Relating sparse and predictive coding to divisive normalization

Sparse coding, predictive coding and divisive normalization have each been found to be principles that underlie the function of neural circuits in many parts of the brain, supported by substantial experimental evidence. However, the connections between these related principles are still poorly under...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:PLoS computational biology Ročník 21; číslo 5; s. e1013059
Hlavní autori: Lian, Yanbo, Burkitt, Anthony N.
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: United States Public Library of Science 01.05.2025
Public Library of Science (PLoS)
Predmet:
ISSN:1553-7358, 1553-734X, 1553-7358
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Sparse coding, predictive coding and divisive normalization have each been found to be principles that underlie the function of neural circuits in many parts of the brain, supported by substantial experimental evidence. However, the connections between these related principles are still poorly understood. Sparse coding and predictive coding can be reconciled into a learning framework with predictive structure and sparse responses, termed as sparse/predictive coding. However, how sparse/predictive coding (a learning model) is connected with divisive normalization (not a learning model) is still not well investigated. In this paper, we show how sparse coding, predictive coding, and divisive normalization can be described within a unified framework, and illustrate this explicitly within the context of a two-layer neural learning model of sparse/predictive coding. This two-layer model is constructed in a way that implements sparse coding with a network structure that is constructed by implementing predictive coding. We demonstrate how a homeostatic function that regulates neural responses in the model can shape the nonlinearity of neural responses in a way that replicates different forms of divisive normalization. Simulations show that the model can learn simple cells in the primary visual cortex with the property of contrast saturation, which has previously been explained by divisive normalization. In summary, the study demonstrates that the three principles of sparse coding, predictive coding, and divisive normalization can be connected to provide a learning framework based on biophysical properties, such as Hebbian learning and homeostasis, and this framework incorporates both learning and more diverse response nonlinearities observed experimentally. This framework has the potential to also be used to explain how the brain learns to integrate input from different sensory modalities.
AbstractList Sparse coding, predictive coding and divisive normalization have each been found to be principles that underlie the function of neural circuits in many parts of the brain, supported by substantial experimental evidence. However, the connections between these related principles are still poorly understood. Sparse coding and predictive coding can be reconciled into a learning framework with predictive structure and sparse responses, termed as sparse/predictive coding. However, how sparse/predictive coding (a learning model) is connected with divisive normalization (not a learning model) is still not well investigated. In this paper, we show how sparse coding, predictive coding, and divisive normalization can be described within a unified framework, and illustrate this explicitly within the context of a two-layer neural learning model of sparse/predictive coding. This two-layer model is constructed in a way that implements sparse coding with a network structure that is constructed by implementing predictive coding. We demonstrate how a homeostatic function that regulates neural responses in the model can shape the nonlinearity of neural responses in a way that replicates different forms of divisive normalization. Simulations show that the model can learn simple cells in the primary visual cortex with the property of contrast saturation, which has previously been explained by divisive normalization. In summary, the study demonstrates that the three principles of sparse coding, predictive coding, and divisive normalization can be connected to provide a learning framework based on biophysical properties, such as Hebbian learning and homeostasis, and this framework incorporates both learning and more diverse response nonlinearities observed experimentally. This framework has the potential to also be used to explain how the brain learns to integrate input from different sensory modalities.
Sparse coding, predictive coding and divisive normalization have each been found to be principles that underlie the function of neural circuits in many parts of the brain, supported by substantial experimental evidence. However, the connections between these related principles are still poorly understood. Sparse coding and predictive coding can be reconciled into a learning framework with predictive structure and sparse responses, termed as sparse/predictive coding. However, how sparse/predictive coding (a learning model) is connected with divisive normalization (not a learning model) is still not well investigated. In this paper, we show how sparse coding, predictive coding, and divisive normalization can be described within a unified framework, and illustrate this explicitly within the context of a two-layer neural learning model of sparse/predictive coding. This two-layer model is constructed in a way that implements sparse coding with a network structure that is constructed by implementing predictive coding. We demonstrate how a homeostatic function that regulates neural responses in the model can shape the nonlinearity of neural responses in a way that replicates different forms of divisive normalization. Simulations show that the model can learn simple cells in the primary visual cortex with the property of contrast saturation, which has previously been explained by divisive normalization. In summary, the study demonstrates that the three principles of sparse coding, predictive coding, and divisive normalization can be connected to provide a learning framework based on biophysical properties, such as Hebbian learning and homeostasis, and this framework incorporates both learning and more diverse response nonlinearities observed experimentally. This framework has the potential to also be used to explain how the brain learns to integrate input from different sensory modalities. Computational principles are often proposed to reveal the neural computations underlying brain functions. In the past three decades, sparse coding, predictive coding and divisive normalization have been three influential computational principles that have much success in different areas of neuroscience. Sparse coding offers insights into how the brain learns meaningful associations based on the hypothesis of brain being very efficient. With an emphasis on prediction, predictive coding provides an appealing hierarchical framework of only sending prediction errors to higher layers. Divisive normalization is a mathematical equation designed to account for the extensive nonlinearities in the brain. All these three computational principles along their variants have greatly improved our understanding of the underlying mechanism of the brain. Though connection between sparse and predictive coding has been studied previously, how sparse/predictive coding is connected to a seemingly different principle, divisive normalization, to provide a unified understanding of the brain is still unclear. In this paper, we show that sparse coding, predictive coding and divisive normalization can be connected from first principles. We propose a learning framework that is based on the hypothesis of efficiency, implemented with a predictive structure and displays response nonlinearities of divisive normalization. This framework can be potentially examined and used in a broader context such as multi-sensory integration.
Sparse coding, predictive coding and divisive normalization have each been found to be principles that underlie the function of neural circuits in many parts of the brain, supported by substantial experimental evidence. However, the connections between these related principles are still poorly understood. Sparse coding and predictive coding can be reconciled into a learning framework with predictive structure and sparse responses, termed as sparse/predictive coding. However, how sparse/predictive coding (a learning model) is connected with divisive normalization (not a learning model) is still not well investigated. In this paper, we show how sparse coding, predictive coding, and divisive normalization can be described within a unified framework, and illustrate this explicitly within the context of a two-layer neural learning model of sparse/predictive coding. This two-layer model is constructed in a way that implements sparse coding with a network structure that is constructed by implementing predictive coding. We demonstrate how a homeostatic function that regulates neural responses in the model can shape the nonlinearity of neural responses in a way that replicates different forms of divisive normalization. Simulations show that the model can learn simple cells in the primary visual cortex with the property of contrast saturation, which has previously been explained by divisive normalization. In summary, the study demonstrates that the three principles of sparse coding, predictive coding, and divisive normalization can be connected to provide a learning framework based on biophysical properties, such as Hebbian learning and homeostasis, and this framework incorporates both learning and more diverse response nonlinearities observed experimentally. This framework has the potential to also be used to explain how the brain learns to integrate input from different sensory modalities.Sparse coding, predictive coding and divisive normalization have each been found to be principles that underlie the function of neural circuits in many parts of the brain, supported by substantial experimental evidence. However, the connections between these related principles are still poorly understood. Sparse coding and predictive coding can be reconciled into a learning framework with predictive structure and sparse responses, termed as sparse/predictive coding. However, how sparse/predictive coding (a learning model) is connected with divisive normalization (not a learning model) is still not well investigated. In this paper, we show how sparse coding, predictive coding, and divisive normalization can be described within a unified framework, and illustrate this explicitly within the context of a two-layer neural learning model of sparse/predictive coding. This two-layer model is constructed in a way that implements sparse coding with a network structure that is constructed by implementing predictive coding. We demonstrate how a homeostatic function that regulates neural responses in the model can shape the nonlinearity of neural responses in a way that replicates different forms of divisive normalization. Simulations show that the model can learn simple cells in the primary visual cortex with the property of contrast saturation, which has previously been explained by divisive normalization. In summary, the study demonstrates that the three principles of sparse coding, predictive coding, and divisive normalization can be connected to provide a learning framework based on biophysical properties, such as Hebbian learning and homeostasis, and this framework incorporates both learning and more diverse response nonlinearities observed experimentally. This framework has the potential to also be used to explain how the brain learns to integrate input from different sensory modalities.
Audience Academic
Author Lian, Yanbo
Burkitt, Anthony N.
AuthorAffiliation École Normale Supérieure, College de France, CNRS, FRANCE
1 Department of Biomedical Engineering, The University of Melbourne, Parkville, Victoria, Australia
2 Graeme Clark Institute for Biomedical Engineering, The University of Melbourne, Parkville, Victoria, Australia
AuthorAffiliation_xml – name: École Normale Supérieure, College de France, CNRS, FRANCE
– name: 1 Department of Biomedical Engineering, The University of Melbourne, Parkville, Victoria, Australia
– name: 2 Graeme Clark Institute for Biomedical Engineering, The University of Melbourne, Parkville, Victoria, Australia
Author_xml – sequence: 1
  givenname: Yanbo
  orcidid: 0000-0002-8018-9848
  surname: Lian
  fullname: Lian, Yanbo
– sequence: 2
  givenname: Anthony N.
  surname: Burkitt
  fullname: Burkitt, Anthony N.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40424462$$D View this record in MEDLINE/PubMed
BookMark eNptkttu1DAQhiNURA_wBghW4gYudvEpdnJVVRWHlSohFbi2nPEkeJXYi51dAU-Pw6ZVF1W-sDX-5p8Z-z8vTnzwWBQvKVlRruj7TdhFb_rVFhq3ooRyUtZPijNalnypeFmdPDifFucpbQjJx1o-K04FEUwIyc6Ky1vszeh8t0hbExMujLeLbUTrYHR7XECw0-UYFtbtXZpCPsTB9O5PTgv-efG0NX3CF_N-UXz_-OHb9eflzZdP6-urmyWUqh6XlgpqLILisoGWCUResQorixzK0lRcKsqbqlRAQFhZ8ppWaNqaC0tU2dT8onh90N32Iel59qQ5U6SSipMqE-sDYYPZ6G10g4m_dTBO_wuE2GkTRwc9amYpgJE1yNaKRpKmVtwAcCokNkZA1rqcq-2aAS2gH6Ppj0SPb7z7obuw15RRyjiZ-n07K8Twc4dp1INLgH1vPIbd1DhlSuVvYxl98x_6-Hgz1Zk8gfNtyIVhEtVXleCScSZFplaPUHlZHBxkA7Uux48S3h0lZGbEX2Nndinp9dfbY_bVw1e5f447N2VAHACIIaWI7T1CiZ5MezeZnkyrZ9Pyv2kZ3w4
Cites_doi 10.1038/nature04485
10.1098/rstb.2016.0258
10.1046/j.0953-816x.2001.01885.x
10.1162/neco.2008.03-07-486
10.1017/S0952523800009640
10.1523/ENEURO.0519-21.2022
10.1523/JNEUROSCI.3490-16.2017
10.1038/nn.4243
10.1016/S0042-6989(97)00169-7
10.1016/S0925-2312(02)00782-8
10.1016/j.neuron.2010.04.009
10.1016/S0893-6080(05)80006-1
10.1038/4580
10.1113/jphysiol.1966.sp008003
10.1162/neco_a_01325
10.1016/j.neuron.2009.11.004
10.1162/neco.2010.05-08-795
10.1038/nrn2787
10.1113/jphysiol.1962.sp006837
10.1016/j.patrec.2023.07.017
10.1038/nrn3136
10.1016/j.neuron.2014.12.026
10.1371/journal.pcbi.1006908
10.1162/neco.1989.1.3.295
10.1038/nn.2815
10.1038/298266a0
10.1523/ENEURO.0557-20.2021
10.3390/vision3030047
10.1016/j.neuron.2012.10.038
10.1523/JNEUROSCI.2017-20.2021
10.1073/pnas.1711114115
10.1523/JNEUROSCI.1071-22.2023
10.1113/jphysiol.1968.sp008455
10.1371/journal.pcbi.1002250
10.1146/annurev-neuro-060909-153238
10.1016/S0896-6273(02)00819-X
10.1038/381607a0
10.3389/fncir.2019.00013
10.1523/ENEURO.0412-18.2019
10.1016/j.neuron.2017.06.043
10.1113/jphysiol.1959.sp006308
10.1016/j.tins.2004.10.007
ContentType Journal Article
Copyright Copyright: © 2025 Lian, Burkitt. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
COPYRIGHT 2025 Public Library of Science
2025 Lian, Burkitt. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2025 Lian, Burkitt 2025 Lian, Burkitt
2025 Lian, Burkitt. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: Copyright: © 2025 Lian, Burkitt. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
– notice: COPYRIGHT 2025 Public Library of Science
– notice: 2025 Lian, Burkitt. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2025 Lian, Burkitt 2025 Lian, Burkitt
– notice: 2025 Lian, Burkitt. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
ISR
3V.
7QO
7QP
7TK
7TM
7X7
7XB
88E
8AL
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
HCIFZ
JQ2
K7-
K9.
LK8
M0N
M0S
M1P
M7P
P5Z
P62
P64
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
RC3
7X8
5PM
DOA
DOI 10.1371/journal.pcbi.1013059
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Gale In Context: Science
ProQuest Central (Corporate)
Biotechnology Research Abstracts
Calcium & Calcified Tissue Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Health & Medical Collection (ProQuest)
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Computing Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central Database Suite (ProQuest)
ProQuest Technology Collection
Natural Science Collection
ProQuest One
ProQuest Central Korea
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database (ProQuest)
ProQuest Health & Medical Complete (Alumni)
ProQuest Biological Science Collection
Computing Database
ProQuest Health & Medical Collection
Medical Database
Biological Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
Computer Science Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Nucleic Acids Abstracts
SciTech Premium Collection
ProQuest Central China
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Advanced Technologies & Aerospace Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Genetics Abstracts
Biotechnology Research Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
ProQuest Computing
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList CrossRef
Publicly Available Content Database
MEDLINE




MEDLINE - Academic
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ: Directory of Open Access Journal (DOAJ)
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
DocumentTitleAlternate Relating sparse and predictive coding to divisive normalization
EISSN 1553-7358
ExternalDocumentID 3270867308
oai_doaj_org_article_2d1cca69c6fd4b60b973acc3146eba4c
PMC12112309
A843623264
40424462
10_1371_journal_pcbi_1013059
Genre Journal Article
GeographicLocations Australia
GeographicLocations_xml – name: Australia
GrantInformation_xml – grantid: AUSMURIB000001 associated with ONR MURI grant N00014-19-1-2571
GroupedDBID ---
123
29O
2WC
53G
5VS
7X7
88E
8FE
8FG
8FH
8FI
8FJ
AAFWJ
AAKPC
AAUCC
AAWOE
AAYXX
ABDBF
ABUWG
ACCTH
ACGFO
ACIHN
ACIWK
ACPRK
ACUHS
ADBBV
AEAQA
AENEX
AEUYN
AFFHD
AFKRA
AFPKN
AFRAH
AHMBA
ALMA_UNASSIGNED_HOLDINGS
AOIJS
ARAPS
AZQEC
B0M
BAIFH
BAWUL
BBNVY
BBTPI
BCNDV
BENPR
BGLVJ
BHPHI
BPHCQ
BVXVI
BWKFM
CCPQU
CITATION
CS3
DIK
DWQXO
E3Z
EAP
EAS
EBD
EBS
EJD
EMK
EMOBN
ESX
F5P
FPL
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HMCUK
HYE
IAO
IGS
INH
INR
ISN
ISR
ITC
J9A
K6V
K7-
KQ8
LK8
M1P
M48
M7P
O5R
O5S
OK1
OVT
P2P
P62
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PV9
RNS
RPM
RZL
SV3
TR2
TUS
UKHRP
WOW
XSB
~8M
ADRAZ
ALIPV
C1A
CGR
CUY
CVF
ECM
EIF
H13
IPNFZ
NPM
PMFND
RIG
WOQ
3V.
7QO
7QP
7TK
7TM
7XB
8AL
8FD
8FK
FR3
JQ2
K9.
M0N
P64
PKEHL
PQEST
PQUKI
PRINS
Q9U
RC3
7X8
PUEGO
5PM
ADCSY
AGGLG
ID FETCH-LOGICAL-c579t-d141adec736bcf24ee3828e8de3c55a836713b857c0c4d653918eaf934d075b93
IEDL.DBID M7P
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001497415400004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1553-7358
1553-734X
IngestDate Wed Dec 10 15:00:26 EST 2025
Fri Oct 03 12:40:14 EDT 2025
Tue Nov 04 02:02:50 EST 2025
Fri Sep 05 15:59:05 EDT 2025
Wed Nov 12 06:20:43 EST 2025
Sat Nov 29 13:48:25 EST 2025
Sat Nov 29 10:31:53 EST 2025
Thu Nov 13 15:59:55 EST 2025
Sun Jun 01 01:35:38 EDT 2025
Sat Nov 29 07:54:47 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
License Copyright: © 2025 Lian, Burkitt. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Creative Commons Attribution License
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c579t-d141adec736bcf24ee3828e8de3c55a836713b857c0c4d653918eaf934d075b93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
The authors have declared that no competing interests exist.
ORCID 0000-0002-8018-9848
OpenAccessLink https://www.proquest.com/docview/3270867308?pq-origsite=%requestingapplication%
PMID 40424462
PQID 3270867308
PQPubID 1436340
PageCount e1013059
ParticipantIDs plos_journals_3270867308
doaj_primary_oai_doaj_org_article_2d1cca69c6fd4b60b973acc3146eba4c
pubmedcentral_primary_oai_pubmedcentral_nih_gov_12112309
proquest_miscellaneous_3212771012
proquest_journals_3270867308
gale_infotracmisc_A843623264
gale_infotracacademiconefile_A843623264
gale_incontextgauss_ISR_A843623264
pubmed_primary_40424462
crossref_primary_10_1371_journal_pcbi_1013059
PublicationCentury 2000
PublicationDate 2025-05-01
PublicationDateYYYYMMDD 2025-05-01
PublicationDate_xml – month: 05
  year: 2025
  text: 2025-05-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: San Francisco
– name: San Francisco, CA USA
PublicationTitle PLoS computational biology
PublicationTitleAlternate PLoS Comput Biol
PublicationYear 2025
Publisher Public Library of Science
Public Library of Science (PLoS)
Publisher_xml – name: Public Library of Science
– name: Public Library of Science (PLoS)
References BA Olshausen (pcbi.1013059.ref006) 1997; 37
M Chalk (pcbi.1013059.ref041) 2018; 115
M Carandini (pcbi.1013059.ref014) 2011; 13
K Friston (pcbi.1013059.ref023) 2010; 11
PO Hoyer (pcbi.1013059.ref037) 2003
M Beyeler (pcbi.1013059.ref021) 2019; 15
DB Rubin (pcbi.1013059.ref040) 2015; 85
SR Olsen (pcbi.1013059.ref009) 2010; 66
BA Olshausen (pcbi.1013059.ref005) 1996; 381
LU Perrinet (pcbi.1013059.ref046) 2019; 3
T Ohshiro (pcbi.1013059.ref010) 2011; 14
DH Hubel (pcbi.1013059.ref001) 1959; 148
AN Burkitt (pcbi.1013059.ref048) 2021; 41
J Zylberberg (pcbi.1013059.ref031) 2011; 7
GG Turrigiano (pcbi.1013059.ref030) 2017; 372
DC Knill (pcbi.1013059.ref022) 2004; 27
DH Hubel (pcbi.1013059.ref003) 1968; 195
DJ Heeger (pcbi.1013059.ref004) 1992; 9
G Turrigiano (pcbi.1013059.ref029) 2011; 34
T Ohshiro (pcbi.1013059.ref011) 2017; 95
Y Lian (pcbi.1013059.ref018) 2021; 8
Y Lian (pcbi.1013059.ref019) 2022; 9
DH Hubel (pcbi.1013059.ref002) 1962; 160
TCB Freeman (pcbi.1013059.ref035) 2002; 35
(pcbi.1013059.ref008); 2
CSN Brito (pcbi.1013059.ref032) 2016; 12
L Busse (pcbi.1013059.ref039) 2009; 64
pcbi.1013059.ref007
M Zhu (pcbi.1013059.ref026) 2013; 9
Y Lian (pcbi.1013059.ref020) 2023; 43
LU Perrinet (pcbi.1013059.ref045) 2010; 22
I Ohzawa (pcbi.1013059.ref034) 1982; 298
K Naka (pcbi.1013059.ref033) 1966; 185
W Einhäuser (pcbi.1013059.ref042) 2002; 15
H Hogendoorn (pcbi.1013059.ref047) 2019; 6
pcbi.1013059.ref012
V Boutin (pcbi.1013059.ref025) 2020; 32
P Hernández-Cámara (pcbi.1013059.ref013) 2023; 173
H Barlow (pcbi.1013059.ref016) 1989; 1
Y Lian (pcbi.1013059.ref027) 2019; 13
AM Bastos (pcbi.1013059.ref024) 2012; 76
V Papyan (pcbi.1013059.ref036) 2017; 18
HB Barlow (pcbi.1013059.ref015) 1961; 1
C Rozell (pcbi.1013059.ref028) 2008; 20
S Denève (pcbi.1013059.ref049) 2016; 19
EC Smith (pcbi.1013059.ref017) 2006; 439
R Coultrip (pcbi.1013059.ref044) 1992; 5
C Rennó-Costa (pcbi.1013059.ref043) 2017; 37
L Calatroni (pcbi.1013059.ref038) 2023; 19
References_xml – volume: 439
  start-page: 978
  issue: 7079
  year: 2006
  ident: pcbi.1013059.ref017
  article-title: Efficient auditory coding
  publication-title: Nature
  doi: 10.1038/nature04485
– volume: 372
  start-page: 20160258
  issue: 1715
  year: 2017
  ident: pcbi.1013059.ref030
  article-title: The dialectic of Hebb and homeostasis
  publication-title: Philos Trans R Soc Lond B Biol Sci
  doi: 10.1098/rstb.2016.0258
– volume: 15
  start-page: 475
  issue: 3
  year: 2002
  ident: pcbi.1013059.ref042
  article-title: Learning the invariance properties of complex cells from their responses to natural stimuli
  publication-title: Eur J Neurosci
  doi: 10.1046/j.0953-816x.2001.01885.x
– volume: 20
  start-page: 2526
  year: 2008
  ident: pcbi.1013059.ref028
  article-title: Sparse coding via thresholding and local competition in neural circuits
  publication-title: Neural Comput
  doi: 10.1162/neco.2008.03-07-486
– volume: 9
  start-page: 181
  issue: 2
  year: 1992
  ident: pcbi.1013059.ref004
  article-title: Normalization of cell responses in cat striate cortex
  publication-title: Vis Neurosci
  doi: 10.1017/S0952523800009640
– volume: 9
  issue: 4
  year: 2022
  ident: pcbi.1013059.ref019
  article-title: Learning spatiotemporal properties of hippocampal place cells
  publication-title: eNeuro
  doi: 10.1523/ENEURO.0519-21.2022
– volume: 37
  start-page: 8062
  year: 2017
  ident: pcbi.1013059.ref043
  article-title: Place and grid cells in a loop: implications for memory function and spatial coding
  publication-title: J Neurosci
  doi: 10.1523/JNEUROSCI.3490-16.2017
– volume: 19
  start-page: 375
  issue: 3
  year: 2016
  ident: pcbi.1013059.ref049
  article-title: Efficient codes and balanced networks
  publication-title: Nat Neurosci
  doi: 10.1038/nn.4243
– volume: 37
  start-page: 3311
  year: 1997
  ident: pcbi.1013059.ref006
  article-title: Sparse coding with an overcomplete basis set: a strategy employed by V1?
  publication-title: Vis Res
  doi: 10.1016/S0042-6989(97)00169-7
– start-page: 547
  year: 2003
  ident: pcbi.1013059.ref037
  article-title: Modeling receptive fields with non-negative sparse coding
  publication-title: Neurocomputing
  doi: 10.1016/S0925-2312(02)00782-8
– volume: 66
  start-page: 287
  issue: 2
  year: 2010
  ident: pcbi.1013059.ref009
  article-title: Divisive normalization in olfactory population codes
  publication-title: Neuron
  doi: 10.1016/j.neuron.2010.04.009
– volume: 5
  start-page: 47
  year: 1992
  ident: pcbi.1013059.ref044
  article-title: A cortical model of winner-take-all competition via lateral inhibition
  publication-title: Neural Networks
  doi: 10.1016/S0893-6080(05)80006-1
– ident: pcbi.1013059.ref007
  doi: 10.1038/4580
– volume: 9
  issue: 8
  year: 2013
  ident: pcbi.1013059.ref026
  article-title: Visual nonclassical receptive field effects emerge from sparse coding in a dynamical system
  publication-title: PLoS Comput Biol
– volume: 185
  start-page: 587
  year: 1966
  ident: pcbi.1013059.ref033
  article-title: S-potentials from luminosity units in the retina of fish (cyprinidae)
  publication-title: J Physiol
  doi: 10.1113/jphysiol.1966.sp008003
– ident: pcbi.1013059.ref012
– volume: 32
  start-page: 2279
  issue: 11
  year: 2020
  ident: pcbi.1013059.ref025
  article-title: Effect of top-down connections in hierarchical sparse coding
  publication-title: Neural Comput
  doi: 10.1162/neco_a_01325
– volume: 12
  issue: 9
  year: 2016
  ident: pcbi.1013059.ref032
  article-title: Nonlinear hebbian learning as a unifying principle in receptive field formation
  publication-title: PLoS Comput Biol
– volume: 1
  year: 1961
  ident: pcbi.1013059.ref015
  article-title: Possible principles underlying the transformation of sensory messages
  publication-title: Sens Commun
– volume: 64
  start-page: 931
  issue: 6
  year: 2009
  ident: pcbi.1013059.ref039
  article-title: Representation of concurrent stimuli by population activity in visual cortex
  publication-title: Neuron
  doi: 10.1016/j.neuron.2009.11.004
– volume: 18
  start-page: 2887
  year: 2017
  ident: pcbi.1013059.ref036
  article-title: Convolutional neural networks analyzed via convolutional sparse coding
  publication-title: J Mach Learn Res
– volume: 2
  start-page: 79
  ident: pcbi.1013059.ref008
  publication-title: Neurosci
– volume: 22
  start-page: 1812
  issue: 7
  year: 2010
  ident: pcbi.1013059.ref045
  article-title: Role of homeostasis in learning sparse representations
  publication-title: Neural Comput
  doi: 10.1162/neco.2010.05-08-795
– volume: 11
  start-page: 127
  issue: 2
  year: 2010
  ident: pcbi.1013059.ref023
  article-title: The free-energy principle: a unified brain theory?
  publication-title: Nat Rev Neurosci
  doi: 10.1038/nrn2787
– volume: 160
  start-page: 106
  issue: 1
  year: 1962
  ident: pcbi.1013059.ref002
  article-title: Receptive fields, binocular interaction and functional architecture in the cat’s visual cortex
  publication-title: J Physiol
  doi: 10.1113/jphysiol.1962.sp006837
– volume: 173
  start-page: 64
  year: 2023
  ident: pcbi.1013059.ref013
  article-title: Neural networks with divisive normalization for image segmentation
  publication-title: Pattern Recognit Lett
  doi: 10.1016/j.patrec.2023.07.017
– volume: 13
  start-page: 51
  issue: 1
  year: 2011
  ident: pcbi.1013059.ref014
  article-title: Normalization as a canonical neural computation
  publication-title: Nat Rev Neurosci
  doi: 10.1038/nrn3136
– volume: 85
  start-page: 402
  issue: 2
  year: 2015
  ident: pcbi.1013059.ref040
  article-title: The stabilized supralinear network: a unifying circuit motif underlying multi-input integration in sensory cortex
  publication-title: Neuron
  doi: 10.1016/j.neuron.2014.12.026
– volume: 15
  issue: 6
  year: 2019
  ident: pcbi.1013059.ref021
  article-title: Neural correlates of sparse coding and dimensionality reduction
  publication-title: PLoS Comput Biol
  doi: 10.1371/journal.pcbi.1006908
– volume: 1
  start-page: 295
  year: 1989
  ident: pcbi.1013059.ref016
  article-title: Unsupervised learning
  publication-title: Neural Comput
  doi: 10.1162/neco.1989.1.3.295
– volume: 14
  start-page: 775
  issue: 6
  year: 2011
  ident: pcbi.1013059.ref010
  article-title: A normalization model of multisensory integration
  publication-title: Nat Neurosci
  doi: 10.1038/nn.2815
– volume: 298
  start-page: 266
  issue: 5871
  year: 1982
  ident: pcbi.1013059.ref034
  article-title: Contrast gain control in the cat visual cortex
  publication-title: Nature
  doi: 10.1038/298266a0
– volume: 8
  issue: 4
  year: 2021
  ident: pcbi.1013059.ref018
  article-title: Learning an efficient hippocampal place map from entorhinal inputs using non-negative sparse coding
  publication-title: eNeuro
  doi: 10.1523/ENEURO.0557-20.2021
– volume: 3
  start-page: 47
  issue: 3
  year: 2019
  ident: pcbi.1013059.ref046
  article-title: An adaptive homeostatic algorithm for the unsupervised learning of visual features
  publication-title: Vision (Basel)
  doi: 10.3390/vision3030047
– volume: 76
  start-page: 695
  issue: 4
  year: 2012
  ident: pcbi.1013059.ref024
  article-title: Canonical microcircuits for predictive coding
  publication-title: Neuron
  doi: 10.1016/j.neuron.2012.10.038
– volume: 41
  start-page: 4428
  issue: 20
  year: 2021
  ident: pcbi.1013059.ref048
  article-title: Predictive visual motion extrapolation emerges spontaneously and without supervision at each layer of a hierarchical neural network with spike-timing-dependent plasticity
  publication-title: J Neurosci
  doi: 10.1523/JNEUROSCI.2017-20.2021
– volume: 115
  start-page: 186
  issue: 1
  year: 2018
  ident: pcbi.1013059.ref041
  article-title: Toward a unified theory of efficient, predictive, and sparse coding
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.1711114115
– volume: 43
  start-page: 5180
  issue: 28
  year: 2023
  ident: pcbi.1013059.ref020
  article-title: Learning the vector coding of egocentric boundary cells from visual data
  publication-title: J Neurosci
  doi: 10.1523/JNEUROSCI.1071-22.2023
– volume: 195
  start-page: 215
  issue: 1
  year: 1968
  ident: pcbi.1013059.ref003
  article-title: Receptive fields and functional architecture of monkey striate cortex
  publication-title: J Physiol
  doi: 10.1113/jphysiol.1968.sp008455
– volume: 7
  issue: 10
  year: 2011
  ident: pcbi.1013059.ref031
  article-title: A sparse coding model with synaptically local plasticity and spiking neurons can account for the diverse shapes of V1 simple cell receptive fields
  publication-title: PLoS Comput Biol
  doi: 10.1371/journal.pcbi.1002250
– volume: 34
  start-page: 89
  year: 2011
  ident: pcbi.1013059.ref029
  article-title: Too many cooks? Intrinsic and synaptic homeostatic mechanisms in cortical circuit refinement
  publication-title: Annu Rev Neurosci
  doi: 10.1146/annurev-neuro-060909-153238
– volume: 35
  start-page: 759
  issue: 4
  year: 2002
  ident: pcbi.1013059.ref035
  article-title: Suppression without inhibition in visual cortex
  publication-title: Neuron
  doi: 10.1016/S0896-6273(02)00819-X
– volume: 381
  start-page: 607
  issue: 6583
  year: 1996
  ident: pcbi.1013059.ref005
  article-title: Emergence of simple-cell receptive field properties by learning a sparse code for natural images
  publication-title: Nature
  doi: 10.1038/381607a0
– volume: 13
  start-page: 13
  year: 2019
  ident: pcbi.1013059.ref027
  article-title: Toward a biologically plausible model of LGN-V1 pathways based on efficient coding
  publication-title: Front Neural Circuits
  doi: 10.3389/fncir.2019.00013
– volume: 6
  issue: 2
  year: 2019
  ident: pcbi.1013059.ref047
  article-title: Predictive coding with neural transmission delays: a real-time temporal alignment hypothesis
  publication-title: eNeuro
  doi: 10.1523/ENEURO.0412-18.2019
– volume: 95
  issue: 2
  year: 2017
  ident: pcbi.1013059.ref011
  article-title: A neural signature of divisive normalization at the level of multisensory integration in primate cortex
  publication-title: Neuron
  doi: 10.1016/j.neuron.2017.06.043
– volume: 148
  start-page: 574
  issue: 3
  year: 1959
  ident: pcbi.1013059.ref001
  article-title: Receptive fields of single neurones in the cat’s striate cortex
  publication-title: J Physiol
  doi: 10.1113/jphysiol.1959.sp006308
– volume: 27
  start-page: 712
  issue: 12
  year: 2004
  ident: pcbi.1013059.ref022
  article-title: The Bayesian brain: the role of uncertainty in neural coding and computation
  publication-title: Trends Neurosci
  doi: 10.1016/j.tins.2004.10.007
– volume: 19
  year: 2023
  ident: pcbi.1013059.ref038
  article-title: Beyond l1 sparse coding in V1
  publication-title: PLoS Comput Biol
SSID ssj0035896
Score 2.4597259
Snippet Sparse coding, predictive coding and divisive normalization have each been found to be principles that underlie the function of neural circuits in many parts...
SourceID plos
doaj
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
StartPage e1013059
SubjectTerms Analysis
Animals
Biology and Life Sciences
Brain
Brain - physiology
Coding
Computational Biology
Computer and Information Sciences
Computer Simulation
Feedback
Homeostasis
Humans
Learning
Learning - physiology
Mathematical models
Medicine and Health Sciences
Models, Neurological
Nerve Net - physiology
Neural circuitry
Neural networks
Neurological research
Neurons - physiology
Nonlinear systems
Nonlinearity
Primary Visual Cortex - physiology
Social Sciences
Somatosensory cortex
Sparsity
Visual cortex
Visual Cortex - physiology
Visual pathways
Visual perception
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3di9QwEA-yKPgifl-9U6IIPtXbNGmTPMkpHgpyiB-wbyHNx7lwpMt2V_C_v5m0u2zlwBffSmfSkplkPsjkN4S8juCSWGVDGVobS8FEKFvwcyWD2J7pqJxvM4jrF3lxoRYL_fWg1RfWhA3wwIPgTivP4CeNdk30om3mrZbcOsdhh8PnhUPrO5d6l0wNNpjXKnfmwqY4peRiMV6a45Kdjjp6u3LtEnNXnnFKD5xSxu7fW-jZ6qrrbwo__66iPHBL5_fJvTGepGfDPB6QWyE9JHeGDpN_HpF3Q7FbuqRgOdZ9oDZ5ulrj6QzaOeo69F1001G8l4Wl7DRhFHs1Xs98TH6ef_zx4VM59kwoXS31pvRMMOuDk7xpXaxECBxyqqB84K6ureINZKWtqqWbO-ERl5apYKPmwkPw0Gr-hMxSl8IRobDzHeRTMsAYEa2yIja2goeGMW6jK0i5E5pZDdAYJp-PSUgphtkbFLIZhVyQ9yjZPS8CW-cXoG4zqtv8S90FeYV6MQhdkbA25tJu-958_v7NnCkB3hjCUVGQNyNT7EA1zo5XDWBeiHY14TyZcMLechPyEap_N53e8EpCDghWUcHI3ZK4mfxyT8aPYilbCt0WeVglJcKqFeTpsIL2IhF4EC0aoKjJ2prIbEpJy18ZFByh-iCd1M_-h5SPyd0K-xznws4TMtust-E5ue1-b5b9-kXeatdV1y5a
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Public Library of Science (PLoS) Journals Open Access
  dbid: FPL
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3daxQxEA96Kvjid9vTKqsIPq02m2w-nqQtHgqlFD-gbyHJJvWgZI_bO8H_3pnd3OmW9sG3ZWeym0wm80EmvxDyNoJLopUNZXA2lpzyUDrwcyWF2J7qqHzjehDXE3l6qs7P9dnfRPHKDj6T9EOW6fuFd3PMNUFB9W1yp2JCYLI1OzvZWF5WKy3y8bibWo7cT4_Sv7XFk8Vl210XaF6tl_zHAc0e_m_XH5EHOdQsDgfdeExuhfSE3Bsun_z9lHwc6uDSRQFGZdmFwqamWCxx4wZNYOFbdGvFqi3wyBZWuRcJA9zLfHLzGfkx-_T9-HOZr1MofS31qmwop7YJXjLhfKx4CAzSraCawHxdW8UEJKxO1dIfeN4gZC1VwUbNeANxhdNsh0xSm8IeKcAoeEi1ZIA2PFpleRS2ggdBKbPRT0m5kbJZDKgZpt86k5BtDKM3KBSThTIlRzgVW17EvO5fgDRNXkKmaiiom9BexIY7ceC0ZNZ7BrYeFI3DT9_gRBpEtUhYNnNh111nvnz7ag4VB0cNkSqfkneZKbYwl97mUwgwLgTCGnHujzhh2fkReQ_1ZTOczrBKQnoIBlNBy40OXU9-vSXjR7HKLYV2jTy0khIR16Zkd1C5rUg47lFzARQ1UsaRzMaUNP_Z44Ujih9kmvr5zV1-Qe5XeLFxX8m5Tyar5Tq8JHf9r9W8W77qV9kf_3EnDA
  priority: 102
  providerName: Public Library of Science
Title Relating sparse and predictive coding to divisive normalization
URI https://www.ncbi.nlm.nih.gov/pubmed/40424462
https://www.proquest.com/docview/3270867308
https://www.proquest.com/docview/3212771012
https://pubmed.ncbi.nlm.nih.gov/PMC12112309
https://doaj.org/article/2d1cca69c6fd4b60b973acc3146eba4c
http://dx.doi.org/10.1371/journal.pcbi.1013059
Volume 21
WOSCitedRecordID wos001497415400004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ: Directory of Open Access Journal (DOAJ)
  customDbUrl:
  eissn: 1553-7358
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0035896
  issn: 1553-7358
  databaseCode: DOA
  dateStart: 20050101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 1553-7358
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0035896
  issn: 1553-7358
  databaseCode: P5Z
  dateStart: 20050601
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Biological Science Database
  customDbUrl:
  eissn: 1553-7358
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0035896
  issn: 1553-7358
  databaseCode: M7P
  dateStart: 20050601
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Computer Science Database (ProQuest)
  customDbUrl:
  eissn: 1553-7358
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0035896
  issn: 1553-7358
  databaseCode: K7-
  dateStart: 20050601
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/compscijour
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Health & Medical Collection (ProQuest)
  customDbUrl:
  eissn: 1553-7358
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0035896
  issn: 1553-7358
  databaseCode: 7X7
  dateStart: 20050601
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central Database Suite (ProQuest)
  customDbUrl:
  eissn: 1553-7358
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0035896
  issn: 1553-7358
  databaseCode: BENPR
  dateStart: 20050601
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 1553-7358
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0035896
  issn: 1553-7358
  databaseCode: PIMPY
  dateStart: 20050601
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVATS
  databaseName: Public Library of Science (PLoS) Journals Open Access
  customDbUrl:
  eissn: 1553-7358
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0035896
  issn: 1553-7358
  databaseCode: FPL
  dateStart: 20050101
  isFulltext: true
  titleUrlDefault: http://www.plos.org/publications/
  providerName: Public Library of Science
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwELdYBxIvfI8VRhUQEk9mc-zEztO0oVVMjCoaIBVeIsdxSqUpCUmLxH_PneOWBU288GJV9aWpfef7sM-_I-R1CSaJhdpSm-uSCiYszcHOUQa-PUtKZYrcgbheyNlMzedJ6jfcOp9WudGJTlEXtcE98kMeSvC-QR7VcfODYtUoPF31JTR2yC6iJIQudS_daGIeKVefC0vjUMnF3F-d45Idek69bUy-xAiWO7TSa6bJIfhv9fSouaq7m5zQv3Mprxmn6f3_HdYDcs-7pcFJL0cPyS1bPSJ3-kKVvx6T4z5nrloEoIDazga6KoKmxUMeVJeBqdEEBqs6wOtdmBEfVOgMX_lbnk_Il-nZ53fvqS-9QE0kkxUtmGC6sEbyODdlKKzlEJpZVVhuokgrHkNwm6tImiMjCoS3ZcrqMuGiAB8kT_geGVV1ZfdJAArEQFgmLTwjSq20KGMdwoeYMa5LMyZ0M-tZ0yNsZO6YTUJk0o8-Qy5lnktjcoqs2dIiPrb7om4XmV9uWVgwEM04MXFZiDw-yhPJtTEc7AIIpYCXvkLGZoiAUWGKzUKvuy47_3SZnSgBRh28WjEmbzxRWQNvjfY3FmBcCJo1oDwYUMISNYPufZSfzXC67A_X4cmNXNzc_XLbjT-KGXGVrddIw0IpEZ1tTJ72IridEoHn2SKGHjUQzsGcDXuq5XeHLY6IfxCVJs_-_b-ek7shFkJ2mZ8HZLRq1_YFuW1-rpZdOyE7ci5dqyZk9_Rsll5O3GYHtNP0AtoPkk7cWoU2jb4BVXr-Mf36G3j2Q9U
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1bb9MwFLamAoIX7rDCgIBAPJnNsRs7D2gal2lVS4VgSH0zju2USlMSkha0P8Vv5JxcyoIm3vbAW1WftLHznVt8_B1CnqfgklhoPPWJSalgwtME_BxlENuzOFXWJTWJ61TOZmo-jz9ukV_dWRgsq-xsYm2oXW7xHfkuDyVE34BHtV98p9g1CndXuxYaDSwm_vQnpGzV6_E7eL4vwvDw_fHbI9p2FaB2JOMVdUww47yVPEpsGgrvOWQdXjnP7WhkFI8gb0vUSNo9KxwytzLlTRpz4cC9Jki-BCb_kuBKol5NJO0sPx-puh8YtuKhkot5e1SPS7bbIuNVYZMlZsy8Zkc94wrrjgEbvzAoTvLqvKD379rNM87w8Mb_tow3yfU27A4OGj25RbZ8dptcaRpxnt4h-01NYLYIwMCWlQ9M5oKixE0sdAeBzdHFB6s8wONrWPEfZBjsn7SnWO-SLxdy9_fIIMszv00CMJAW0k7p4RqRGmVEGpkQPkSMcZPaIaHdU9ZFwyCi621ECZlXM3uNqNAtKobkDUJhI4v83_UXebnQrTnRoWOgelFso9SJJNpLYsmNtRz8HiidgD99hkDSyPCRYQnRwqyrSo8_f9IHSkDQAlG7GJKXrVCaA5asaU9kwLyQFKwnudOTBBNke8PbiNduOpX-gzK4ssPh-cNPN8P4o1jxl_l8jTIslBLZ54bkfgP5zZII3K8XEYyonjL01qw_ki2_1dzpyGgIWXf84N_39YRcPTr-MNXT8WzykFwLselzXeW6Qwarcu0fkcv2x2pZlY9rCxCQrxetK78B5HeXmg
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1bb9MwFLamchEv484KAwIC8RQ6x07sPKBpMCqqTVXFRap4MY5jd5WmJCQtaH-NX8c5uZQFTbztgbeqdtrY-c4tPuc7hLxwYJJooK1vE-18Trn1E7BzPgXfnsZOmjSpSVyPxXQq5_N4tkV-dbUwmFbZ6cRaUae5wXfkIxYI8L4Bj3Lk2rSI2eF4v_juYwcpPGnt2mk0EDmyZz8hfKveTA7hWb8MgvH7z-8--G2HAd-EIl75KeVUp9YIFiXGBdxaBhGIlallJgy1ZBHEcIkMhdkzPEUWVyqtdjHjKZjaBImYQP1fERBjYjrhLPzaWQEWyro3GLbl8QXj87Zsjwk6alHyujDJEqNnVjOlnjOLdfeAjY0YFKd5dZED_Hce5znDOL75P2_pLbLduuPeQSM_t8mWze6Qa02DzrO7ZL_JFcwWHijesrKezlKvKPFwC82EZ3I0_d4q97CsDSsBvAyDgNO2uvUe-XIpd3-fDLI8szvEA8VpIBwVFq7hTkvNXaQD-BBRyrQzQ-J3T1wVDbOIqo8XBURkzeoVIkS1CBmStwiLzVzkBa-_yMuFatWMClIKIhnFJnIpT6K9JBZMG8PAHoIwcvjT5wgqhcwfGT7whV5XlZp8-qgOJAdnBrx5PiSv2kkuB1wZ3VZqwLqQLKw3c7c3E1ST6Q3vIHa75VTqD-Lgyg6TFw8_2wzjj2ImYGbzNc6hgRDISjckDxr4b7aE4zk-j2BE9gSjt2f9kWx5UnOqI9MhROPxw3_f11NyHUREHU-mR4_IjQB7QdfJr7tksCrX9jG5an6sllX5pFYGHvl22aLyG-XuoL4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Relating+sparse+and+predictive+coding+to+divisive+normalization&rft.jtitle=PLoS+computational+biology&rft.au=Lian%2C+Yanbo&rft.au=Burkitt%2C+Anthony+N&rft.date=2025-05-01&rft.eissn=1553-7358&rft.volume=21&rft.issue=5&rft.spage=e1013059&rft_id=info:doi/10.1371%2Fjournal.pcbi.1013059&rft_id=info%3Apmid%2F40424462&rft.externalDocID=40424462
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1553-7358&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1553-7358&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1553-7358&client=summon