Roles of extracellular vesicles in the aging microenvironment and age‐related diseases
Cellular senescence is a persistently hypoproliferative state with diverse stressors in a specific aging microenvironment. Senescent cells have a double‐edged sword effect: they can be physiologically beneficial for tissue repair, organ growth, and body homeostasis, and they can be pathologically ha...
Uloženo v:
| Vydáno v: | Journal of extracellular vesicles Ročník 10; číslo 12; s. e12154 - n/a |
|---|---|
| Hlavní autoři: | , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
United States
John Wiley & Sons, Inc
01.10.2021
John Wiley and Sons Inc Wiley |
| Témata: | |
| ISSN: | 2001-3078, 2001-3078 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Cellular senescence is a persistently hypoproliferative state with diverse stressors in a specific aging microenvironment. Senescent cells have a double‐edged sword effect: they can be physiologically beneficial for tissue repair, organ growth, and body homeostasis, and they can be pathologically harmful in age‐related diseases. Among the hallmarks of senescence, the SASP, especially SASP‐related extracellular vesicle (EV) signalling, plays the leading role in aging transmission via paracrine and endocrine mechanisms. EVs are successful in intercellular and interorgan communication in the aging microenvironment and age‐related diseases. They have detrimental effects on downstream targets at the levels of immunity, inflammation, gene expression, and metabolism. Furthermore, EVs obtained from different donors are also promising materials and tools for antiaging treatments and are used for regeneration and rejuvenation in cell‐free systems. Here, we describe the characteristics of cellular senescence and the aging microenvironment, concentrating on the production and function of EVs in age‐related diseases, and provide new ideas for antiaging therapy with EVs. |
|---|---|
| AbstractList | Cellular senescence is a persistently hypoproliferative state with diverse stressors in a specific aging microenvironment. Senescent cells have a double‐edged sword effect: they can be physiologically beneficial for tissue repair, organ growth, and body homeostasis, and they can be pathologically harmful in age‐related diseases. Among the hallmarks of senescence, the SASP, especially SASP‐related extracellular vesicle (EV) signalling, plays the leading role in aging transmission via paracrine and endocrine mechanisms. EVs are successful in intercellular and interorgan communication in the aging microenvironment and age‐related diseases. They have detrimental effects on downstream targets at the levels of immunity, inflammation, gene expression, and metabolism. Furthermore, EVs obtained from different donors are also promising materials and tools for antiaging treatments and are used for regeneration and rejuvenation in cell‐free systems. Here, we describe the characteristics of cellular senescence and the aging microenvironment, concentrating on the production and function of EVs in age‐related diseases, and provide new ideas for antiaging therapy with EVs. Cellular senescence is a persistently hypoproliferative state with diverse stressors in a specific aging microenvironment. Senescent cells have a double-edged sword effect: they can be physiologically beneficial for tissue repair, organ growth, and body homeostasis, and they can be pathologically harmful in age-related diseases. Among the hallmarks of senescence, the SASP, especially SASP-related extracellular vesicle (EV) signalling, plays the leading role in aging transmission via paracrine and endocrine mechanisms. EVs are successful in intercellular and interorgan communication in the aging microenvironment and age-related diseases. They have detrimental effects on downstream targets at the levels of immunity, inflammation, gene expression, and metabolism. Furthermore, EVs obtained from different donors are also promising materials and tools for antiaging treatments and are used for regeneration and rejuvenation in cell-free systems. Here, we describe the characteristics of cellular senescence and the aging microenvironment, concentrating on the production and function of EVs in age-related diseases, and provide new ideas for antiaging therapy with EVs.Cellular senescence is a persistently hypoproliferative state with diverse stressors in a specific aging microenvironment. Senescent cells have a double-edged sword effect: they can be physiologically beneficial for tissue repair, organ growth, and body homeostasis, and they can be pathologically harmful in age-related diseases. Among the hallmarks of senescence, the SASP, especially SASP-related extracellular vesicle (EV) signalling, plays the leading role in aging transmission via paracrine and endocrine mechanisms. EVs are successful in intercellular and interorgan communication in the aging microenvironment and age-related diseases. They have detrimental effects on downstream targets at the levels of immunity, inflammation, gene expression, and metabolism. Furthermore, EVs obtained from different donors are also promising materials and tools for antiaging treatments and are used for regeneration and rejuvenation in cell-free systems. Here, we describe the characteristics of cellular senescence and the aging microenvironment, concentrating on the production and function of EVs in age-related diseases, and provide new ideas for antiaging therapy with EVs. Abstract Cellular senescence is a persistently hypoproliferative state with diverse stressors in a specific aging microenvironment. Senescent cells have a double‐edged sword effect: they can be physiologically beneficial for tissue repair, organ growth, and body homeostasis, and they can be pathologically harmful in age‐related diseases. Among the hallmarks of senescence, the SASP, especially SASP‐related extracellular vesicle (EV) signalling, plays the leading role in aging transmission via paracrine and endocrine mechanisms. EVs are successful in intercellular and interorgan communication in the aging microenvironment and age‐related diseases. They have detrimental effects on downstream targets at the levels of immunity, inflammation, gene expression, and metabolism. Furthermore, EVs obtained from different donors are also promising materials and tools for antiaging treatments and are used for regeneration and rejuvenation in cell‐free systems. Here, we describe the characteristics of cellular senescence and the aging microenvironment, concentrating on the production and function of EVs in age‐related diseases, and provide new ideas for antiaging therapy with EVs. |
| Author | Chen, Huihui Yin, Yujia Wang, Xipeng Zhang, Ludi Wang, Yizhi |
| AuthorAffiliation | 1 Department of Obstetrics and Gynecology Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine Shanghai China 2 State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences Chinese Academy of Sciences, University of Chinese Academy of Sciences Shanghai China |
| AuthorAffiliation_xml | – name: 2 State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences Chinese Academy of Sciences, University of Chinese Academy of Sciences Shanghai China – name: 1 Department of Obstetrics and Gynecology Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine Shanghai China |
| Author_xml | – sequence: 1 givenname: Yujia surname: Yin fullname: Yin, Yujia organization: Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine – sequence: 2 givenname: Huihui surname: Chen fullname: Chen, Huihui organization: Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine – sequence: 3 givenname: Yizhi surname: Wang fullname: Wang, Yizhi organization: Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine – sequence: 4 givenname: Ludi surname: Zhang fullname: Zhang, Ludi organization: Chinese Academy of Sciences, University of Chinese Academy of Sciences – sequence: 5 givenname: Xipeng surname: Wang fullname: Wang, Xipeng email: wangxipeng@xinhuamed.com.cn organization: Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/34609061$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kt9qFTEQxoNUbK298QFkwRsRTs3f3c2NUErVSkEQFe_C7Gb2NIfdpCa7R3vnI_iMPonZbi1tEZOLhMxvPuabzGOy44NHQp4yesgo5a82uOWHjDMlH5A9TilbCVrVO7fuu-QgpQ3NS0umav2I7ApZUk1Ltke-fgw9piJ0Bf4YI7TY91MPsdhicu0ccb4Yz7GAtfPrYnBtDOi3LgY_oB8L8DaH8PfPXxF7GNEW1iWEhOkJedhBn_Dg-twnn9-cfDp-tzr78Pb0-Ohs1aqaylUpaqy6poKuqVVXtsraiutGsKriyBSnmqO0YAG0YGXelgGTrRCV1pyXKPbJ6aJrA2zMRXQDxEsTwJmrhxDXBuI4ezGNRcmkECBLIbMMoNRKSdFUikOHZdZ6vWhdTM2Ats0OI_R3RO9GvDs367A1tdSMU5kFXlwLxPBtwjSawaW5p-AxTMlwVelcuah1Rp_fQzdhij63yohsWkjFKMvUs9sV3ZTy9wMz8HIB8sekFLG7QRg184CYeUDM1YBkmN6DWzfC6MLsxvX_TmFLynfX4-V_xM37ky98yfkDhBDM2g |
| CitedBy_id | crossref_primary_10_1186_s40035_024_00397_x crossref_primary_10_3390_ijms24044250 crossref_primary_10_1007_s11357_024_01454_z crossref_primary_10_1186_s12951_022_01529_z crossref_primary_10_1007_s10522_025_10226_x crossref_primary_10_1186_s40364_024_00661_2 crossref_primary_10_1016_j_jare_2025_07_039 crossref_primary_10_4252_wjsc_v16_i12_1002 crossref_primary_10_3389_fchem_2022_844124 crossref_primary_10_3389_fimmu_2022_1019313 crossref_primary_10_46889_JCIM_2025_6201 crossref_primary_10_1007_s10522_023_10030_5 crossref_primary_10_1016_j_jece_2023_111771 crossref_primary_10_1042_BSR20221775 crossref_primary_10_1016_j_phrs_2025_107591 crossref_primary_10_1186_s13578_022_00815_5 crossref_primary_10_1177_03000605251317476 crossref_primary_10_1002_adhm_202400945 crossref_primary_10_3892_mmr_2025_13642 crossref_primary_10_1016_j_matdes_2025_114331 crossref_primary_10_1016_j_abb_2024_109953 crossref_primary_10_1186_s40779_024_00537_4 crossref_primary_10_1038_s41392_023_01343_5 crossref_primary_10_1186_s12979_024_00472_x crossref_primary_10_1096_fj_202500244RRR crossref_primary_10_3389_fendo_2024_1422279 crossref_primary_10_1007_s12265_022_10217_0 crossref_primary_10_1016_j_mam_2022_101155 crossref_primary_10_3390_life12101472 crossref_primary_10_1111_imm_13592 crossref_primary_10_1016_j_mad_2024_112003 crossref_primary_10_3390_antiox14020177 crossref_primary_10_1038_s41598_025_06030_9 crossref_primary_10_1093_burnst_tkac037 crossref_primary_10_3389_fcell_2023_1323678 crossref_primary_10_3389_fimmu_2024_1363185 crossref_primary_10_3390_antiox11010066 crossref_primary_10_3892_ijo_2024_5653 crossref_primary_10_1002_jev2_12353 crossref_primary_10_1016_j_arr_2024_102273 crossref_primary_10_3389_fimmu_2024_1354065 crossref_primary_10_3390_pharmaceutics16111439 crossref_primary_10_3389_fendo_2023_1133280 crossref_primary_10_3390_biom13010165 crossref_primary_10_3390_life14050541 crossref_primary_10_1186_s43556_022_00113_z crossref_primary_10_1007_s11033_024_10073_y crossref_primary_10_3389_fcvm_2022_956482 crossref_primary_10_3389_fimmu_2022_955175 crossref_primary_10_1111_acel_14356 crossref_primary_10_1111_cpr_13795 crossref_primary_10_1016_j_bbamcr_2025_119905 crossref_primary_10_3390_ijms23031543 crossref_primary_10_1002_jev2_12483 crossref_primary_10_1111_acel_14359 crossref_primary_10_3389_fnagi_2024_1453710 crossref_primary_10_3390_cells11243950 crossref_primary_10_1002_jex2_64 crossref_primary_10_1186_s13287_025_04140_9 crossref_primary_10_3389_fcvm_2022_888390 crossref_primary_10_1111_acel_13915 crossref_primary_10_1007_s12602_025_10666_4 crossref_primary_10_1002_mog2_94 crossref_primary_10_1016_j_jconrel_2025_113796 crossref_primary_10_1016_j_intimp_2025_114757 crossref_primary_10_1016_j_phymed_2025_156714 crossref_primary_10_1002_adbi_202400148 crossref_primary_10_1159_000543386 crossref_primary_10_1016_j_actbio_2022_07_015 crossref_primary_10_1016_j_critrevonc_2025_104658 crossref_primary_10_3390_ijms232314759 crossref_primary_10_3390_ijms23095136 crossref_primary_10_1111_acel_13920 crossref_primary_10_3390_ijms232314632 crossref_primary_10_1089_ten_tec_2023_0051 crossref_primary_10_3389_fimmu_2022_943321 crossref_primary_10_1002_cyto_a_24852 crossref_primary_10_2147_IJN_S548986 crossref_primary_10_1038_s43587_024_00694_0 crossref_primary_10_1186_s12951_024_02603_4 crossref_primary_10_1016_j_bioactmat_2025_08_039 crossref_primary_10_3103_S0095452725040024 crossref_primary_10_1038_s12276_023_01059_0 crossref_primary_10_1186_s12951_024_02818_5 crossref_primary_10_1007_s00391_022_02150_3 crossref_primary_10_2147_IJN_S424731 crossref_primary_10_1186_s12951_024_02766_0 crossref_primary_10_3390_biomedicines12071469 crossref_primary_10_5507_bp_2024_002 crossref_primary_10_1155_2022_6742792 crossref_primary_10_1186_s10020_024_00887_8 crossref_primary_10_3390_cells12162086 crossref_primary_10_3389_fcell_2022_999600 crossref_primary_10_1186_s12951_023_02085_w crossref_primary_10_3390_ijms26010225 crossref_primary_10_3390_ijms24032421 crossref_primary_10_1002_adtp_202400150 crossref_primary_10_1038_s41368_023_00228_1 crossref_primary_10_3892_or_2025_8932 crossref_primary_10_3390_molecules29050948 crossref_primary_10_1002_1873_3468_14963 |
| Cites_doi | 10.1016/j.neuint.2018.11.018 10.1039/C9PP00421A 10.1016/j.freeradbiomed.2016.11.035 10.1016/j.jconrel.2015.03.033 10.1016/j.molcel.2019.02.038 10.3109/14647273.2014.897006 10.1001/jamaneurol.2019.2462 10.1016/j.ccell.2018.06.007 10.1038/s41467-018-03555-8 10.1126/science.aax0860 10.1080/20013078.2020.1800971 10.1089/ten.tea.2016.0525 10.1038/s41467-019-12821-2 10.1038/ncomms15287 10.1126/science.aau6977 10.1016/j.cellsig.2021.110007 10.1161/CIRCRESAHA.117.311326 10.1016/j.omtn.2020.05.013 10.1038/ncomms6379 10.2147/IJN.S170680 10.1016/j.redox.2017.08.015 10.1038/ncb3586 10.1002/stem.2756 10.1161/CIRCRESAHA.117.311769 10.1038/s41598-019-45676-0 10.1074/mcp.M115.049718 10.14336/AD.2019.1230 10.1038/s41388-018-0521-8 10.1371/journal.pone.0008758 10.18632/aging.102441 10.1016/j.celrep.2019.05.095 10.1021/acs.nanolett.8b04148 10.1016/j.jhep.2019.09.014 10.1016/j.freeradbiomed.2019.11.032 10.3390/ijms17071168 10.1080/15548627.2017.1395992 10.1007/s13238-020-00728-4 10.1038/s41568-020-00299-w 10.3389/fimmu.2020.00422 10.1038/s42255-020-00307-1 10.1038/s41419-017-0069-5 10.1111/acel.12587 10.5483/BMBRep.2019.52.1.290 10.1155/2019/9739258 10.1038/s41569-018-0059-z 10.1186/s40478-015-0251-x 10.1101/gad.331272.119 10.1038/s41467-019-09720-x 10.3389/fonc.2019.01373 10.3390/cells8091059 10.1038/s41467-020-17133-4 10.3390/jcm8050617 10.1161/ATVBAHA.118.311576 10.1016/j.cmet.2017.04.021 10.1080/20013078.2019.1684862 10.1016/j.tcb.2018.02.001 10.1073/pnas.1505962112 10.1155/2018/3183794 10.3390/ijms21239130 10.18632/aging.101760 10.1056/NEJMp2006761 10.1038/nrrheum.2016.65 10.1158/0008-5472.CAN-19-2348 10.1126/science.abb5916 10.1016/j.neulet.2018.05.017 10.15252/embr.202050718 10.3390/ijms19113515 10.1016/j.cmet.2016.05.011 10.1080/20013078.2019.1565885 10.1016/j.nbd.2018.11.002 10.1038/s41586-019-1607-3 10.1038/s41467-018-07825-3 10.1016/j.tem.2019.07.015 10.1016/j.taap.2013.03.015 10.1016/j.freeradbiomed.2018.10.417 10.1038/cddis.2014.481 10.1186/s13024-016-0143-y 10.1038/s41580-019-0199-y 10.1038/s41580-020-00314-w 10.1016/j.arr.2014.10.004 10.1074/jbc.M114.588046 10.1038/s41556-019-0287-4 10.1172/jci.insight.133668 10.1038/s41598-017-01964-1 10.1016/j.celrep.2019.06.031 10.1038/s41591-018-0092-9 10.1186/s13287-020-01681-z 10.1111/jcmm.14635 10.1186/s12964-020-00624-8 10.3389/fonc.2020.589908 10.1016/j.yexcr.2020.111927 10.1530/REP-11-0371 10.1016/j.cell.2013.02.035 10.1038/s41586-020-2403-9 10.1093/brain/awv346 10.1038/s41422-020-00409-1 10.1158/1541-7786.MCR-18-0891 10.1155/2016/2989076 10.1016/j.cell.2020.01.009 10.1016/j.biochi.2018.05.015 10.3390/ijms21010343 10.1016/j.lfs.2019.116582 10.1038/s41598-020-57663-x 10.18632/aging.101202 10.1111/cas.13184 10.1038/s41467-020-16312-7 10.1016/j.yjmcc.2015.10.022 10.3233/JAD-181272 10.1111/acel.12075 10.1038/nm.4324 10.1038/s41467-020-20711-1 10.18632/aging.102863 10.1038/cddis.2017.446 10.1111/trf.13896 10.1186/s13287-019-1253-6 10.3390/antiox10020156 10.1126/science.aaf4445 10.3390/ijms21103720 10.1016/j.exger.2019.110752 10.1002/stem.2645 10.3390/ijms22073367 10.3390/jcm9020504 10.15252/embj.201592862 10.1161/CIRCRESAHA.118.311378 10.1093/nar/gky087 10.1080/20013078.2020.1725285 10.1111/jcmm.13471 10.7150/thno.22565 10.1002/ana.25172 10.1038/s41568-019-0222-9 10.1038/s41598-017-01905-y 10.1016/j.arr.2020.101251 10.1080/15548627.2019.1643657 10.18632/aging.102557 10.1155/2018/7156435 10.18632/aging.101191 10.1158/2159-8290.CD-16-0908 10.1016/0014-4827(61)90192-6 10.1128/MCB.00611-16 10.1002/jcp.27107 10.1073/pnas.1515386112 10.1038/s41467-020-16347-w 10.1038/emboj.2011.69 10.1016/j.yexcr.2020.111957 10.3390/ijms160921294 10.1016/j.tcb.2017.07.004 10.1021/acsnano.9b04384 10.1186/s13287-020-01777-6 10.1007/s40618-015-0273-z 10.1080/15548627.2016.1247143 10.1038/nature23282 10.1002/advs.201903330 10.1016/j.arr.2018.08.003 10.1016/j.thromres.2018.07.030 10.1016/j.cmet.2017.09.012 10.2174/1570161116666180820115726 10.1002/ana.25557 10.18632/aging.100971 10.1016/j.ebiom.2019.08.069 10.1038/ncb2784 10.1016/j.ebiom.2019.01.056 10.3390/cells8060608 10.1016/j.cmet.2019.05.015 10.3389/fphys.2021.604738 10.3389/fimmu.2018.01789 10.1111/j.1742-4658.2009.06949.x 10.1016/j.tcb.2014.08.007 10.1038/nm.2014 10.1016/j.ymthe.2020.09.037 10.1016/j.cell.2008.06.049 10.1021/acsnano.8b09417 10.1016/j.cell.2017.02.031 10.1172/jci.insight.125019 10.1126/scitranslmed.aaf9440 10.1161/ATVBAHA.117.309795 10.1038/s41467-017-00314-z 10.18632/aging.101689 10.1152/ajpcell.00520.2019 10.3390/cells9071618 10.1172/JCI85510 10.1038/ncomms15728 10.1016/j.molcel.2013.08.029 10.1038/s41586-020-2630-0 10.18632/aging.103441 10.1016/j.yjmcc.2020.04.032 10.1165/rcmb.2020-0002OC 10.1039/C9NR02791B 10.1101/gad.290635.116 10.1038/ncomms10872 10.1111/acel.13067 10.3390/cells8010037 10.1126/science.aax9552 10.1186/s13148-015-0093-1 10.1016/j.cell.2016.01.043 10.1007/s00109-019-01810-z 10.3390/biom10060957 10.1007/s00401-018-1948-2 10.1074/jbc.M114.585703 10.1111/acel.12344 10.1111/j.1474-9726.2012.00818.x 10.1080/15476286.2016.1203503 10.1165/rcmb.2018-0062OC 10.1161/CIRCRESAHA.118.312751 10.1038/ncb3195 10.1155/2017/7197598 10.3390/ijms20040805 10.1016/j.jalz.2019.05.002 10.1038/s41419-019-1739-2 10.18632/oncotarget.6158 10.1038/oncsis.2017.46 10.1016/j.msec.2019.01.122 10.1016/j.bone.2014.10.014 10.1074/jbc.M112.445403 10.18632/aging.101041 10.1016/j.cmet.2020.06.004 10.1155/2017/4814987 10.1073/pnas.1910574116 10.1667/RR14201.1 10.1073/pnas.0802781105 10.1016/j.jaut.2020.102463 10.1007/s12265-018-9847-4 10.1038/nature10600 10.1111/acel.12794 10.1007/s10522-015-9610-z 10.1016/j.molcel.2017.08.013 10.1016/j.omtn.2019.09.003 10.1111/j.1600-0854.2010.01041.x 10.1016/j.celrep.2020.107987 10.1002/jcsm.12334 10.1038/s41419-019-1404-9 10.1111/acel.12484 10.3233/JAD-190656 10.7150/thno.18915 10.1016/j.actbio.2020.01.040 10.1002/sctm.19-0327 10.1007/s13238-019-0612-5 10.1016/j.cmet.2020.11.019 10.2337/db17-1308 10.1002/stem.2996 10.1016/j.neulet.2018.12.030 10.1016/j.cell.2017.08.035 10.1038/s41467-020-18039-x 10.1161/CIRCRESAHA.118.314601 10.1371/journal.pbio.3000599 10.1111/ggi.13928 10.1111/all.14429 10.1080/20013078.2017.1317577 10.1016/S0005-2728(98)00161-3 10.1158/2159-8290.CD-16-0217 10.1186/s13287-019-1534-0 10.1016/j.tibs.2020.03.008 10.1016/j.cell.2019.12.035 10.1101/gad.271882.115 10.1186/s40478-017-0470-4 10.18632/aging.103366 10.1016/j.biocel.2019.105564 10.1111/liv.14569 10.1038/s41591-019-0719-5 10.1016/j.cmet.2013.10.001 10.1111/cas.14266 10.1080/20013078.2020.1766822 10.1172/JCI70577 10.1161/JAHA.119.012584 10.1002/advs.202001334 10.2147/IJN.S249751 10.3389/fphys.2017.00275 10.1038/ncomms4729 10.18632/aging.202658 10.1158/0008-5472.CAN-20-0506 10.1371/journal.pone.0188840 10.1111/acel.12675 10.1186/s13046-021-01883-0 10.1128/JVI.01310-13 10.1038/nn.4132 10.1186/s12967-020-02398-6 10.1158/1535-7163.MCT-12-1242 10.3390/ijms19061715 10.1038/s41467-019-09030-2 10.1038/s41413-019-0056-9 10.1016/j.neurobiolaging.2019.10.010 10.1038/s41467-019-13894-9 10.1016/j.redox.2021.102032 10.18632/aging.101874 10.1038/s41418-018-0255-8 10.1126/science.aaa5612 10.1093/molehr/gaaa068 10.1083/jcb.201206006 10.1016/j.cmet.2015.11.011 10.1016/j.ebiom.2018.12.052 10.3389/fimmu.2019.00862 10.1016/j.neurobiolaging.2017.09.016 10.1071/RD14452 10.1126/scisignal.aah6671 10.1016/j.bbadis.2019.165608 |
| ContentType | Journal Article |
| Copyright | 2021 The Authors. published by Wiley Periodicals, LLC on behalf of the International Society for Extracellular Vesicles 2021 The Authors. Journal of Extracellular Vesicles published by Wiley Periodicals, LLC on behalf of the International Society for Extracellular Vesicles. 2021. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: 2021 The Authors. published by Wiley Periodicals, LLC on behalf of the International Society for Extracellular Vesicles – notice: 2021 The Authors. Journal of Extracellular Vesicles published by Wiley Periodicals, LLC on behalf of the International Society for Extracellular Vesicles. – notice: 2021. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | 24P AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QP 7X8 5PM DOA |
| DOI | 10.1002/jev2.12154 |
| DatabaseName | Wiley Online Library Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Calcium & Calcified Tissue Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Calcium & Calcified Tissue Abstracts MEDLINE - Academic |
| DatabaseTitleList | Calcium & Calcified Tissue Abstracts MEDLINE - Academic CrossRef MEDLINE |
| Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Biology |
| DocumentTitleAlternate | YIN et al |
| EISSN | 2001-3078 |
| EndPage | n/a |
| ExternalDocumentID | oai_doaj_org_article_bde41433a46341a1ae495543b752afe6 PMC8491204 34609061 10_1002_jev2_12154 JEV212154 |
| Genre | reviewArticle Research Support, Non-U.S. Gov't Journal Article Review |
| GrantInformation_xml | – fundername: National Key Research and Development Plan(CN) funderid: 2020YFC2002800 – fundername: National Key Research and Development Plan(CN) grantid: 2020YFC2002800 |
| GroupedDBID | 0R~ 0YH 1OC 24P 53G 5VS 8FE 8FH 8WT AAHHS AAHJG ABDBF ABMDY ABQXS ACCFJ ACCMX ACESK ACGFS ACPRK ACUHS ADBBV ADRAZ AEEZP AEGXH AEQDE AFKRA AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN AOIJS BAWUL BBNVY BCNDV BENPR BHPHI CCPQU DIK EBS EJD GROUPED_DOAJ GX1 H13 HCIFZ HYE IAO IHR INH IPNFZ ITC KQ8 LK8 M48 M4Z M7P M~E OK1 PIMPY PROAC RIG RNS RPM TDBHL TFW AAMMB AAYXX AEFGJ AFFHD AGXDD AIDQK AIDYY CITATION PHGZM PHGZT PQGLB WIN CGR CUY CVF ECM EIF NPM 7QP 7X8 5PM |
| ID | FETCH-LOGICAL-c5804-638e7fb7afb85f6c5dd729b31772e152092e4dadaa9316161d1a14c33799226e3 |
| IEDL.DBID | 24P |
| ISICitedReferencesCount | 128 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000703473000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2001-3078 |
| IngestDate | Fri Oct 03 12:43:18 EDT 2025 Thu Aug 21 14:09:58 EDT 2025 Thu Oct 02 05:48:59 EDT 2025 Wed Aug 13 09:59:18 EDT 2025 Thu Apr 03 06:53:10 EDT 2025 Tue Nov 18 21:23:52 EST 2025 Sat Nov 29 07:04:54 EST 2025 Wed Jan 22 16:27:18 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 12 |
| Keywords | age-related diseases aging microenvironment cellular senescence extracellular vesicles antiaging therapy |
| Language | English |
| License | Attribution-NonCommercial-NoDerivs http://creativecommons.org/licenses/by-nc-nd/4.0 2021 The Authors. Journal of Extracellular Vesicles published by Wiley Periodicals, LLC on behalf of the International Society for Extracellular Vesicles. This is an open access article under the terms of the http://creativecommons.org/licenses/by-nc-nd/4.0/ License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non‐commercial and no modifications or adaptations are made. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c5804-638e7fb7afb85f6c5dd729b31772e152092e4dadaa9316161d1a14c33799226e3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
| OpenAccessLink | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fjev2.12154 |
| PMID | 34609061 |
| PQID | 3092345101 |
| PQPubID | 2030046 |
| PageCount | 35 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_bde41433a46341a1ae495543b752afe6 pubmedcentral_primary_oai_pubmedcentral_nih_gov_8491204 proquest_miscellaneous_2579379389 proquest_journals_3092345101 pubmed_primary_34609061 crossref_primary_10_1002_jev2_12154 crossref_citationtrail_10_1002_jev2_12154 wiley_primary_10_1002_jev2_12154_JEV212154 |
| PublicationCentury | 2000 |
| PublicationDate | October 2021 2021-10-00 20211001 2021-10-01 |
| PublicationDateYYYYMMDD | 2021-10-01 |
| PublicationDate_xml | – month: 10 year: 2021 text: October 2021 |
| PublicationDecade | 2020 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States – name: Abingdon – name: Hoboken |
| PublicationTitle | Journal of extracellular vesicles |
| PublicationTitleAlternate | J Extracell Vesicles |
| PublicationYear | 2021 |
| Publisher | John Wiley & Sons, Inc John Wiley and Sons Inc Wiley |
| Publisher_xml | – name: John Wiley & Sons, Inc – name: John Wiley and Sons Inc – name: Wiley |
| References | 2011; 479 2021; 66 2020; 20 2019b; 12 2019; 11 2019b; 11 2019; 10 2019; 13 2019; 17 2020; 16 2016; 30 2019; 19 2020; 15 2019; 18 2016; 2016 2008; 105 2020; 12 2020; 11 2020; 10 2012; 11 2016; 35 2020; 19 2020; 18 2017b; 12 2019; 20 2019; 21 2013; 51 2019; 23 2019; 26 2019; 28 2019; 27 2010; 5 2017; 169 2021; 84 2021; 45 2020; 383 2013; 87 2018a; 123 2019; 30 2020; 40 2020; 143 2017; 67 2019; 39 2020; 149 2019; 38 2020; 34 2020; 33 2020; 32 2016; 17 2016; 15 2016; 13 2016; 12 2016; 6 2016; 7 2019; 40 2019; 41 2020; 390 2015; 112 2017; 57 2019; 47 2020; 26 2020; 21 2008; 134 2016; 8 2016; 23 2019a; 10 2020; 63 2019; 52 2020; 368 2013; 201 2018; 83 2020; 367 2020; 7 2013; 18 2017; 31 2020; 5 2013; 15 2014; 5 2019; 60 2015; 290 2020; 2 2017; 37 2013; 12 2017; 35 2020; 9 2019; 69 2016; 354 2020; 45 2019a; 15 2019a; 13 2014; 289 2015; 6 2019; 72 2015; 3 2017; 2017 2017; 26 2020; 86 2018a; 22 2019; 74 2017; 25 2020; 583 2018a; 24 2017; 27 2019; 76 2020; 80 2017; 23 2020; 105 2020; 585 2016; 126 2018; 67 2015; 7 2017; 108 2019b; 234 2018; 2018 2019; 86 2020; 75 2021 2018b; 61 2020; 72 2020 2017; 10 2017; 13 2017; 12 2017; 19 2020; 111 2016; 139 2017; 102 2010; 11 2019; 2019 2015; 70 2019; 99 2019b; 99 2018; 47 2018; 46 2020a; 31 2015; 89 2018; 9 2018; 8 2018; 170 2020; 1866 2014; 17 2018; 34 2018; 32 2018; 38 2009; 15 2018; 36 2014; 124 2019; 8 2019; 9 2018; 28 2019; 4 2017a; 16 2014; 2014 2016; 164 2017; 548 2018; 19 2020a; 11 2018; 17 2019; 696 2021; 371 2019; 697 2020b; 369 2019a; 37 2018; 10 2020; 318 2018b; 19 2018; 15 2019; 574 2018; 14 2018; 13 2018b; 17 2017; 5 2017; 6 2018; 122 2017; 7 2017; 8 2019a; 97 2015; 38 2021; 22 2021; 29 2018; 123 2013; 288 2019; 127 2009; 276 2019; 124 2019; 125 2015; 349 2019; 128 2020c; 18 2017; 9 2019; 116 2019; 114 1999; 1410 2013; 153 2021; 40 2020b; 32 2019; 232 2015; 14 2015; 17 2019b; 7 2015; 16 2012; 144 2015; 18 2020; 180 2013; 269 2020a; 112 2011; 30 2017; 171 2015; 207 2015; 24 2021; 13 2018; 155 2015; 25 2021; 10 2015; 27 2021; 12 2019; 137 2017; 187 2020b; 12 1961; 25 2019; 132 e_1_2_8_241_1 e_1_2_8_287_1 e_1_2_8_264_1 e_1_2_8_26_1 e_1_2_8_49_1 e_1_2_8_203_1 e_1_2_8_249_1 e_1_2_8_226_1 e_1_2_8_132_1 e_1_2_8_178_1 e_1_2_8_9_1 e_1_2_8_117_1 e_1_2_8_170_1 e_1_2_8_193_1 e_1_2_8_64_1 e_1_2_8_87_1 e_1_2_8_301_1 e_1_2_8_41_1 e_1_2_8_230_1 e_1_2_8_253_1 e_1_2_8_15_1 e_1_2_8_38_1 e_1_2_8_291_1 Mangelinck A. (e_1_2_8_166_1) 2020 e_1_2_8_238_1 e_1_2_8_215_1 e_1_2_8_299_1 e_1_2_8_143_1 e_1_2_8_189_1 e_1_2_8_91_1 e_1_2_8_99_1 e_1_2_8_105_1 Jia L. (e_1_2_8_122_1) 2020; 19 e_1_2_8_128_1 e_1_2_8_181_1 Bian X. (e_1_2_8_28_1) 2020; 11 e_1_2_8_53_1 e_1_2_8_76_1 e_1_2_8_30_1 Isermann A. (e_1_2_8_115_1) 2020; 21 e_1_2_8_242_1 e_1_2_8_265_1 e_1_2_8_25_1 e_1_2_8_280_1 e_1_2_8_48_1 e_1_2_8_227_1 e_1_2_8_288_1 e_1_2_8_204_1 e_1_2_8_2_1 e_1_2_8_133_1 e_1_2_8_179_1 e_1_2_8_110_1 e_1_2_8_171_1 e_1_2_8_302_1 e_1_2_8_86_1 e_1_2_8_118_1 e_1_2_8_194_1 Calcinotto A. (e_1_2_8_36_1) 2019; 99 e_1_2_8_63_1 e_1_2_8_40_1 e_1_2_8_156_1 e_1_2_8_254_1 Chen Y. (e_1_2_8_47_1) 2020; 33 e_1_2_8_292_1 e_1_2_8_37_1 e_1_2_8_239_1 e_1_2_8_216_1 e_1_2_8_277_1 Azarm K. (e_1_2_8_14_1) 2020; 11 e_1_2_8_144_1 e_1_2_8_90_1 e_1_2_8_121_1 e_1_2_8_98_1 e_1_2_8_106_1 e_1_2_8_182_1 e_1_2_8_75_1 e_1_2_8_129_1 e_1_2_8_52_1 e_1_2_8_167_1 e_1_2_8_220_1 e_1_2_8_281_1 e_1_2_8_228_1 e_1_2_8_266_1 e_1_2_8_205_1 e_1_2_8_289_1 e_1_2_8_81_1 e_1_2_8_111_1 e_1_2_8_7_1 e_1_2_8_20_1 e_1_2_8_43_1 e_1_2_8_66_1 e_1_2_8_89_1 e_1_2_8_119_1 e_1_2_8_195_1 e_1_2_8_303_1 e_1_2_8_134_1 e_1_2_8_157_1 e_1_2_8_17_1 e_1_2_8_232_1 e_1_2_8_293_1 e_1_2_8_270_1 e_1_2_8_217_1 e_1_2_8_255_1 e_1_2_8_278_1 e_1_2_8_70_1 Fibach E. (e_1_2_8_77_1) 2021; 12 e_1_2_8_160_1 e_1_2_8_32_1 e_1_2_8_55_1 e_1_2_8_78_1 e_1_2_8_107_1 e_1_2_8_183_1 e_1_2_8_145_1 e_1_2_8_168_1 e_1_2_8_93_1 e_1_2_8_221_1 e_1_2_8_282_1 e_1_2_8_27_1 e_1_2_8_229_1 e_1_2_8_244_1 e_1_2_8_267_1 Liu P. (e_1_2_8_155_1) 2020; 10 e_1_2_8_206_1 Zhang S. (e_1_2_8_290_1) 2021; 12 e_1_2_8_80_1 e_1_2_8_8_1 e_1_2_8_42_1 e_1_2_8_88_1 e_1_2_8_65_1 e_1_2_8_173_1 e_1_2_8_112_1 e_1_2_8_158_1 e_1_2_8_196_1 e_1_2_8_135_1 e_1_2_8_39_1 e_1_2_8_210_1 e_1_2_8_271_1 e_1_2_8_294_1 e_1_2_8_16_1 e_1_2_8_218_1 e_1_2_8_233_1 e_1_2_8_256_1 e_1_2_8_279_1 e_1_2_8_92_1 Jia J. (e_1_2_8_120_1) 2014; 2014 e_1_2_8_100_1 e_1_2_8_161_1 e_1_2_8_31_1 e_1_2_8_54_1 e_1_2_8_108_1 e_1_2_8_184_1 e_1_2_8_123_1 e_1_2_8_169_1 e_1_2_8_146_1 Datta R. (e_1_2_8_56_1) 2017; 37 e_1_2_8_283_1 e_1_2_8_68_1 e_1_2_8_260_1 Lia G. (e_1_2_8_151_1) 2020; 11 e_1_2_8_222_1 e_1_2_8_207_1 Fafian‐Labora J. (e_1_2_8_71_1) 2020; 11 e_1_2_8_245_1 e_1_2_8_5_1 Meyer K. (e_1_2_8_172_1) 2017; 26 En A. (e_1_2_8_69_1) 2020; 390 e_1_2_8_22_1 e_1_2_8_45_1 e_1_2_8_113_1 e_1_2_8_136_1 e_1_2_8_159_1 e_1_2_8_174_1 e_1_2_8_197_1 Oh B. M. (e_1_2_8_190_1) 2017; 8 e_1_2_8_60_1 e_1_2_8_83_1 e_1_2_8_19_1 e_1_2_8_295_1 e_1_2_8_109_1 e_1_2_8_272_1 e_1_2_8_57_1 Basu A. (e_1_2_8_24_1) 2021 e_1_2_8_211_1 Zhou Y. (e_1_2_8_298_1) 2019; 10 e_1_2_8_234_1 e_1_2_8_95_1 e_1_2_8_219_1 e_1_2_8_162_1 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_101_1 e_1_2_8_124_1 e_1_2_8_147_1 e_1_2_8_185_1 e_1_2_8_72_1 e_1_2_8_284_1 Yang J. (e_1_2_8_276_1) 2019; 23 e_1_2_8_261_1 e_1_2_8_200_1 e_1_2_8_223_1 e_1_2_8_246_1 e_1_2_8_269_1 e_1_2_8_152_1 e_1_2_8_208_1 e_1_2_8_6_1 e_1_2_8_21_1 e_1_2_8_67_1 e_1_2_8_44_1 e_1_2_8_137_1 e_1_2_8_175_1 e_1_2_8_82_1 e_1_2_8_114_1 e_1_2_8_198_1 e_1_2_8_18_1 e_1_2_8_273_1 e_1_2_8_296_1 e_1_2_8_250_1 e_1_2_8_79_1 e_1_2_8_212_1 e_1_2_8_235_1 e_1_2_8_258_1 e_1_2_8_94_1 e_1_2_8_163_1 e_1_2_8_140_1 e_1_2_8_10_1 e_1_2_8_33_1 e_1_2_8_102_1 e_1_2_8_148_1 e_1_2_8_186_1 e_1_2_8_125_1 e_1_2_8_262_1 e_1_2_8_285_1 e_1_2_8_224_1 e_1_2_8_201_1 e_1_2_8_247_1 e_1_2_8_3_1 e_1_2_8_130_1 e_1_2_8_153_1 e_1_2_8_209_1 Tesei A. (e_1_2_8_243_1) 2021; 40 e_1_2_8_138_1 e_1_2_8_62_1 e_1_2_8_85_1 e_1_2_8_176_1 e_1_2_8_199_1 e_1_2_8_251_1 e_1_2_8_297_1 e_1_2_8_274_1 e_1_2_8_13_1 e_1_2_8_59_1 e_1_2_8_213_1 e_1_2_8_259_1 e_1_2_8_236_1 e_1_2_8_141_1 e_1_2_8_164_1 e_1_2_8_97_1 Strzeszewska A. (e_1_2_8_231_1) 2018; 9 e_1_2_8_149_1 e_1_2_8_51_1 e_1_2_8_74_1 e_1_2_8_103_1 e_1_2_8_126_1 e_1_2_8_187_1 e_1_2_8_240_1 e_1_2_8_263_1 e_1_2_8_286_1 e_1_2_8_46_1 e_1_2_8_180_1 Wu S. F. (e_1_2_8_268_1) 2020; 18 e_1_2_8_202_1 e_1_2_8_225_1 e_1_2_8_248_1 e_1_2_8_154_1 e_1_2_8_4_1 e_1_2_8_131_1 e_1_2_8_192_1 e_1_2_8_300_1 e_1_2_8_116_1 e_1_2_8_23_1 e_1_2_8_139_1 e_1_2_8_84_1 e_1_2_8_61_1 e_1_2_8_177_1 Wang W. (e_1_2_8_257_1) 2018; 32 e_1_2_8_252_1 e_1_2_8_275_1 e_1_2_8_35_1 e_1_2_8_58_1 e_1_2_8_191_1 e_1_2_8_214_1 e_1_2_8_237_1 e_1_2_8_165_1 e_1_2_8_96_1 e_1_2_8_142_1 e_1_2_8_127_1 e_1_2_8_12_1 Bodega G. (e_1_2_8_29_1) 2017; 2017 e_1_2_8_73_1 e_1_2_8_50_1 e_1_2_8_104_1 Li Y. (e_1_2_8_150_1) 2020; 18 e_1_2_8_188_1 |
| References_xml | – volume: 318 start-page: C1005 year: 2020 end-page: C1017 article-title: Irradiation‐induced senescence of bone marrow mesenchymal stem cells aggravates osteogenic differentiation dysfunction via paracrine signaling publication-title: American Journal of Physiology: Cell Physiology – volume: 12 year: 2017b article-title: The release and trans‐synaptic transmission of Tau via exosomes publication-title: Molecular Neurodegeneration – volume: 30 start-page: 1536 year: 2011 end-page: 1548 article-title: p38MAPK is a novel DNA damage response‐independent regulator of the senescence‐associated secretory phenotype publication-title: EMBO Journal – volume: 9 year: 2018 article-title: Insight into the role of PIKK family members and NF‐small ka, CyrillicB in DNAdamage‐induced senescence and senescence‐associated secretory phenotype of colon cancer cells publication-title: Cell Death & Disease – volume: 367 year: 2020 article-title: The biology, function, and biomedical applications of exosomes publication-title: Science – volume: 11 year: 2020 article-title: Extracellular vesicles after allogeneic hematopoietic cell transplantation: Emerging role in post‐transplant complications publication-title: Frontiers in Immunology – volume: 19 issue: 6 year: 2018b article-title: Exosomes derived from human induced pluripotent stem cells ameliorate the aging of skin fibroblasts publication-title: International Journal of Molecular Science – volume: 21 year: 2020 article-title: Non‐canonical ATM/MRN activities temporally define the senescence secretory program publication-title: EMBO Reports – volume: 124 start-page: 163 year: 2019 end-page: 175 article-title: Portrait of blood‐derived extracellular vesicles in patients with Parkinson's disease publication-title: Neurobiology of Disease – volume: 25 start-page: 585 year: 1961 end-page: 621 article-title: The serial cultivation of human diploid cell strains publication-title: Experimental Cell Research – volume: 349 year: 2015 article-title: The DNA damage response induces inflammation and senescence by inhibiting autophagy of GATA4 publication-title: Science – volume: 12 year: 2017 article-title: Extracellular vesicles released by fibroblasts undergoing H‐Ras induced senescence show changes in lipid profile publication-title: Plos One – volume: 7 year: 2016 article-title: Osteoclast‐derived exosomal miR‐214‐3p inhibits osteoblastic bone formation publication-title: Nature Communications – volume: 17 year: 2016 article-title: Inflammaging and frailty status do not result in an increased extracellular vesicle concentration in circulation publication-title: International Journal of Molecular Science – volume: 9 start-page: 975 year: 2018 end-page: 986 article-title: Angiotensin‐converting enzyme 2 deficiency accelerates and angiotensin 1–7 restores age‐related muscle weakness in mice publication-title: Journal of Cachexia Sarcopenia Muscle – volume: 269 start-page: 89 year: 2013 end-page: 99 article-title: Quercitrin protects skin from UVB‐induced oxidative damage publication-title: Toxicology and Applied Pharmacology – volume: 12 start-page: 12324 year: 2020 end-page: 12341 article-title: Ovarian aging increases small extracellular vesicle CD81(+) release in human follicular fluid and influences miRNA profiles publication-title: Aging (Albany NY) – volume: 35 start-page: 1973 year: 2017 end-page: 1983 article-title: IP6K1 reduces mesenchymal stem/stromal cell fitness and potentiates high fat diet‐induced skeletal involution publication-title: Stem Cells – volume: 33 start-page: 395 year: 2020 end-page: 410 article-title: Aging reprograms the hematopoietic‐vascular niche to impede regeneration and promote fibrosis publication-title: Cell Metabolism – volume: 37 start-page: 779 year: 2019a end-page: 790 article-title: Highly purified human extracellular vesicles produced by stem cells alleviate aging cellular phenotypes of senescent human cells publication-title: Stem Cells – volume: 15 start-page: 543 year: 2018 end-page: 554 article-title: Mitochondrial quality control mechanisms as molecular targets in cardiac ageing publication-title: Nature Reviews Cardiology – volume: 144 start-page: 235 year: 2012 end-page: 244 article-title: Differentially expressed plasma microRNAs in premature ovarian failure patients and the potential regulatory function of mir‐23a in granulosa cell apoptosis publication-title: Reproduction (Cambridge, England) – volume: 8 start-page: 2171 year: 2018 end-page: 2188 article-title: Adipocyte‐derived exosomal MiR‐27a induces insulin resistance in skeletal muscle through repression of PPARgamma publication-title: Theranostics – volume: 63 start-page: 623 year: 2020 end-page: 636 article-title: Extracellular vesicles from fibroblasts induce epithelial cell senescence in pulmonary fibrosis publication-title: The American Journal of Respiratory Cell and Molecular Biology – volume: 16 start-page: 878 year: 2020 end-page: 899 article-title: Reducing INS‐IGF1 signaling protects against non‐cell autonomous vesicle rupture caused by SNCA spreading publication-title: Autophagy – volume: 574 start-page: 268 year: 2019 end-page: 272 article-title: Inducing and exploiting vulnerabilities for the treatment of liver cancer publication-title: Nature – volume: 7 year: 2017 article-title: Gender‐specific differential expression of exosomal miRNA in synovial fluid of patients with osteoarthritis publication-title: Scientific Reports – volume: 7 year: 2019b article-title: Extracellular vesicles from human urine‐derived stem cells prevent osteoporosis by transferring CTHRC1 and OPG publication-title: Bone Research – volume: 11 start-page: 483 year: 2020 end-page: 504 article-title: SIRT7 antagonizes human stem cell aging as a heterochromatin stabilizer publication-title: Protein Cell – volume: 10 year: 2020 article-title: Astrocyte support for oligodendrocyte differentiation can be conveyed via extracellular vesicles but diminishes with age publication-title: Scientific Reports – volume: 32 year: 2020 article-title: Nicotinamide mononucleotide supplementation reverses the declining quality of maternally aged oocytes publication-title: Cell Reproduction. – volume: 86 start-page: 593 year: 2019 end-page: 606 article-title: Increased immune activation by pathologic alpha‐synuclein in Parkinson's disease publication-title: Annals of Neurology – volume: 9 start-page: 778 year: 2017 end-page: 789 article-title: Microvesicles from the plasma of elderly subjects and from senescent endothelial cells promote vascular calcification publication-title: Aging (Albany NY) – volume: 23 start-page: 7617 year: 2019 end-page: 7631 article-title: Exosomes derived from pro‐inflammatory bone marrow‐derived mesenchymal stem cells reduce inflammation and myocardial injury via mediating macrophage polarization publication-title: Journal of Cellular and Molecular Medicine – volume: 17 start-page: 90 year: 2014 end-page: 98 article-title: Age‐associated differential microRNA levels in human follicular fluid reveal pathways potentially determining fertility and success of in vitro fertilization publication-title: Human Fertility (Cambridge, England) – volume: 12 start-page: 412 year: 2016 end-page: 420 article-title: Ageing and the pathogenesis of osteoarthritis publication-title: Nature Reviews Rheumatology – volume: 8 year: 2019 article-title: Very long‐chain c24:1 ceramide is increased in serum extracellular vesicles with aging and can induce senescence in bone‐derived mesenchymal stem cells publication-title: Cells – volume: 26 start-page: 1845 year: 2019 end-page: 1858 article-title: Genomic stability, anti‐inflammatory phenotype, and up‐regulation of the RNAseH2 in cells from centenarians publication-title: Cell Death & Differentiation – volume: 72 start-page: 156 year: 2020 end-page: 166 article-title: Hepatocyte‐derived extracellular vesicles promote endothelial inflammation and atherogenesis via microRNA‐1 publication-title: Journal of Hepatology – volume: 19 year: 2018 article-title: Oncogenic H‐ras expression induces fatty acid profile changes in human fibroblasts and extracellular vesicles publication-title: International Journal of Molecular Sciences – volume: 19 start-page: 1061 year: 2017 end-page: 1070 article-title: Innate immune sensing of cytosolic chromatin fragments through cGAS promotes senescence publication-title: Nature Cell Biology – volume: 289 start-page: 22258 year: 2014 end-page: 22267 article-title: Exosome uptake through clathrin‐mediated endocytosis and macropinocytosis and mediating miR‐21 delivery publication-title: Journal of Biological Chemistry – volume: 368 start-page: 1371 year: 2020 end-page: 1376 article-title: T cells with dysfunctional mitochondria induce multimorbidity and premature senescence publication-title: Science – volume: 548 start-page: 52 year: 2017 end-page: 57 article-title: Hypothalamic stem cells control ageing speed partly through exosomal miRNAs publication-title: Nature – volume: 4 year: 2019 article-title: Senescence cell‐associated extracellular vesicles serve as osteoarthritis disease and therapeutic markers publication-title: JCI Insight – volume: 11 issue: 1 year: 2020 article-title: Regenerative and protective effects of dMSC‐sEVs on high‐glucose‐induced senescent fibroblasts by suppressing RAGE pathway and activating Smad pathway publication-title: Stem Cell Reserach Therapy – volume: 10 issue: 2 year: 2021 article-title: Oxidative stress and gene expression modifications mediated by extracellular vesicles: An in vivo study of the radiation‐induced bystander effect publication-title: Antioxidants (Basel) – volume: 7 start-page: 766 year: 2017 end-page: 781 article-title: Identification of a DNA damage‐induced alternative splicing pathway that regulates p53 and cellular senescence markers publication-title: Cancer Discovery – volume: 23 start-page: 775 year: 2017 end-page: 781 article-title: Local clearance of senescent cells attenuates the development of post‐traumatic osteoarthritis and creates a pro‐regenerative environment publication-title: Nature Medicine – volume: 89 start-page: 268 year: 2015 end-page: 279 article-title: A critical role of cardiac fibroblast‐derived exosomes in activating renin angiotensin system in cardiomyocytes publication-title: The Journal of Molecular Cell Cardiology – volume: 125 start-page: 43 year: 2019 end-page: 52 article-title: Mitochondria are a subset of extracellular vesicles released by activated monocytes and induce type I IFN and TNF responses in endothelial cells publication-title: Circulation Research – volume: 7 year: 2017 article-title: A novel indication for panobinostat as a senolytic drug in NSCLC and HNSCC publication-title: Scientific Reports – volume: 143 start-page: 120 year: 2020 end-page: 131 article-title: Extracellular vesicular MicroRNA‐27a* contributes to cardiac hypertrophy in chronic heart failure publication-title: The Journal of Molecular and Cellular Cardiology – volume: 11 year: 2020 article-title: Mitochondrial phosphatase PGAM5 modulates cellular senescence by regulating mitochondrial dynamics publication-title: Nature Communications – volume: 10 year: 2019 article-title: A secreted microRNA disrupts autophagy in distinct tissues of Caenorhabditis elegans upon ageing publication-title: Nature Communications – volume: 80 start-page: 3383 year: 2020 end-page: 3398 article-title: Senescent stromal cells promote cancer resistance through SIRT1 loss‐potentiated overproduction of small extracellular vesicles publication-title: Cancer Research – volume: 67 start-page: 922 year: 2017 end-page: 935 article-title: mTOR controls mitochondrial dynamics and cell survival via MTFP1 publication-title: Molecular Cell – volume: 16 start-page: 21294 year: 2015 end-page: 21309 article-title: MicroRNAs in salivary exosome as potential biomarkers of aging publication-title: International Journal of Molecular Science – volume: 2017 year: 2017 article-title: Extracellular vesicles from adipose‐derived mesenchymal stem cells downregulate senescence features in osteoarthritic osteoblasts publication-title: Oxidative Medicine and Cellular Longevity – volume: 2019 year: 2019 article-title: Stem cell‐derived exosomes prevent aging‐induced cardiac dysfunction through a novel exosome/lncRNA MALAT1/NF‐kappaB/TNF‐alpha signaling pathway publication-title: Oxidative Medicine and Cellular Longevity – volume: 696 start-page: 114 year: 2019 end-page: 120 article-title: alpha‐Synuclein in salivary extracellular vesicles as a potential biomarker of Parkinson's disease publication-title: Neuroscience Letters – volume: 38 start-page: 865 year: 2015 end-page: 874 article-title: Impaired immune phenotype of circulating endothelial‐derived microparticles in patients with metabolic syndrome and diabetes mellitus publication-title: Journal of Endocrinological Investigation – volume: 32 year: 2018 article-title: Extracellular vesicles extracted from young donor serum attenuate inflammaging via partially rejuvenating aged T‐cell immunotolerance publication-title: FASEB Journal – volume: 2017 year: 2017 article-title: The antioxidant machinery of young and senescent human umbilical vein endothelial cells and their microvesicles publication-title: Oxidative Medicine and Cellular Longevity – volume: 2018 year: 2018 article-title: Aging‐induced biological changes and cardiovascular diseases publication-title: BioMed Research International – volume: 9 year: 2018 article-title: Extracellular vesicles work as a functional inflammatory mediator between vascular endothelial cells and immune cells publication-title: Frontiers in Immunology – volume: 14 start-page: 100 year: 2018 end-page: 115 article-title: Iron accumulation in senescent cells is coupled with impaired ferritinophagy and inhibition of ferroptosis publication-title: Redox Biology – volume: 5 year: 2014 article-title: PKCeta promotes senescence induced by oxidative stress and chemotherapy publication-title: Cell Death & Disease – volume: 12 year: 2021 article-title: The redox balance and membrane shedding in RBC production, maturation, and senescence publication-title: Frontiers in Physiology – volume: 57 start-page: 144 year: 2017 end-page: 156 article-title: Transcriptomic profiling of platelet senescence and platelet extracellular vesicles publication-title: Transfusion – volume: 27 start-page: 820 year: 2017 end-page: 832 article-title: Spatial and temporal control of senescence publication-title: Trends in Cell Biology – volume: 123 start-page: 849 year: 2018 end-page: 867 article-title: Mechanisms of vascular aging publication-title: Circulation Research – volume: 122 start-page: 296 year: 2018 end-page: 309 article-title: Induced Pluripotent Stem Cell (iPSC)‐derived extracellular vesicles are safer and more effective for cardiac repair than iPSCs publication-title: Circulation Research – volume: 11 year: 2020 article-title: Tissue‐infiltrating macrophages mediate an exosome‐based metabolic reprogramming upon DNA damage publication-title: Nature Communications – volume: 11 start-page: 549 year: 2019b end-page: 572 article-title: S100A13 promotes senescence‐associated secretory phenotype and cellular senescence via modulation of non‐classical secretion of IL‐1alpha publication-title: Aging (Albany NY) – volume: 11 start-page: 1791 year: 2019 end-page: 1803 article-title: Muscle‐derived miR‐34a increases with age in circulating extracellular vesicles and induces senescence of bone marrow stem cells publication-title: Aging (Albany NY) – volume: 9 year: 2020 article-title: Astrocyte‐ and neuron‐derived extracellular vesicles from Alzheimer's disease patients effect complement‐mediated neurotoxicity publication-title: Cells – volume: 8 year: 2017 article-title: Identification of HSP90 inhibitors as a novel class of senolytics publication-title: Nature Communications – volume: 27 start-page: 3956 year: 2019 end-page: 3971 article-title: Small extracellular vesicles are key regulators of non‐cell autonomous intercellular communication in senescence via the interferon protein IFITM3 publication-title: Cell Reports – volume: 2018 year: 2018 article-title: Young and especially senescent endothelial microvesicles produce NADPH: The fuel for their antioxidant machinery publication-title: Oxidative Medicine and Cellular Longevity – volume: 5 year: 2014 article-title: Functional characterization of the TERRA transcriptome at damaged telomeres publication-title: Nature Communications – volume: 6 start-page: 37043 year: 2015 end-page: 37053 article-title: Altered microRNA profiles in cerebrospinal fluid exosome in Parkinson disease and Alzheimer disease publication-title: Oncotarget – volume: 21 start-page: 183 year: 2020 end-page: 203 article-title: mTOR at the nexus of nutrition, growth, ageing and disease publication-title: Nature Reviews Molecular Cell Biology – volume: 22 start-page: 1873 year: 2018a end-page: 1882 article-title: ACE2‐EPC‐EXs protect ageing ECs against hypoxia/reoxygenation‐induced injury through the miR‐18a/Nox2/ROS pathway publication-title: Journal of Cellular and Molecular Medicine – volume: 11 start-page: 212 year: 2020 end-page: 215 article-title: The urgent need for international action for antiaging and disease prevention publication-title: Aging Disease – volume: 232 year: 2019 article-title: Exosomal Notch3 from high glucose‐stimulated endothelial cells regulates vascular smooth muscle cells calcification/aging publication-title: Life Science – volume: 21 start-page: 397 year: 2019 end-page: 407 article-title: NAD(+) metabolism governs the proinflammatory senescence‐associated secretome publication-title: Nature Cell Biology – volume: 290 start-page: 2969 year: 2015 end-page: 2982 article-title: Acceleration of alpha‐synuclein aggregation by exosomes publication-title: Journal of Biological Chemistry – volume: 10 year: 2020 article-title: Hepatocellular senescence: Immunosurveillance and future senescence‐induced therapy in hepatocellular carcinoma publication-title: Frontiers in Oncology – volume: 25 start-page: 29 year: 2015 end-page: 36 article-title: Telomere functions grounding on TERRA firma publication-title: Trends in Cell Biology – volume: 52 start-page: 24 year: 2019 end-page: 34 article-title: Sirtuin signaling in cellular senescence and aging publication-title: BMB Reports – volume: 35 start-page: 724 year: 2016 end-page: 742 article-title: Mitochondria are required for pro‐ageing features of the senescent phenotype publication-title: EMBO Journal – volume: 9 year: 2020 article-title: Human ESC‐sEVs alleviate age‐related bone loss by rejuvenating senescent bone marrow‐derived mesenchymal stem cells publication-title: Journal of Extracellular Vesicles – volume: 21 year: 2020 article-title: Derivation of cell‐engineered nanovesicles from human induced pluripotent stem cells and their protective effect on the senescence of dermal fibroblasts publication-title: International Journal of Molecular Science – volume: 7 year: 2015 article-title: Insulin resistance is associated with epigenetic and genetic regulation of mitochondrial DNA in obese humans publication-title: Clinical Epigenetics – volume: 137 start-page: 279 year: 2019 end-page: 296 article-title: Novel tau fragments in cerebrospinal fluid: Relation to tangle pathology and cognitive decline in Alzheimer's disease publication-title: Acta Neuropathologica – volume: 207 start-page: 18 year: 2015 end-page: 30 article-title: Exosomes as drug delivery vehicles for Parkinson's disease therapy publication-title: Journal of Controlled Release – year: 2020 article-title: The H2A.J histone variant contributes to Interferon‐Stimulated Gene expression in senescence by its weak interaction with H1 and the derepression of repeated DNA sequences publication-title: bioRxiv – volume: 11 start-page: 9912 year: 2019 end-page: 9931 article-title: Molecular basis of senescence transmitting in the population of human endometrial stromal cells publication-title: Aging (Albany NY) – volume: 7 start-page: 2673 year: 2017 end-page: 2689 article-title: Microvesicles as potential biomarkers for the identification of senescence in human mesenchymal stem cells publication-title: Theranostics – volume: 170 start-page: 1 year: 2018 end-page: 9 article-title: Selective increase of cardiomyocyte derived extracellular vesicles after experimental myocardial infarction and functional effects on the endothelium publication-title: Thrombosis Research – volume: 41 start-page: 683 year: 2019 end-page: 692 article-title: Senolytics and senostatics as adjuvant tumour therapy publication-title: EBioMedicine – volume: 10 year: 2019 article-title: KIBRA controls exosome secretion via inhibiting the proteasomal degradation of Rab27a publication-title: Nature Communication – volume: 21 year: 2020 article-title: DNA damage regulates senescence‐associated extracellular vesicle release via the ceramide pathway to prevent excessive inflammatory responses publication-title: International Journal of Molecular Science – volume: 31 start-page: 157 year: 2020a end-page: 177 article-title: RAB31 marks and controls an ESCRT‐independent exosome pathway publication-title: Cell Research – volume: 288 start-page: 17713 year: 2013 end-page: 17724 article-title: Exosome uptake depends on ERK1/2‐heat shock protein 27 signaling and lipid Raft‐mediated endocytosis negatively regulated by caveolin‐1 publication-title: The Journal of Biological Chemistry – volume: 14 start-page: 98 year: 2018 end-page: 119 article-title: Autophagy inhibition promotes SNCA/alpha‐synuclein release and transfer via extracellular vesicles with a hybrid autophagosome‐exosome‐like phenotype publication-title: Autophagy – volume: 11 start-page: 12844 year: 2019 end-page: 12861 article-title: Targeting senescent cells: Approaches, opportunities, challenges publication-title: Aging (Albany NY) – volume: 11 year: 2020a article-title: Influence of mesenchymal stem cell‐derived extracellular vesicles in vitro and their role in ageing publication-title: Stem Cell Research Therapy – volume: 13 start-page: 4747 year: 2021 end-page: 4777 article-title: Insights into epithelial cell senescence from transcriptome and secretome analysis of human oral keratinocytes publication-title: Aging – volume: 12 year: 2021 article-title: Metabolic regulation of telomere silencing by SESAME complex‐catalyzed H3T11 phosphorylation publication-title: Nature Communications – volume: 23 start-page: 3993 year: 2019 end-page: 4001 article-title: Decreased HSP70 expression on serum exosomes contributes to cardiac fibrosis during senescence publication-title: European Review for Medical and Pharmacological Sciences – volume: 75 start-page: 2829 year: 2020 end-page: 2845 article-title: Distribution of ACE2, CD147, CD26, and other SARS‐CoV‐2 associated molecules in tissues and immune cells in health and in asthma, COPD, obesity, hypertension, and COVID‐19 risk factors publication-title: Allergy – volume: 149 start-page: 44 year: 2020 end-page: 50 article-title: Extracellular vesicles and redox modulation in aging publication-title: Free Radical Biology and Medicine – volume: 37 start-page: e00611 year: 2017 end-page: e00616 article-title: Myocyte‐derived Hsp90 modulates collagen upregulation via biphasic activation of STAT‐3 in fibroblasts during cardiac hypertrophy publication-title: Molecular Cell Biology – volume: 66 year: 2021 article-title: Senescent cells as promising targets to tackle age‐related diseases publication-title: Ageing Research Reviews – volume: 124 start-page: 2136 year: 2014 end-page: 2146 article-title: Cardiac fibroblast‐derived microRNA passenger strand‐enriched exosomes mediate cardiomyocyte hypertrophy publication-title: Journal of Clinical Investigation – volume: 38 start-page: 1639 year: 2019 end-page: 1650 article-title: mTOR kinase leads to PTEN‐loss‐induced cellular senescence by phosphorylating p53 publication-title: Oncogene – volume: 105 start-page: 15 year: 2020 end-page: 25 article-title: The dual character of exosomes in osteoarthritis: Antagonists and therapeutic agents publication-title: Acta Biomaterial – volume: 585 start-page: 283 year: 2020 end-page: 287 article-title: Age‐induced accumulation of methylmalonic acid promotes tumour progression publication-title: Nature – volume: 17 start-page: 1049 year: 2015 end-page: 1061 article-title: MTOR regulates the pro‐tumorigenic senescence‐associated secretory phenotype by promoting IL1A translation publication-title: Nature Cell Biology – volume: 21 start-page: 37 year: 2020 end-page: 50 article-title: Exosomal miRNA‐320a is released from hAMSCs and regulates SIRT4 to prevent reactive oxygen species generation in POI publication-title: Molecular Therapy Nucleic Acids – volume: 9 year: 2018 article-title: Downregulation of cytoplasmic DNases is implicated in cytoplasmic DNA accumulation and SASP in senescent cells publication-title: Nature Communications – volume: 13 start-page: 99 year: 2017 end-page: 113 article-title: Autophagy impairment with lysosomal and mitochondrial dysfunction is an important characteristic of oxidative stress‐induced senescence publication-title: Autophagy – volume: 10 start-page: 142 year: 2019a article-title: Human embryonic stem cell‐derived exosomes promote pressure ulcer healing in aged mice by rejuvenating senescent endothelial cells publication-title: Stem Cell Research Therapy – volume: 234 start-page: 2905 year: 2019b end-page: 2915 article-title: MiR‐4756 promotes albumin‐induced renal tubular epithelial cell epithelial‐to‐mesenchymal transition and endoplasmic reticulum stress via targeting Sestrin2 publication-title: Journal of Cellular Physiology – volume: 12 start-page: 45 year: 2019b end-page: 50 article-title: Serum extracellular vesicles retard H9C2 cell senescence by suppressing miR‐34a expression publication-title: Journal of Cardiovascular Translational Research – volume: 354 year: 2016 article-title: Tissue damage and senescence provide critical signals for cellular reprogramming in vivo publication-title: Science – volume: 17 start-page: 337 year: 2019 end-page: 347 article-title: Internalization of exosomes through receptor‐mediated endocytosis publication-title: Molecular Cancer Research – volume: 67 start-page: 2377 year: 2018 end-page: 2388 article-title: Altered extracellular vesicle concentration, cargo, and function in diabetes publication-title: Diabetes – volume: 108 start-page: 563 year: 2017 end-page: 569 article-title: Impact of senescence‐associated secretory phenotype and its potential as a therapeutic target for senescence‐associated diseases publication-title: Cancer Science. – volume: 99 start-page: 1047 year: 2019 end-page: 1078 article-title: Cellular senescence: Aging, cancer, and injury publication-title: Mitochondrial Membrane Permeabilization in Cell Death – volume: 97 start-page: 1329 year: 2019a end-page: 1344 article-title: Exosomes from patients with Parkinson's disease are pathological in mice publication-title: Journal of Molecular Medicine (Berl) – volume: 72 start-page: 575 year: 2019 end-page: 585 article-title: Extracellular vesicles isolated from familial Alzheimer's disease neuronal cultures induce aberrant tau phosphorylation in the wild‐type mouse brain publication-title: Journal of Alzheimers Disease – volume: 28 start-page: 436 year: 2018 end-page: 453 article-title: Hallmarks of cellular senescence publication-title: Trends in Cell Biology – volume: 86 start-page: 102 year: 2020 end-page: 111 article-title: Profile of pathogenic proteins in total circulating extracellular vesicles in mild cognitive impairment and during the progression of Alzheimer's disease publication-title: Neurobiology of Aging – volume: 127 start-page: 29 year: 2019 end-page: 37 article-title: Sexual dimorphism in inflammasome‐containing extracellular vesicles and the regulation of innate immunity in the brain of reproductive senescent females publication-title: Neurochemistry International – volume: 5 year: 2020 article-title: The senescence‐associated secretome as an indicator of age and medical risk publication-title: JCI Insight – volume: 8 start-page: 2006 year: 2016 end-page: 2011 article-title: SATB2‐Nanog axis links age‐related intrinsic changes of mesenchymal stem cells from craniofacial bone publication-title: Aging (Albany NY) – volume: 51 start-page: 780 year: 2013 end-page: 791 article-title: Telomeric noncoding RNA TERRA is induced by telomere shortening to nucleate telomerase molecules at short telomeres publication-title: Molecular Cell – volume: 29 start-page: 103 year: 2021 end-page: 120 article-title: ESC‐sEVs rejuvenate aging hippocampal NSCs by transferring SMADs to regulate the MYT1‐Egln3‐Sirt1 axis publication-title: Molecular Therapy – volume: 8 year: 2019 article-title: Senescent kidney cells in hypertensive patients release urinary extracellular vesicles publication-title: Journal of the American Heart Association – volume: 164 start-page: 1226 year: 2016 end-page: 1232 article-title: Communication by extracellular vesicles: Where we are and where we need to go publication-title: Cell – volume: 5 year: 2017 article-title: Transmission of alpha‐synuclein‐containing erythrocyte‐derived extracellular vesicles across the blood‐brain barrier via adsorptive mediated transcytosis: Another mechanism for initiation and progression of Parkinson's disease? publication-title: Acta Neuropathologica Communications – volume: 112 start-page: E6293 year: 2015 end-page: 6300 article-title: Telomeric repeat‐containing RNA (TERRA) constitutes a nucleoprotein component of extracellular inflammatory exosomes publication-title: Proceedings of the National Academy of Sciences of the United States of America – volume: 369 start-page: 325 year: 2020b end-page: 329 article-title: A programmable fate decision landscape underlies single‐cell aging in yeast publication-title: Science – volume: 10 start-page: 631 year: 2019 end-page: 648 article-title: Mitochondrion‐processed TERC regulates senescence without affecting telomerase activities publication-title: Protein Cell – volume: 74 start-page: 801 year: 2019 end-page: 815 article-title: Interleukin‐1beta induces mtDNA Release to activate innate immune signaling via cGAS‐STING publication-title: Molecular Cell – volume: 2014 year: 2014 article-title: Anandamide protects HT22 cells exposed to hydrogen peroxide by inhibiting CB1 receptor‐mediated type 2 NADPH oxidase publication-title: Oxidative Medicine and Cellular Longevity – volume: 8 year: 2019 article-title: Intracerebral injection of extracellular vesicles from mesenchymal stem cells exerts reduced abeta plaque burden in early stages of a preclinical model of Alzheimer's disease publication-title: Cells – volume: 15 start-page: 558 year: 2016 end-page: 572 article-title: Osteoblast‐released matrix vesicles, regulation of activity and composition by sulfated and non‐sulfated glycosaminoglycans publication-title: Molecular & Cellular Proteomics – volume: 390 year: 2020 article-title: Extracellular microparticles exacerbate oxidative damage to retinal pigment epithelial cells publication-title: Experimental Cell Research – volume: 18 start-page: 698 year: 2013 end-page: 711 article-title: mTORC1 controls mitochondrial activity and biogenesis through 4E‐BP‐dependent translational regulation publication-title: Cell Metabolism – volume: 7 year: 2020 article-title: ESC‐sEVs rejuvenate senescent hippocampal NSCs by activating lysosomes to improve cognitive dysfunction in vascular dementia publication-title: Advanced science (Weinheim, Baden‐Wurttemberg, Germany) – volume: 134 start-page: 657 year: 2008 end-page: 667 article-title: Senescence of activated stellate cells limits liver fibrosis publication-title: Cell – volume: 8 year: 2019 article-title: Functional recovery in photo‐damaged human dermal fibroblasts by human adipose‐derived stem cell extracellular vesicles publication-title: Journal of Extracellular Vesicles – volume: 20 start-page: 697 year: 2020 end-page: 709 article-title: The evolving translational potential of small extracellular vesicles in cancer publication-title: Nature Reviews Cancer – volume: 13 start-page: 2450 year: 2019a end-page: 2462 article-title: Bone marrow mesenchymal stem cells‐derived exosomal MiR‐29b‐3p regulates aging‐associated insulin resistance publication-title: ACS Nano – volume: 128 year: 2019 article-title: Regulation of senescence and the SASP by the transcription factor C/EBPbeta publication-title: Experimental Gerontology – volume: 12 start-page: 4688 year: 2020 end-page: 4710 article-title: ATM is a key driver of NF‐κB‐dependent DNA‐damage‐induced senescence, stem cell dysfunction and aging publication-title: Aging (Albany NY) – volume: 6 year: 2017 article-title: Limited nucleotide pools restrict Epstein‐Barr virus‐mediated B‐cell immortalization publication-title: Oncogenesis – volume: 11 year: 2020 article-title: The CD153 vaccine is a senotherapeutic option for preventing the accumulation of senescent T cells in mice publication-title: Nature Communications – volume: 30 start-page: 745 year: 2019 end-page: 755 article-title: Metformin as antiaging therapy: Is it for everyone? publication-title: Trends in Endocrinology & Metabolism – volume: 8 year: 2017 article-title: Exosomes maintain cellular homeostasis by excreting harmful DNA from cells publication-title: Nature Communications – volume: 47 start-page: 176 year: 2018 end-page: 182 article-title: Adjustment of the lysosomal‐mitochondrial axis for control of cellular senescence publication-title: Ageing Research Reviews – volume: 2016 year: 2016 article-title: Effects of oxidative stress on mesenchymal stem cell biology publication-title: Oxidative Medicine and Cellular Longevity – volume: 99 start-page: 322 year: 2019b end-page: 332 article-title: Delivery of miR‐675 by stem cell‐derived exosomes encapsulated in silk fibroin hydrogel prevents aging‐induced vascular dysfunction in mouse hindlimb publication-title: Material Science Engineering C Material Biology Applied – volume: 11 year: 2020 article-title: Persistent telomere cohesion protects aged cells from premature senescence publication-title: Nature Communications – volume: 169 start-page: 132 year: 2017 end-page: 147 article-title: Targeted apoptosis of senescent cells restores tissue homeostasis in response to chemotoxicity and aging publication-title: Cell – volume: 13 start-page: 5335 year: 2018 end-page: 5345 article-title: Effect of young exosomes injected in aged mice publication-title: International Journal of Nanomedicine – volume: 8 year: 2017 article-title: Small extracellular vesicles secreted from senescent cells promote cancer cell proliferation through EphA2 publication-title: Nature Communications – volume: 15 start-page: 978 year: 2013 end-page: 990 article-title: A complex secretory program orchestrated by the inflammasome controls paracrine senescence publication-title: Nature Cell Biology – volume: 9 year: 2020 article-title: Small RNA fingerprinting of Alzheimer's disease frontal cortex extracellular vesicles and their comparison with peripheral extracellular vesicles publication-title: Journal of Extracellular Vesicles – volume: 14 start-page: 644 year: 2015 end-page: 658 article-title: The Achilles' heel of senescent cells: From transcriptome to senolytic drugs publication-title: Aging Cell – volume: 17 issue: 1 year: 2018 article-title: Human CD8(+) EMRA T cells display a senescence‐associated secretory phenotype regulated by p38 MAPK publication-title: Aging Cell – volume: 8 year: 2019 article-title: Mitochondrial DNA variants and common diseases: A mathematical model for the diversity of age‐related mtDNA mutations publication-title: Cells – volume: 10 start-page: 3986 year: 2018 end-page: 3999 article-title: Injury factors alter miRNAs profiles of exosomes derived from islets and circulation publication-title: Aging (Albany NY) – volume: 276 start-page: 2201 year: 2009 end-page: 2212 article-title: The regulation of the endosomal compartment by p53 the tumor suppressor gene publication-title: FEBS Journal – volume: 11 year: 2020 article-title: Extracellular vesicles from adipose‐derived stem cells ameliorate ultraviolet B‐induced skin photoaging by attenuating reactive oxygen species production and inflammation publication-title: Stem Cell Research & Therapy – volume: 114 year: 2019 article-title: Exosomes from adipose‐derived mesenchymal stem cells ameliorate cardiac damage after myocardial infarction by activating S1P/SK1/S1PR1 signaling and promoting macrophage M2 polarization publication-title: International Journal of Biochemistry and Cell Biology – volume: 8 year: 2016 article-title: Senescence‐associated secretory phenotype contributes to pathological angiogenesis in retinopathy publication-title: Science Translational Medicine – volume: 11 start-page: 675 year: 2010 end-page: 687 article-title: Cellular internalization of exosomes occurs through phagocytosis publication-title: Traffic (Copenhagen, Denmark) – volume: 123 start-page: 673 year: 2018a end-page: 685 article-title: miR‐146a suppresses SUMO1 expression and induces cardiac dysfunction in maladaptive hypertrophy publication-title: Circulation Research – volume: 9 year: 2018 article-title: Impaired immune surveillance accelerates accumulation of senescent cells and aging publication-title: Nature Communications – volume: 87 start-page: 10334 year: 2013 end-page: 10347 article-title: Exosomes derived from Epstein‐Barr virus‐infected cells are internalized via caveola‐dependent endocytosis and promote phenotypic modulation in target cells publication-title: Journal of Virology – volume: 9 start-page: 955 year: 2017 end-page: 963 article-title: New agents that target senescent cells: The flavone, fisetin, and the BCL‐X(L) inhibitors, A1331852 and A1155463 publication-title: Aging (Albany NY) – volume: 20 start-page: 89 year: 2020 end-page: 106 article-title: How the ageing microenvironment influences tumour progression publication-title: Nature Reviews Cancer – volume: 34 start-page: 428 year: 2020 end-page: 445 article-title: Mitochondria‐to‐nucleus retrograde signaling drives formation of cytoplasmic chromatin and inflammation in senescence publication-title: Genes & Development – volume: 15 start-page: 2859 year: 2020 end-page: 2872 article-title: Topical application of exosomes derived from human umbilical cord mesenchymal stem cells in combination with sponge spicules for treatment of photoaging publication-title: Int J Nanomedicine – volume: 201 start-page: 613 year: 2013 end-page: 629 article-title: p53‐dependent release of Alarmin HMGB1 is a central mediator of senescent phenotypes publication-title: Journal of Cell Biology – volume: 19 start-page: 745 year: 2020 end-page: 752 article-title: The association between high mobility group box 1 chromatin protein and mitotic chromosomes in glioma cells publication-title: Oncology Letters – volume: 8 year: 2019 article-title: Extracellular vesicle encapsulated microRNAs in patients with type 2 diabetes are affected by metformin treatment publication-title: Journal of Clinical Medicine – volume: 23 start-page: 303 year: 2016 end-page: 314 article-title: Mitochondrial dysfunction induces senescence with a distinct secretory phenotype publication-title: Cell Metabolism – volume: 20 year: 2019 article-title: Mitochondrial dysfunction and aging: Insights from the analysis of extracellular vesicles publication-title: International Journal of Molecular Science – volume: 38 start-page: 49 year: 2018 end-page: 63 article-title: Extracellular vesicles secreted by atherogenic macrophages transfer MicroRNA to inhibit cell migration publication-title: Arteriosclerosis, Thrombosis, and Vascular Biology – volume: 45 year: 2021 article-title: The redox‐senescence axis and its therapeutic targeting publication-title: Redox Biology – volume: 13 start-page: 690 year: 2016 end-page: 695 article-title: The crosstalk of telomere dysfunction and inflammation through cell‐free TERRA containing exosomes publication-title: RNA Biology – volume: 17 start-page: 305 year: 2016 end-page: 315 article-title: Suppression of the senescence‐associated secretory phenotype (SASP) in human fibroblasts using small molecule inhibitors of p38 MAP kinase and MK2 publication-title: Biogerontology – volume: 10 year: 2019 article-title: Subtyping of circulating exosome‐bound amyloid beta reflects brain plaque deposition publication-title: Nature Communications – volume: 2 start-page: 1316 year: 2020 end-page: 1331 article-title: Loss of metabolic plasticity underlies metformin toxicity in aged Caenorhabditis elegans publication-title: Nature Metabolism – volume: 26 start-page: 592 year: 2017 end-page: 593 article-title: Slowing down aging publication-title: Cell Metabolism – volume: 18 year: 2020 article-title: A proteomic atlas of senescence‐associated secretomes for aging biomarker development publication-title: PLoS Biology – volume: 19 year: 2020 article-title: Mitochondrial mass governs the extent of human T cell senescence publication-title: Aging Cell – volume: 18 year: 2020c article-title: Metabolic syndrome increases senescence‐associated micro‐RNAs in extracellular vesicles derived from swine and human mesenchymal stem/stromal cells publication-title: Cell Communication Signalling – volume: 23 start-page: 1060 year: 2016 end-page: 1065 article-title: Metformin as a tool to target aging publication-title: Cell Metabolism – volume: 155 start-page: 67 year: 2018 end-page: 82 article-title: Secretome from SH‐SY5Y APPSwe cells trigger time‐dependent CHME3 microglia activation phenotypes, ultimately leading to miR‐21 exosome shuttling publication-title: Biochimie – volume: 11 start-page: 569 year: 2012 end-page: 578 article-title: Glucocorticoids suppress selected components of the senescence‐associated secretory phenotype publication-title: Aging Cell – volume: 15 start-page: 744 year: 2016 end-page: 754 article-title: Secreted microvesicular miR‐31 inhibits osteogenic differentiation of mesenchymal stem cells publication-title: Aging Cell – volume: 25 start-page: 1374 year: 2017 end-page: 1389 article-title: Age‐associated loss of OPA1 in muscle impacts muscle mass, metabolic homeostasis, systemic inflammation, and epithelial senescence publication-title: Cell Metabolism – volume: 116 start-page: 18435 year: 2019 end-page: 18444 article-title: Chemoptogenetic damage to mitochondria causes rapid telomere dysfunction publication-title: Proceedings of the National Academy of Sciences of the United States of America – volume: 10 year: 2019 article-title: Transgenic exosomes for thymus regeneration publication-title: Frontiers in Immunology – volume: 1410 start-page: 103 year: 1999 end-page: 123 article-title: The mitochondrial genome: Structure, transcription, translation and replication publication-title: Biochimica Et Biophysica Acta – volume: 112 year: 2020a article-title: Assessing ACE2 expression patterns in lung tissues in the pathogenesis of COVID‐19 publication-title: Journal of Autoimmunity – volume: 20 start-page: 539 year: 2020 end-page: 546 article-title: Biology of extracellular vesicles secreted from senescent cells as senescence‐associated secretory phenotype factors publication-title: Geriatrics and Gerontology International – volume: 19 start-page: 406 year: 2020 end-page: 414 article-title: Human umbilical cord mesenchymal stem cell‐derived and dermal fibroblast‐derived extracellular vesicles protect dermal fibroblasts from ultraviolet radiation‐induced photoaging in vitro publication-title: Photochemistry and Photobiology Science – volume: 126 start-page: 4273 year: 2016 end-page: 4288 article-title: Adipocyte‐specific deletion of Ip6k1 reduces diet‐induced obesity by enhancing AMPK‐mediated thermogenesis publication-title: Journal of Clinical Investigation – volume: 26 start-page: 83 year: 2020 end-page: 90 article-title: Personal aging markers and ageotypes revealed by deep longitudinal profiling publication-title: Nature Medicine – volume: 12 start-page: 489 year: 2013 end-page: 498 article-title: Metformin inhibits the senescence‐associated secretory phenotype by interfering with IKK/NF‐kappaB activation publication-title: Aging Cell – volume: 28 start-page: 302 year: 2019 end-page: 311 article-title: Mapping distinct bone marrow niche populations and their differentiation paths publication-title: Cell Reproduction – volume: 6 start-page: 612 year: 2016 end-page: 629 article-title: BRD4 connects enhancer remodeling to senescence immune surveillance publication-title: Cancer Discovery – volume: 70 start-page: 37 year: 2015 end-page: 47 article-title: Characterization of bone marrow‐derived mesenchymal stem cells in aging publication-title: Bone (New York) – volume: 12 start-page: 12002 year: 2020b end-page: 12018 article-title: Plasma endothelial cells‐derived extracellular vesicles promote wound healing in diabetes through YAP and the PI3K/Akt/mTOR pathway publication-title: Aging (Albany NY) – volume: 583 start-page: 127 year: 2020 end-page: 132 article-title: Senolytic CAR T cells reverse senescence‐associated pathologies publication-title: Nature – volume: 40 year: 2021 article-title: TP53 drives abscopal effect by secretion of senescence‐associated molecular signals in non‐small cell lung cancer publication-title: Journal of Experimental & Clinical Cancer Research – volume: 15 start-page: 1071 year: 2019a end-page: 1080 article-title: Concordance between the assessment of Abeta42, T‐tau, and P‐T181‐tau in peripheral blood neuronal‐derived exosomes and cerebrospinal fluid publication-title: Alzheimers & Dementia – volume: 132 start-page: 3 year: 2019 end-page: 10 article-title: Mitochondria and cellular senescence: Implications for musculoskeletal ageing publication-title: Free Radical Biology and Medicine – volume: 105 start-page: 17402 year: 2008 end-page: 17407 article-title: Ceramide starves cells to death by downregulating nutrient transporter proteins publication-title: Proceedings of the National Academy of Sciences of the United States of America – volume: 180 start-page: 296 year: 2020 end-page: 310 article-title: Cysteine toxicity drives age‐related mitochondrial decline by altering iron homeostasis publication-title: Cell – volume: 80 start-page: 1171 year: 2020 end-page: 1182 article-title: Therapy‐induced senescence drives bone loss publication-title: Cancer Research – volume: 24 start-page: 1246 year: 2018a end-page: 1256 article-title: Senolytics improve physical function and increase lifespan in old age publication-title: Nature Medicine – volume: 5 year: 2010 article-title: Metformin induces a dietary restriction‐like state and the oxidative stress response to extend C. elegans Healthspan via AMPK, LKB1, and SKN‐1 publication-title: Plos One – volume: 84 year: 2021 article-title: The implication of ROCK 2 as a potential senotherapeutic target via the suppression of the harmful effects of the SASP: Do senescent cancer cells really engulf the other cells? publication-title: Cellular Signalling – volume: 153 start-page: 228 year: 2013 end-page: 239 article-title: Metformin retards aging in C. elegans by altering microbial folate and methionine metabolism publication-title: Cell – volume: 12 start-page: 2078 year: 2013 end-page: 2087 article-title: Histone deacetylase regulation of ATM‐mediated DNA damage signaling publication-title: Molecular Cancer Therapeutics – volume: 22 start-page: 75 year: 2021 end-page: 95 article-title: Cellular senescence in ageing: From mechanisms to therapeutic opportunities publication-title: Nature Reviews Molecular Cell Biology – volume: 371 start-page: 265 year: 2021 end-page: 270 article-title: Senolysis by glutaminolysis inhibition ameliorates various age‐associated disorders publication-title: Science – volume: 46 start-page: 4213 year: 2018 end-page: 4227 article-title: LncRNA‐OIS1 regulates DPP4 activation to modulate senescence induced by RAS publication-title: Nucleic Acids Research – volume: 45 start-page: 578 year: 2020 end-page: 592 article-title: Senescent cells: Emerging targets for human aging and age‐related diseases publication-title: Trends in Biochemical Sciences – volume: 180 start-page: 585 year: 2020 end-page: 600 article-title: Single‐cell transcriptomic atlas of primate ovarian aging publication-title: Cell – volume: 83 start-page: 544 year: 2018 end-page: 552 article-title: High complement levels in astrocyte‐derived exosomes of Alzheimer disease publication-title: Annals of Neurolofy – volume: 139 start-page: 481 year: 2016 end-page: 494 article-title: Induction of alpha‐synuclein aggregate formation by CSF exosomes from patients with Parkinson's disease and dementia with Lewy bodies publication-title: Brain – volume: 18 start-page: 1584 year: 2015 end-page: 1593 article-title: Depletion of microglia and inhibition of exosome synthesis halt tau propagation publication-title: Nature Neuroscience – volume: 9 year: 2019 article-title: mTORC1 as a regulator of mitochondrial functions and a therapeutic target in cancer publication-title: Frontiers in Oncology – volume: 39 start-page: 1307 year: 2019 end-page: 1316 article-title: Multifaceted mechanisms of vascular calcification in aging publication-title: Arteriosclerosis, Thrombosis, and Vascular Biology – volume: 9 year: 2020 article-title: Mitochondrial signatures in circulating extracellular vesicles of older adults with Parkinson's disease: Results from the EXosomes in PArkiNson's Disease (EXPAND) Study publication-title: Journal of Clinical Medicine – volume: 9 start-page: 1068 year: 2020 end-page: 1084 article-title: Intranasal delivery of mesenchymal stem cell‐derived extracellular vesicles exerts immunomodulatory and neuroprotective effects in a 3xTg model of Alzheimer's disease publication-title: Stem Cells Translational Medicine – volume: 40 start-page: 2455 issue: 10 year: 2020 end-page: 2468 article-title: Senescent cholangiocytes release extracellular vesicles that alter target cell phenotype via the epidermal growth factor receptor publication-title: Liver International – volume: 18 start-page: 363 year: 2019 end-page: 374 article-title: Long noncoding RNA‐enriched vesicles secreted by hypoxic cardiomyocytes drive cardiac fibrosis publication-title: Molecular Therapy Nucleic Acids – volume: 9 year: 2019 article-title: BIN1 favors the spreading of Tau via extracellular vesicles publication-title: Scientific Reports – volume: 8 start-page: 1316 year: 2016 end-page: 1329 article-title: Unbiased analysis of senescence associated secretory phenotype (SASP) to identify common components following different genotoxic stresses publication-title: Aging (Albany NY) – volume: 5 year: 2014 article-title: Oncogenic Ras induces inflammatory cytokine production by upregulating the squamous cell carcinoma antigens SerpinB3/B4 publication-title: Nature Communications – volume: 11 year: 2020 article-title: Senolytics prevent mt‐DNA‐induced inflammation and promote the survival of aged organs following transplantation publication-title: Nature Communications – volume: 16 start-page: 564 year: 2017a end-page: 574 article-title: Rapamycin inhibits the secretory phenotype of senescent cells by a Nrf2‐independent mechanism publication-title: Aging Cell – volume: 7 year: 2020 article-title: Human mesenchymal stem cell derived exosomes enhance cell‐free bone regeneration by altering their miRNAs profiles publication-title: Advanced science (Weinheim, Baden‐Wurttemberg, Germany) – volume: 111 start-page: 304 year: 2020 end-page: 311 article-title: Cellular senescence and senescence‐associated secretory phenotype via the cGAS‐STING signaling pathway in cancer publication-title: Cancer Science – volume: 112 start-page: E6301 year: 2015 end-page: 6310 article-title: JAK inhibition alleviates the cellular senescence‐associated secretory phenotype and frailty in old age publication-title: Proceedings of the National Academy of Sciences of the United States of America – volume: 15 start-page: 1082 year: 2009 end-page: 1087 article-title: A crucial role for adipose tissue p53 in the regulation of insulin resistance publication-title: Nature Medicine – volume: 8 year: 2017 article-title: Cystatin SN inhibits auranofin‐induced cell death by autophagic induction and ROS regulation via glutathione reductase activity in colorectal cancer publication-title: Cell Death & Disease – volume: 76 start-page: 1340 year: 2019 end-page: 1351 article-title: Association of extracellular vesicle biomarkers with alzheimer disease in the baltimore longitudinal study of aging publication-title: JAMA Neurology – volume: 19 start-page: 3422 year: 2019 end-page: 3431 article-title: Golden exosomes selectively target brain pathologies in neurodegenerative and neurodevelopmental disorders publication-title: Nano Letter – volume: 697 start-page: 49 year: 2019 end-page: 58 article-title: Alzheimer's disease and the autophagic‐lysosomal system publication-title: Neuroscience Letters – volume: 13 start-page: 11273 year: 2019 end-page: 11282 article-title: Needle‐free injection of exosomes derived from human dermal fibroblast spheroids ameliorates skin photoaging publication-title: ACS Nano – volume: 10 year: 2020 article-title: Extracellular vesicles from healthy cells improves cell function and stemness in premature senescent stem cells by miR‐302b and HIF‐1alpha activation publication-title: Biomolecules – volume: 10 year: 2017 article-title: p53 dynamics in response to DNA damage vary across cell lines and are shaped by efficiency of DNA repair and activity of the kinase ATM publication-title: Science Signaling – volume: 30 start-page: 329 year: 2019 end-page: 342.e325 article-title: Extracellular vesicle‐contained eNAMPT delays aging and extends lifespan in mice publication-title: Cell Metabolism – volume: 69 start-page: 751 year: 2019 end-page: 762 article-title: Circulating and extracellular vesicles levels of N‐(1‐Carboxymethyl)‐L‐Lysine (CML) differentiate early to moderate Alzheimer's disease publication-title: Journal of Alzheimers Disease – volume: 31 start-page: 172 year: 2017 end-page: 183 article-title: The senescence‐associated secretory phenotype induces cellular plasticity and tissue regeneration publication-title: Genes & Development – volume: 171 start-page: 372 year: 2017 end-page: 384 article-title: Adipose tissue macrophage‐derived exosomal miRNAs can modulate in vivo and in vitro insulin sensitivity publication-title: Cell – volume: 60 start-page: 279 year: 2019 end-page: 288 article-title: Fibronectin on the surface of extracellular vesicles mediates fibroblast invasion publication-title: The American Journal of Respiratory Cell and Molecular Biology – volume: 17 year: 2018b article-title: MicroRNA‐31a‐5p from aging BMSCs links bone formation and resorption in the aged bone marrow microenvironment publication-title: Aging Cell – volume: 1866 year: 2020 article-title: Mechanisms of extracellular vesicle uptake in stressed retinal pigment epithelial cell monolayers publication-title: Biochim Biophys Acta Molecular Basis Disease – volume: 23 start-page: 1231 year: 2017 end-page: 1240 article-title: MicroRNA‐183‐5p increases with age in bone‐derived extracellular vesicles, suppresses bone marrow stromal (stem) cell proliferation, and induces stem cell senescence publication-title: Tissue Engineering Part A – volume: 479 start-page: 232 year: 2011 end-page: 236 article-title: Clearance of p16Ink4a‐positive senescent cells delays ageing‐associated disorders publication-title: Nature – volume: 47 start-page: 446 year: 2019 end-page: 456 article-title: Senolytics decrease senescent cells in humans: Preliminary report from a clinical trial of Dasatinib plus Quercetin in individuals with diabetic kidney disease publication-title: EBioMedicine – volume: 22 year: 2021 article-title: Therapeutic potential for regulation of the nuclear factor kappa‐B transcription factor p65 to prevent cellular senescence and activation of pro‐inflammatory in mesenchymal stem cells publication-title: International Journal of Molecular Science – volume: 27 start-page: 897 year: 2015 end-page: 905 article-title: Effects of age on follicular fluid exosomal microRNAs and granulosa cell transforming growth factor‐beta signalling during follicle development in the mare publication-title: Reproduction, Fertility, and Development – volume: 123 start-page: 100 year: 2018 end-page: 106 article-title: Intra‐cardiac release of extracellular vesicles shapes inflammation following myocardial infarction publication-title: Circulation Research – volume: 383 start-page: 804 year: 2020 end-page: 805 article-title: Covid‐19 and immunity in aging populations ‐ A new research agenda publication-title: New England Journal of Medicine – volume: 6 year: 2017 article-title: Analysis of extracellular RNA in cerebrospinal fluid publication-title: Journal of Extracellular Vesicles – volume: 36 start-page: 420 year: 2018 end-page: 433 article-title: Intercellular transfer of microvesicles from young mesenchymal stromal cells rejuvenates aged murine hematopoietic stem cells publication-title: Stem Cells – volume: 24 start-page: 3 year: 2015 end-page: 16 article-title: DAMPs, ageing, and cancer: The ‘DAMP Hypothesis’ publication-title: Ageing Research Reviews – volume: 390 year: 2020 article-title: The role of lamin B receptor in the regulation of senescence‐associated secretory phenotype (SASP) publication-title: Experimental Cell Research – volume: 8 year: 2017 article-title: Endothelial extracellular vesicles‐promises and challenges publication-title: Frontiers in Physiology – volume: 8 year: 2019 article-title: Biological membranes in EV biogenesis, stability, uptake, and cargo transfer: An ISEV position paper arising from the ISEV membranes and EVs workshop publication-title: Journal of Extracellular Vesicles – volume: 26 start-page: 906 year: 2020 end-page: 919 article-title: Extracellular vesicles miRNA‐21: A potential therapeutic tool in premature ovarian dysfunction publication-title: Molecular Human Reproduction – volume: 61 start-page: 52 year: 2018b end-page: 65 article-title: Intercellular transfer of pathogenic alpha‐synuclein by extracellular vesicles is induced by the lipid peroxidation product 4‐hydroxynonenal publication-title: Neurobiology of Aging – volume: 10 year: 2019 article-title: Microglia as modulators of exosomal alpha‐synuclein transmission publication-title: Cell Death & Disease – volume: 187 start-page: 98 year: 2017 end-page: 106 article-title: Exosome‐mediated telomere instability in human breast epithelial cancer cells after x irradiation publication-title: Radiation Research – volume: 40 start-page: 554 year: 2019 end-page: 563 article-title: Senolytics in idiopathic pulmonary fibrosis: Results from a first‐in‐human, open‐label, pilot study publication-title: EBioMedicine – volume: 17 start-page: 447 year: 2019 end-page: 454 article-title: Endothelial extracellular vesicles produced by senescent cells: pathophysiological role in the cardiovascular disease associated with all types of diabetes mellitus publication-title: Current Vascular Pharmacology – volume: 32 start-page: 71 year: 2020b end-page: 86 article-title: Small extracellular vesicles have GST activity and ameliorate senescence‐related tissue damage publication-title: Cell Metabolism – volume: 11 start-page: 20884 year: 2019 end-page: 20892 article-title: Aptamer‐functionalized exosomes from bone marrow stromal cells target bone to promote bone regeneration publication-title: Nanoscale – volume: 21 year: 2020 article-title: Histone variant H2A.J marks persistent DNA damage and triggers the secretory phenotype in radiation‐induced senescence publication-title: International Journal of Molecular Science – volume: 2017 year: 2017 article-title: Characterization of the proinflammatory profile of synovial fluid‐derived exosomes of patients with osteoarthritis publication-title: Mediators of Inflammation – volume: 30 start-page: 321 year: 2016 end-page: 336 article-title: MLL1 is essential for the senescence‐associated secretory phenotype publication-title: Genes & Development – volume: 102 start-page: 174 year: 2017 end-page: 187 article-title: An mtDNA mutation accelerates liver aging by interfering with the ROS response and mitochondrial life cycle publication-title: Free Radical Biology and Medicine – volume: 3 year: 2015 article-title: Reduced beta‐amyloid pathology in an APP transgenic mouse model of Alzheimer's disease lacking functional B and T cells publication-title: Acta Neuropathologica Communications – volume: 10 year: 2019 article-title: The exosome‐like vesicles from osteoarthritic chondrocyte enhanced mature IL‐1beta production of macrophages and aggravated synovitis in osteoarthritis publication-title: Cell Death & Disease – volume: 9 year: 2020 article-title: Small extracellular vesicles deliver miR‐21 and miR‐217 as pro‐senescence effectors to endothelial cells publication-title: Journal of Extracellular Vesicles – volume: 18 year: 2020 article-title: Extracellular vesicles in diabetes mellitus induce alterations in endothelial cell morphology and migration publication-title: Journal of Translational Medicine – volume: 34 start-page: 85 year: 2018 end-page: 102 article-title: PTBP1‐mediated alternative splicing regulates the inflammatory secretome and the pro‐tumorigenic effects of senescent cells publication-title: Cancer Cell – year: 2021 article-title: The interplay between apoptosis and cellular senescence: Bcl‐2 family proteins as targets for cancer therapy publication-title: Pharmacology Therapy – ident: e_1_2_8_210_1 doi: 10.1016/j.neuint.2018.11.018 – ident: e_1_2_8_60_1 doi: 10.1039/C9PP00421A – year: 2020 ident: e_1_2_8_166_1 article-title: The H2A.J histone variant contributes to Interferon‐Stimulated Gene expression in senescence by its weak interaction with H1 and the derepression of repeated DNA sequences publication-title: bioRxiv – ident: e_1_2_8_188_1 doi: 10.1016/j.freeradbiomed.2016.11.035 – ident: e_1_2_8_102_1 doi: 10.1016/j.jconrel.2015.03.033 – ident: e_1_2_8_2_1 doi: 10.1016/j.molcel.2019.02.038 – ident: e_1_2_8_65_1 doi: 10.3109/14647273.2014.897006 – ident: e_1_2_8_131_1 doi: 10.1001/jamaneurol.2019.2462 – ident: e_1_2_8_83_1 doi: 10.1016/j.ccell.2018.06.007 – ident: e_1_2_8_238_1 doi: 10.1038/s41467-018-03555-8 – ident: e_1_2_8_63_1 doi: 10.1126/science.aax0860 – ident: e_1_2_8_89_1 doi: 10.1080/20013078.2020.1800971 – ident: e_1_2_8_58_1 doi: 10.1089/ten.tea.2016.0525 – volume: 10 start-page: 4827 year: 2019 ident: e_1_2_8_298_1 article-title: A secreted microRNA disrupts autophagy in distinct tissues of Caenorhabditis elegans upon ageing publication-title: Nature Communications doi: 10.1038/s41467-019-12821-2 – ident: e_1_2_8_239_1 doi: 10.1038/ncomms15287 – ident: e_1_2_8_129_1 doi: 10.1126/science.aau6977 – ident: e_1_2_8_224_1 doi: 10.1016/j.cellsig.2021.110007 – ident: e_1_2_8_161_1 doi: 10.1161/CIRCRESAHA.117.311326 – ident: e_1_2_8_66_1 doi: 10.1016/j.omtn.2020.05.013 – ident: e_1_2_8_205_1 doi: 10.1038/ncomms6379 – ident: e_1_2_8_141_1 doi: 10.2147/IJN.S170680 – ident: e_1_2_8_168_1 doi: 10.1016/j.redox.2017.08.015 – ident: e_1_2_8_85_1 doi: 10.1038/ncb3586 – volume: 2017 start-page: 7094781. year: 2017 ident: e_1_2_8_29_1 article-title: The antioxidant machinery of young and senescent human umbilical vein endothelial cells and their microvesicles publication-title: Oxidative Medicine and Cellular Longevity – ident: e_1_2_8_137_1 doi: 10.1002/stem.2756 – ident: e_1_2_8_4_1 doi: 10.1161/CIRCRESAHA.117.311769 – ident: e_1_2_8_53_1 doi: 10.1038/s41598-019-45676-0 – ident: e_1_2_8_221_1 doi: 10.1074/mcp.M115.049718 – ident: e_1_2_8_293_1 doi: 10.14336/AD.2019.1230 – ident: e_1_2_8_126_1 doi: 10.1038/s41388-018-0521-8 – ident: e_1_2_8_193_1 doi: 10.1371/journal.pone.0008758 – ident: e_1_2_8_92_1 doi: 10.18632/aging.102441 – ident: e_1_2_8_32_1 doi: 10.1016/j.celrep.2019.05.095 – ident: e_1_2_8_198_1 doi: 10.1021/acs.nanolett.8b04148 – ident: e_1_2_8_124_1 doi: 10.1016/j.jhep.2019.09.014 – ident: e_1_2_8_33_1 doi: 10.1016/j.freeradbiomed.2019.11.032 – ident: e_1_2_8_8_1 doi: 10.3390/ijms17071168 – ident: e_1_2_8_174_1 doi: 10.1080/15548627.2017.1395992 – ident: e_1_2_8_27_1 doi: 10.1007/s13238-020-00728-4 – ident: e_1_2_8_178_1 doi: 10.1038/s41568-020-00299-w – volume: 11 start-page: 422 year: 2020 ident: e_1_2_8_151_1 article-title: Extracellular vesicles after allogeneic hematopoietic cell transplantation: Emerging role in post‐transplant complications publication-title: Frontiers in Immunology doi: 10.3389/fimmu.2020.00422 – ident: e_1_2_8_70_1 doi: 10.1038/s42255-020-00307-1 – volume: 9 start-page: 44 year: 2018 ident: e_1_2_8_231_1 article-title: Insight into the role of PIKK family members and NF‐small ka, CyrillicB in DNAdamage‐induced senescence and senescence‐associated secretory phenotype of colon cancer cells publication-title: Cell Death & Disease doi: 10.1038/s41419-017-0069-5 – ident: e_1_2_8_255_1 doi: 10.1111/acel.12587 – ident: e_1_2_8_143_1 doi: 10.5483/BMBRep.2019.52.1.290 – volume: 23 start-page: 3993 year: 2019 ident: e_1_2_8_276_1 article-title: Decreased HSP70 expression on serum exosomes contributes to cardiac fibrosis during senescence publication-title: European Review for Medical and Pharmacological Sciences – ident: e_1_2_8_299_1 doi: 10.1155/2019/9739258 – ident: e_1_2_8_203_1 doi: 10.1038/s41569-018-0059-z – ident: e_1_2_8_228_1 doi: 10.1186/s40478-015-0251-x – ident: e_1_2_8_252_1 doi: 10.1101/gad.331272.119 – ident: e_1_2_8_225_1 doi: 10.1038/s41467-019-09720-x – ident: e_1_2_8_59_1 doi: 10.3389/fonc.2019.01373 – ident: e_1_2_8_68_1 doi: 10.3390/cells8091059 – volume: 11 start-page: 3321 year: 2020 ident: e_1_2_8_14_1 article-title: Persistent telomere cohesion protects aged cells from premature senescence publication-title: Nature Communications doi: 10.1038/s41467-020-17133-4 – ident: e_1_2_8_84_1 doi: 10.3390/jcm8050617 – ident: e_1_2_8_200_1 doi: 10.1161/ATVBAHA.118.311576 – ident: e_1_2_8_244_1 doi: 10.1016/j.cmet.2017.04.021 – ident: e_1_2_8_213_1 doi: 10.1080/20013078.2019.1684862 – ident: e_1_2_8_105_1 doi: 10.1016/j.tcb.2018.02.001 – ident: e_1_2_8_259_1 doi: 10.1073/pnas.1505962112 – ident: e_1_2_8_30_1 doi: 10.1155/2018/3183794 – volume: 21 start-page: 9130 year: 2020 ident: e_1_2_8_115_1 article-title: Histone variant H2A.J marks persistent DNA damage and triggers the secretory phenotype in radiation‐induced senescence publication-title: International Journal of Molecular Science doi: 10.3390/ijms21239130 – ident: e_1_2_8_234_1 doi: 10.18632/aging.101760 – ident: e_1_2_8_134_1 doi: 10.1056/NEJMp2006761 – start-page: 107943 year: 2021 ident: e_1_2_8_24_1 article-title: The interplay between apoptosis and cellular senescence: Bcl‐2 family proteins as targets for cancer therapy publication-title: Pharmacology Therapy – ident: e_1_2_8_158_1 doi: 10.1038/nrrheum.2016.65 – ident: e_1_2_8_278_1 doi: 10.1158/0008-5472.CAN-19-2348 – ident: e_1_2_8_125_1 doi: 10.1126/science.abb5916 – ident: e_1_2_8_50_1 doi: 10.1016/j.neulet.2018.05.017 – ident: e_1_2_8_165_1 doi: 10.15252/embr.202050718 – ident: e_1_2_8_214_1 doi: 10.3390/ijms19113515 – ident: e_1_2_8_22_1 doi: 10.1016/j.cmet.2016.05.011 – ident: e_1_2_8_49_1 doi: 10.1080/20013078.2019.1565885 – ident: e_1_2_8_140_1 doi: 10.1016/j.nbd.2018.11.002 – ident: e_1_2_8_254_1 doi: 10.1038/s41586-019-1607-3 – ident: e_1_2_8_195_1 doi: 10.1038/s41467-018-07825-3 – ident: e_1_2_8_227_1 doi: 10.1016/j.tem.2019.07.015 – ident: e_1_2_8_279_1 doi: 10.1016/j.taap.2013.03.015 – ident: e_1_2_8_96_1 doi: 10.1016/j.freeradbiomed.2018.10.417 – ident: e_1_2_8_303_1 doi: 10.1038/cddis.2014.481 – ident: e_1_2_8_258_1 doi: 10.1186/s13024-016-0143-y – ident: e_1_2_8_154_1 doi: 10.1038/s41580-019-0199-y – ident: e_1_2_8_64_1 doi: 10.1038/s41580-020-00314-w – ident: e_1_2_8_113_1 doi: 10.1016/j.arr.2014.10.004 – ident: e_1_2_8_248_1 doi: 10.1074/jbc.M114.588046 – ident: e_1_2_8_182_1 doi: 10.1038/s41556-019-0287-4 – ident: e_1_2_8_220_1 doi: 10.1172/jci.insight.133668 – ident: e_1_2_8_216_1 doi: 10.1038/s41598-017-01964-1 – ident: e_1_2_8_267_1 doi: 10.1016/j.celrep.2019.06.031 – ident: e_1_2_8_270_1 doi: 10.1038/s41591-018-0092-9 – volume: 11 start-page: 166 issue: 1 year: 2020 ident: e_1_2_8_28_1 article-title: Regenerative and protective effects of dMSC‐sEVs on high‐glucose‐induced senescent fibroblasts by suppressing RAGE pathway and activating Smad pathway publication-title: Stem Cell Reserach Therapy doi: 10.1186/s13287-020-01681-z – ident: e_1_2_8_274_1 doi: 10.1111/jcmm.14635 – volume: 18 start-page: 124 year: 2020 ident: e_1_2_8_150_1 article-title: Metabolic syndrome increases senescence‐associated micro‐RNAs in extracellular vesicles derived from swine and human mesenchymal stem/stromal cells publication-title: Cell Communication Signalling doi: 10.1186/s12964-020-00624-8 – volume: 10 start-page: 589908 year: 2020 ident: e_1_2_8_155_1 article-title: Hepatocellular senescence: Immunosurveillance and future senescence‐induced therapy in hepatocellular carcinoma publication-title: Frontiers in Oncology doi: 10.3389/fonc.2020.589908 – volume: 390 start-page: 111927 year: 2020 ident: e_1_2_8_69_1 article-title: The role of lamin B receptor in the regulation of senescence‐associated secretory phenotype (SASP) publication-title: Experimental Cell Research doi: 10.1016/j.yexcr.2020.111927 – ident: e_1_2_8_277_1 doi: 10.1530/REP-11-0371 – ident: e_1_2_8_35_1 doi: 10.1016/j.cell.2013.02.035 – ident: e_1_2_8_11_1 doi: 10.1038/s41586-020-2403-9 – ident: e_1_2_8_232_1 doi: 10.1093/brain/awv346 – ident: e_1_2_8_262_1 doi: 10.1038/s41422-020-00409-1 – ident: e_1_2_8_88_1 doi: 10.1158/1541-7786.MCR-18-0891 – ident: e_1_2_8_62_1 doi: 10.1155/2016/2989076 – ident: e_1_2_8_256_1 doi: 10.1016/j.cell.2020.01.009 – ident: e_1_2_8_76_1 doi: 10.1016/j.biochi.2018.05.015 – ident: e_1_2_8_142_1 doi: 10.3390/ijms21010343 – ident: e_1_2_8_153_1 doi: 10.1016/j.lfs.2019.116582 – ident: e_1_2_8_266_1 doi: 10.1038/s41598-020-57663-x – ident: e_1_2_8_301_1 doi: 10.18632/aging.101202 – ident: e_1_2_8_261_1 doi: 10.1111/cas.13184 – ident: e_1_2_8_283_1 doi: 10.1038/s41467-020-16312-7 – ident: e_1_2_8_163_1 doi: 10.1016/j.yjmcc.2015.10.022 – volume: 19 start-page: 745 year: 2020 ident: e_1_2_8_122_1 article-title: The association between high mobility group box 1 chromatin protein and mitotic chromosomes in glioma cells publication-title: Oncology Letters – ident: e_1_2_8_97_1 doi: 10.3233/JAD-181272 – ident: e_1_2_8_177_1 doi: 10.1111/acel.12075 – ident: e_1_2_8_118_1 doi: 10.1038/nm.4324 – volume: 12 start-page: 594 year: 2021 ident: e_1_2_8_290_1 article-title: Metabolic regulation of telomere silencing by SESAME complex‐catalyzed H3T11 phosphorylation publication-title: Nature Communications doi: 10.1038/s41467-020-20711-1 – ident: e_1_2_8_292_1 doi: 10.18632/aging.102863 – volume: 8 start-page: e3053 year: 2017 ident: e_1_2_8_190_1 article-title: Cystatin SN inhibits auranofin‐induced cell death by autophagic induction and ROS regulation via glutathione reductase activity in colorectal cancer publication-title: Cell Death & Disease doi: 10.1038/cddis.2017.446 – ident: e_1_2_8_204_1 doi: 10.1111/trf.13896 – ident: e_1_2_8_44_1 doi: 10.1186/s13287-019-1253-6 – ident: e_1_2_8_103_1 doi: 10.3390/antiox10020156 – ident: e_1_2_8_181_1 doi: 10.1126/science.aaf4445 – ident: e_1_2_8_107_1 doi: 10.3390/ijms21103720 – ident: e_1_2_8_215_1 doi: 10.1016/j.exger.2019.110752 – ident: e_1_2_8_31_1 doi: 10.1002/stem.2645 – ident: e_1_2_8_169_1 doi: 10.3390/ijms22073367 – ident: e_1_2_8_202_1 doi: 10.3390/jcm9020504 – ident: e_1_2_8_52_1 doi: 10.15252/embj.201592862 – ident: e_1_2_8_251_1 doi: 10.1161/CIRCRESAHA.118.311378 – ident: e_1_2_8_148_1 doi: 10.1093/nar/gky087 – ident: e_1_2_8_171_1 doi: 10.1080/20013078.2020.1725285 – ident: e_1_2_8_287_1 doi: 10.1111/jcmm.13471 – ident: e_1_2_8_285_1 doi: 10.7150/thno.22565 – ident: e_1_2_8_86_1 doi: 10.1002/ana.25172 – ident: e_1_2_8_74_1 doi: 10.1038/s41568-019-0222-9 – ident: e_1_2_8_135_1 doi: 10.1038/s41598-017-01905-y – ident: e_1_2_8_206_1 doi: 10.1016/j.arr.2020.101251 – ident: e_1_2_8_217_1 doi: 10.1080/15548627.2019.1643657 – ident: e_1_2_8_253_1 doi: 10.18632/aging.102557 – ident: e_1_2_8_73_1 doi: 10.1155/2018/7156435 – ident: e_1_2_8_10_1 doi: 10.18632/aging.101191 – ident: e_1_2_8_46_1 doi: 10.1158/2159-8290.CD-16-0908 – ident: e_1_2_8_104_1 doi: 10.1016/0014-4827(61)90192-6 – volume: 37 start-page: e00611 year: 2017 ident: e_1_2_8_56_1 article-title: Myocyte‐derived Hsp90 modulates collagen upregulation via biphasic activation of STAT‐3 in fibroblasts during cardiac hypertrophy publication-title: Molecular Cell Biology doi: 10.1128/MCB.00611-16 – ident: e_1_2_8_123_1 doi: 10.1002/jcp.27107 – ident: e_1_2_8_271_1 doi: 10.1073/pnas.1515386112 – ident: e_1_2_8_282_1 doi: 10.1038/s41467-020-16347-w – ident: e_1_2_8_79_1 doi: 10.1038/emboj.2011.69 – ident: e_1_2_8_275_1 doi: 10.1016/j.yexcr.2020.111957 – ident: e_1_2_8_164_1 doi: 10.3390/ijms160921294 – ident: e_1_2_8_117_1 doi: 10.1016/j.tcb.2017.07.004 – ident: e_1_2_8_112_1 doi: 10.1021/acsnano.9b04384 – ident: e_1_2_8_272_1 doi: 10.1186/s13287-020-01777-6 – ident: e_1_2_8_26_1 doi: 10.1007/s40618-015-0273-z – ident: e_1_2_8_237_1 doi: 10.1080/15548627.2016.1247143 – ident: e_1_2_8_291_1 doi: 10.1038/nature23282 – ident: e_1_2_8_111_1 doi: 10.1002/advs.201903330 – ident: e_1_2_8_197_1 doi: 10.1016/j.arr.2018.08.003 – ident: e_1_2_8_212_1 doi: 10.1016/j.thromres.2018.07.030 – volume: 26 start-page: 592 year: 2017 ident: e_1_2_8_172_1 article-title: Slowing down aging publication-title: Cell Metabolism doi: 10.1016/j.cmet.2017.09.012 – ident: e_1_2_8_41_1 doi: 10.2174/1570161116666180820115726 – ident: e_1_2_8_93_1 doi: 10.1002/ana.25557 – ident: e_1_2_8_196_1 doi: 10.18632/aging.100971 – ident: e_1_2_8_106_1 doi: 10.1016/j.ebiom.2019.08.069 – ident: e_1_2_8_3_1 doi: 10.1038/ncb2784 – ident: e_1_2_8_223_1 doi: 10.1016/j.ebiom.2019.01.056 – ident: e_1_2_8_147_1 doi: 10.3390/cells8060608 – ident: e_1_2_8_281_1 doi: 10.1016/j.cmet.2019.05.015 – volume: 12 start-page: 604738 year: 2021 ident: e_1_2_8_77_1 article-title: The redox balance and membrane shedding in RBC production, maturation, and senescence publication-title: Frontiers in Physiology doi: 10.3389/fphys.2021.604738 – ident: e_1_2_8_108_1 doi: 10.3389/fimmu.2018.01789 – ident: e_1_2_8_284_1 doi: 10.1111/j.1742-4658.2009.06949.x – ident: e_1_2_8_15_1 doi: 10.1016/j.tcb.2014.08.007 – ident: e_1_2_8_175_1 doi: 10.1038/nm.2014 – ident: e_1_2_8_110_1 doi: 10.1016/j.ymthe.2020.09.037 – ident: e_1_2_8_136_1 doi: 10.1016/j.cell.2008.06.049 – ident: e_1_2_8_233_1 doi: 10.1021/acsnano.8b09417 – ident: e_1_2_8_16_1 doi: 10.1016/j.cell.2017.02.031 – ident: e_1_2_8_119_1 doi: 10.1172/jci.insight.125019 – ident: e_1_2_8_194_1 doi: 10.1126/scitranslmed.aaf9440 – ident: e_1_2_8_185_1 doi: 10.1161/ATVBAHA.117.309795 – ident: e_1_2_8_81_1 doi: 10.1038/s41467-017-00314-z – ident: e_1_2_8_80_1 doi: 10.18632/aging.101689 – ident: e_1_2_8_17_1 doi: 10.1152/ajpcell.00520.2019 – volume: 2014 start-page: 893516 year: 2014 ident: e_1_2_8_120_1 article-title: Anandamide protects HT22 cells exposed to hydrogen peroxide by inhibiting CB1 receptor‐mediated type 2 NADPH oxidase publication-title: Oxidative Medicine and Cellular Longevity – ident: e_1_2_8_189_1 doi: 10.3390/cells9071618 – ident: e_1_2_8_300_1 doi: 10.1172/JCI85510 – ident: e_1_2_8_240_1 doi: 10.1038/ncomms15728 – ident: e_1_2_8_54_1 doi: 10.1016/j.molcel.2013.08.029 – ident: e_1_2_8_87_1 doi: 10.1038/s41586-020-2630-0 – ident: e_1_2_8_25_1 doi: 10.18632/aging.103441 – ident: e_1_2_8_247_1 doi: 10.1016/j.yjmcc.2020.04.032 – ident: e_1_2_8_128_1 doi: 10.1165/rcmb.2020-0002OC – ident: e_1_2_8_162_1 doi: 10.1039/C9NR02791B – ident: e_1_2_8_211_1 doi: 10.1101/gad.290635.116 – ident: e_1_2_8_145_1 doi: 10.1038/ncomms10872 – ident: e_1_2_8_38_1 doi: 10.1111/acel.13067 – ident: e_1_2_8_133_1 doi: 10.3390/cells8010037 – ident: e_1_2_8_149_1 doi: 10.1126/science.aax9552 – ident: e_1_2_8_294_1 doi: 10.1186/s13148-015-0093-1 – ident: e_1_2_8_249_1 doi: 10.1016/j.cell.2016.01.043 – ident: e_1_2_8_99_1 doi: 10.1007/s00109-019-01810-z – ident: e_1_2_8_167_1 doi: 10.3390/biom10060957 – ident: e_1_2_8_51_1 doi: 10.1007/s00401-018-1948-2 – ident: e_1_2_8_91_1 doi: 10.1074/jbc.M114.585703 – ident: e_1_2_8_302_1 doi: 10.1111/acel.12344 – ident: e_1_2_8_139_1 doi: 10.1111/j.1474-9726.2012.00818.x – ident: e_1_2_8_260_1 doi: 10.1080/15476286.2016.1203503 – ident: e_1_2_8_43_1 doi: 10.1165/rcmb.2018-0062OC – ident: e_1_2_8_191_1 doi: 10.1161/CIRCRESAHA.118.312751 – ident: e_1_2_8_138_1 doi: 10.1038/ncb3195 – ident: e_1_2_8_250_1 doi: 10.1155/2017/7197598 – ident: e_1_2_8_201_1 doi: 10.3390/ijms20040805 – ident: e_1_2_8_121_1 doi: 10.1016/j.jalz.2019.05.002 – ident: e_1_2_8_186_1 doi: 10.1038/s41419-019-1739-2 – ident: e_1_2_8_95_1 doi: 10.18632/oncotarget.6158 – ident: e_1_2_8_98_1 doi: 10.1038/oncsis.2017.46 – ident: e_1_2_8_100_1 doi: 10.1016/j.msec.2019.01.122 – ident: e_1_2_8_19_1 doi: 10.1016/j.bone.2014.10.014 – volume: 99 start-page: 1047 year: 2019 ident: e_1_2_8_36_1 article-title: Cellular senescence: Aging, cancer, and injury publication-title: Mitochondrial Membrane Permeabilization in Cell Death – ident: e_1_2_8_235_1 doi: 10.1074/jbc.M112.445403 – ident: e_1_2_8_296_1 doi: 10.18632/aging.101041 – ident: e_1_2_8_72_1 doi: 10.1016/j.cmet.2020.06.004 – ident: e_1_2_8_67_1 doi: 10.1155/2017/4814987 – ident: e_1_2_8_208_1 doi: 10.1073/pnas.1910574116 – ident: e_1_2_8_7_1 doi: 10.1667/RR14201.1 – ident: e_1_2_8_94_1 doi: 10.1073/pnas.0802781105 – ident: e_1_2_8_146_1 doi: 10.1016/j.jaut.2020.102463 – ident: e_1_2_8_157_1 doi: 10.1007/s12265-018-9847-4 – ident: e_1_2_8_18_1 doi: 10.1038/nature10600 – ident: e_1_2_8_273_1 doi: 10.1111/acel.12794 – ident: e_1_2_8_9_1 doi: 10.1007/s10522-015-9610-z – ident: e_1_2_8_180_1 doi: 10.1016/j.molcel.2017.08.013 – ident: e_1_2_8_132_1 doi: 10.1016/j.omtn.2019.09.003 – ident: e_1_2_8_75_1 doi: 10.1111/j.1600-0854.2010.01041.x – ident: e_1_2_8_173_1 doi: 10.1016/j.celrep.2020.107987 – ident: e_1_2_8_241_1 doi: 10.1002/jcsm.12334 – ident: e_1_2_8_269_1 doi: 10.1038/s41419-019-1404-9 – ident: e_1_2_8_264_1 doi: 10.1111/acel.12484 – ident: e_1_2_8_13_1 doi: 10.3233/JAD-190656 – ident: e_1_2_8_144_1 doi: 10.7150/thno.18915 – ident: e_1_2_8_297_1 doi: 10.1016/j.actbio.2020.01.040 – ident: e_1_2_8_160_1 doi: 10.1002/sctm.19-0327 – ident: e_1_2_8_295_1 doi: 10.1007/s13238-019-0612-5 – volume: 33 start-page: 395 year: 2020 ident: e_1_2_8_47_1 article-title: Aging reprograms the hematopoietic‐vascular niche to impede regeneration and promote fibrosis publication-title: Cell Metabolism doi: 10.1016/j.cmet.2020.11.019 – ident: e_1_2_8_78_1 doi: 10.2337/db17-1308 – ident: e_1_2_8_156_1 doi: 10.1002/stem.2996 – ident: e_1_2_8_39_1 doi: 10.1016/j.neulet.2018.12.030 – ident: e_1_2_8_280_1 doi: 10.1016/j.cell.2017.08.035 – ident: e_1_2_8_116_1 doi: 10.1038/s41467-020-18039-x – ident: e_1_2_8_207_1 doi: 10.1161/CIRCRESAHA.118.314601 – ident: e_1_2_8_23_1 doi: 10.1371/journal.pbio.3000599 – ident: e_1_2_8_176_1 doi: 10.1111/ggi.13928 – ident: e_1_2_8_209_1 doi: 10.1111/all.14429 – ident: e_1_2_8_219_1 doi: 10.1080/20013078.2017.1317577 – volume: 32 start-page: fj201800059R year: 2018 ident: e_1_2_8_257_1 article-title: Extracellular vesicles extracted from young donor serum attenuate inflammaging via partially rejuvenating aged T‐cell immunotolerance publication-title: FASEB Journal – ident: e_1_2_8_236_1 doi: 10.1016/S0005-2728(98)00161-3 – ident: e_1_2_8_242_1 doi: 10.1158/2159-8290.CD-16-0217 – volume: 11 start-page: 13 year: 2020 ident: e_1_2_8_71_1 article-title: Influence of mesenchymal stem cell‐derived extracellular vesicles in vitro and their role in ageing publication-title: Stem Cell Research Therapy doi: 10.1186/s13287-019-1534-0 – ident: e_1_2_8_226_1 doi: 10.1016/j.tibs.2020.03.008 – ident: e_1_2_8_114_1 doi: 10.1016/j.cell.2019.12.035 – ident: e_1_2_8_40_1 doi: 10.1101/gad.271882.115 – ident: e_1_2_8_170_1 doi: 10.1186/s40478-017-0470-4 – ident: e_1_2_8_263_1 doi: 10.18632/aging.103366 – ident: e_1_2_8_61_1 doi: 10.1016/j.biocel.2019.105564 – ident: e_1_2_8_6_1 doi: 10.1111/liv.14569 – ident: e_1_2_8_5_1 doi: 10.1038/s41591-019-0719-5 – ident: e_1_2_8_179_1 doi: 10.1016/j.cmet.2013.10.001 – ident: e_1_2_8_159_1 doi: 10.1111/cas.14266 – ident: e_1_2_8_48_1 doi: 10.1080/20013078.2020.1766822 – ident: e_1_2_8_21_1 doi: 10.1172/JCI70577 – ident: e_1_2_8_218_1 doi: 10.1161/JAHA.119.012584 – ident: e_1_2_8_286_1 doi: 10.1002/advs.202001334 – ident: e_1_2_8_288_1 doi: 10.2147/IJN.S249751 – ident: e_1_2_8_109_1 doi: 10.3389/fphys.2017.00275 – ident: e_1_2_8_42_1 doi: 10.1038/ncomms4729 – ident: e_1_2_8_222_1 doi: 10.18632/aging.202658 – ident: e_1_2_8_101_1 doi: 10.1158/0008-5472.CAN-20-0506 – ident: e_1_2_8_34_1 doi: 10.1371/journal.pone.0188840 – ident: e_1_2_8_37_1 doi: 10.1111/acel.12675 – volume: 40 start-page: 89 year: 2021 ident: e_1_2_8_243_1 article-title: TP53 drives abscopal effect by secretion of senescence‐associated molecular signals in non‐small cell lung cancer publication-title: Journal of Experimental & Clinical Cancer Research doi: 10.1186/s13046-021-01883-0 – ident: e_1_2_8_183_1 doi: 10.1128/JVI.01310-13 – ident: e_1_2_8_12_1 doi: 10.1038/nn.4132 – volume: 18 start-page: 230 year: 2020 ident: e_1_2_8_268_1 article-title: Extracellular vesicles in diabetes mellitus induce alterations in endothelial cell morphology and migration publication-title: Journal of Translational Medicine doi: 10.1186/s12967-020-02398-6 – ident: e_1_2_8_246_1 doi: 10.1158/1535-7163.MCT-12-1242 – ident: e_1_2_8_192_1 doi: 10.3390/ijms19061715 – ident: e_1_2_8_152_1 doi: 10.1038/s41467-019-09030-2 – ident: e_1_2_8_45_1 doi: 10.1038/s41413-019-0056-9 – ident: e_1_2_8_199_1 doi: 10.1016/j.neurobiolaging.2019.10.010 – ident: e_1_2_8_90_1 doi: 10.1038/s41467-019-13894-9 – ident: e_1_2_8_184_1 doi: 10.1016/j.redox.2021.102032 – ident: e_1_2_8_82_1 doi: 10.18632/aging.101874 – ident: e_1_2_8_230_1 doi: 10.1038/s41418-018-0255-8 – ident: e_1_2_8_130_1 doi: 10.1126/science.aaa5612 – ident: e_1_2_8_245_1 doi: 10.1093/molehr/gaaa068 – ident: e_1_2_8_57_1 doi: 10.1083/jcb.201206006 – ident: e_1_2_8_265_1 doi: 10.1016/j.cmet.2015.11.011 – ident: e_1_2_8_127_1 doi: 10.1016/j.ebiom.2018.12.052 – ident: e_1_2_8_20_1 doi: 10.3389/fimmu.2019.00862 – ident: e_1_2_8_289_1 doi: 10.1016/j.neurobiolaging.2017.09.016 – ident: e_1_2_8_55_1 doi: 10.1071/RD14452 – ident: e_1_2_8_229_1 doi: 10.1126/scisignal.aah6671 – ident: e_1_2_8_187_1 doi: 10.1016/j.bbadis.2019.165608 |
| SSID | ssj0000941589 |
| Score | 2.5234475 |
| SecondaryResourceType | review_article |
| Snippet | Cellular senescence is a persistently hypoproliferative state with diverse stressors in a specific aging microenvironment. Senescent cells have a double‐edged... Cellular senescence is a persistently hypoproliferative state with diverse stressors in a specific aging microenvironment. Senescent cells have a double-edged... Abstract Cellular senescence is a persistently hypoproliferative state with diverse stressors in a specific aging microenvironment. Senescent cells have a... |
| SourceID | doaj pubmedcentral proquest pubmed crossref wiley |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | e12154 |
| SubjectTerms | age‐related diseases Aging Aging - genetics aging microenvironment antiaging therapy Autophagy Biosynthesis Cell cycle Cell death Cell interactions Cellular Senescence Cyclin-dependent kinases DNA damage Extracellular vesicles Extracellular Vesicles - metabolism Gene expression Homeostasis Humans Kinases Metabolism Metabolites Microenvironments Mitochondria Mutation Paracrine signalling Phosphorylation Proteins Review Senescence Signal Transduction |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3LatwwFL2EkEI3pUlfbtKg0G5aMLH1tJdtSQghhFDaMDsh2dd0Quop42Qgu35Cv7Ff0ivZMTMkpJvujKSFdB_SsX10LsA7J6uqCQlYqbpMpS_z1NWuTiuD6AvnMh11Cs5PzOlpMZmUZ0ulvgInrJcH7g2372uUdKYLJzVtuC53SJBeSeGN4q7BKLZNqGfpZeqi58vlqihHPVK-f4ELHqUU5MoJFIX670OXd0mSy-A1nj6HT-HJABvZx366m7CG7RY86gtJ3jyDyZegy8RmDaO9du7C1_hAL2UL7CLtjU1bRkiPxZJE7Ecg4S3dcGOurakL__z6Ha-2YM2G_zbdc_h2ePD181E61EwgYxeZTCmd0DTeuMYXqtHkgZrgsyeUYDjmgfPCUZIznCsFgT2d12RTWQlhgkCtRvEC1ttZi6-AFd54Ahc6axSXSiinDc-oxXNstKqyBN7f2tFWg6B4qGtxaXspZG6DzW20eQJvx7E_exmNe0d9Cu4YRwTp69hAAWGHgLD_CogEdm6daYd87KygdQsZ9p8E9sZuyqTgENfi7LqztHkRVisJwSXwsvf9OBMhdVYS9EnArETFylRXe9rp96jWXcgy5xmt7UOMnweWb48Pznl8ev0_DLENj3kg4ETm4Q6sX82v8Q1sVIuraTffjfnyF71eGso priority: 102 providerName: Directory of Open Access Journals |
| Title | Roles of extracellular vesicles in the aging microenvironment and age‐related diseases |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fjev2.12154 https://www.ncbi.nlm.nih.gov/pubmed/34609061 https://www.proquest.com/docview/3092345101 https://www.proquest.com/docview/2579379389 https://pubmed.ncbi.nlm.nih.gov/PMC8491204 https://doaj.org/article/bde41433a46341a1ae495543b752afe6 |
| Volume | 10 |
| WOSCitedRecordID | wos000703473000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2001-3078 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000941589 issn: 2001-3078 databaseCode: DOA dateStart: 20120101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2001-3078 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000941589 issn: 2001-3078 databaseCode: M~E dateStart: 20120101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVAWR databaseName: Taylor & Francis Online Journals customDbUrl: eissn: 2001-3078 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000941589 issn: 2001-3078 databaseCode: TFW dateStart: 20120101 isFulltext: true titleUrlDefault: https://www.tandfonline.com providerName: Taylor & Francis – providerCode: PRVWIB databaseName: Wiley Free Archive customDbUrl: eissn: 2001-3078 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000941589 issn: 2001-3078 databaseCode: WIN dateStart: 20120101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell – providerCode: PRVWIB databaseName: Wiley Online Library Open Access customDbUrl: eissn: 2001-3078 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000941589 issn: 2001-3078 databaseCode: 24P dateStart: 20120101 isFulltext: true titleUrlDefault: https://authorservices.wiley.com/open-science/open-access/browse-journals.html providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1faxQxEB9qVeiL_7Vba4noi8LSzZ9NsuCLyhUVPYpovbeQ7Gb1iu6V2_bAl-JH8DP6SZxk97Y9LIL4EpYkCzuZmeSX7OQ3AI-tKMs6OGCZV0UqXEFTW9kqLZX3TlubychTcPBWjcd6Min21-DZ8i5Mxw8xHLgFz4jzdXBw69rdM9LQQ79gkRtBXILLlHIdEjcwsT-csODGheYxB16MG0Jj1gM_Kds9e31lRYrE_RehzT-DJs-D2bga7V3_PzluwLUehZLnndnchDXf3IKrXV7K77dh8j7QPJFZTXDqnttwuB-iVcnCtzGKjkwbgsCRxAxH5FuI6Tt3YY7YpsIm_-vHz3hTxlek_w3U3oGPe6MPL1-lfQoG1J3ORIre6VXtlK2dzmuJCq0QjTsEHYp5GkJomBeoW2sLjthR0opaKkrOVeC7lZ7fhfVm1vhNINoph1hFZnXORM5zKxXLsMYxX8u8zBJ4slSDKXt-8pAm46vpmJWZCSNl4kgl8Gjoe9SxclzY60XQ5tAjMGnHitn8s-kd07jKC8SM3AqJC7ql1uOWMRfcqZzZ2ssEtpe2YHr3bg1HubkI01kCD4dmdMygENv42UlrcC5E6FcgIEzgXmc6w5dwIbMCkVQCasWoVj51taWZfonk31oUlGUo29NoVH8R37wZHbD4tPUvne_DBgtxOzFgcRvWj-cn_gFcKRfH03a-E10MSzXRO_H8Ast3pyMsP70e_wa-3y0l |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb9QwEB1BAbUXvj8CBYzgAlLUxHbs5AioVQvLCqFS9mbZiUMXQRZt2pV660_ob-SXMOOkaVdUSIhbZDuS7ZmxX5znNwAvrCzLmgKwzKoilq5IY1vZKi619y63NlFBp2BvpMfjfDIpPvbcHLoL0-lDDAduFBlhvaYApwPpjTPV0G9-wYM4grwMVyQiDcrc8GVnPByx4JdLmoUkeIE4hN6cDwKlfOPs9aUtKSj3XwQ3_2RNnkezYTvauvGfA7kJ13scyl53jnMLLvnmNlzrMlMe3YHJJxJ6YrOa4eI9t3S8T3xVtvBt4NGxacMQOrKQ44j9IFbfuStzzDYVVvlfxyfhroyvWP8jqL0Ln7c2d99ux30SBrRensgY49Pr2mlbuzyrFZq0QjzuEHZo7lMi0XAv0brWFgLRo0qr1KayFEKT4q3y4h6sNLPGPwCWO-0QraikzrjMRGaV5gmWOO5rlZVJBC9P7WDKXqGcEmV8N522Mjc0UybMVATPh7Y_O12OC1u9IXMOLUhLOxTM5l9NH5rGVV4iahRWKtzSbWo9fjRmUjidcVt7FcH6qTOYPsBbI3DcQtKCFsGzoRpDkwxiGz87bA2uhgj-CoSEEdzvfGfoiZAqKRBLRaCXvGqpq8s1zXQ_yH_nskh5gmN7FbzqL8M37zb3eHh6-C-Nn8Lq9u6HkRntjN8_gjVOLJ5AX1yHlYP5oX8MV8vFwbSdPwnx9hsZmi1g |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3bbtQwEB1BgYoX7oVAASN4ASlq4mvyyKUrLtVqhaDaN8tOJrAIstVuuxJvfALfyJcwdtK0KyokxFtkO5LtmbFPnOMzAE-crKomBGCl6jKVvsxTV7s6rQyiL5zLdNQp2N8z43ExnZaTnpsT7sJ0-hDDgVuIjLhehwDHg7rZOVEN_YIrHsUR5Hm4IJXJg1NzORmOWOjLJVcxCV4kDpE3F4NAKd85eX1tS4rK_WfBzT9Zk6fRbNyORlf_cyDX4EqPQ9nzznGuwzlsb8ClLjPl95swfR-Enti8YbR4L1w43g98VbbCZeTRsVnLCDqymOOIfQusvlNX5phra6rCXz9-xrsyWLP-R9DyFnwc7X54-TrtkzCQ9YpMphSfaBpvXOML1WgyaU143BPsMBzzQKLhKMm6zpWC0KPO69zlshLCBMVbjWILNtp5i3eAFd54Qis6axSXSiinDc-oxHNstKqyBJ4e28FWvUJ5SJTx1XbaytyGmbJxphJ4PLQ96HQ5zmz1IphzaBG0tGPBfPHJ9qFpfY2SUKNwUtOW7nKH9NGopPBGcdegTmD72BlsH-BLK2jcQoYFLYFHQzWFZjCIa3F-tLS0GhL4KwkSJnC7852hJ0LqrCQslYBZ86q1rq7XtLPPUf67kGXOMxrbs-hVfxm-fbu7z-PT3X9p_BA2J69Gdu_N-N09uMwDiSeyF7dh43BxhPfhYrU6nC0XD2K4_QbMGSx3 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Roles+of+extracellular+vesicles+in+the+aging+microenvironment+and+age%E2%80%90related+diseases&rft.jtitle=Journal+of+extracellular+vesicles&rft.au=Yin%2C+Yujia&rft.au=Chen%2C+Huihui&rft.au=Wang%2C+Yizhi&rft.au=Zhang%2C+Ludi&rft.date=2021-10-01&rft.issn=2001-3078&rft.eissn=2001-3078&rft.volume=10&rft.issue=12&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fjev2.12154&rft.externalDBID=10.1002%252Fjev2.12154&rft.externalDocID=JEV212154 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2001-3078&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2001-3078&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2001-3078&client=summon |