunori Doi
Nao Kobayashi
Kyohei Fukata
Shiro Matsumoto
Yoshinori Hosoya
Author_xml – sequence: 1
  givenname: Shiro
  surname: Matsumoto
  fullname: Matsumoto, Shiro
  email: s-matsumoto@jichi.ac.jp
  organization: Department of Surgery, Division of Gastroenterological, General and Transplant Surgery, Jichi Medical University
– sequence: 2
  givenname: Hiroshi
  surname: Kawahira
  fullname: Kawahira, Hiroshi
  organization: Medical Simulation Center, Jichi Medical University
– sequence: 3
  givenname: Kyohei
  surname: Fukata
  fullname: Fukata, Kyohei
  organization: Anaut Co., Ltd
– sequence: 4
  givenname: Yasunori
  surname: Doi
  fullname: Doi, Yasunori
  organization: Anaut Co., Ltd
– sequence: 5
  givenname: Nao
  surname: Kobayashi
  fullname: Kobayashi, Nao
  organization: Anaut Co., Ltd
– sequence: 6
  givenname: Yoshinori
  surname: Hosoya
  fullname: Hosoya, Yoshinori
  organization: Department of Surgery, Division of Gastroenterological, General and Transplant Surgery, Jichi Medical University
– sequence: 7
  givenname: Naohiro
  surname: Sata
  fullname: Sata, Naohiro
  organization: Department of Surgery, Division of Gastroenterological, General and Transplant Surgery, Jichi Medical University
BackLink https://cir.nii.ac.jp/crid/1872555066419982336$$DView record in CiNii
https://www.ncbi.nlm.nih.gov/pubmed/38816459$$D View this record in MEDLINE/PubMed
BookMark eNp9kstu1TAQhiNUREvpC7BAkWDBJuB7HHao4lLpSGxgbdnO5MglsQ-20ypL3hznpBTURTe-jL7_nxl7nlcnPnioqpcYvcOIyveJYd7JBhHWCEqlbJYn1RlBjDeEEnLy3_m0ukjJmXKluEMSPatOC48F491Z9XunDzqGZMPB2bp3Keux3uuUI9gcpqVOP9041nCjx1lnF3w9xDDVN66H8KHWtYfbWsfsBmddUTqfYRzdHryFxugEfQkVs3kCn-si8kd0c0pLyjC9qJ4OekxwcbefVz8-f_p--bXZfftydflx11guUW44GGMZEMI0ZaTrEdIY094MREKLTHkDY8EQYm1PLZaGYGmx0YQikJ2Anp5XV5tvH_S1OkQ36biooJ06BkLcq7URO4JigxWGS8NQqxkzRKOSpUXUaA5CitXr7eZ1iOHXDCmrySVbOtcewpwURYIy3grSFvT1A_Q6zNGXTleqlNdJzAr16o6azQT9fXl_P6oAZANs-awUYbhHMFLrQKhtIFQZCHUcCLUUkXwgsi4f3z5H7cbHpXSTppLH7yH-K_tR1ZtN5Z0rudYVy5ZwzpEQDHedJJQK-gd5f9c3
CitedBy_id crossref_primary_10_1145_3699712
crossref_primary_10_3390_healthcare13050571
Cites_doi 10.1016/j.jsurg.2014.08.006
10.1186/s40792-018-0509-1
10.1109/ACCESS.2020.2969885
10.3389/frobt.2022.1030846
10.1016/j.jamcollsurg.2020.01.037
10.1007/s004640080081
10.1007/s13193-020-01166-8
10.1007/s11548-015-1274-2
10.1002/bjs.5430
10.1007/s10120-023-01450-w
10.1155/2018/9873273
10.1007/s00464-019-06667-4
10.1111/ases.13065
10.1245/s10434-014-3997-7
10.1007/s00595-015-1227-y
10.3758/BF03193146
10.1007/s11548-019-01966-6
10.1038/s41598-021-01911-1
10.1007/s00464-007-9451-1
10.1016/j.jss.2013.12.009
10.1109/TMI.2020.3002417
10.1007/s00464-014-3988-6
10.1016/j.amjsurg.2005.04.004
10.1073/pnas.1113828109
10.1002/ags3.12384
10.1080/13645700701702135
10.1007/s00464-020-08168-1
10.1118/1.4901409
10.1007/s00464-003-0035-4
10.1016/j.jmig.2011.04.003
10.3109/13645700903492969
10.1038/s41598-021-00557-3
10.1109/IEMBS.1997.756890
10.1109/WACV.2018.00081
ContentType Journal Article
Copyright The Author(s) 2024
2024. The Author(s).
The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2024
– notice: 2024. The Author(s).
