Detection of Important Scenes in Baseball Videos via a Time-Lag-Aware Multimodal Variational Autoencoder
A new method for the detection of important scenes in baseball videos via a time-lag-aware multimodal variational autoencoder (Tl-MVAE) is presented in this paper. Tl-MVAE estimates latent features calculated from tweet, video, and audio features extracted from tweets and videos. Then, important sce...
Saved in:
| Published in: | Sensors (Basel, Switzerland) Vol. 21; no. 6; p. 2045 |
|---|---|
| Main Authors: | , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Switzerland
MDPI AG
14.03.2021
MDPI |
| Subjects: | |
| ISSN: | 1424-8220, 1424-8220 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | A new method for the detection of important scenes in baseball videos via a time-lag-aware multimodal variational autoencoder (Tl-MVAE) is presented in this paper. Tl-MVAE estimates latent features calculated from tweet, video, and audio features extracted from tweets and videos. Then, important scenes are detected by estimating the probability of the scene being important from estimated latent features. It should be noted that there exist time-lags between tweets posted by users and videos. To consider the time-lags between tweet features and other features calculated from corresponding multiple previous events, the feature transformation based on feature correlation considering such time-lags is newly introduced to the encoder in MVAE in the proposed method. This is the biggest contribution of the Tl-MVAE. Experimental results obtained from actual baseball videos and their corresponding tweets show the effectiveness of the proposed method. |
|---|---|
| AbstractList | A new method for the detection of important scenes in baseball videos via a time-lag-aware multimodal variational autoencoder (Tl-MVAE) is presented in this paper. Tl-MVAE estimates latent features calculated from tweet, video, and audio features extracted from tweets and videos. Then, important scenes are detected by estimating the probability of the scene being important from estimated latent features. It should be noted that there exist time-lags between tweets posted by users and videos. To consider the time-lags between tweet features and other features calculated from corresponding multiple previous events, the feature transformation based on feature correlation considering such time-lags is newly introduced to the encoder in MVAE in the proposed method. This is the biggest contribution of the Tl-MVAE. Experimental results obtained from actual baseball videos and their corresponding tweets show the effectiveness of the proposed method. A new method for the detection of important scenes in baseball videos via a time-lag-aware multimodal variational autoencoder (Tl-MVAE) is presented in this paper. Tl-MVAE estimates latent features calculated from tweet, video, and audio features extracted from tweets and videos. Then, important scenes are detected by estimating the probability of the scene being important from estimated latent features. It should be noted that there exist time-lags between tweets posted by users and videos. To consider the time-lags between tweet features and other features calculated from corresponding multiple previous events, the feature transformation based on feature correlation considering such time-lags is newly introduced to the encoder in MVAE in the proposed method. This is the biggest contribution of the Tl-MVAE. Experimental results obtained from actual baseball videos and their corresponding tweets show the effectiveness of the proposed method.A new method for the detection of important scenes in baseball videos via a time-lag-aware multimodal variational autoencoder (Tl-MVAE) is presented in this paper. Tl-MVAE estimates latent features calculated from tweet, video, and audio features extracted from tweets and videos. Then, important scenes are detected by estimating the probability of the scene being important from estimated latent features. It should be noted that there exist time-lags between tweets posted by users and videos. To consider the time-lags between tweet features and other features calculated from corresponding multiple previous events, the feature transformation based on feature correlation considering such time-lags is newly introduced to the encoder in MVAE in the proposed method. This is the biggest contribution of the Tl-MVAE. Experimental results obtained from actual baseball videos and their corresponding tweets show the effectiveness of the proposed method. |
| Author | Hirasawa, Kaito Ogawa, Takahiro Haseyama, Miki Maeda, Keisuke |
| AuthorAffiliation | 1 Graduate School of Information Science and Technology, Hokkaido University, N-14, W-9, Kita-ku, Sapporo 060-0814, Hokkaido, Japan 3 Faculty of Information Science and Technology, Hokkaido University, N-14, W-9, Kita-ku, Sapporo 060-0814, Hokkaido, Japan; ogawa@lmd.ist.hokudai.ac.jp (T.O.); miki@ist.hokudai.ac.jp (M.H.) 2 Office of Institutional Research, Hokkaido University, N-8, W-5, Kita-ku, Sapporo 060-0808, Hokkaido, Japan; maeda@lmd.ist.hokudai.ac.jp |
| AuthorAffiliation_xml | – name: 3 Faculty of Information Science and Technology, Hokkaido University, N-14, W-9, Kita-ku, Sapporo 060-0814, Hokkaido, Japan; ogawa@lmd.ist.hokudai.ac.jp (T.O.); miki@ist.hokudai.ac.jp (M.H.) – name: 2 Office of Institutional Research, Hokkaido University, N-8, W-5, Kita-ku, Sapporo 060-0808, Hokkaido, Japan; maeda@lmd.ist.hokudai.ac.jp – name: 1 Graduate School of Information Science and Technology, Hokkaido University, N-14, W-9, Kita-ku, Sapporo 060-0814, Hokkaido, Japan |
| Author_xml | – sequence: 1 givenname: Kaito orcidid: 0000-0002-0460-6726 surname: Hirasawa fullname: Hirasawa, Kaito – sequence: 2 givenname: Keisuke orcidid: 0000-0001-8039-3462 surname: Maeda fullname: Maeda, Keisuke – sequence: 3 givenname: Takahiro surname: Ogawa fullname: Ogawa, Takahiro – sequence: 4 givenname: Miki surname: Haseyama fullname: Haseyama, Miki |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33799412$$D View this record in MEDLINE/PubMed |
| BookMark | eNplkktv1DAURi1URB-w4A8gS2zoItSPOIk3SEN5jTSIBYWt5cfN1KMkHmyniH9fd6at2rLylX18dPXde4wOpjABQq8pec-5JGeJUdIwUotn6IjWrK46xsjBg_oQHae0IYRxzrsX6JDzVsqasiN0-Qky2OzDhEOPl-M2xKynjH9amCBhP-GPOoHRw4B_ewch4SuvscYXfoRqpdfV4q-OgL_PQ_ZjcLpgOnp9Iyz1Ys4BJhscxJfoea-HBK9uzxP068vni_Nv1erH1-X5YlVZ0cpcgbG2oQ03DFjNO8J6B6Jpemppx3opnCGua03PhKCMWkONJC3IGrjjnBnJT9By73VBb9Q2-lHHfypor3YXIa6VjtnbAZSrBfS6kZK6kpRlsjZUg-17ZxsmwBXXh71rO5sRXIkkRz08kj5-mfylWocrVdKVjNMieHcriOHPDCmr0ScLw6AnCHNSTJBONLzu2oK-fYJuwhxLiDuKCSkEbwr15mFH963cDbQAZ3vAxpBShF5Zn3fjKA36QVGiblZG3a9M-XH65Med9H_2GnEKwHg |
| CitedBy_id | crossref_primary_10_3390_s22072465 crossref_primary_10_3390_app14051958 |
| Cites_doi | 10.1109/CVPRW.2018.00233 10.1609/aaai.v34i05.6431 10.21437/Interspeech.2017-434 10.1109/WAINA.2012.188 10.1145/3308558.3313552 10.1109/TMM.2006.870726 10.1145/2647868.2654973 10.23919/MIKON.2018.8405154 10.1109/ICME.2012.135 10.1109/ICIP40778.2020.9191070 10.51628/001c.7125 10.1109/CVPR.2018.00685 10.1162/neco.1997.9.8.1735 10.1016/j.cviu.2004.02.002 10.1109/BDC.2014.20 10.1109/ICCE-Taiwan49838.2020.9258242 10.18653/v1/P16-2044 10.1145/3206025.3206064 |
| ContentType | Journal Article |
| Copyright | 2021. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2021 by the authors. 2021 |
| Copyright_xml | – notice: 2021. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2021 by the authors. 2021 |
| DBID | AAYXX CITATION NPM 3V. 7X7 7XB 88E 8FI 8FJ 8FK ABUWG AFKRA AZQEC BENPR CCPQU DWQXO FYUFA GHDGH K9. M0S M1P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI 7X8 5PM DOA |
| DOI | 10.3390/s21062045 |
| DatabaseName | CrossRef PubMed ProQuest Central (Corporate) Health & Medical Collection (ProQuest) ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials - QC ProQuest Central ProQuest One ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Health & Medical Complete (Alumni) ProQuest Health & Medical Collection Medical Database Proquest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic (retired) ProQuest One Academic UKI Edition MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Central ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Health & Medical Research Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | Publicly Available Content Database MEDLINE - Academic PubMed CrossRef |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: PIMPY name: ProQuest Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1424-8220 |
| ExternalDocumentID | oai_doaj_org_article_d45efa6991d142c294b1aecffdc625ed PMC7999231 33799412 10_3390_s21062045 |
| Genre | Journal Article |
| GrantInformation_xml | – fundername: MIC/SCOPE grantid: 181601001 |
| GroupedDBID | --- 123 2WC 53G 5VS 7X7 88E 8FE 8FG 8FI 8FJ AADQD AAHBH AAYXX ABDBF ABUWG ACUHS ADBBV ADMLS AENEX AFFHD AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS BENPR BPHCQ BVXVI CCPQU CITATION CS3 D1I DU5 E3Z EBD ESX F5P FYUFA GROUPED_DOAJ GX1 HH5 HMCUK HYE IAO ITC KQ8 L6V M1P M48 MODMG M~E OK1 OVT P2P P62 PHGZM PHGZT PIMPY PJZUB PPXIY PQQKQ PROAC PSQYO RNS RPM TUS UKHRP XSB ~8M 3V. ABJCF ALIPV ARAPS HCIFZ KB. M7S NPM PDBOC 7XB 8FK AZQEC DWQXO K9. PKEHL PQEST PQUKI 7X8 PUEGO 5PM |
| ID | FETCH-LOGICAL-c579t-ebcc6163b2e243802fde566f1c182f95db0d87bf255121cb1b907e94e3d332b93 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 2 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000652714900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1424-8220 |
| IngestDate | Fri Oct 03 12:53:25 EDT 2025 Tue Nov 04 01:53:01 EST 2025 Fri Sep 05 08:06:01 EDT 2025 Tue Oct 07 06:52:58 EDT 2025 Wed Feb 19 02:27:53 EST 2025 Sat Nov 29 07:12:37 EST 2025 Tue Nov 18 22:07:14 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 6 |
| Keywords | Twitter time-lags multimodal variational autoencoder detection of important scenes sports video |
| Language | English |
| License | Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c579t-ebcc6163b2e243802fde566f1c182f95db0d87bf255121cb1b907e94e3d332b93 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 This paper is an extended version of our paper published in: Hirasawa, K.; Maeda, K.; Ogawa, T.; Haseyama, M. Important Scene Detection Based on Anomaly Detection using Long Short-Term Memory for Baseball Highlight Generation. In the Proceedings of the IEEE International Conference on Consumer Electronics—Taiwan (IEEE 2020 ICCE-TW), Taoyuan, Taiwan, 28–30 September 2020. |
| ORCID | 0000-0001-8039-3462 0000-0002-0460-6726 |
| OpenAccessLink | https://doaj.org/article/d45efa6991d142c294b1aecffdc625ed |
| PMID | 33799412 |
| PQID | 2502595536 |
| PQPubID | 2032333 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_d45efa6991d142c294b1aecffdc625ed pubmedcentral_primary_oai_pubmedcentral_nih_gov_7999231 proquest_miscellaneous_2508563487 proquest_journals_2502595536 pubmed_primary_33799412 crossref_citationtrail_10_3390_s21062045 crossref_primary_10_3390_s21062045 |
| PublicationCentury | 2000 |
| PublicationDate | 20210314 |
| PublicationDateYYYYMMDD | 2021-03-14 |
| PublicationDate_xml | – month: 3 year: 2021 text: 20210314 day: 14 |
| PublicationDecade | 2020 |
| PublicationPlace | Switzerland |
| PublicationPlace_xml | – name: Switzerland – name: Basel |
| PublicationTitle | Sensors (Basel, Switzerland) |
| PublicationTitleAlternate | Sensors (Basel) |
| PublicationYear | 2021 |
| Publisher | MDPI AG MDPI |
| Publisher_xml | – name: MDPI AG – name: MDPI |
| References | ref_14 ref_13 ref_12 ref_23 Cheng (ref_2) 2006; 8 ref_11 ref_22 ref_10 ref_21 ref_20 ref_1 ref_3 Gong (ref_4) 2004; 96 ref_19 ref_18 ref_17 ref_16 ref_15 ref_9 Hochreiter (ref_24) 1997; 9 ref_8 ref_5 ref_7 ref_6 |
| References_xml | – ident: ref_1 doi: 10.1109/CVPRW.2018.00233 – ident: ref_10 doi: 10.1609/aaai.v34i05.6431 – ident: ref_23 doi: 10.21437/Interspeech.2017-434 – ident: ref_5 doi: 10.1109/WAINA.2012.188 – ident: ref_3 – ident: ref_11 doi: 10.1145/3308558.3313552 – volume: 8 start-page: 585 year: 2006 ident: ref_2 article-title: Fusion of audio and motion information on HMM-based highlight extraction for baseball games publication-title: IEEE Trans. Multimed. doi: 10.1109/TMM.2006.870726 – ident: ref_6 doi: 10.1145/2647868.2654973 – ident: ref_22 doi: 10.23919/MIKON.2018.8405154 – ident: ref_7 doi: 10.1109/ICME.2012.135 – ident: ref_12 – ident: ref_15 doi: 10.1109/ICIP40778.2020.9191070 – ident: ref_14 doi: 10.51628/001c.7125 – ident: ref_18 doi: 10.1109/CVPR.2018.00685 – volume: 9 start-page: 1735 year: 1997 ident: ref_24 article-title: Long short-term memory publication-title: Neural Comput. doi: 10.1162/neco.1997.9.8.1735 – ident: ref_17 – ident: ref_19 – ident: ref_21 – volume: 96 start-page: 181 year: 2004 ident: ref_4 article-title: Maximum entropy model-based baseball highlight detection and classification publication-title: Comput. Vis. Image Underst. doi: 10.1016/j.cviu.2004.02.002 – ident: ref_8 doi: 10.1109/BDC.2014.20 – ident: ref_20 – ident: ref_13 doi: 10.1109/ICCE-Taiwan49838.2020.9258242 – ident: ref_16 doi: 10.18653/v1/P16-2044 – ident: ref_9 doi: 10.1145/3206025.3206064 |
| SSID | ssj0023338 |
| Score | 2.336499 |
| Snippet | A new method for the detection of important scenes in baseball videos via a time-lag-aware multimodal variational autoencoder (Tl-MVAE) is presented in this... |
| SourceID | doaj pubmedcentral proquest pubmed crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
| StartPage | 2045 |
| SubjectTerms | Baseball detection of important scenes Influence Methods multimodal variational autoencoder Neural networks Sensors Social networks sports video time-lags |
| SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELag5UAPlDehBRnEgUvUjZ2XT2gXWoGEVhWPqrfIzzbSNmmTbPn7zHi9oYsqLuSW2FFGGT--zx5_Q8g7mUuDGbfjtDR4JIflseBZEQvrWGJd5ibG-WQTxXxenp6K47Dg1oewyvWY6Adq02pcIz-AqRqQepbx_MPlVYxZo3B3NaTQuEu2UakM2vn27HB-_G2kXBwY2EpPiAO5P-iB4HgB9o1ZyIv134Yw_w6UvDHzHO3-r80PyYOAOel01UgekTu2eUx2bigRPiHnn-zgg7Ia2jr65cKj8mag3zWOhbRu6AymOyUXC3pSG9v29LqWVFI8QRJ_lWfx9JfsLPXHeS9aA187ARIeFhrpdDm0KJhpbPeU_Dw6_PHxcxySMMQ6K8QQW6V1DqBNMctQnZ45YwECukQDM3EiM2piykI5oCYJS7RKFNBtK1LLDedMCf6MbDVtY18QmsGVyAlqfKk0n9jSCPg7TAMI5Q7uIvJ-7ZRKB4VyTJSxqICpoP-q0X8ReTtWvVzJctxWaYaeHSugkrZ_0HZnVeiYlUkz62QOMNkkKdNMpCqRVjtnNFBDC0btr31bhe7dV38cG5E3YzF0TNxtkY1tl75OmeUcCGFEnq-a0WgJ54UQacIiUmw0sA1TN0ua-tyLf8OLiMlf_tusPXKfYfANBh6m-2Rr6Jb2Fbmnr4e6716HXvIbLCweCw priority: 102 providerName: ProQuest |
| Title | Detection of Important Scenes in Baseball Videos via a Time-Lag-Aware Multimodal Variational Autoencoder |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/33799412 https://www.proquest.com/docview/2502595536 https://www.proquest.com/docview/2508563487 https://pubmed.ncbi.nlm.nih.gov/PMC7999231 https://doaj.org/article/d45efa6991d142c294b1aecffdc625ed |
| Volume | 21 |
| WOSCitedRecordID | wos000652714900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: DOA dateStart: 20010101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: M~E dateStart: 20010101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: 7X7 dateStart: 20010101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: BENPR dateStart: 20010101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Publicly Available Content Database customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: PIMPY dateStart: 20010101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3Nb9MwFH-CwQEOE99kjMogDlyiJXacxMcWOjGJVRUfUzlFjj-2SF2C2nTc-Nt5dtKoRZO4kIOl2I7i2M_x75c8_x7AO5lK7SJuh0mu3ZYcmoaC8SwUxtLYWG4jbX2wiWw2yxcLMd8J9eV8wjp54K7jTnTCjZUpwhgdJ1RRkZSxNMparRC6G-3evlEmtmSqp1oMmVenI8SQ1J-skdh44fW91ceL9N-GLP92kNxZcU4fwWEPFcm4a-JjuGPqJ_BwR0DwKVx9NK33papJY8nZtQfTdUu-KvcKI1VNJrhKlXK5JBeVNs2a3FSSSOI2foSf5WU4_iVXhvhduNeNxrtdIHfuvw-S8aZtnM6lNqtn8P10-u3Dp7CPnRAqnok2NKVSKWKtkhrqROWp1QaRm40VEgoruC4jnWelRUYR01iVcYks2YjEMM0YLQV7Dgd1U5uXQDgesYycNFeZpJHJteCCU4XYkVk8C-D9tk8L1QuLu_gWywIJhuv-Yuj-AN4OVX92ahq3VZq4gRkqOAFsn4FmUfRmUfzLLAI43g5r0c_KdYFwD9ke5ywN4M1QjPPJ_SSRtWk2vk7OU4Y8LoAXnRUMLWEsEyKJaQDZnn3sNXW_pK6uvGY3Xuig9NH_eLZX8IA6zxrnVZgcw0G72pjXcF_dtNV6NYK72SLzaT6Ce5PpbP5l5CcHpue_p5g3Pzuf__gD8_MWlA |
| linkProvider | Directory of Open Access Journals |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB5VWyTgwPsRKGAQSFyiJnYe6wNCW0rVVberlShVOQXHjzbSNilJthV_it_IOMmGLqq49UBuiR3Fib-M57PH3wC8FZFQNuO2GwyV3ZJDI5ezMHa5NtTXJjSeMk2yiXg6HR4d8dka_FruhbFhlUub2BhqVUg7R76JQzV66mHIoo9nP1ybNcquri5TaLSw2NM_L5CyVR_G29i_7yjd-Xzwadftsgq4Mox57epUygi9kJRqauXWqVEafRrjS3S1DQ9V6qlhnBr0tX3qy9RPkT9qHmimGKOpFV9Ck78eINi9AazPxvuzbz3FY8j4Wv0ixri3WSGhagTfV0a9JjnAVR7t34GZl0a6nbv_2ze6B3c6n5qM2p_gPqzp_AHcvqS0-BBOtnXdBJ3lpDBkfNqwjrwmX6S19STLyRYO56mYz8lhpnRRkfNMEEHsDhl3Io7d0YUoNWm2K58WCp92KMqsm0glo0VdWEFQpctH8PVaXvUxDPIi10-BhHj4wrMaZmkQeXqoOPYGlehkM4NnDrxfgiCRnQK7TQQyT5CJWbwkPV4ceNNXPWtlR66qtGWR1FewSuHNhaI8TjrDk6gg1EZESAOUH1BJeZD6QktjlETqq7FRG0ssJZ35qpI_QHLgdV-MhseuJolcF4umzjCMGBJeB560sO1bwljMeeBTB-IVQK80dbUkz04acXO80XKOZ_9u1iu4uXuwP0km4-nec7hFbaCRDbIMNmBQlwv9Am7I8zqrypfdH0rg-3UD_jdw33rT |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEF5VBSE4lDcYCiwIJC5W4l2_9oBQSoiIWkWVgCo3d72P1lJqt47Tir_Gr2Nm7aQNqrj1gG_2ruW19_PMfPbsN4S8l7HUWHHbD1ONS3JY7AseJb4wlgXGRravrSs2kUwm6XQq9jfI7-VaGEyrXNpEZ6h1pfAbeQ9cNUTqUcTjnu3SIvaHo8-nZz5WkMI_rctyGi1Eds2vC6Bv80_jIcz1B8ZGX398-eZ3FQZ8FSWi8U2uVAwRSc4MQ-l1ZrWB-MYGCsJuKyKd93Wa5Bbi7oAFKg9y4JJGhIZrzlmOQkxg_m-hpCAahWR6SfY4cL9WyYhz0e_NgVo56fc1_-fKBFwX2_6donnF543u_89P6wHZ6iJtOmhfjYdkw5SPyL0r-ouPyfHQNC4VraSVpeMTx0XKhn5X6AFoUdIdcPK5nM3oQaFNNafnhaSS4roZf08e-YMLWRvqFjGfVBqudiDrovu8SgeLpkKZUG3qJ-TnjdzqU7JZVqV5TmgEWyD7qGyWh3HfpFrAzDAFoTe3sOeRj0tAZKrTZcfyILMM-BliJ1thxyPvVl1PWzGS6zrtIKpWHVA_3B2o6qOsM0eZDiNjZQzkQAchU0yEeSCNslYrIMQGBrW9xFXWGbV5dgkqj7xdNYM5wn9MsjTVwvVJo5gDDfbIsxbCq5FwnggRBswjyRq414a63lIWx07yHE5EJvLi38N6Q-4AyrO98WT3JbnLMPsIMy_DbbLZ1AvzitxW500xr1-7V5WSw5tG-x-E84IA |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Detection+of+Important+Scenes+in+Baseball+Videos+via+a+Time-Lag-Aware+Multimodal+Variational+Autoencoder&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Hirasawa%2C+Kaito&rft.au=Maeda%2C+Keisuke&rft.au=Ogawa%2C+Takahiro&rft.au=Haseyama%2C+Miki&rft.date=2021-03-14&rft.eissn=1424-8220&rft.volume=21&rft.issue=6&rft_id=info:doi/10.3390%2Fs21062045&rft_id=info%3Apmid%2F33799412&rft.externalDocID=33799412 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon |