Detection of Important Scenes in Baseball Videos via a Time-Lag-Aware Multimodal Variational Autoencoder

A new method for the detection of important scenes in baseball videos via a time-lag-aware multimodal variational autoencoder (Tl-MVAE) is presented in this paper. Tl-MVAE estimates latent features calculated from tweet, video, and audio features extracted from tweets and videos. Then, important sce...

Full description

Saved in:
Bibliographic Details
Published in:Sensors (Basel, Switzerland) Vol. 21; no. 6; p. 2045
Main Authors: Hirasawa, Kaito, Maeda, Keisuke, Ogawa, Takahiro, Haseyama, Miki
Format: Journal Article
Language:English
Published: Switzerland MDPI AG 14.03.2021
MDPI
Subjects:
ISSN:1424-8220, 1424-8220
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract A new method for the detection of important scenes in baseball videos via a time-lag-aware multimodal variational autoencoder (Tl-MVAE) is presented in this paper. Tl-MVAE estimates latent features calculated from tweet, video, and audio features extracted from tweets and videos. Then, important scenes are detected by estimating the probability of the scene being important from estimated latent features. It should be noted that there exist time-lags between tweets posted by users and videos. To consider the time-lags between tweet features and other features calculated from corresponding multiple previous events, the feature transformation based on feature correlation considering such time-lags is newly introduced to the encoder in MVAE in the proposed method. This is the biggest contribution of the Tl-MVAE. Experimental results obtained from actual baseball videos and their corresponding tweets show the effectiveness of the proposed method.
AbstractList A new method for the detection of important scenes in baseball videos via a time-lag-aware multimodal variational autoencoder (Tl-MVAE) is presented in this paper. Tl-MVAE estimates latent features calculated from tweet, video, and audio features extracted from tweets and videos. Then, important scenes are detected by estimating the probability of the scene being important from estimated latent features. It should be noted that there exist time-lags between tweets posted by users and videos. To consider the time-lags between tweet features and other features calculated from corresponding multiple previous events, the feature transformation based on feature correlation considering such time-lags is newly introduced to the encoder in MVAE in the proposed method. This is the biggest contribution of the Tl-MVAE. Experimental results obtained from actual baseball videos and their corresponding tweets show the effectiveness of the proposed method.
A new method for the detection of important scenes in baseball videos via a time-lag-aware multimodal variational autoencoder (Tl-MVAE) is presented in this paper. Tl-MVAE estimates latent features calculated from tweet, video, and audio features extracted from tweets and videos. Then, important scenes are detected by estimating the probability of the scene being important from estimated latent features. It should be noted that there exist time-lags between tweets posted by users and videos. To consider the time-lags between tweet features and other features calculated from corresponding multiple previous events, the feature transformation based on feature correlation considering such time-lags is newly introduced to the encoder in MVAE in the proposed method. This is the biggest contribution of the Tl-MVAE. Experimental results obtained from actual baseball videos and their corresponding tweets show the effectiveness of the proposed method.A new method for the detection of important scenes in baseball videos via a time-lag-aware multimodal variational autoencoder (Tl-MVAE) is presented in this paper. Tl-MVAE estimates latent features calculated from tweet, video, and audio features extracted from tweets and videos. Then, important scenes are detected by estimating the probability of the scene being important from estimated latent features. It should be noted that there exist time-lags between tweets posted by users and videos. To consider the time-lags between tweet features and other features calculated from corresponding multiple previous events, the feature transformation based on feature correlation considering such time-lags is newly introduced to the encoder in MVAE in the proposed method. This is the biggest contribution of the Tl-MVAE. Experimental results obtained from actual baseball videos and their corresponding tweets show the effectiveness of the proposed method.
Author Hirasawa, Kaito
Ogawa, Takahiro
Haseyama, Miki
Maeda, Keisuke
AuthorAffiliation 1 Graduate School of Information Science and Technology, Hokkaido University, N-14, W-9, Kita-ku, Sapporo 060-0814, Hokkaido, Japan
3 Faculty of Information Science and Technology, Hokkaido University, N-14, W-9, Kita-ku, Sapporo 060-0814, Hokkaido, Japan; ogawa@lmd.ist.hokudai.ac.jp (T.O.); miki@ist.hokudai.ac.jp (M.H.)
2 Office of Institutional Research, Hokkaido University, N-8, W-5, Kita-ku, Sapporo 060-0808, Hokkaido, Japan; maeda@lmd.ist.hokudai.ac.jp
AuthorAffiliation_xml – name: 3 Faculty of Information Science and Technology, Hokkaido University, N-14, W-9, Kita-ku, Sapporo 060-0814, Hokkaido, Japan; ogawa@lmd.ist.hokudai.ac.jp (T.O.); miki@ist.hokudai.ac.jp (M.H.)