– notice: The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID RYH
C6C
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7X7
7XB
88A
88E
88I
8FE
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2P
M7P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
DOA
DOI 10.1038/s41598-024-63388-y
DatabaseName CiNii Complete
Springer Nature OA Free Journals
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
Health & Medical Collection (Alumni)
Medical Database
Science Database
Biological Science Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
CrossRef
MEDLINE

Publicly Available Content Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals (ODIN)
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Biology
EISSN 2045-2322
EndPage 8
ExternalDocumentID oai_doaj_org_article_4fc6b58b407a44b2a0f28703ba5e686d
38816459
10_1038_s41598_024_63388_y
Genre Journal Article
GroupedDBID 0R~
4.4
53G
5VS
7X7
88E
88I
8FE
8FH
8FI
8FJ
AAFWJ
AAJSJ
AAKDD
AASML
ABDBF
ABUWG
ACGFS
ACUHS
ADBBV
ADRAZ
AENEX
AEUYN
AFFHD
AFKRA
AFPKN
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
DWQXO
EBD
EBLON
EBS
ESX
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
KQ8
LK8
M1P
M2P
M48
M7P
M~E
NAO
OK1
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
RNT
RNTTT
RPM
RYH
SNYQT
UKHRP
3V.
88A
ACSMW
AJTQC
ALIPV
M0L
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7XB
8FK
K9.
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
PUEGO
ID FETCH-LOGICAL-c580t-5ebbc4e224a3429d00a113dbf28e70b633bceb22ccd3c18b218c1ba230e896ed3
IEDL.DBID M7P
ISICitedReferencesCount 2
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001236334900062&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2045-2322
IngestDate Fri Oct 03 12:54:15 EDT 2025
Wed Oct 01 13:44:45 EDT 2025
Tue Oct 07 08:26:31 EDT 2025
Wed Feb 19 02:01:43 EST 2025
Sat Nov 29 02:13:11 EST 2025
Tue Nov 18 22:36:16 EST 2025
Fri Feb 21 02:40:12 EST 2025
Mon Nov 10 09:08:10 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License 2024. The Author(s).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c580t-5ebbc4e224a3429d00a113dbf28e70b633bceb22ccd3c18b218c1ba230e896ed3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://www.proquest.com/docview/3062309814?pq-origsite=%requestingapplication%
PMID 38816459
PQID 3062309814
PQPubID 2041939
PageCount 8
ParticipantIDs doaj_primary_oai_doaj_org_article_4fc6b58b407a44b2a0f28703ba5e686d
proquest_miscellaneous_3063457627
proquest_journals_3062309814
pubmed_primary_38816459
crossref_primary_10_1038_s41598_024_63388_y
crossref_citationtrail_10_1038_s41598_024_63388_y
springer_journals_10_1038_s41598_024_63388_y
nii_cinii_1872555066419982336
PublicationCentury 2000
PublicationDate 2024-05-30
PublicationDateYYYYMMDD 2024-05-30
PublicationDate_xml – month: 05
  year: 2024
  text: 2024-05-30
  day: 30
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Scientific Reports
PublicationTitleAbbrev Sci Rep
PublicationTitleAlternate Sci Rep
PublicationYear 2024
Publisher Springer Science and Business Media LLC
Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Springer Science and Business Media LLC
– name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References Ando (CR13) 2018; 4
Komatsu (CR34) 2024; 27
Bamba (CR21) 2021; 11
Uemura (CR31) 2018; 2018
Matsuda (CR9) 2015; 22
Hiemstra, Chmarra, Dankelman, Jansen (CR25) 2011; 18
Kramp (CR7) 2015; 72
CR16
Vassiliou (CR6) 2005; 190
Reza, Blasco, Andradas, Cantero, Mayol (CR1) 2006; 93
Bodenstedt (CR32) 2019; 14
Kumarasiri (CR22) 2014; 41
Mori, Kimura, Kitajima (CR4) 2010; 19
Kowalewski (CR30) 2019; 33
Uemura (CR26) 2016; 11
Gallagher, Ritter, Satava (CR2) 2003; 17
Tomikawa (CR12) 2016; 46
Chmarra, Grimbergen, Dankelman (CR14) 2007; 16
Egert, Steward, Sundaram (CR29) 2020; 11
Eelbode (CR23) 2020; 39
Yamazaki (CR33) 2020; 230
Trudeau, Nasr, Carrillo, Gerstle, Azzie (CR11) 2015; 29
Faul, Erdfelder, Lang, Buchner (CR20) 2007; 39
CR27
Kumazu (CR18) 2021; 11
Levitin, Chordia, Menon (CR19) 2012; 109
McCluney (CR8) 2007; 21
Matsumoto (CR3) 2022; 15
Akagi (CR5) 2020; 4
Smith, Torkington, Brown, Taffinder, Darzi (CR24) 2002; 16
Zhang, Wang, Dong, Chen (CR17) 2020; 8
Uemura (CR28) 2014; 188
Nema, Vachhani (CR10) 2022; 9
Anteby (CR15) 2021; 35
MM Reza (63388_CR1) 2006; 93
M Tomikawa (63388_CR12) 2016; 46
B Zhang (63388_CR17) 2020; 8
T Akagi (63388_CR5) 2020; 4
M Egert (63388_CR29) 2020; 11
F Ando (63388_CR13) 2018; 4
S Matsumoto (63388_CR3) 2022; 15
Y Kumazu (63388_CR18) 2021; 11
S Nema (63388_CR10) 2022; 9
F Faul (63388_CR20) 2007; 39
MO Trudeau (63388_CR11) 2015; 29
MC Vassiliou (63388_CR6) 2005; 190
KF Kowalewski (63388_CR30) 2019; 33
M Uemura (63388_CR26) 2016; 11
Y Yamazaki (63388_CR33) 2020; 230
63388_CR16
A Kumarasiri (63388_CR22) 2014; 41
T Eelbode (63388_CR23) 2020; 39
E Hiemstra (63388_CR25) 2011; 18
M Uemura (63388_CR31) 2018; 2018
T Mori (63388_CR4) 2010; 19
M Uemura (63388_CR28) 2014; 188
AG Gallagher (63388_CR2) 2003; 17
KH Kramp (63388_CR7) 2015; 72
Y Bamba (63388_CR21) 2021; 11
A Matsuda (63388_CR9) 2015; 22
M Komatsu (63388_CR34) 2024; 27
R Anteby (63388_CR15) 2021; 35
MK Chmarra (63388_CR14) 2007; 16
DJ Levitin (63388_CR19) 2012; 109
SG Smith (63388_CR24) 2002; 16
AL McCluney (63388_CR8) 2007; 21
63388_CR27
S Bodenstedt (63388_CR32) 2019; 14
References_xml – volume: 72
  start-page: 351
  year: 2015
  end-page: 358
  ident: CR7
  article-title: Validity and reliability of global operative assessment of laparoscopic skills (GOALS) in novice trainees performing a laparoscopic cholecystectomy
  publication-title: J. Surg. Educ.
  doi: 10.1016/j.jsurg.2014.08.006
– volume: 4
  start-page: 1
  year: 2018
  end-page: 6
  ident: CR13
  article-title: Placement of a self-expandable metallic stent as a bridge to surgery for large bowel obstruction induced by effective neoadjuvant therapy: report of three cases
  publication-title: Surg. Case Rep.
  doi: 10.1186/s40792-018-0509-1
– volume: 8
  start-page: 23748
  year: 2020
  end-page: 23758
  ident: CR17
  article-title: Surgical tools detection based on modulated anchoring network in laparoscopic videos
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2969885
– volume: 9
  start-page: 1030846
  year: 2022
  ident: CR10
  article-title: Surgical instrument detection and tracking technologies: Automating dataset labeling for surgical skill assessment
  publication-title: Front. Robot. AI
  doi: 10.3389/frobt.2022.1030846
– ident: CR16
– volume: 230
  start-page: 725
  year: 2020
  end-page: 732.e721
  ident: CR33
  article-title: Automated surgical instrument detection from laparoscopic gastrectomy video images using an open source convolutional neural network platform
  publication-title: J. Am. Coll. Surg.
  doi: 10.1016/j.jamcollsurg.2020.01.037
– volume: 16
  start-page: 640
  year: 2002
  end-page: 645
  ident: CR24
  article-title: Motion analysis
  publication-title: Surg. Endosc.
  doi: 10.1007/s004640080081
– volume: 11
  start-page: 573
  year: 2020
  end-page: 577
  ident: CR29
  article-title: Machine Learning and Artificial Intelligence in Surgical Fields
  publication-title: Indian J Surg Oncol
  doi: 10.1007/s13193-020-01166-8
– volume: 11
  start-page: 543
  year: 2016
  end-page: 552
  ident: CR26
  article-title: Procedural surgical skill assessment in laparoscopic training environments
  publication-title: Int. J. Comput. Assist. Radiol. Surg.
  doi: 10.1007/s11548-015-1274-2
– volume: 93
  start-page: 921
  year: 2006
  end-page: 928
  ident: CR1
  article-title: Systematic review of laparoscopic versus open surgery for colorectal cancer
  publication-title: Br. J. Surg.
  doi: 10.1002/bjs.5430
– volume: 27
  start-page: 187
  year: 2024
  end-page: 196
  ident: CR34
  article-title: Automatic surgical phase recognition-based skill assessment in laparoscopic distal gastrectomy using multicenter videos
  publication-title: Gastric Cancer
  doi: 10.1007/s10120-023-01450-w
– volume: 2018
  start-page: 9873273
  year: 2018
  ident: CR31
  article-title: Feasibility of an AI-based measure of the hand motions of expert and novice surgeons
  publication-title: Comput. Math. Methods Med.
  doi: 10.1155/2018/9873273
– volume: 33
  start-page: 3732
  year: 2019
  end-page: 3740
  ident: CR30
  article-title: Sensor-based machine learning for workflow detection and as key to detect expert level in laparoscopic suturing and knot-tying
  publication-title: Surg. Endosc.
  doi: 10.1007/s00464-019-06667-4
– volume: 15
  start-page: 619
  year: 2022
  end-page: 628
  ident: CR3
  article-title: Laparoscopic surgical skill evaluation with motion capture and eyeglass gaze cameras: A pilot study
  publication-title: Asian J. Endosc. Surg.
  doi: 10.1111/ases.13065
– volume: 22
  start-page: 497
  year: 2015
  end-page: 504
  ident: CR9
  article-title: Comparison of long-term outcomes of colonic stent as "bridge to surgery" and emergency surgery for malignant large-bowel obstruction: a meta-analysis
  publication-title: Ann. Surg. Oncol.
  doi: 10.1245/s10434-014-3997-7
– volume: 46
  start-page: 750
  year: 2016
  end-page: 756
  ident: CR12
  article-title: Evaluation of the 10-year history of a 2-day standardized laparoscopic surgical skills training program at Kyushu University
  publication-title: Surg. Today
  doi: 10.1007/s00595-015-1227-y
– volume: 39
  start-page: 175
  year: 2007
  end-page: 191
  ident: CR20
  article-title: G*Power 3: A flexible statistical power analysis program for the social, behavioral, and biomedical sciences
  publication-title: Behav. Res. Methods
  doi: 10.3758/BF03193146
– ident: CR27
– volume: 14
  start-page: 1089
  year: 2019
  end-page: 1095
  ident: CR32
  article-title: Prediction of laparoscopic procedure duration using unlabeled, multimodal sensor data
  publication-title: Int. J. Comput. Assist. Radiol. Surg.
  doi: 10.1007/s11548-019-01966-6
– volume: 11
  start-page: 22571
  year: 2021
  ident: CR21
  article-title: Automated recognition of objects and types of forceps in surgical images using deep learning
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-021-01911-1
– volume: 21
  start-page: 1991
  year: 2007
  end-page: 1995
  ident: CR8
  article-title: FLS simulator performance predicts intraoperative laparoscopic skill
  publication-title: Surg. Endosc.
  doi: 10.1007/s00464-007-9451-1
– volume: 188
  start-page: 8
  year: 2014
  end-page: 13
  ident: CR28
  article-title: Analysis of hand motion differentiates expert and novice surgeons
  publication-title: J. Surg. Res.
  doi: 10.1016/j.jss.2013.12.009
– volume: 39
  start-page: 3679
  year: 2020
  end-page: 3690
  ident: CR23
  article-title: Optimization for medical image segmentation: theory and practice when evaluating with dice score or jaccard index
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2020.3002417
– volume: 29
  start-page: 2491
  year: 2015
  end-page: 2495
  ident: CR11
  article-title: Construct validity and educational role for motion analysis in a laparoscopic trainer
  publication-title: Surg. Endosc.
  doi: 10.1007/s00464-014-3988-6
– volume: 190
  start-page: 107
  year: 2005
  end-page: 113
  ident: CR6
  article-title: A global assessment tool for evaluation of intraoperative laparoscopic skills
  publication-title: Am. J. Surg.
  doi: 10.1016/j.amjsurg.2005.04.004
– volume: 109
  start-page: 3716
  year: 2012
  end-page: 3720
  ident: CR19
  article-title: Musical rhythm spectra from Bach to Joplin obey a 1/f power law
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.1113828109
– volume: 4
  start-page: 721
  year: 2020
  end-page: 734
  ident: CR5
  article-title: Clinical impact of Endoscopic Surgical Skill Qualification System (ESSQS) by Japan Society for Endoscopic Surgery (JSES) for laparoscopic distal gastrectomy and low anterior resection based on the National Clinical Database (NCD) registry
  publication-title: Ann. Gastroenterol. Surg.
  doi: 10.1002/ags3.12384
– volume: 16
  start-page: 328
  year: 2007
  end-page: 340
  ident: CR14
  article-title: Systems for tracking minimally invasive surgical instruments
  publication-title: Minim. Invasive Ther. Allied Technol.
  doi: 10.1080/13645700701702135
– volume: 35
  start-page: 1521
  year: 2021
  end-page: 1533
  ident: CR15
  article-title: Deep learning visual analysis in laparoscopic surgery: A systematic review and diagnostic test accuracy meta-analysis
  publication-title: Surg. Endosc.
  doi: 10.1007/s00464-020-08168-1
– volume: 41
  year: 2014
  ident: CR22
  article-title: Deformable image registration based automatic CT-to-CT contour propagation for head and neck adaptive radiotherapy in the routine clinical setting
  publication-title: Med. Phys.
  doi: 10.1118/1.4901409
– volume: 17
  start-page: 1525
  year: 2003
  end-page: 1529
  ident: CR2
  article-title: Fundamental principles of validation, and reliability: Rigorous science for the assessment of surgical education and training
  publication-title: Surg. Endosc.
  doi: 10.1007/s00464-003-0035-4
– volume: 18
  start-page: 494
  year: 2011
  end-page: 499
  ident: CR25
  article-title: Intracorporeal suturing: Economy of instrument movements using a box trainer model
  publication-title: J. Minim. Invasive Gynecol.
  doi: 10.1016/j.jmig.2011.04.003
– volume: 19
  start-page: 18
  year: 2010
  end-page: 23
  ident: CR4
  article-title: Skill accreditation system for laparoscopic gastroenterologic surgeons in Japan
  publication-title: Minim. Invas. Ther. All. Technol.
  doi: 10.3109/13645700903492969
– volume: 11
  start-page: 21198
  year: 2021
  ident: CR18
  article-title: Automated segmentation by deep learning of loose connective tissue fibers to define safe dissection planes in robot-assisted gastrectomy
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-021-00557-3
– volume: 41
  year: 2014
  ident: 63388_CR22
  publication-title: Med. Phys.
  doi: 10.1118/1.4901409
– volume: 11
  start-page: 573
  year: 2020
  ident: 63388_CR29
  publication-title: Indian J Surg Oncol
  doi: 10.1007/s13193-020-01166-8
– volume: 4
  start-page: 721
  year: 2020
  ident: 63388_CR5
  publication-title: Ann. Gastroenterol. Surg.
  doi: 10.1002/ags3.12384
– volume: 11
  start-page: 21198
  year: 2021
  ident: 63388_CR18
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-021-00557-3
– volume: 190
  start-page: 107
  year: 2005
  ident: 63388_CR6
  publication-title: Am. J. Surg.
  doi: 10.1016/j.amjsurg.2005.04.004
– volume: 29
  start-page: 2491
  year: 2015
  ident: 63388_CR11
  publication-title: Surg. Endosc.
  doi: 10.1007/s00464-014-3988-6
– volume: 18
  start-page: 494
  year: 2011
  ident: 63388_CR25
  publication-title: J. Minim. Invasive Gynecol.
  doi: 10.1016/j.jmig.2011.04.003
– volume: 93
  start-page: 921
  year: 2006
  ident: 63388_CR1
  publication-title: Br. J. Surg.
  doi: 10.1002/bjs.5430
– volume: 16
  start-page: 328
  year: 2007
  ident: 63388_CR14
  publication-title: Minim. Invasive Ther. Allied Technol.
  doi: 10.1080/13645700701702135
– volume: 230
  start-page: 725
  year: 2020
  ident: 63388_CR33
  publication-title: J. Am. Coll. Surg.
  doi: 10.1016/j.jamcollsurg.2020.01.037
– volume: 188
  start-page: 8
  year: 2014
  ident: 63388_CR28
  publication-title: J. Surg. Res.
  doi: 10.1016/j.jss.2013.12.009
– volume: 9
  start-page: 1030846
  year: 2022
  ident: 63388_CR10
  publication-title: Front. Robot. AI
  doi: 10.3389/frobt.2022.1030846
– volume: 22
  start-page: 497
  year: 2015
  ident: 63388_CR9
  publication-title: Ann. Surg. Oncol.
  doi: 10.1245/s10434-014-3997-7
– volume: 4
  start-page: 1
  year: 2018
  ident: 63388_CR13
  publication-title: Surg. Case Rep.
  doi: 10.1186/s40792-018-0509-1
– volume: 39
  start-page: 175
  year: 2007
  ident: 63388_CR20
  publication-title: Behav. Res. Methods
  doi: 10.3758/BF03193146
– volume: 14
  start-page: 1089
  year: 2019
  ident: 63388_CR32
  publication-title: Int. J. Comput. Assist. Radiol. Surg.
  doi: 10.1007/s11548-019-01966-6
– volume: 19
  start-page: 18
  year: 2010
  ident: 63388_CR4
  publication-title: Minim. Invas. Ther. All. Technol.
  doi: 10.3109/13645700903492969
– volume: 8
  start-page: 23748
  year: 2020
  ident: 63388_CR17
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2969885
– volume: 11
  start-page: 543
  year: 2016
  ident: 63388_CR26
  publication-title: Int. J. Comput. Assist. Radiol. Surg.
  doi: 10.1007/s11548-015-1274-2
– volume: 46
  start-page: 750
  year: 2016
  ident: 63388_CR12
  publication-title: Surg. Today
  doi: 10.1007/s00595-015-1227-y
– volume: 33
  start-page: 3732
  year: 2019
  ident: 63388_CR30
  publication-title: Surg. Endosc.
  doi: 10.1007/s00464-019-06667-4
– volume: 109
  start-page: 3716
  year: 2012
  ident: 63388_CR19
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.1113828109
– volume: 27
  start-page: 187
  year: 2024
  ident: 63388_CR34
  publication-title: Gastric Cancer
  doi: 10.1007/s10120-023-01450-w
– volume: 35
  start-page: 1521
  year: 2021
  ident: 63388_CR15
  publication-title: Surg. Endosc.
  doi: 10.1007/s00464-020-08168-1
– ident: 63388_CR27
  doi: 10.1109/IEMBS.1997.756890
– volume: 16
  start-page: 640
  year: 2002
  ident: 63388_CR24
  publication-title: Surg. Endosc.
  doi: 10.1007/s004640080081
– volume: 17
  start-page: 1525
  year: 2003
  ident: 63388_CR2
  publication-title: Surg. Endosc.
  doi: 10.1007/s00464-003-0035-4
– volume: 39
  start-page: 3679
  year: 2020
  ident: 63388_CR23
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2020.3002417
– volume: 11
  start-page: 22571
  year: 2021
  ident: 63388_CR21
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-021-01911-1
– volume: 72
  start-page: 351
  year: 2015
  ident: 63388_CR7
  publication-title: J. Surg. Educ.
  doi: 10.1016/j.jsurg.2014.08.006
– volume: 15
  start-page: 619
  year: 2022
  ident: 63388_CR3
  publication-title: Asian J. Endosc. Surg.
  doi: 10.1111/ases.13065
– ident: 63388_CR16
  doi: 10.1109/WACV.2018.00081
– volume: 2018
  start-page: 9873273
  year: 2018
  ident: 63388_CR31
  publication-title: Comput. Math. Methods Med.
  doi: 10.1155/2018/9873273
– volume: 21
  start-page: 1991
  year: 2007
  ident: 63388_CR8
  publication-title: Surg. Endosc.
  doi: 10.1007/s00464-007-9451-1
SSID ssib045319080
ssib045319113
ssib045318930
ssib045319110
ssib045318929
ssib045318928
ssj0000529419
ssib045319075
Score 2.4386482
Snippet The advent of Artificial Intelligence (AI)-based object detection technology has made identification of position coordinates of surgical instruments from...
Abstract The advent of Artificial Intelligence (AI)-based object detection technology has made identification of position coordinates of surgical instruments...
SourceID doaj
proquest
pubmed
crossref
springer
nii
SourceType Open Website
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 12432
SubjectTerms 692/308
692/4020
Algorithms
Artificial Intelligence
Biomechanical Phenomena
Clinical Competence
Female
Gastrectomy
Gastrectomy - methods
Gastrointestinal surgery
Humanities and Social Sciences
Humans
Kinematics
Laparoscopy
Laparoscopy - methods
Male
Medical instruments
Medicine
multidisciplinary
Q
R
ROC Curve
Science
Science (multidisciplinary)
Surgeons
Video Recording - methods
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB6hCiQuqLxTWmQkbmA1jh3H4QaIikNVcQDUm-VXUMQ2qdgFaY_8c2bi7HYRrwuXHBzbsmfGmZnY32eAp9LoznQx8SRU5KpNHXcyBR6wOgYMqa4nLMzH0-bszJyft-92rvqiM2GZHjgL7lh1QfvaeEw8nFK-cmVHe3PSuzppoyN9fTHq2UmmMqt31SrRziiZUprjJXoqQpNVimtMywxf_-SJJsJ-9C9D3_8u1vxln3RyPyf7cGuOG9nLPN7bcC0Nd-BGvklyfRe-n6LTI2LK8bIPLFJQuGCfHCFBwmq8WLPl536xYFfc3oxwJYxAeOML5hgG14xkkfkkWL9D1MnJ0UUsIqpZ-pfI-jgfMco9ZTLoe_Dh5M3712_5fLsCD7UpV7xO3geV0IU7iU4plqUTQkaP4k1N6VFIPmDaXYUQZRDGYywQhHeYsiTT6hTlfdgbxiE9BNY2IlQ-EUo1qFh5Q4DdIHUwWmGTpgCxkbQNM_U43YCxsNMWuDQ2a8eiduykHbsu4Nm2zWUm3vhr7VekwG1NIs2eCtCU7GxK9l-mVMARqh9HSE9hGsy2aozIFMEQKyl1AYcbw7DzSl9aTLlQJK0RqoAn29e4RmnjxQ1p_DrVkQoTuwol8SAb1HakOHxBhD4FPN9Y2FXnf57wwf-Y8CO4WdGCoMMQ5SHsoRmlI7gevq365ZfH04r6AQsuIoo
  priority: 102
  providerName: Directory of Open Access Journals
Title Laparoscopic distal gastrectomy skill evaluation from video: a new artificial intelligence-based instrument identification system
URI https://cir.nii.ac.jp/crid/1872555066419982336
https://link.springer.com/article/10.1038/s41598-024-63388-y
https://www.ncbi.nlm.nih.gov/pubmed/38816459
https://www.proquest.com/docview/3062309814
https://www.proquest.com/docview/3063457627
https://doaj.org/article/4fc6b58b407a44b2a0f28703ba5e686d
Volume 14
WOSCitedRecordID wos001236334900062&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals (ODIN)
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: DOA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources (ISSN International Center)
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: M~E
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Biological Science Database
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: M7P
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Health & Medical Collection (ProQuest)
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: 7X7
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: BENPR
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: PIMPY
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Science Database
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: M2P
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/sciencejournals
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB7RFiQuvB-BdmUkbmA1jp3E4YIoagVSu4oQoOUUxY9UEctm6S5Ie-SfM-Nkd0FAL1x8cJxoYo89L883AE-lzhrdOM-9UI6rwje8lt5yi8NRYfBpGnJhPp7m47GeTIpycLgthmuV6zMxHNSus-QjP0TVFrXlQgv1cv6VU9Uoiq4OJTR2YI9QEmS4uldufCwUxVKiGHJlYqkPFyivKKcsUTxD40zz1W_yKMD2o5SZte3fNM4_oqVBCJ3c_F_yb8GNQf1kr3p-uQ1X_OwOXOsLUq7uwo9TlJ2Eb9nNW8sc6ZZTdl5TQolddl9WbPG5nU7ZFiKcUXoKo1y-7gWrGerojHixh6Vg7S94n5zkpcMuQqwllyRr3XBTqf9Sjyl9Dz6cHL9__YYPRRq4TXW85Kk3xiqPmkAtUba5OK6FkM40ifZ5bHCWjUXrPbHWSSu0QZXCClPjZHhdZN7J-7A762b-IbAiFzYxnpJdrXKJ0ZT3a2VmdabwlTwCsV6qyg4I5lRIY1qFSLrUVb-8FS5vFZa3WkXwbPPOvMfvuHT0EXHAZiRhb4eO7uK8GrZypRqbmVQbNIVrpUxSxw1Fi6WpU5_pzEVwgPyDFFIrdI5GW4qKnaJsxkTKLIL9NYtUw4GxqLb8EcGTzWPc6hS_qWe--xbGSIX2YYIz8aDnyA2lSL4gXKAInq9ZdPvxf__wo8tpeQzXE9ordFsi3oddZBB_AFft92W7uBjBTj7JQ6tHsHd0PC7fjYJPA9uzpByFzYhPyrdn5aefPBs3hQ
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB6VFAQX3g9DC4sEJ7Dq9a6dNRJCvKpGTaMeCmpPi_fhyiLEoQmgHPlD_EZm_EhAQG89cMnBWW_Wzjevnf1mAB4JlRaqcD70XLpQZr4Ic-FtaHE4Ogw-SWouzPthfzRSh4fZ_hr86LgwdKyy04m1onaVpT3yLXRt0VvOFJcvpp9D6hpF2dWuhUYDi12_-IYh2-z54A3-v4_jePvtweudsO0qENpERfMw8cZY6dF05QKVsYuinHPhTBEr349MKoSxGG7G1jphuTJoAy03Of64V1nqncB5z8G6RLCrHqzvD_b2j5a7OpQ3kzxr2TmRUFsztJDEYotliFMjLBe_WcC6UQDatUlZ_s3H_SM_W5u97Sv_2wu7CpdbB5u9bCTiGqz5yXW40LTcXNyA70P0DqiCZzUtLXPkPY_ZcU6UGTuvPi3Y7GM5HrNVEXRGBBxGbMXqGcsZRiGMpK0pvMHKXyqahuQROLxENXlp05WVrj2L1czUVM2-Ce_O5PlvQW9STfwdYFmf29h4ovNa6WKjiNlsRWpVKvGWfgC8g4a2bY12ahUy1vVZAaF0AyeNcNI1nPQigCfLe6ZNhZJTR78ixC1HUnXx-kJ1cqxbZaVlYVOTKIPBfi6lifOooHy4MHniU5W6ADYRr7hC-uSqj2Fpgq6rJL5mLEQawEYHSd2qxJle4TGAh8uvUZlRhiqf-OpLPUZIjIBjfBO3GwlYrhSXz6nyUQBPO5FYTf7vB757-loewMWdg72hHg5Gu_fgUkxySmdDog3oIVj8Jpy3X-fl7OR-K-oMPpy1sPwE0JqQWQ
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lj9MwEB4ty0NceD8Cu2AkOEHUxHYSBwkhYKlYbVX1AGhvJn5kFVGasi2gHvlb_Dpm8mhBwN72wKWH1LGc5JuXPfMNwEOh0lKVzoc-li6UuS_DQngbWhyODoNPkqYW5v0oG4_V4WE-2YIffS0MpVX2OrFR1K62tEc-QNcWveVcxXJQdmkRk73h8_nnkDpI0Ulr306jhciBX33D8G3xbH8Pv_Ujzoev3756E3YdBkKbqGgZJt4YKz2asUKgYnZRVMSxcKbkymeRSYUwFkNPbq0TNlYG7aGNTYEL8SpPvRM47xk4mxFpeZM2OFnv79AJmozzrk4nEmqwQFtJ9WxchjgxAnT1my1sWgaghZtV1d-83T9OahsDOLz8P7-6K3Cpc7vZi1ZOrsKWn12D820jztV1-D5Cn4F4Pet5ZZkjn3rKjgoqpLHL-tOKLT5W0ynbUKMzKsthVMNYP2UFw9iEkQy2dBys-oXnNCQ_weElYuqlrVhWuS5Dq52p5dK-Ae9O5flvwvasnvnbwPIsttx4KvK10nGjqN7ZitSqVOItWQBxDxNtO-Z2aiAy1U0GgVC6hZZGaOkGWnoVwOP1PfOWt-TE0S8JfeuRxDneXKiPj3SnwrQsbWoSZWSUFVIaXkQlnZILUyQ-VakLYBexiyuk31hlGKwm6NBKquLkQqQB7PTw1J2iXOgNNgN4sP4bVRydWxUzX39pxgiJcTHHN3GrlYb1SnH5MfEhBfCkF4_N5P9-4Dsnr-U-XEAJ0aP98cFduMhJZClhJNqBbcSK34Vz9uuyWhzfa2SewYfTlpSfFIOXmA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Laparoscopic+distal+gastrectomy+skill+evaluation+from+video%3A+a+new+artificial+intelligence-based+instrument+identification+system&rft.jtitle=Scientific+reports&rft.au=Matsumoto%2C+Shiro&rft.au=Kawahira%2C+Hiroshi&rft.au=Fukata%2C+Kyohei&rft.au=Doi%2C+Yasunori&rft.date=2024-05-30&rft.eissn=2045-2322&rft.volume=14&rft.issue=1&rft.spage=12432&rft_id=info:doi/10.1038%2Fs41598-024-63388-y&rft_id=info%3Apmid%2F38816459&rft.externalDocID=38816459
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon