Automatic configuration of the Cassandra database using irace

Database systems play a central role in modern data-centered applications. Their performance is thus a key factor in the efficiency of data processing pipelines. Modern database systems expose several parameters that users and database administrators can configure to tailor the database settings to...

Full description

Saved in:
Bibliographic Details
Published in:PeerJ. Computer science Vol. 7; p. e634
Main Authors: Silva-Muñoz, Moisés, Franzin, Alberto, Bersini, Hugues
Format: Journal Article
Language:English
Published: United States PeerJ. Ltd 05.08.2021
PeerJ, Inc
PeerJ Inc
Subjects:
ISSN:2376-5992, 2376-5992
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Database systems play a central role in modern data-centered applications. Their performance is thus a key factor in the efficiency of data processing pipelines. Modern database systems expose several parameters that users and database administrators can configure to tailor the database settings to the specific application considered. While this task has traditionally been performed manually, in the last years several methods have been proposed to automatically find the best parameter configuration for a database. Many of these methods, however, use statistical models that require high amounts of data and fail to represent all the factors that impact the performance of a database, or implement complex algorithmic solutions. In this work we study the potential of a simple model-free general-purpose configuration tool to automatically find the best parameter configuration of a database. We use the irace configurator to automatically find the best parameter configuration for the Cassandra NoSQL database using the YCBS benchmark under different scenarios. We establish a reliable experimental setup and obtain speedups of up to 30% over the default configuration in terms of throughput, and we provide an analysis of the configurations obtained.
AbstractList Database systems play a central role in modern data-centered applications. Their performance is thus a key factor in the efficiency of data processing pipelines. Modern database systems expose several parameters that users and database administrators can configure to tailor the database settings to the specific application considered. While this task has traditionally been performed manually, in the last years several methods have been proposed to automatically find the best parameter configuration for a database. Many of these methods, however, use statistical models that require high amounts of data and fail to represent all the factors that impact the performance of a database, or implement complex algorithmic solutions. In this work we study the potential of a simple model-free general-purpose configuration tool to automatically find the best parameter configuration of a database. We use the irace configurator to automatically find the best parameter configuration for the Cassandra NoSQL database using the YCBS benchmark under different scenarios. We establish a reliable experimental setup and obtain speedups of up to 30% over the default configuration in terms of throughput, and we provide an analysis of the configurations obtained.
Database systems play a central role in modern data-centered applications. Their performance is thus a key factor in the efficiency of data processing pipelines. Modern database systems expose several parameters that users and database administrators can configure to tailor the database settings to the specific application considered. While this task has traditionally been performed manually, in the last years several methods have been proposed to automatically find the best parameter configuration for a database. Many of these methods, however, use statistical models that require high amounts of data and fail to represent all the factors that impact the performance of a database, or implement complex algorithmic solutions. In this work we study the potential of a simple model-free general-purpose configuration tool to automatically find the best parameter configuration of a database. We use the irace configurator to automatically find the best parameter configuration for the Cassandra NoSQL database using the YCBS benchmark under different scenarios. We establish a reliable experimental setup and obtain speedups of up to 30% over the default configuration in terms of throughput, and we provide an analysis of the configurations obtained.Database systems play a central role in modern data-centered applications. Their performance is thus a key factor in the efficiency of data processing pipelines. Modern database systems expose several parameters that users and database administrators can configure to tailor the database settings to the specific application considered. While this task has traditionally been performed manually, in the last years several methods have been proposed to automatically find the best parameter configuration for a database. Many of these methods, however, use statistical models that require high amounts of data and fail to represent all the factors that impact the performance of a database, or implement complex algorithmic solutions. In this work we study the potential of a simple model-free general-purpose configuration tool to automatically find the best parameter configuration of a database. We use the irace configurator to automatically find the best parameter configuration for the Cassandra NoSQL database using the YCBS benchmark under different scenarios. We establish a reliable experimental setup and obtain speedups of up to 30% over the default configuration in terms of throughput, and we provide an analysis of the configurations obtained.
ArticleNumber e634
Audience Academic
Author Franzin, Alberto
Silva-Muñoz, Moisés
Bersini, Hugues
Author_xml – sequence: 1
  givenname: Moisés
  surname: Silva-Muñoz
  fullname: Silva-Muñoz, Moisés
– sequence: 2
  givenname: Alberto
  orcidid: 0000-0002-4066-0375
  surname: Franzin
  fullname: Franzin, Alberto
– sequence: 3
  givenname: Hugues
  surname: Bersini
  fullname: Bersini, Hugues
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34435094$$D View this record in MEDLINE/PubMed
BookMark eNptkslrGzEUh4eS0qRpbj2XgV5a6LgajdZDCsZ0MQQKXc5Clp4mMmPJlWZK-99XttNgh0gHbd_7vUXveXUWYoCqetmiGectf78FSOvG5BnryJPqAnecNVRKfHa0P6-ucl4jhFraliGfVecdIR1FklxU1_NpjBs9elObGJzvp1QOMdTR1eMt1Audsw426drqUa90hnrKPvS1T9rAi-qp00OGq7v1svr56eOPxZfm5uvn5WJ-0xjK5dhYKTRquUPCUSeYlhyM09Iw5LgQzAJzhnEHGInWWEFXmEgCrgXWUo4l7i6r5UHXRr1W2-Q3Ov1VUXu1v4ipVzqVHAZQCFlBjKDEFg1iWfGCudYggchVCadofThobafVBqyBMCY9nIievgR_q_r4W4mOMsZ2wby5E0jx1wR5VBufDQyDDhCnrDBlxTWWHSno6wfoOk4plFIVigrMug4dUb0uCfjgYvFrdqJqzjjiFLUdKtTsEapMCxtf_g6cL_cnBm9PDAozwp-x11POavn92yn76rgo99X43ygFeHcATIo5J3D3SIvUrhXVvhWVyYrtE8cPcOPHfWOVoP3wuNE_1Z_gnw
CitedBy_id crossref_primary_10_1145_3643751
Cites_doi 10.14778/3329772.3329780
10.1007/978-3-319-09333-8_1
10.5220/0005846400490056
10.1016/j.orp.2016.09.002
10.1016/j.ejor.2019.01.018
10.1016/j.jnca.2016.01.010
10.1145/1012888.1005739
10.1007/978-3-319-13021-7_6
10.1007/978-3-319-92639-1_60
10.14778/3352063.3352129
10.1109/TKDE.2020.2994641
10.14778/3339490.3339503
10.1007/s12530-013-9072-y
10.1007/978-3-319-62410-5_11
10.1145/1353452.1353455
10.1023/A:1006556606079
10.1109/ACCESS.2020.2990735
10.1613/jair.2861
10.1007/978-3-319-44406-2_12
10.1155/2015/502795
10.14778/1687627.1687767
10.1016/j.suscom.2019.01.017
10.14778/2732977.2732995
10.14778/3352063.3352112
10.14778/3192965.3192971
ContentType Journal Article
Copyright 2021 Silva-Muñoz et al.
COPYRIGHT 2021 PeerJ. Ltd.
2021 Silva-Muñoz et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: https://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, reproduction and adaptation in any medium and for any purpose provided that it is properly attributed. For attribution, the original author(s), title, publication source (PeerJ Computer Science) and either DOI or URL of the article must be cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2021 Silva-Muñoz et al. 2021 Silva-Muñoz et al.
Copyright_xml – notice: 2021 Silva-Muñoz et al.
– notice: COPYRIGHT 2021 PeerJ. Ltd.
– notice: 2021 Silva-Muñoz et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: https://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, reproduction and adaptation in any medium and for any purpose provided that it is properly attributed. For attribution, the original author(s), title, publication source (PeerJ Computer Science) and either DOI or URL of the article must be cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2021 Silva-Muñoz et al. 2021 Silva-Muñoz et al.
DBID AAYXX
CITATION
NPM
ISR
3V.
7XB
8AL
8FE
8FG
8FK
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
M0N
P5Z
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
DOA
DOI 10.7717/peerj-cs.634
DatabaseName CrossRef
PubMed
Gale In Context: Science
ProQuest Central (Corporate)
ProQuest Central (purchase pre-March 2016)
Computing Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
ProQuest Technology Collection
ProQuest One
ProQuest Central Korea
ProQuest Central Student
SciTech Collection (ProQuest)
ProQuest Computer Science Collection
Computer Science Database
Computing Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Proquest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
Acceso a contenido Full Text - Doaj
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
Computer Science Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies & Aerospace Collection
ProQuest Computing
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
CrossRef

Publicly Available Content Database
PubMed
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 2376-5992
ExternalDocumentID oai_doaj_org_article_00d84c854d4944d69c627aae9e49bc57
PMC8356662
A670750130
34435094
10_7717_peerj_cs_634
Genre Journal Article
GeographicLocations United States
GeographicLocations_xml – name: United States
GrantInformation_xml – fundername: CHIST-ERA-17-BDSI-001 ABIDI
– fundername: 2018-SHAPE-25a
GroupedDBID 53G
5VS
8FE
8FG
AAFWJ
AAYXX
ABUWG
ADBBV
AFFHD
AFKRA
AFPKN
ALMA_UNASSIGNED_HOLDINGS
ARAPS
AZQEC
BCNDV
BENPR
BGLVJ
BPHCQ
CCPQU
CITATION
DWQXO
FRP
GNUQQ
GROUPED_DOAJ
H13
HCIFZ
IAO
ICD
IEA
ISR
ITC
K6V
K7-
M~E
OK1
P62
PHGZM
PHGZT
PIMPY
PQGLB
PQQKQ
PROAC
RPM
3V.
ARCSS
M0N
NPM
7XB
8AL
8FK
JQ2
PKEHL
PQEST
PQUKI
PRINS
PUEGO
Q9U
7X8
5PM
ID FETCH-LOGICAL-c579t-d98a017f08f5f86a97ecfa9c60f7886de6fc67fe2081cd85b2494ef1e61572923
IEDL.DBID P5Z
ISICitedReferencesCount 2
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000701706000003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2376-5992
IngestDate Fri Oct 03 12:35:22 EDT 2025
Tue Nov 04 02:03:38 EST 2025
Thu Oct 02 03:59:15 EDT 2025
Sun Sep 07 03:31:59 EDT 2025
Tue Nov 11 10:17:31 EST 2025
Tue Nov 04 17:56:13 EST 2025
Thu Nov 13 14:23:07 EST 2025
Thu Jan 02 22:39:41 EST 2025
Tue Nov 18 22:29:51 EST 2025
Sat Nov 29 02:15:31 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Databases
Automatic configuration
Parameter tuning
Cassandra
Hyperparameter tuning
Language English
License https://creativecommons.org/licenses/by/4.0
2021 Silva-Muñoz et al.
This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, reproduction and adaptation in any medium and for any purpose provided that it is properly attributed. For attribution, the original author(s), title, publication source (PeerJ Computer Science) and either DOI or URL of the article must be cited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c579t-d98a017f08f5f86a97ecfa9c60f7886de6fc67fe2081cd85b2494ef1e61572923
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-4066-0375
OpenAccessLink https://www.proquest.com/docview/2558263304?pq-origsite=%requestingapplication%
PMID 34435094
PQID 2558263304
PQPubID 2045934
PageCount e634
ParticipantIDs doaj_primary_oai_doaj_org_article_00d84c854d4944d69c627aae9e49bc57
pubmedcentral_primary_oai_pubmedcentral_nih_gov_8356662
proquest_miscellaneous_2564942934
proquest_journals_2558263304
gale_infotracmisc_A670750130
gale_infotracacademiconefile_A670750130
gale_incontextgauss_ISR_A670750130
pubmed_primary_34435094
crossref_primary_10_7717_peerj_cs_634
crossref_citationtrail_10_7717_peerj_cs_634
PublicationCentury 2000
PublicationDate 2021-08-05
PublicationDateYYYYMMDD 2021-08-05
PublicationDate_xml – month: 08
  year: 2021
  text: 2021-08-05
  day: 05
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: San Diego
– name: San Diego, USA
PublicationTitle PeerJ. Computer science
PublicationTitleAlternate PeerJ Comput Sci
PublicationYear 2021
Publisher PeerJ. Ltd
PeerJ, Inc
PeerJ Inc
Publisher_xml – name: PeerJ. Ltd
– name: PeerJ, Inc
– name: PeerJ Inc
References Raasveldt (10.7717/peerj-cs.634/ref-49) 2018
Mahgoub (10.7717/peerj-cs.634/ref-38) 2017b
Pagnozzi (10.7717/peerj-cs.634/ref-44) 2019; 276
Babu (10.7717/peerj-cs.634/ref-4) 2009
Mahgoub (10.7717/peerj-cs.634/ref-36) 2017a
Birattari (10.7717/peerj-cs.634/ref-10) 2002
Duan (10.7717/peerj-cs.634/ref-19) 2009; 2
Pushak (10.7717/peerj-cs.634/ref-47) 2018
Marcus (10.7717/peerj-cs.634/ref-40) 2019
Kraska (10.7717/peerj-cs.634/ref-26) 2018
Ma (10.7717/peerj-cs.634/ref-34) 2018
Oh (10.7717/peerj-cs.634/ref-43) 2005
Krishnan (10.7717/peerj-cs.634/ref-27) 2018
Stützle (10.7717/peerj-cs.634/ref-56) 2013
Aniceto (10.7717/peerj-cs.634/ref-3) 2015; 2015
Pérez Cáceres (10.7717/peerj-cs.634/ref-48) 2017
Abramova (10.7717/peerj-cs.634/ref-1) 2014
Kwan (10.7717/peerj-cs.634/ref-29) 2003
Bergstra (10.7717/peerj-cs.634/ref-7) 2011; 24
Debnath (10.7717/peerj-cs.634/ref-16) 2008
Valentin (10.7717/peerj-cs.634/ref-61) 2000
Mahgoub (10.7717/peerj-cs.634/ref-37) 2020
Daz (10.7717/peerj-cs.634/ref-15) 2016; 67
Haughian (10.7717/peerj-cs.634/ref-22) 2016
Wang (10.7717/peerj-cs.634/ref-63) 2014; 8807
Jindal (10.7717/peerj-cs.634/ref-25) 2018; 11
Van Aken (10.7717/peerj-cs.634/ref-62) 2017
Miranda (10.7717/peerj-cs.634/ref-42) 2014
Li (10.7717/peerj-cs.634/ref-31) 2019; 12
Hutter (10.7717/peerj-cs.634/ref-23) 2011
Zilio (10.7717/peerj-cs.634/ref-74) 2004
Schnaitter (10.7717/peerj-cs.634/ref-51) 2007
Birattari (10.7717/peerj-cs.634/ref-9) 2004
Yuan (10.7717/peerj-cs.634/ref-67) 2020
Zheng (10.7717/peerj-cs.634/ref-70) 2014; 8588
Dutt (10.7717/peerj-cs.634/ref-21) 2019; 12
Dias (10.7717/peerj-cs.634/ref-17) 2005
Kuhlenkamp (10.7717/peerj-cs.634/ref-28) 2014; 7
Zhou (10.7717/peerj-cs.634/ref-71) 2020
Wei (10.7717/peerj-cs.634/ref-65) 2014
Chavan (10.7717/peerj-cs.634/ref-13) 2011
Lu (10.7717/peerj-cs.634/ref-32) 2019; 12
Sheng (10.7717/peerj-cs.634/ref-52) 2019
López-Ibáñez (10.7717/peerj-cs.634/ref-33) 2016; 3
Swaminathan (10.7717/peerj-cs.634/ref-58) 2016
Abubakar (10.7717/peerj-cs.634/ref-2) 2014; 7
Bergstra (10.7717/peerj-cs.634/ref-8) 2012; 13
Baik (10.7717/peerj-cs.634/ref-5) 2019
Bao (10.7717/peerj-cs.634/ref-6) 2018
Zhang (10.7717/peerj-cs.634/ref-69) 2019
Storm (10.7717/peerj-cs.634/ref-55) 2006
Tan (10.7717/peerj-cs.634/ref-59) 2019; 12
Hutter (10.7717/peerj-cs.634/ref-24) 2009; 36
Zhu (10.7717/peerj-cs.634/ref-73) 2017b
Zhu (10.7717/peerj-cs.634/ref-72) 2017a
Stillger (10.7717/peerj-cs.634/ref-54) 2001; 1
Mahgoub (10.7717/peerj-cs.634/ref-39) 2019
Maron (10.7717/peerj-cs.634/ref-41) 1997; 11
Wang (10.7717/peerj-cs.634/ref-64) 2012
Le (10.7717/peerj-cs.634/ref-30) 2014
Pedrozo (10.7717/peerj-cs.634/ref-45) 2018; 10870
Zhang (10.7717/peerj-cs.634/ref-68) 2012
Wu (10.7717/peerj-cs.634/ref-66) 2019
Cooper (10.7717/peerj-cs.634/ref-14) 2010
Rodd (10.7717/peerj-cs.634/ref-50) 2013; 4
Cao (10.7717/peerj-cs.634/ref-11) 2018
Duarte (10.7717/peerj-cs.634/ref-20) 2016; 2
Silva-Muñoz (10.7717/peerj-cs.634/ref-53) 2020
Mahajan (10.7717/peerj-cs.634/ref-35) 2019; 22
Cassandra (10.7717/peerj-cs.634/ref-12) 2014
Tran (10.7717/peerj-cs.634/ref-60) 2008; 4
Pinheiro (10.7717/peerj-cs.634/ref-46) 2017; 620
Dou (10.7717/peerj-cs.634/ref-18) 2020; 8
Sullivan (10.7717/peerj-cs.634/ref-57) 2004; 32
References_xml – volume: 12
  start-page: 1044
  issue: 9
  year: 2019
  ident: 10.7717/peerj-cs.634/ref-21
  article-title: Selectivity estimation for range predicates using lightweight models
  publication-title: Proceedings of the VLDB Endowment
  doi: 10.14778/3329772.3329780
– start-page: 11
  year: 2008
  ident: 10.7717/peerj-cs.634/ref-16
  article-title: Sard: a statistical approach for ranking database tuning parameters
– start-page: 489
  year: 2018
  ident: 10.7717/peerj-cs.634/ref-26
  article-title: The case for learned index structures
– volume: 8588
  start-page: 1
  year: 2014
  ident: 10.7717/peerj-cs.634/ref-70
  article-title: Self-tuning performance of database systems with neural network
  doi: 10.1007/978-3-319-09333-8_1
– volume: 2
  start-page: 49
  year: 2016
  ident: 10.7717/peerj-cs.634/ref-20
  article-title: Cassandra for internet of things: an experimental evaluation
  publication-title: International Conference on Internet of Things and Big Data
  doi: 10.5220/0005846400490056
– start-page: 189
  year: 2020
  ident: 10.7717/peerj-cs.634/ref-37
  article-title: {OPTIMUSCLOUD}: heterogeneous configuration optimization for distributed databases in the cloud
– start-page: 11
  year: 2002
  ident: 10.7717/peerj-cs.634/ref-10
  article-title: A racing algorithm for configuring metaheuristics
– volume: 3
  start-page: 43
  issue: 1
  year: 2016
  ident: 10.7717/peerj-cs.634/ref-33
  article-title: The irace package: iterated racing for automatic algorithm configuration
  publication-title: Operations Research Perspectives
  doi: 10.1016/j.orp.2016.09.002
– volume: 276
  start-page: 409
  issue: 2
  year: 2019
  ident: 10.7717/peerj-cs.634/ref-44
  article-title: Automatic design of hybrid stochastic local search algorithms for permutation flowshop problems
  publication-title: European Journal of Operational Research
  doi: 10.1016/j.ejor.2019.01.018
– volume: 67
  start-page: 99
  issue: 7
  year: 2016
  ident: 10.7717/peerj-cs.634/ref-15
  article-title: State-of-the-art, challenges, and open issues in the integration of internet of things and cloud computing
  publication-title: Journal of Network and Computer applications
  doi: 10.1016/j.jnca.2016.01.010
– year: 2009
  ident: 10.7717/peerj-cs.634/ref-4
  article-title: Automated experiment-driven management of (database) systems
– start-page: 13
  year: 2014
  ident: 10.7717/peerj-cs.634/ref-12
  article-title: Apache cassandra
– start-page: 893
  year: 2018
  ident: 10.7717/peerj-cs.634/ref-11
  article-title: Towards better understanding of black-box auto-tuning: a comparative analysis for storage systems
– volume: 32
  start-page: 404
  issue: 1
  year: 2004
  ident: 10.7717/peerj-cs.634/ref-57
  article-title: Using probabilistic reasoning to automate software tuning
  publication-title: ACM SIGMETRICS Performance Evaluation Review
  doi: 10.1145/1012888.1005739
– start-page: 415
  year: 2019
  ident: 10.7717/peerj-cs.634/ref-69
  article-title: An end-to-end automatic cloud database tuning system using deep reinforcement learning
– volume: 8807
  start-page: 71
  year: 2014
  ident: 10.7717/peerj-cs.634/ref-63
  article-title: Benchmarking replication and consistency strategies in cloud serving databases: HBase and Cassandra
  doi: 10.1007/978-3-319-13021-7_6
– start-page: 143
  year: 2010
  ident: 10.7717/peerj-cs.634/ref-14
  article-title: Benchmarking cloud serving systems with YCSB
– volume: 10870
  start-page: 716
  year: 2018
  ident: 10.7717/peerj-cs.634/ref-45
  article-title: An adaptive approach for index tuning with learning classifier systems on hybrid storage environments
  doi: 10.1007/978-3-319-92639-1_60
– start-page: 631
  year: 2018
  ident: 10.7717/peerj-cs.634/ref-34
  article-title: Query-based workload forecasting for self-driving database management systems
– start-page: 476
  year: 2017a
  ident: 10.7717/peerj-cs.634/ref-36
  article-title: Suitability of nosql systems-cassandra and scylladb-for iot workloads
– start-page: 202
  volume-title: Artificial Evolution: 13th International Conference, E’volution Artificielle, EA 2017; Paris, France, October 25-27, 2017; Revised Selected, volume 10764 of Lecture Notes in Computer Science
  year: 2017
  ident: 10.7717/peerj-cs.634/ref-48
  article-title: Automatic configuration of GCC using irace
– start-page: 84
  year: 2005
  ident: 10.7717/peerj-cs.634/ref-17
  article-title: Automatic performance diagnosis and tuning in oracle
– year: 2019
  ident: 10.7717/peerj-cs.634/ref-40
  article-title: Neo: a learned query optimizer
  publication-title: arXiv preprint
– start-page: 28
  year: 2017b
  ident: 10.7717/peerj-cs.634/ref-38
  article-title: Rafiki: a middleware for parameter tuning of nosql datastores for dynamic metagenomics workloads
– volume: 12
  start-page: 2118
  issue: 12
  year: 2019
  ident: 10.7717/peerj-cs.634/ref-31
  article-title: Qtune: a query-aware database tuning system with deep reinforcement learning
  publication-title: Proceedings of the VLDB Endowment
  doi: 10.14778/3352063.3352129
– year: 2020
  ident: 10.7717/peerj-cs.634/ref-71
  article-title: Database meets artificial intelligence: a survey
  publication-title: IEEE Transactions on Knowledge and Data Engineering
  doi: 10.1109/TKDE.2020.2994641
– start-page: 199
  year: 2014
  ident: 10.7717/peerj-cs.634/ref-1
  article-title: Evaluating cassandra scalability with YCSB
– volume: 12
  start-page: 1221
  issue: 10
  year: 2019
  ident: 10.7717/peerj-cs.634/ref-59
  article-title: iBTune: individualized buffer tuning for large-scale cloud databases
  publication-title: Proceedings of the VLDB Endowment
  doi: 10.14778/3339490.3339503
– volume: 4
  start-page: 133
  issue: 2
  year: 2013
  ident: 10.7717/peerj-cs.634/ref-50
  article-title: Adaptive neuro-fuzzy technique for performance tuning of database management systems
  publication-title: Evolving Systems
  doi: 10.1007/s12530-013-9072-y
– start-page: 1284
  year: 2011
  ident: 10.7717/peerj-cs.634/ref-13
  article-title: Dbridge: a program rewrite tool for set-oriented query execution
– start-page: 374
  year: 2019
  ident: 10.7717/peerj-cs.634/ref-5
  article-title: Bridging the semantic gap with SQL query logs in natural language interfaces to databases
– volume: 620
  start-page: 87
  year: 2017
  ident: 10.7717/peerj-cs.634/ref-46
  article-title: Smart grids data management: a case for Cassandra
  doi: 10.1007/978-3-319-62410-5_11
– volume: 4
  start-page: 1
  issue: 1
  year: 2008
  ident: 10.7717/peerj-cs.634/ref-60
  article-title: A new approach to dynamic self-tuning of database buffers
  publication-title: ACM Transactions on Storage
  doi: 10.1145/1353452.1353455
– volume: 7
  start-page: 23
  issue: 8
  year: 2014
  ident: 10.7717/peerj-cs.634/ref-2
  article-title: Performance evaluation of nosql systems using YCSB in a resource austere environment
  publication-title: Performance Evaluation
– start-page: 223
  year: 2019
  ident: 10.7717/peerj-cs.634/ref-39
  article-title: {SOPHIA}: online reconfiguration of clustered nosql databases for time-varying workloads
– start-page: 507
  year: 2011
  ident: 10.7717/peerj-cs.634/ref-23
  article-title: Sequential model-based optimization for general algorithm configuration
– start-page: 271
  year: 2018
  ident: 10.7717/peerj-cs.634/ref-47
  article-title: Algorithm configuration landscapes: more benign than expected?
– volume: 24
  start-page: 2546
  year: 2011
  ident: 10.7717/peerj-cs.634/ref-7
  article-title: Algorithms for hyper-parameter optimization
  publication-title: Advances in Neural Information Processing Systems
– start-page: 459
  year: 2007
  ident: 10.7717/peerj-cs.634/ref-51
  article-title: On-line index selection for shifting workloads
– start-page: 325
  year: 2014
  ident: 10.7717/peerj-cs.634/ref-42
  article-title: Fine-tuning of support vector machine parameters using racing algorithms
– start-page: 389
  year: 2012
  ident: 10.7717/peerj-cs.634/ref-68
  article-title: A model for application-oriented database performance tuning
– year: 2004
  ident: 10.7717/peerj-cs.634/ref-9
  article-title: The problem of tuning metaheuristics as seen from a machine learning perspective
– start-page: 1218
  year: 2005
  ident: 10.7717/peerj-cs.634/ref-43
  article-title: Resource selection for autonomic database tuning
– volume: 11
  start-page: 193
  issue: 1–5
  year: 1997
  ident: 10.7717/peerj-cs.634/ref-41
  article-title: The racing algorithm: model selection for lazy learners
  publication-title: Artificial Intelligence Review
  doi: 10.1023/A:1006556606079
– volume: 8
  start-page: 80638
  year: 2020
  ident: 10.7717/peerj-cs.634/ref-18
  article-title: Hdconfigor: automatically tuning high dimensional configuration parameters for log search engines
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2990735
– volume: 36
  start-page: 267
  year: 2009
  ident: 10.7717/peerj-cs.634/ref-24
  article-title: ParamILS: an automatic algorithm configuration framework
  publication-title: Journal of Artificial Intelligence Research
  doi: 10.1613/jair.2861
– start-page: 1
  year: 2018
  ident: 10.7717/peerj-cs.634/ref-27
  article-title: Learning to optimize join queries with deep reinforcement learning
  publication-title: arXiv preprint
– start-page: 1501
  year: 2020
  ident: 10.7717/peerj-cs.634/ref-67
  article-title: Automatic view generation with deep learning and reinforcement learning
– year: 2003
  ident: 10.7717/peerj-cs.634/ref-29
  article-title: Automatic database configuration for db2 universal database: compressing years of performance expertise into seconds of execution
– year: 2020
  ident: 10.7717/peerj-cs.634/ref-53
  article-title: Supplementaty material for: automatic configuration of the Cassandra database using irace
– year: 2016
  ident: 10.7717/peerj-cs.634/ref-22
  article-title: Benchmarking replication in cassandra and mongodb NoSQL datastores
  doi: 10.1007/978-3-319-44406-2_12
– start-page: 893
  year: 2013
  ident: 10.7717/peerj-cs.634/ref-56
  article-title: Automatic (offline) configuration of algorithms
– start-page: 1223
  year: 2019
  ident: 10.7717/peerj-cs.634/ref-66
  article-title: Designing succinct secondary indexing mechanism by exploiting column correlations
– volume: 2015
  start-page: 1
  issue: 2
  year: 2015
  ident: 10.7717/peerj-cs.634/ref-3
  article-title: Evaluating the cassandra NoSQL database approach for genomic data persistency
  publication-title: International journal of genomics
  doi: 10.1155/2015/502795
– start-page: 1081
  year: 2006
  ident: 10.7717/peerj-cs.634/ref-55
  article-title: Adaptive self-tuning memory in db2
– volume: 13
  start-page: 281
  issue: 1
  year: 2012
  ident: 10.7717/peerj-cs.634/ref-8
  article-title: Random search for hyper-parameter optimization
  publication-title: The Journal of Machine Learning Research
– start-page: 101
  year: 2000
  ident: 10.7717/peerj-cs.634/ref-61
  article-title: Db2 advisor: an optimizer smart enough to recommend its own indexes
– start-page: 29
  year: 2018
  ident: 10.7717/peerj-cs.634/ref-6
  article-title: Autoconfig: automatic configuration tuning for distributed message systems
– year: 2019
  ident: 10.7717/peerj-cs.634/ref-52
  article-title: Scheduling oltp transactions via machine learning
  publication-title: arXiv preprint
– volume: 1
  start-page: 19
  year: 2001
  ident: 10.7717/peerj-cs.634/ref-54
  article-title: Leo-db2’s learning optimizer
– start-page: 338
  year: 2017a
  ident: 10.7717/peerj-cs.634/ref-72
  article-title: Bestconfig: tapping the performance potential of systems via automatic configuration tuning
– start-page: 1
  year: 2018
  ident: 10.7717/peerj-cs.634/ref-49
  article-title: Fair benchmarking considered difficult: common pitfalls in database performance testing
– start-page: 323
  year: 2016
  ident: 10.7717/peerj-cs.634/ref-58
  article-title: Quantitative analysis of scalable nosql databases
– start-page: 1332
  year: 2012
  ident: 10.7717/peerj-cs.634/ref-64
  article-title: The nosql principles and basic application of cassandra model
– start-page: 1
  year: 2017b
  ident: 10.7717/peerj-cs.634/ref-73
  article-title: Acts in need: automatic configuration tuning with scalability guarantees
– volume: 2
  start-page: 1246
  issue: 1
  year: 2009
  ident: 10.7717/peerj-cs.634/ref-19
  article-title: Tuning database configuration parameters with ituned
  publication-title: Proceedings of the VLDB Endowment
  doi: 10.14778/1687627.1687767
– start-page: 194
  year: 2014
  ident: 10.7717/peerj-cs.634/ref-65
  article-title: Self-tuning performance of database systems based on fuzzy rules
– volume: 22
  start-page: 120
  year: 2019
  ident: 10.7717/peerj-cs.634/ref-35
  article-title: Improving the energy efficiency of relational and NoSQL databases via query optimizations
  publication-title: Sustainable Computing: Informatics and Systems
  doi: 10.1016/j.suscom.2019.01.017
– start-page: 47
  year: 2014
  ident: 10.7717/peerj-cs.634/ref-30
  article-title: Epc information services with No-SQL datastore for the internet of things
– volume: 7
  start-page: 1219
  issue: 12
  year: 2014
  ident: 10.7717/peerj-cs.634/ref-28
  article-title: Benchmarking scalability and elasticity of distributed database systems
  publication-title: Proceedings of the VLDB Endowment
  doi: 10.14778/2732977.2732995
– start-page: 180
  year: 2004
  ident: 10.7717/peerj-cs.634/ref-74
  article-title: Recommending materialized views and indexes with the ibm db2 design advisor
– volume: 12
  start-page: 1970
  issue: 12
  year: 2019
  ident: 10.7717/peerj-cs.634/ref-32
  article-title: Speedup your analytics: automatic parameter tuning for databases and big data systems
  publication-title: Proceedings of the VLDB Endowment
  doi: 10.14778/3352063.3352112
– start-page: 1009
  year: 2017
  ident: 10.7717/peerj-cs.634/ref-62
  article-title: Automatic database management system tuning through large-scale machine learning
– volume: 11
  start-page: 800
  issue: 7
  year: 2018
  ident: 10.7717/peerj-cs.634/ref-25
  article-title: Selecting subexpressions to materialize at datacenter scale
  publication-title: Proceedings of the VLDB Endowment
  doi: 10.14778/3192965.3192971
SSID ssj0001511119
Score 2.2019658
Snippet Database systems play a central role in modern data-centered applications. Their performance is thus a key factor in the efficiency of data processing...
SourceID doaj
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage e634
SubjectTerms Algorithms
Artificial Intelligence
Automatic configuration
Cassandra
Configurations
Configurations (Computers)
Data Mining and Machine Learning
Data processing
Database administration
Design of experiments
Hyperparameter tuning
Machine learning
Methods
Optimization
Parameter tuning
Parameters
Performance evaluation
Software
Statistical methods
Statistical models
Workloads
SummonAdditionalLinks – databaseName: Acceso a contenido Full Text - Doaj
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Li9RAEC5k8eDF9yO6SiuKB4mbR6cfBw_j4qKXRXzA3pruTvfsiCRLMvH3W5VkhgkiXrxOV6D7S1Xq-4bqKoCXMngnVObSKiieciWq1JWuSpWLSCiclc6qcdiEPD9XFxf688GoL6oJm9oDT8CdZFmtuFcVr7nmvBbai0JaG3Tg2vlqvEeeSX0gpqb7wfQp0FOlu0TJcnIVQvcj9f1bUfJFDhpb9f_5QT7ISMtqyYP0c3Ybbs68ka2m_d6Ba6G5C7d2MxnYHKL34N1q2LZjG1aGSjdu1sP0ilkbGXI9dopk2TZ1ZxnVhlIOY1T6vmabzvpwH76fffh2-jGdRySkeHS9TWutLMZUzFSsohJWI_bRIkZZRG0r6iCiFzKGAjO_r1XlUG3xEPOARAZpdVE-gKOmbcIjYLl1WWWFy6PyPI-5ilFYfCSU1uk6yATe7EAzfu4fTmMsfhrUEQSxGSE2vjcIcQKv9tZXU9-Mv9i9J_z3NtTtevwBfcDMPmD-5QMJvKC3Z6ifRUMFM2s79L359PWLWQlJpAgzdQKvZ6PY4r69ne8f4OmpBdbC8nhhiQHnl8s7JzFzwPcGlRkKNfpzKIHn-2V6korYmtAOZCNw_8iv0Obh5FP7c5cceStK7QTkwtsWwCxXms3l2A4cOTRq0OLx_0DyCdwoqGiHamKqYzjadkN4Ctf9r-2m756NMfYbOxEujw
  priority: 102
  providerName: Directory of Open Access Journals
Title Automatic configuration of the Cassandra database using irace
URI https://www.ncbi.nlm.nih.gov/pubmed/34435094
https://www.proquest.com/docview/2558263304
https://www.proquest.com/docview/2564942934
https://pubmed.ncbi.nlm.nih.gov/PMC8356662
https://doaj.org/article/00d84c854d4944d69c627aae9e49bc57
Volume 7
WOSCitedRecordID wos000701706000003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2376-5992
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001511119
  issn: 2376-5992
  databaseCode: DOA
  dateStart: 20150101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2376-5992
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001511119
  issn: 2376-5992
  databaseCode: M~E
  dateStart: 20150101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 2376-5992
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001511119
  issn: 2376-5992
  databaseCode: P5Z
  dateStart: 20150527
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Computer Science Database (ProQuest)
  customDbUrl:
  eissn: 2376-5992
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001511119
  issn: 2376-5992
  databaseCode: K7-
  dateStart: 20150527
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/compscijour
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2376-5992
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001511119
  issn: 2376-5992
  databaseCode: BENPR
  dateStart: 20150527
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 2376-5992
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001511119
  issn: 2376-5992
  databaseCode: PIMPY
  dateStart: 20150527
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9NAEB7RlgMXyhtDiQwCcUCmTuJ9-IBQWrWiQo2iAlLgstpd74YgZAc74chvZ8bZpLUQXLj4kB1Lszuvb9aTGYDnwlnDZWoS5mSWZJKzxAwNS6TxCCiMFkbLdtiEGI_ldJpPwoVbE8oqNz6xddRFZemO_BChLyJhyr7fLn4kNDWKvq6GERo7sEddEmh0w4R9ubxjYeQQ8nW9u8DE5XDhXP0tsc1rPsw6kaht2P-nW74Sl7o1k1eC0On-_7J_C24G-BmP1vpyG6658g7sb0Y7xMHS78Kb0WpZtd1cY0yY_Xy2WmtKXPkYIWN8jJhbl0WtYyoxpVAYUwX9LJ7X2rp78On05OPxuyRMWkgsE_kyKXKp0TR9Kj3zkuscReh1bnnqMUXmhePecuHdAAGELSQzmLRlzvcd4iFE54Phfdgtq9I9hLivTco0N30vbdb3fek91_iKG2qTF05E8Gpz6sqGNuQ0DeO7wnSEZKRaGSnbKJRRBC-21It1-42_0B2RALc01DS7_aGqZyrYoErTQmZWsqxA7rOC4_4GQmuXuyw3eBARPCPxK2qLUVLdzUyvmkadfbhQIy4IW2HAj-BlIPIV8m11-BsD7p46aXUoDzqUaLe2u7zRFBX8RqMu1SSCp9tlepNq4UpXrYiGI_8I05DmwVopt_seZgh_MWOPQHTUtXMw3ZVy_rXtKo5QHFPZwaN_s_UYbgyoqoeKZtgB7C7rlXsC1-3P5bype7AjprIHe0cn48lFr73fwOd7keDz_NdJrzVPXJ-cnU8-_wY_U0Pz
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwELaqggQXypuFAgZRcUCh2axjO4cKLYWqqy0rBEXqzbUde1mEkiXZgPhT_EZm8tg2QnDrget6Io2deXxfdjxDyDPhrOEyNEHsJAuY5HFgRiYOpPEAKIwWRst62ISYzeTJSfJ-g_zq7sJgWWUXE-tAneYWv5HvAvQFJIzs-9XyW4BTo_Df1W6ERmMWU_fzB1C2cm_yBt7vThQdvD3ePwzaqQKBjUWyCtJEajBDH0ofe8l1Aup6nVgeeqCDPHXcWy68iyBZ2lTGBggKc37oIPcDEsVGBxDyL7GRFOhXUxGcfdOJMQAlTX29AKK0u3Su-BLY8iUfsV7mqwcE_JkGzuXBfo3muaR3sPW_Hdd1cq2F13Tc-MMNsuGym2SrG11B20h2i-yNq1Ved6ulNs_8Yl41nkBzTwES033gFDpLC02xhBZTPcUbAnO6KLR1t8mnC9nEHbKZ5Zm7R-hQmzDW3Ay9tGzoh9J7ruERN9ImSZ0YkBfdW1a2bbOO0z6-KqBbaBOqtgllSwU2MSA7a-ll017kL3Kv0WDWMtgUvP4hL-aqjTEqDFPJrIxZCtqzlMP-IqG1SxxLDBzEgDxFc1PY9iPDuqK5rspSTT5-UGMuEDsCoBmQ562Qz0Fvq9trGrB77BTWk9zuSUJcsv3lzjJVGxdLdWaWA_JkvYxPYq1f5vIKZTjoDzAUZO42TrDe94gBvA8TWBE99-gdTH8lW3yuu6YD1QCqHt3_t1qPyZXD43dH6mgymz4gVyOsYMICoXibbK6Kyj0kl-331aIsHtWuT8npRTvPb9ZTmb0
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEF5VBSEulDeBAgui4oBMHMf78KFCoSUiKooiHlLFZdld76apkB3sBMRf49cx40daC8GtB67ZsTS7nsf3ObMzhDwTzhouQxMwJ-MglpwFZmhYII0HQGG0MFpWwybEdCqPj5PZFvnV3oXBsso2JlaBOs0tfiPvA_QFJIzsu--bsojZ4fjV8luAE6Twn9Z2nEZtIkfu5w-gb-X-5BDe9V4Ujd98PHgbNBMGAstEsgrSRGowSR9Kz7zkOgHVvU4sDz1QQ5467i0X3kWQOG0qmQGyEjs_cIADAJVi0wMI_5cEcEwsJ5yxz2ffdxgGo6SutRdAmvpL54rTwJYv-TDuZMFqWMCfKeFcTuzWa55LgOOd__norpNrDeymo9pPbpAtl90kO-1IC9pEuFtkf7Re5VUXW2rzzC_m69pDaO4pQGV6AFxDZ2mhKZbWIgSgeHNgTheFtu42-XQhm7hDtrM8c_cIHWgTMs3NwEsbD_xAes81POKG2iSpEz3yon3jyjbt13EKyFcFNAztQ1X2oWypwD56ZG8jvazbjvxF7jUaz0YGm4VXP-TFXDWxR4VhKmMrWZyC9nHKYX-R0NolLk4MHESPPEXTU9gOJEPrmOt1WarJh_dqxAViSgA6PfK8EfI56G11c30Ddo8dxDqSux1JiFe2u9xaqWriZanOTLRHnmyW8UmsAcxcvkYZDvoDPAWZu7VDbPY9jAH2hwmsiI6rdA6mu5ItTqpu6kBBgMJH9_-t1mNyBXxGvZtMjx6QqxEWNmHdENsl26ti7R6Sy_b7alEWj6ooQMmXi_ad373aouE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Automatic+configuration+of+the+Cassandra+database+using+irace&rft.jtitle=PeerJ.+Computer+science&rft.au=Silva-Mu%C3%B1oz%2C+Mois%C3%A9s&rft.au=Franzin%2C+Alberto&rft.au=Bersini%2C+Hugues&rft.date=2021-08-05&rft.issn=2376-5992&rft.eissn=2376-5992&rft.volume=7&rft.spage=e634&rft_id=info:doi/10.7717%2Fpeerj-cs.634&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2376-5992&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2376-5992&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2376-5992&client=summon