Pro-B cells sense productive immunoglobulin heavy chain rearrangement irrespective of polypeptide production
B-lymphocyte development is dictated by the protein products of functionally rearranged Ig heavy (H) and light (L) chain genes. Ig rearrangement begins in pro-B cells at the IgH locus. If pro-B cells generate a productive allele, they assemble a pre-B cell receptor complex, which signals their diffe...
Gespeichert in:
| Veröffentlicht in: | Proceedings of the National Academy of Sciences - PNAS Jg. 108; H. 26; S. 10644 |
|---|---|
| Hauptverfasser: | , , , , , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
United States
28.06.2011
|
| Schlagworte: | |
| ISSN: | 1091-6490, 1091-6490 |
| Online-Zugang: | Weitere Angaben |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Zusammenfassung: | B-lymphocyte development is dictated by the protein products of functionally rearranged Ig heavy (H) and light (L) chain genes. Ig rearrangement begins in pro-B cells at the IgH locus. If pro-B cells generate a productive allele, they assemble a pre-B cell receptor complex, which signals their differentiation into pre-B cells and their clonal expansion. Pre-B cell receptor signals are also thought to contribute to allelic exclusion by preventing further IgH rearrangements. Here we show in two independent mouse models that the accumulation of a stabilized μH mRNA that does not encode μH chain protein specifically impairs pro-B cell differentiation and reduces the frequency of rearranged IgH genes in a dose-dependent manner. Because noncoding IgH mRNA is usually rapidly degraded by the nonsense-mediated mRNA decay machinery, we propose that the difference in mRNA stability allows pro-B cells to distinguish between productive and nonproductive Ig gene rearrangements and that μH mRNA may thus contribute to efficient H chain allelic exclusion. |
|---|---|
| Bibliographie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| ISSN: | 1091-6490 1091-6490 |
| DOI: | 10.1073/pnas.1019224108 |