– name: 2 Office of Institutional Research, Hokkaido University, N-8, W-5, Kita-ku, Sapporo 060-0808, Hokkaido, Japan; maeda@lmd.ist.hokudai.ac.jp
– name: 1 Graduate School of Information Science and Technology, Hokkaido University, N-14, W-9, Kita-ku, Sapporo 060-0814, Hokkaido, Japan
Author_xml – sequence: 1
  givenname: Kaito
  orcidid: 0000-0002-0460-6726
  surname: Hirasawa
  fullname: Hirasawa, Kaito
– sequence: 2
  givenname: Keisuke
  orcidid: 0000-0001-8039-3462
  surname: Maeda
  fullname: Maeda, Keisuke
– sequence: 3
  givenname: Takahiro
  surname: Ogawa
  fullname: Ogawa, Takahiro
– sequence: 4
  givenname: Miki
  surname: Haseyama
  fullname: Haseyama, Miki
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33799412$$D View this record in MEDLINE/PubMed
BookMark eNplkktv1DAURi1URB-w4A8gS2zoItSPOIk3SEN5jTSIBYWt5cfN1KMkHmyniH9fd6at2rLylX18dPXde4wOpjABQq8pec-5JGeJUdIwUotn6IjWrK46xsjBg_oQHae0IYRxzrsX6JDzVsqasiN0-Qky2OzDhEOPl-M2xKynjH9amCBhP-GPOoHRw4B_ewch4SuvscYXfoRqpdfV4q-OgL_PQ_ZjcLpgOnp9Iyz1Ys4BJhscxJfoea-HBK9uzxP068vni_Nv1erH1-X5YlVZ0cpcgbG2oQ03DFjNO8J6B6Jpemppx3opnCGua03PhKCMWkONJC3IGrjjnBnJT9By73VBb9Q2-lHHfypor3YXIa6VjtnbAZSrBfS6kZK6kpRlsjZUg-17ZxsmwBXXh71rO5sRXIkkRz08kj5-mfylWocrVdKVjNMieHcriOHPDCmr0ScLw6AnCHNSTJBONLzu2oK-fYJuwhxLiDuKCSkEbwr15mFH963cDbQAZ3vAxpBShF5Zn3fjKA36QVGiblZG3a9M-XH65Med9H_2GnEKwHg
CitedBy_id crossref_primary_10_3390_s22072465
crossref_primary_10_3390_app14051958
Cites_doi 10.1109/CVPRW.2018.00233
10.1609/aaai.v34i05.6431
10.21437/Interspeech.2017-434
10.1109/WAINA.2012.188
10.1145/3308558.3313552
10.1109/TMM.2006.870726
10.1145/2647868.2654973
10.23919/MIKON.2018.8405154
10.1109/ICME.2012.135
10.1109/ICIP40778.2020.9191070
10.51628/001c.7125
10.1109/CVPR.2018.00685
10.1162/neco.1997.9.8.1735
10.1016/j.cviu.2004.02.002
10.1109/BDC.2014.20
10.1109/ICCE-Taiwan49838.2020.9258242
10.18653/v1/P16-2044
10.1145/3206025.3206064
ContentType Journal Article
Copyright 2021. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2021 by the authors. 2021
Copyright_xml – notice: 2021. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2021 by the authors. 2021
DBID AAYXX
CITATION
NPM
3V.
7X7
7XB
88E
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
K9.
M0S
M1P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
7X8
5PM
DOA
DOI 10.3390/s21062045
DatabaseName CrossRef
PubMed
ProQuest Central (Corporate)
Health & Medical Collection (ProQuest)
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials - QC
ProQuest Central
ProQuest One
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
ProQuest Health & Medical Collection
Medical Database
Proquest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Central
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList Publicly Available Content Database

MEDLINE - Academic

PubMed
CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: PIMPY
  name: ProQuest Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1424-8220
ExternalDocumentID oai_doaj_org_article_d45efa6991d142c294b1aecffdc625ed
PMC7999231
33799412
10_3390_s21062045
Genre Journal Article
GrantInformation_xml – fundername: MIC/SCOPE
  grantid: 181601001
GroupedDBID ---
123
2WC
53G
5VS
7X7
88E
8FE
8FG
8FI
8FJ
AADQD
AAHBH
AAYXX
ABDBF
ABUWG
ACUHS
ADBBV
ADMLS
AENEX
AFFHD
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
BENPR
BPHCQ
BVXVI
CCPQU
CITATION
CS3
D1I
DU5
E3Z
EBD
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
HH5
HMCUK
HYE
IAO
ITC
KQ8
L6V
M1P
M48
MODMG
M~E
OK1
OVT
P2P
P62
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQQKQ
PROAC
PSQYO
RNS
RPM
TUS
UKHRP
XSB
~8M
3V.
ABJCF
ALIPV
ARAPS
HCIFZ
KB.
M7S
NPM
PDBOC
7XB
8FK
AZQEC
DWQXO
K9.
PKEHL
PQEST
PQUKI
7X8
PUEGO
5PM
ID FETCH-LOGICAL-c579t-ebcc6163b2e243802fde566f1c182f95db0d87bf255121cb1b907e94e3d332b93
IEDL.DBID DOA
ISICitedReferencesCount 2
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000652714900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1424-8220
IngestDate Fri Oct 03 12:53:25 EDT 2025
Tue Nov 04 01:53:01 EST 2025
Fri Sep 05 08:06:01 EDT 2025
Tue Oct 07 06:52:58 EDT 2025
Wed Feb 19 02:27:53 EST 2025
Sat Nov 29 07:12:37 EST 2025
Tue Nov 18 22:07:14 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords Twitter
time-lags
multimodal variational autoencoder
detection of important scenes
sports video
Language English
License Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c579t-ebcc6163b2e243802fde566f1c182f95db0d87bf255121cb1b907e94e3d332b93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
This paper is an extended version of our paper published in: Hirasawa, K.; Maeda, K.; Ogawa, T.; Haseyama, M. Important Scene Detection Based on Anomaly Detection using Long Short-Term Memory for Baseball Highlight Generation. In the Proceedings of the IEEE International Conference on Consumer Electronics—Taiwan (IEEE 2020 ICCE-TW), Taoyuan, Taiwan, 28–30 September 2020.
ORCID 0000-0001-8039-3462
0000-0002-0460-6726
OpenAccessLink https://doaj.org/article/d45efa6991d142c294b1aecffdc625ed
PMID 33799412
PQID 2502595536
PQPubID 2032333
ParticipantIDs doaj_primary_oai_doaj_org_article_d45efa6991d142c294b1aecffdc625ed
pubmedcentral_primary_oai_pubmedcentral_nih_gov_7999231
proquest_miscellaneous_2508563487
proquest_journals_2502595536
pubmed_primary_33799412
crossref_citationtrail_10_3390_s21062045
crossref_primary_10_3390_s21062045
PublicationCentury 2000
PublicationDate 20210314
PublicationDateYYYYMMDD 2021-03-14
PublicationDate_xml – month: 3
  year: 2021
  text: 20210314
  day: 14
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Sensors (Basel, Switzerland)
PublicationTitleAlternate Sensors (Basel)
PublicationYear 2021
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References ref_14
ref_13
ref_12
ref_23
Cheng (ref_2) 2006; 8
ref_11
ref_22
ref_10
ref_21
ref_20
ref_1
ref_3
Gong (ref_4) 2004; 96
ref_19
ref_18
ref_17
ref_16
ref_15
ref_9
Hochreiter (ref_24) 1997; 9
ref_8
ref_5
ref_7
ref_6
References_xml – ident: ref_1
  doi: 10.1109/CVPRW.2018.00233
– ident: ref_10
  doi: 10.1609/aaai.v34i05.6431
– ident: ref_23
  doi: 10.21437/Interspeech.2017-434
– ident: ref_5
  doi: 10.1109/WAINA.2012.188
– ident: ref_3
– ident: ref_11
  doi: 10.1145/3308558.3313552
– volume: 8
  start-page: 585
  year: 2006
  ident: ref_2
  article-title: Fusion of audio and motion information on HMM-based highlight extraction for baseball games
  publication-title: IEEE Trans. Multimed.
  doi: 10.1109/TMM.2006.870726
– ident: ref_6
  doi: 10.1145/2647868.2654973
– ident: ref_22
  doi: 10.23919/MIKON.2018.8405154
– ident: ref_7
  doi: 10.1109/ICME.2012.135
– ident: ref_12
– ident: ref_15
  doi: 10.1109/ICIP40778.2020.9191070
– ident: ref_14
  doi: 10.51628/001c.7125
– ident: ref_18
  doi: 10.1109/CVPR.2018.00685
– volume: 9
  start-page: 1735
  year: 1997
  ident: ref_24
  article-title: Long short-term memory
  publication-title: Neural Comput.
  doi: 10.1162/neco.1997.9.8.1735
– ident: ref_17
– ident: ref_19
– ident: ref_21
– volume: 96
  start-page: 181
  year: 2004
  ident: ref_4
  article-title: Maximum entropy model-based baseball highlight detection and classification
  publication-title: Comput. Vis. Image Underst.
  doi: 10.1016/j.cviu.2004.02.002
– ident: ref_8
  doi: 10.1109/BDC.2014.20
– ident: ref_20
– ident: ref_13
  doi: 10.1109/ICCE-Taiwan49838.2020.9258242
– ident: ref_16
  doi: 10.18653/v1/P16-2044
– ident: ref_9
  doi: 10.1145/3206025.3206064
SSID ssj0023338
Score 2.336499
Snippet A new method for the detection of important scenes in baseball videos via a time-lag-aware multimodal variational autoencoder (Tl-MVAE) is presented in this...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 2045
SubjectTerms Baseball
detection of important scenes
Influence
Methods
multimodal variational autoencoder
Neural networks
Sensors
Social networks
sports video
time-lags
Twitter
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELag5UAPlDehBRnEgUvUjZ2XT2gXWoGEVhWPqrfIzzbSNmmTbPn7zHi9oYsqLuSW2FFGGT--zx5_Q8g7mUuDGbfjtDR4JIflseBZEQvrWGJd5ibG-WQTxXxenp6K47Dg1oewyvWY6Adq02pcIz-AqRqQepbx_MPlVYxZo3B3NaTQuEu2UakM2vn27HB-_G2kXBwY2EpPiAO5P-iB4HgB9o1ZyIv134Yw_w6UvDHzHO3-r80PyYOAOel01UgekTu2eUx2bigRPiHnn-zgg7Ia2jr65cKj8mag3zWOhbRu6AymOyUXC3pSG9v29LqWVFI8QRJ_lWfx9JfsLPXHeS9aA187ARIeFhrpdDm0KJhpbPeU_Dw6_PHxcxySMMQ6K8QQW6V1DqBNMctQnZ45YwECukQDM3EiM2piykI5oCYJS7RKFNBtK1LLDedMCf6MbDVtY18QmsGVyAlqfKk0n9jSCPg7TAMI5Q7uIvJ-7ZRKB4VyTJSxqICpoP-q0X8ReTtWvVzJctxWaYaeHSugkrZ_0HZnVeiYlUkz62QOMNkkKdNMpCqRVjtnNFBDC0btr31bhe7dV38cG5E3YzF0TNxtkY1tl75OmeUcCGFEnq-a0WgJ54UQacIiUmw0sA1TN0ua-tyLf8OLiMlf_tusPXKfYfANBh6m-2Rr6Jb2Fbmnr4e6716HXvIbLCweCw
  priority: 102
  providerName: ProQuest
Title Detection of Important Scenes in Baseball Videos via a Time-Lag-Aware Multimodal Variational Autoencoder
URI https://www.ncbi.nlm.nih.gov/pubmed/33799412
https://www.proquest.com/docview/2502595536
https://www.proquest.com/docview/2508563487
https://pubmed.ncbi.nlm.nih.gov/PMC7999231
https://doaj.org/article/d45efa6991d142c294b1aecffdc625ed
Volume 21
WOSCitedRecordID wos000652714900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: DOA
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: M~E
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: 7X7
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: BENPR
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Publicly Available Content Database
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: PIMPY
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3Nb9MwFH-CwQEOE99kjMogDlyiJXacxMcWOjGJVRUfUzlFjj-2SF2C2nTc-Nt5dtKoRZO4kIOl2I7i2M_x75c8_x7AO5lK7SJuh0mu3ZYcmoaC8SwUxtLYWG4jbX2wiWw2yxcLMd8J9eV8wjp54K7jTnTCjZUpwhgdJ1RRkZSxNMparRC6G-3evlEmtmSqp1oMmVenI8SQ1J-skdh44fW91ceL9N-GLP92kNxZcU4fwWEPFcm4a-JjuGPqJ_BwR0DwKVx9NK33papJY8nZtQfTdUu-KvcKI1VNJrhKlXK5JBeVNs2a3FSSSOI2foSf5WU4_iVXhvhduNeNxrtdIHfuvw-S8aZtnM6lNqtn8P10-u3Dp7CPnRAqnok2NKVSKWKtkhrqROWp1QaRm40VEgoruC4jnWelRUYR01iVcYks2YjEMM0YLQV7Dgd1U5uXQDgesYycNFeZpJHJteCCU4XYkVk8C-D9tk8L1QuLu_gWywIJhuv-Yuj-AN4OVX92ahq3VZq4gRkqOAFsn4FmUfRmUfzLLAI43g5r0c_KdYFwD9ke5ywN4M1QjPPJ_SSRtWk2vk7OU4Y8LoAXnRUMLWEsEyKJaQDZnn3sNXW_pK6uvGY3Xuig9NH_eLZX8IA6zxrnVZgcw0G72pjXcF_dtNV6NYK72SLzaT6Ce5PpbP5l5CcHpue_p5g3Pzuf__gD8_MWlA
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB5VWyTgwPsRKGAQSFyiJnYe6wNCW0rVVberlShVOQXHjzbSNilJthV_it_IOMmGLqq49UBuiR3Fib-M57PH3wC8FZFQNuO2GwyV3ZJDI5ezMHa5NtTXJjSeMk2yiXg6HR4d8dka_FruhbFhlUub2BhqVUg7R76JQzV66mHIoo9nP1ybNcquri5TaLSw2NM_L5CyVR_G29i_7yjd-Xzwadftsgq4Mox57epUygi9kJRqauXWqVEafRrjS3S1DQ9V6qlhnBr0tX3qy9RPkT9qHmimGKOpFV9Ck78eINi9AazPxvuzbz3FY8j4Wv0ixri3WSGhagTfV0a9JjnAVR7t34GZl0a6nbv_2ze6B3c6n5qM2p_gPqzp_AHcvqS0-BBOtnXdBJ3lpDBkfNqwjrwmX6S19STLyRYO56mYz8lhpnRRkfNMEEHsDhl3Io7d0YUoNWm2K58WCp92KMqsm0glo0VdWEFQpctH8PVaXvUxDPIi10-BhHj4wrMaZmkQeXqoOPYGlehkM4NnDrxfgiCRnQK7TQQyT5CJWbwkPV4ceNNXPWtlR66qtGWR1FewSuHNhaI8TjrDk6gg1EZESAOUH1BJeZD6QktjlETqq7FRG0ssJZ35qpI_QHLgdV-MhseuJolcF4umzjCMGBJeB560sO1bwljMeeBTB-IVQK80dbUkz04acXO80XKOZ_9u1iu4uXuwP0km4-nec7hFbaCRDbIMNmBQlwv9Am7I8zqrypfdH0rg-3UD_jdw33rT
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEF5VBSE4lDcYCiwIJC5W4l2_9oBQSoiIWkWVgCo3d72P1lJqt47Tir_Gr2Nm7aQNqrj1gG_2ruW19_PMfPbsN4S8l7HUWHHbD1ONS3JY7AseJb4wlgXGRravrSs2kUwm6XQq9jfI7-VaGEyrXNpEZ6h1pfAbeQ9cNUTqUcTjnu3SIvaHo8-nZz5WkMI_rctyGi1Eds2vC6Bv80_jIcz1B8ZGX398-eZ3FQZ8FSWi8U2uVAwRSc4MQ-l1ZrWB-MYGCsJuKyKd93Wa5Bbi7oAFKg9y4JJGhIZrzlmOQkxg_m-hpCAahWR6SfY4cL9WyYhz0e_NgVo56fc1_-fKBFwX2_6donnF543u_89P6wHZ6iJtOmhfjYdkw5SPyL0r-ouPyfHQNC4VraSVpeMTx0XKhn5X6AFoUdIdcPK5nM3oQaFNNafnhaSS4roZf08e-YMLWRvqFjGfVBqudiDrovu8SgeLpkKZUG3qJ-TnjdzqU7JZVqV5TmgEWyD7qGyWh3HfpFrAzDAFoTe3sOeRj0tAZKrTZcfyILMM-BliJ1thxyPvVl1PWzGS6zrtIKpWHVA_3B2o6qOsM0eZDiNjZQzkQAchU0yEeSCNslYrIMQGBrW9xFXWGbV5dgkqj7xdNYM5wn9MsjTVwvVJo5gDDfbIsxbCq5FwnggRBswjyRq414a63lIWx07yHE5EJvLi38N6Q-4AyrO98WT3JbnLMPsIMy_DbbLZ1AvzitxW500xr1-7V5WSw5tG-x-E84IA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Detection+of+Important+Scenes+in+Baseball+Videos+via+a+Time-Lag-Aware+Multimodal+Variational+Autoencoder&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Hirasawa%2C+Kaito&rft.au=Maeda%2C+Keisuke&rft.au=Ogawa%2C+Takahiro&rft.au=Haseyama%2C+Miki&rft.date=2021-03-14&rft.eissn=1424-8220&rft.volume=21&rft.issue=6&rft_id=info:doi/10.3390%2Fs21062045&rft_id=info%3Apmid%2F33799412&rft.externalDocID=33799412
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon