Relating sparse and predictive coding to divisive normalization
Sparse coding, predictive coding and divisive normalization have each been found to be principles that underlie the function of neural circuits in many parts of the brain, supported by substantial experimental evidence. However, the connections between these related principles are still poorly under...
Uložené v:
| Vydané v: | PLoS computational biology Ročník 21; číslo 5; s. e1013059 |
|---|---|
| Hlavní autori: | , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
United States
Public Library of Science
01.05.2025
Public Library of Science (PLoS) |
| Predmet: | |
| ISSN: | 1553-7358, 1553-734X, 1553-7358 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Sparse coding, predictive coding and divisive normalization have each been found to be principles that underlie the function of neural circuits in many parts of the brain, supported by substantial experimental evidence. However, the connections between these related principles are still poorly understood. Sparse coding and predictive coding can be reconciled into a learning framework with predictive structure and sparse responses, termed as sparse/predictive coding. However, how sparse/predictive coding (a learning model) is connected with divisive normalization (not a learning model) is still not well investigated. In this paper, we show how sparse coding, predictive coding, and divisive normalization can be described within a unified framework, and illustrate this explicitly within the context of a two-layer neural learning model of sparse/predictive coding. This two-layer model is constructed in a way that implements sparse coding with a network structure that is constructed by implementing predictive coding. We demonstrate how a homeostatic function that regulates neural responses in the model can shape the nonlinearity of neural responses in a way that replicates different forms of divisive normalization. Simulations show that the model can learn simple cells in the primary visual cortex with the property of contrast saturation, which has previously been explained by divisive normalization. In summary, the study demonstrates that the three principles of sparse coding, predictive coding, and divisive normalization can be connected to provide a learning framework based on biophysical properties, such as Hebbian learning and homeostasis, and this framework incorporates both learning and more diverse response nonlinearities observed experimentally. This framework has the potential to also be used to explain how the brain learns to integrate input from different sensory modalities. |
|---|---|
| AbstractList | Sparse coding, predictive coding and divisive normalization have each been found to be principles that underlie the function of neural circuits in many parts of the brain, supported by substantial experimental evidence. However, the connections between these related principles are still poorly understood. Sparse coding and predictive coding can be reconciled into a learning framework with predictive structure and sparse responses, termed as sparse/predictive coding. However, how sparse/predictive coding (a learning model) is connected with divisive normalization (not a learning model) is still not well investigated. In this paper, we show how sparse coding, predictive coding, and divisive normalization can be described within a unified framework, and illustrate this explicitly within the context of a two-layer neural learning model of sparse/predictive coding. This two-layer model is constructed in a way that implements sparse coding with a network structure that is constructed by implementing predictive coding. We demonstrate how a homeostatic function that regulates neural responses in the model can shape the nonlinearity of neural responses in a way that replicates different forms of divisive normalization. Simulations show that the model can learn simple cells in the primary visual cortex with the property of contrast saturation, which has previously been explained by divisive normalization. In summary, the study demonstrates that the three principles of sparse coding, predictive coding, and divisive normalization can be connected to provide a learning framework based on biophysical properties, such as Hebbian learning and homeostasis, and this framework incorporates both learning and more diverse response nonlinearities observed experimentally. This framework has the potential to also be used to explain how the brain learns to integrate input from different sensory modalities. Sparse coding, predictive coding and divisive normalization have each been found to be principles that underlie the function of neural circuits in many parts of the brain, supported by substantial experimental evidence. However, the connections between these related principles are still poorly understood. Sparse coding and predictive coding can be reconciled into a learning framework with predictive structure and sparse responses, termed as sparse/predictive coding. However, how sparse/predictive coding (a learning model) is connected with divisive normalization (not a learning model) is still not well investigated. In this paper, we show how sparse coding, predictive coding, and divisive normalization can be described within a unified framework, and illustrate this explicitly within the context of a two-layer neural learning model of sparse/predictive coding. This two-layer model is constructed in a way that implements sparse coding with a network structure that is constructed by implementing predictive coding. We demonstrate how a homeostatic function that regulates neural responses in the model can shape the nonlinearity of neural responses in a way that replicates different forms of divisive normalization. Simulations show that the model can learn simple cells in the primary visual cortex with the property of contrast saturation, which has previously been explained by divisive normalization. In summary, the study demonstrates that the three principles of sparse coding, predictive coding, and divisive normalization can be connected to provide a learning framework based on biophysical properties, such as Hebbian learning and homeostasis, and this framework incorporates both learning and more diverse response nonlinearities observed experimentally. This framework has the potential to also be used to explain how the brain learns to integrate input from different sensory modalities. Computational principles are often proposed to reveal the neural computations underlying brain functions. In the past three decades, sparse coding, predictive coding and divisive normalization have been three influential computational principles that have much success in different areas of neuroscience. Sparse coding offers insights into how the brain learns meaningful associations based on the hypothesis of brain being very efficient. With an emphasis on prediction, predictive coding provides an appealing hierarchical framework of only sending prediction errors to higher layers. Divisive normalization is a mathematical equation designed to account for the extensive nonlinearities in the brain. All these three computational principles along their variants have greatly improved our understanding of the underlying mechanism of the brain. Though connection between sparse and predictive coding has been studied previously, how sparse/predictive coding is connected to a seemingly different principle, divisive normalization, to provide a unified understanding of the brain is still unclear. In this paper, we show that sparse coding, predictive coding and divisive normalization can be connected from first principles. We propose a learning framework that is based on the hypothesis of efficiency, implemented with a predictive structure and displays response nonlinearities of divisive normalization. This framework can be potentially examined and used in a broader context such as multi-sensory integration. Sparse coding, predictive coding and divisive normalization have each been found to be principles that underlie the function of neural circuits in many parts of the brain, supported by substantial experimental evidence. However, the connections between these related principles are still poorly understood. Sparse coding and predictive coding can be reconciled into a learning framework with predictive structure and sparse responses, termed as sparse/predictive coding. However, how sparse/predictive coding (a learning model) is connected with divisive normalization (not a learning model) is still not well investigated. In this paper, we show how sparse coding, predictive coding, and divisive normalization can be described within a unified framework, and illustrate this explicitly within the context of a two-layer neural learning model of sparse/predictive coding. This two-layer model is constructed in a way that implements sparse coding with a network structure that is constructed by implementing predictive coding. We demonstrate how a homeostatic function that regulates neural responses in the model can shape the nonlinearity of neural responses in a way that replicates different forms of divisive normalization. Simulations show that the model can learn simple cells in the primary visual cortex with the property of contrast saturation, which has previously been explained by divisive normalization. In summary, the study demonstrates that the three principles of sparse coding, predictive coding, and divisive normalization can be connected to provide a learning framework based on biophysical properties, such as Hebbian learning and homeostasis, and this framework incorporates both learning and more diverse response nonlinearities observed experimentally. This framework has the potential to also be used to explain how the brain learns to integrate input from different sensory modalities.Sparse coding, predictive coding and divisive normalization have each been found to be principles that underlie the function of neural circuits in many parts of the brain, supported by substantial experimental evidence. However, the connections between these related principles are still poorly understood. Sparse coding and predictive coding can be reconciled into a learning framework with predictive structure and sparse responses, termed as sparse/predictive coding. However, how sparse/predictive coding (a learning model) is connected with divisive normalization (not a learning model) is still not well investigated. In this paper, we show how sparse coding, predictive coding, and divisive normalization can be described within a unified framework, and illustrate this explicitly within the context of a two-layer neural learning model of sparse/predictive coding. This two-layer model is constructed in a way that implements sparse coding with a network structure that is constructed by implementing predictive coding. We demonstrate how a homeostatic function that regulates neural responses in the model can shape the nonlinearity of neural responses in a way that replicates different forms of divisive normalization. Simulations show that the model can learn simple cells in the primary visual cortex with the property of contrast saturation, which has previously been explained by divisive normalization. In summary, the study demonstrates that the three principles of sparse coding, predictive coding, and divisive normalization can be connected to provide a learning framework based on biophysical properties, such as Hebbian learning and homeostasis, and this framework incorporates both learning and more diverse response nonlinearities observed experimentally. This framework has the potential to also be used to explain how the brain learns to integrate input from different sensory modalities. |
| Audience | Academic |
| Author | Lian, Yanbo Burkitt, Anthony N. |
| AuthorAffiliation | École Normale Supérieure, College de France, CNRS, FRANCE 1 Department of Biomedical Engineering, The University of Melbourne, Parkville, Victoria, Australia 2 Graeme Clark Institute for Biomedical Engineering, The University of Melbourne, Parkville, Victoria, Australia |
| AuthorAffiliation_xml | – name: École Normale Supérieure, College de France, CNRS, FRANCE – name: 1 Department of Biomedical Engineering, The University of Melbourne, Parkville, Victoria, Australia – name: 2 Graeme Clark Institute for Biomedical Engineering, The University of Melbourne, Parkville, Victoria, Australia |
| Author_xml | – sequence: 1 givenname: Yanbo orcidid: 0000-0002-8018-9848 surname: Lian fullname: Lian, Yanbo – sequence: 2 givenname: Anthony N. surname: Burkitt fullname: Burkitt, Anthony N. |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/40424462$$D View this record in MEDLINE/PubMed |
| BookMark | eNptkttu1DAQhiNURA_wBghW4gYudvEpdnJVVRWHlSohFbi2nPEkeJXYi51dAU-Pw6ZVF1W-sDX-5p8Z-z8vTnzwWBQvKVlRruj7TdhFb_rVFhq3ooRyUtZPijNalnypeFmdPDifFucpbQjJx1o-K04FEUwIyc6Ky1vszeh8t0hbExMujLeLbUTrYHR7XECw0-UYFtbtXZpCPsTB9O5PTgv-efG0NX3CF_N-UXz_-OHb9eflzZdP6-urmyWUqh6XlgpqLILisoGWCUResQorixzK0lRcKsqbqlRAQFhZ8ppWaNqaC0tU2dT8onh90N32Iel59qQ5U6SSipMqE-sDYYPZ6G10g4m_dTBO_wuE2GkTRwc9amYpgJE1yNaKRpKmVtwAcCokNkZA1rqcq-2aAS2gH6Ppj0SPb7z7obuw15RRyjiZ-n07K8Twc4dp1INLgH1vPIbd1DhlSuVvYxl98x_6-Hgz1Zk8gfNtyIVhEtVXleCScSZFplaPUHlZHBxkA7Uux48S3h0lZGbEX2Nndinp9dfbY_bVw1e5f447N2VAHACIIaWI7T1CiZ5MezeZnkyrZ9Pyv2kZ3w4 |
| Cites_doi | 10.1038/nature04485 10.1098/rstb.2016.0258 10.1046/j.0953-816x.2001.01885.x 10.1162/neco.2008.03-07-486 10.1017/S0952523800009640 10.1523/ENEURO.0519-21.2022 10.1523/JNEUROSCI.3490-16.2017 10.1038/nn.4243 10.1016/S0042-6989(97)00169-7 10.1016/S0925-2312(02)00782-8 10.1016/j.neuron.2010.04.009 10.1016/S0893-6080(05)80006-1 10.1038/4580 10.1113/jphysiol.1966.sp008003 10.1162/neco_a_01325 10.1016/j.neuron.2009.11.004 10.1162/neco.2010.05-08-795 10.1038/nrn2787 10.1113/jphysiol.1962.sp006837 10.1016/j.patrec.2023.07.017 10.1038/nrn3136 10.1016/j.neuron.2014.12.026 10.1371/journal.pcbi.1006908 10.1162/neco.1989.1.3.295 10.1038/nn.2815 10.1038/298266a0 10.1523/ENEURO.0557-20.2021 10.3390/vision3030047 10.1016/j.neuron.2012.10.038 10.1523/JNEUROSCI.2017-20.2021 10.1073/pnas.1711114115 10.1523/JNEUROSCI.1071-22.2023 10.1113/jphysiol.1968.sp008455 10.1371/journal.pcbi.1002250 10.1146/annurev-neuro-060909-153238 10.1016/S0896-6273(02)00819-X 10.1038/381607a0 10.3389/fncir.2019.00013 10.1523/ENEURO.0412-18.2019 10.1016/j.neuron.2017.06.043 10.1113/jphysiol.1959.sp006308 10.1016/j.tins.2004.10.007 |
| ContentType | Journal Article |
| Copyright | Copyright: © 2025 Lian, Burkitt. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. COPYRIGHT 2025 Public Library of Science 2025 Lian, Burkitt. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2025 Lian, Burkitt 2025 Lian, Burkitt 2025 Lian, Burkitt. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: Copyright: © 2025 Lian, Burkitt. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. – notice: COPYRIGHT 2025 Public Library of Science – notice: 2025 Lian, Burkitt. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2025 Lian, Burkitt 2025 Lian, Burkitt – notice: 2025 Lian, Burkitt. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM ISR 3V. 7QO 7QP 7TK 7TM 7X7 7XB 88E 8AL 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ HCIFZ JQ2 K7- K9. LK8 M0N M0S M1P M7P P5Z P62 P64 PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS Q9U RC3 7X8 5PM DOA |
| DOI | 10.1371/journal.pcbi.1013059 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Gale In Context: Science ProQuest Central (Corporate) Biotechnology Research Abstracts Calcium & Calcified Tissue Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Health & Medical Collection (ProQuest) ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Computing Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Database Suite (ProQuest) ProQuest Technology Collection Natural Science Collection ProQuest One ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database (ProQuest) ProQuest Health & Medical Complete (Alumni) ProQuest Biological Science Collection Computing Database ProQuest Health & Medical Collection Medical Database Biological Science Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic (New) ProQuest Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database Computer Science Database ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Nucleic Acids Abstracts SciTech Premium Collection ProQuest Central China ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) Advanced Technologies & Aerospace Collection ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Central ProQuest Health & Medical Research Collection Genetics Abstracts Biotechnology Research Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea ProQuest Computing ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | CrossRef Publicly Available Content Database MEDLINE MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ: Directory of Open Access Journal (DOAJ) url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Biology |
| DocumentTitleAlternate | Relating sparse and predictive coding to divisive normalization |
| EISSN | 1553-7358 |
| ExternalDocumentID | 3270867308 oai_doaj_org_article_2d1cca69c6fd4b60b973acc3146eba4c PMC12112309 A843623264 40424462 10_1371_journal_pcbi_1013059 |
| Genre | Journal Article |
| GeographicLocations | Australia |
| GeographicLocations_xml | – name: Australia |
| GrantInformation_xml | – grantid: AUSMURIB000001 associated with ONR MURI grant N00014-19-1-2571 |
| GroupedDBID | --- 123 29O 2WC 53G 5VS 7X7 88E 8FE 8FG 8FH 8FI 8FJ AAFWJ AAKPC AAUCC AAWOE AAYXX ABDBF ABUWG ACCTH ACGFO ACIHN ACIWK ACPRK ACUHS ADBBV AEAQA AENEX AEUYN AFFHD AFKRA AFPKN AFRAH AHMBA ALMA_UNASSIGNED_HOLDINGS AOIJS ARAPS AZQEC B0M BAIFH BAWUL BBNVY BBTPI BCNDV BENPR BGLVJ BHPHI BPHCQ BVXVI BWKFM CCPQU CITATION CS3 DIK DWQXO E3Z EAP EAS EBD EBS EJD EMK EMOBN ESX F5P FPL FYUFA GNUQQ GROUPED_DOAJ GX1 HCIFZ HMCUK HYE IAO IGS INH INR ISN ISR ITC J9A K6V K7- KQ8 LK8 M1P M48 M7P O5R O5S OK1 OVT P2P P62 PHGZM PHGZT PIMPY PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO PV9 RNS RPM RZL SV3 TR2 TUS UKHRP WOW XSB ~8M ADRAZ ALIPV C1A CGR CUY CVF ECM EIF H13 IPNFZ NPM PMFND RIG WOQ 3V. 7QO 7QP 7TK 7TM 7XB 8AL 8FD 8FK FR3 JQ2 K9. M0N P64 PKEHL PQEST PQUKI PRINS Q9U RC3 7X8 PUEGO 5PM ADCSY AGGLG |
| ID | FETCH-LOGICAL-c579t-d141adec736bcf24ee3828e8de3c55a836713b857c0c4d653918eaf934d075b93 |
| IEDL.DBID | M7P |
| ISICitedReferencesCount | 0 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001497415400004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1553-7358 1553-734X |
| IngestDate | Wed Dec 10 15:00:26 EST 2025 Fri Oct 03 12:40:14 EDT 2025 Tue Nov 04 02:02:50 EST 2025 Fri Sep 05 15:59:05 EDT 2025 Wed Nov 12 06:20:43 EST 2025 Sat Nov 29 13:48:25 EST 2025 Sat Nov 29 10:31:53 EST 2025 Thu Nov 13 15:59:55 EST 2025 Sun Jun 01 01:35:38 EDT 2025 Sat Nov 29 07:54:47 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 5 |
| Language | English |
| License | Copyright: © 2025 Lian, Burkitt. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Creative Commons Attribution License |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c579t-d141adec736bcf24ee3828e8de3c55a836713b857c0c4d653918eaf934d075b93 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 The authors have declared that no competing interests exist. |
| ORCID | 0000-0002-8018-9848 |
| OpenAccessLink | https://www.proquest.com/docview/3270867308?pq-origsite=%requestingapplication% |
| PMID | 40424462 |
| PQID | 3270867308 |
| PQPubID | 1436340 |
| PageCount | e1013059 |
| ParticipantIDs | plos_journals_3270867308 doaj_primary_oai_doaj_org_article_2d1cca69c6fd4b60b973acc3146eba4c pubmedcentral_primary_oai_pubmedcentral_nih_gov_12112309 proquest_miscellaneous_3212771012 proquest_journals_3270867308 gale_infotracmisc_A843623264 gale_infotracacademiconefile_A843623264 gale_incontextgauss_ISR_A843623264 pubmed_primary_40424462 crossref_primary_10_1371_journal_pcbi_1013059 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-05-01 |
| PublicationDateYYYYMMDD | 2025-05-01 |
| PublicationDate_xml | – month: 05 year: 2025 text: 2025-05-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States – name: San Francisco – name: San Francisco, CA USA |
| PublicationTitle | PLoS computational biology |
| PublicationTitleAlternate | PLoS Comput Biol |
| PublicationYear | 2025 |
| Publisher | Public Library of Science Public Library of Science (PLoS) |
| Publisher_xml | – name: Public Library of Science – name: Public Library of Science (PLoS) |
| References | BA Olshausen (pcbi.1013059.ref006) 1997; 37 M Chalk (pcbi.1013059.ref041) 2018; 115 M Carandini (pcbi.1013059.ref014) 2011; 13 K Friston (pcbi.1013059.ref023) 2010; 11 PO Hoyer (pcbi.1013059.ref037) 2003 M Beyeler (pcbi.1013059.ref021) 2019; 15 DB Rubin (pcbi.1013059.ref040) 2015; 85 SR Olsen (pcbi.1013059.ref009) 2010; 66 BA Olshausen (pcbi.1013059.ref005) 1996; 381 LU Perrinet (pcbi.1013059.ref046) 2019; 3 T Ohshiro (pcbi.1013059.ref010) 2011; 14 DH Hubel (pcbi.1013059.ref001) 1959; 148 AN Burkitt (pcbi.1013059.ref048) 2021; 41 J Zylberberg (pcbi.1013059.ref031) 2011; 7 GG Turrigiano (pcbi.1013059.ref030) 2017; 372 DC Knill (pcbi.1013059.ref022) 2004; 27 DH Hubel (pcbi.1013059.ref003) 1968; 195 DJ Heeger (pcbi.1013059.ref004) 1992; 9 G Turrigiano (pcbi.1013059.ref029) 2011; 34 T Ohshiro (pcbi.1013059.ref011) 2017; 95 Y Lian (pcbi.1013059.ref018) 2021; 8 Y Lian (pcbi.1013059.ref019) 2022; 9 DH Hubel (pcbi.1013059.ref002) 1962; 160 TCB Freeman (pcbi.1013059.ref035) 2002; 35 (pcbi.1013059.ref008); 2 CSN Brito (pcbi.1013059.ref032) 2016; 12 L Busse (pcbi.1013059.ref039) 2009; 64 pcbi.1013059.ref007 M Zhu (pcbi.1013059.ref026) 2013; 9 Y Lian (pcbi.1013059.ref020) 2023; 43 LU Perrinet (pcbi.1013059.ref045) 2010; 22 I Ohzawa (pcbi.1013059.ref034) 1982; 298 K Naka (pcbi.1013059.ref033) 1966; 185 W Einhäuser (pcbi.1013059.ref042) 2002; 15 H Hogendoorn (pcbi.1013059.ref047) 2019; 6 pcbi.1013059.ref012 V Boutin (pcbi.1013059.ref025) 2020; 32 P Hernández-Cámara (pcbi.1013059.ref013) 2023; 173 H Barlow (pcbi.1013059.ref016) 1989; 1 Y Lian (pcbi.1013059.ref027) 2019; 13 AM Bastos (pcbi.1013059.ref024) 2012; 76 V Papyan (pcbi.1013059.ref036) 2017; 18 HB Barlow (pcbi.1013059.ref015) 1961; 1 C Rozell (pcbi.1013059.ref028) 2008; 20 S Denève (pcbi.1013059.ref049) 2016; 19 EC Smith (pcbi.1013059.ref017) 2006; 439 R Coultrip (pcbi.1013059.ref044) 1992; 5 C Rennó-Costa (pcbi.1013059.ref043) 2017; 37 L Calatroni (pcbi.1013059.ref038) 2023; 19 |
| References_xml | – volume: 439 start-page: 978 issue: 7079 year: 2006 ident: pcbi.1013059.ref017 article-title: Efficient auditory coding publication-title: Nature doi: 10.1038/nature04485 – volume: 372 start-page: 20160258 issue: 1715 year: 2017 ident: pcbi.1013059.ref030 article-title: The dialectic of Hebb and homeostasis publication-title: Philos Trans R Soc Lond B Biol Sci doi: 10.1098/rstb.2016.0258 – volume: 15 start-page: 475 issue: 3 year: 2002 ident: pcbi.1013059.ref042 article-title: Learning the invariance properties of complex cells from their responses to natural stimuli publication-title: Eur J Neurosci doi: 10.1046/j.0953-816x.2001.01885.x – volume: 20 start-page: 2526 year: 2008 ident: pcbi.1013059.ref028 article-title: Sparse coding via thresholding and local competition in neural circuits publication-title: Neural Comput doi: 10.1162/neco.2008.03-07-486 – volume: 9 start-page: 181 issue: 2 year: 1992 ident: pcbi.1013059.ref004 article-title: Normalization of cell responses in cat striate cortex publication-title: Vis Neurosci doi: 10.1017/S0952523800009640 – volume: 9 issue: 4 year: 2022 ident: pcbi.1013059.ref019 article-title: Learning spatiotemporal properties of hippocampal place cells publication-title: eNeuro doi: 10.1523/ENEURO.0519-21.2022 – volume: 37 start-page: 8062 year: 2017 ident: pcbi.1013059.ref043 article-title: Place and grid cells in a loop: implications for memory function and spatial coding publication-title: J Neurosci doi: 10.1523/JNEUROSCI.3490-16.2017 – volume: 19 start-page: 375 issue: 3 year: 2016 ident: pcbi.1013059.ref049 article-title: Efficient codes and balanced networks publication-title: Nat Neurosci doi: 10.1038/nn.4243 – volume: 37 start-page: 3311 year: 1997 ident: pcbi.1013059.ref006 article-title: Sparse coding with an overcomplete basis set: a strategy employed by V1? publication-title: Vis Res doi: 10.1016/S0042-6989(97)00169-7 – start-page: 547 year: 2003 ident: pcbi.1013059.ref037 article-title: Modeling receptive fields with non-negative sparse coding publication-title: Neurocomputing doi: 10.1016/S0925-2312(02)00782-8 – volume: 66 start-page: 287 issue: 2 year: 2010 ident: pcbi.1013059.ref009 article-title: Divisive normalization in olfactory population codes publication-title: Neuron doi: 10.1016/j.neuron.2010.04.009 – volume: 5 start-page: 47 year: 1992 ident: pcbi.1013059.ref044 article-title: A cortical model of winner-take-all competition via lateral inhibition publication-title: Neural Networks doi: 10.1016/S0893-6080(05)80006-1 – ident: pcbi.1013059.ref007 doi: 10.1038/4580 – volume: 9 issue: 8 year: 2013 ident: pcbi.1013059.ref026 article-title: Visual nonclassical receptive field effects emerge from sparse coding in a dynamical system publication-title: PLoS Comput Biol – volume: 185 start-page: 587 year: 1966 ident: pcbi.1013059.ref033 article-title: S-potentials from luminosity units in the retina of fish (cyprinidae) publication-title: J Physiol doi: 10.1113/jphysiol.1966.sp008003 – ident: pcbi.1013059.ref012 – volume: 32 start-page: 2279 issue: 11 year: 2020 ident: pcbi.1013059.ref025 article-title: Effect of top-down connections in hierarchical sparse coding publication-title: Neural Comput doi: 10.1162/neco_a_01325 – volume: 12 issue: 9 year: 2016 ident: pcbi.1013059.ref032 article-title: Nonlinear hebbian learning as a unifying principle in receptive field formation publication-title: PLoS Comput Biol – volume: 1 year: 1961 ident: pcbi.1013059.ref015 article-title: Possible principles underlying the transformation of sensory messages publication-title: Sens Commun – volume: 64 start-page: 931 issue: 6 year: 2009 ident: pcbi.1013059.ref039 article-title: Representation of concurrent stimuli by population activity in visual cortex publication-title: Neuron doi: 10.1016/j.neuron.2009.11.004 – volume: 18 start-page: 2887 year: 2017 ident: pcbi.1013059.ref036 article-title: Convolutional neural networks analyzed via convolutional sparse coding publication-title: J Mach Learn Res – volume: 2 start-page: 79 ident: pcbi.1013059.ref008 publication-title: Neurosci – volume: 22 start-page: 1812 issue: 7 year: 2010 ident: pcbi.1013059.ref045 article-title: Role of homeostasis in learning sparse representations publication-title: Neural Comput doi: 10.1162/neco.2010.05-08-795 – volume: 11 start-page: 127 issue: 2 year: 2010 ident: pcbi.1013059.ref023 article-title: The free-energy principle: a unified brain theory? publication-title: Nat Rev Neurosci doi: 10.1038/nrn2787 – volume: 160 start-page: 106 issue: 1 year: 1962 ident: pcbi.1013059.ref002 article-title: Receptive fields, binocular interaction and functional architecture in the cat’s visual cortex publication-title: J Physiol doi: 10.1113/jphysiol.1962.sp006837 – volume: 173 start-page: 64 year: 2023 ident: pcbi.1013059.ref013 article-title: Neural networks with divisive normalization for image segmentation publication-title: Pattern Recognit Lett doi: 10.1016/j.patrec.2023.07.017 – volume: 13 start-page: 51 issue: 1 year: 2011 ident: pcbi.1013059.ref014 article-title: Normalization as a canonical neural computation publication-title: Nat Rev Neurosci doi: 10.1038/nrn3136 – volume: 85 start-page: 402 issue: 2 year: 2015 ident: pcbi.1013059.ref040 article-title: The stabilized supralinear network: a unifying circuit motif underlying multi-input integration in sensory cortex publication-title: Neuron doi: 10.1016/j.neuron.2014.12.026 – volume: 15 issue: 6 year: 2019 ident: pcbi.1013059.ref021 article-title: Neural correlates of sparse coding and dimensionality reduction publication-title: PLoS Comput Biol doi: 10.1371/journal.pcbi.1006908 – volume: 1 start-page: 295 year: 1989 ident: pcbi.1013059.ref016 article-title: Unsupervised learning publication-title: Neural Comput doi: 10.1162/neco.1989.1.3.295 – volume: 14 start-page: 775 issue: 6 year: 2011 ident: pcbi.1013059.ref010 article-title: A normalization model of multisensory integration publication-title: Nat Neurosci doi: 10.1038/nn.2815 – volume: 298 start-page: 266 issue: 5871 year: 1982 ident: pcbi.1013059.ref034 article-title: Contrast gain control in the cat visual cortex publication-title: Nature doi: 10.1038/298266a0 – volume: 8 issue: 4 year: 2021 ident: pcbi.1013059.ref018 article-title: Learning an efficient hippocampal place map from entorhinal inputs using non-negative sparse coding publication-title: eNeuro doi: 10.1523/ENEURO.0557-20.2021 – volume: 3 start-page: 47 issue: 3 year: 2019 ident: pcbi.1013059.ref046 article-title: An adaptive homeostatic algorithm for the unsupervised learning of visual features publication-title: Vision (Basel) doi: 10.3390/vision3030047 – volume: 76 start-page: 695 issue: 4 year: 2012 ident: pcbi.1013059.ref024 article-title: Canonical microcircuits for predictive coding publication-title: Neuron doi: 10.1016/j.neuron.2012.10.038 – volume: 41 start-page: 4428 issue: 20 year: 2021 ident: pcbi.1013059.ref048 article-title: Predictive visual motion extrapolation emerges spontaneously and without supervision at each layer of a hierarchical neural network with spike-timing-dependent plasticity publication-title: J Neurosci doi: 10.1523/JNEUROSCI.2017-20.2021 – volume: 115 start-page: 186 issue: 1 year: 2018 ident: pcbi.1013059.ref041 article-title: Toward a unified theory of efficient, predictive, and sparse coding publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.1711114115 – volume: 43 start-page: 5180 issue: 28 year: 2023 ident: pcbi.1013059.ref020 article-title: Learning the vector coding of egocentric boundary cells from visual data publication-title: J Neurosci doi: 10.1523/JNEUROSCI.1071-22.2023 – volume: 195 start-page: 215 issue: 1 year: 1968 ident: pcbi.1013059.ref003 article-title: Receptive fields and functional architecture of monkey striate cortex publication-title: J Physiol doi: 10.1113/jphysiol.1968.sp008455 – volume: 7 issue: 10 year: 2011 ident: pcbi.1013059.ref031 article-title: A sparse coding model with synaptically local plasticity and spiking neurons can account for the diverse shapes of V1 simple cell receptive fields publication-title: PLoS Comput Biol doi: 10.1371/journal.pcbi.1002250 – volume: 34 start-page: 89 year: 2011 ident: pcbi.1013059.ref029 article-title: Too many cooks? Intrinsic and synaptic homeostatic mechanisms in cortical circuit refinement publication-title: Annu Rev Neurosci doi: 10.1146/annurev-neuro-060909-153238 – volume: 35 start-page: 759 issue: 4 year: 2002 ident: pcbi.1013059.ref035 article-title: Suppression without inhibition in visual cortex publication-title: Neuron doi: 10.1016/S0896-6273(02)00819-X – volume: 381 start-page: 607 issue: 6583 year: 1996 ident: pcbi.1013059.ref005 article-title: Emergence of simple-cell receptive field properties by learning a sparse code for natural images publication-title: Nature doi: 10.1038/381607a0 – volume: 13 start-page: 13 year: 2019 ident: pcbi.1013059.ref027 article-title: Toward a biologically plausible model of LGN-V1 pathways based on efficient coding publication-title: Front Neural Circuits doi: 10.3389/fncir.2019.00013 – volume: 6 issue: 2 year: 2019 ident: pcbi.1013059.ref047 article-title: Predictive coding with neural transmission delays: a real-time temporal alignment hypothesis publication-title: eNeuro doi: 10.1523/ENEURO.0412-18.2019 – volume: 95 issue: 2 year: 2017 ident: pcbi.1013059.ref011 article-title: A neural signature of divisive normalization at the level of multisensory integration in primate cortex publication-title: Neuron doi: 10.1016/j.neuron.2017.06.043 – volume: 148 start-page: 574 issue: 3 year: 1959 ident: pcbi.1013059.ref001 article-title: Receptive fields of single neurones in the cat’s striate cortex publication-title: J Physiol doi: 10.1113/jphysiol.1959.sp006308 – volume: 27 start-page: 712 issue: 12 year: 2004 ident: pcbi.1013059.ref022 article-title: The Bayesian brain: the role of uncertainty in neural coding and computation publication-title: Trends Neurosci doi: 10.1016/j.tins.2004.10.007 – volume: 19 year: 2023 ident: pcbi.1013059.ref038 article-title: Beyond l1 sparse coding in V1 publication-title: PLoS Comput Biol |
| SSID | ssj0035896 |
| Score | 2.4597259 |
| Snippet | Sparse coding, predictive coding and divisive normalization have each been found to be principles that underlie the function of neural circuits in many parts... |
| SourceID | plos doaj pubmedcentral proquest gale pubmed crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database |
| StartPage | e1013059 |
| SubjectTerms | Analysis Animals Biology and Life Sciences Brain Brain - physiology Coding Computational Biology Computer and Information Sciences Computer Simulation Feedback Homeostasis Humans Learning Learning - physiology Mathematical models Medicine and Health Sciences Models, Neurological Nerve Net - physiology Neural circuitry Neural networks Neurological research Neurons - physiology Nonlinear systems Nonlinearity Primary Visual Cortex - physiology Social Sciences Somatosensory cortex Sparsity Visual cortex Visual Cortex - physiology Visual pathways Visual perception |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3di9QwEA-yKPgifl-9U6IIPtXbNGmTPMkpHgpyiB-wbyHNx7lwpMt2V_C_v5m0u2zlwBffSmfSkplkPsjkN4S8juCSWGVDGVobS8FEKFvwcyWD2J7pqJxvM4jrF3lxoRYL_fWg1RfWhA3wwIPgTivP4CeNdk30om3mrZbcOsdhh8PnhUPrO5d6l0wNNpjXKnfmwqY4peRiMV6a45Kdjjp6u3LtEnNXnnFKD5xSxu7fW-jZ6qrrbwo__66iPHBL5_fJvTGepGfDPB6QWyE9JHeGDpN_HpF3Q7FbuqRgOdZ9oDZ5ulrj6QzaOeo69F1001G8l4Wl7DRhFHs1Xs98TH6ef_zx4VM59kwoXS31pvRMMOuDk7xpXaxECBxyqqB84K6ureINZKWtqqWbO-ERl5apYKPmwkPw0Gr-hMxSl8IRobDzHeRTMsAYEa2yIja2goeGMW6jK0i5E5pZDdAYJp-PSUgphtkbFLIZhVyQ9yjZPS8CW-cXoG4zqtv8S90FeYV6MQhdkbA25tJu-958_v7NnCkB3hjCUVGQNyNT7EA1zo5XDWBeiHY14TyZcMLechPyEap_N53e8EpCDghWUcHI3ZK4mfxyT8aPYilbCt0WeVglJcKqFeTpsIL2IhF4EC0aoKjJ2prIbEpJy18ZFByh-iCd1M_-h5SPyd0K-xznws4TMtust-E5ue1-b5b9-kXeatdV1y5a priority: 102 providerName: Directory of Open Access Journals – databaseName: Public Library of Science (PLoS) Journals Open Access dbid: FPL link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3daxQxEA96Kvjid9vTKqsIPq02m2w-nqQtHgqlFD-gbyHJJvWgZI_bO8H_3pnd3OmW9sG3ZWeym0wm80EmvxDyNoJLopUNZXA2lpzyUDrwcyWF2J7qqHzjehDXE3l6qs7P9dnfRPHKDj6T9EOW6fuFd3PMNUFB9W1yp2JCYLI1OzvZWF5WKy3y8bibWo7cT4_Sv7XFk8Vl210XaF6tl_zHAc0e_m_XH5EHOdQsDgfdeExuhfSE3Bsun_z9lHwc6uDSRQFGZdmFwqamWCxx4wZNYOFbdGvFqi3wyBZWuRcJA9zLfHLzGfkx-_T9-HOZr1MofS31qmwop7YJXjLhfKx4CAzSraCawHxdW8UEJKxO1dIfeN4gZC1VwUbNeANxhdNsh0xSm8IeKcAoeEi1ZIA2PFpleRS2ggdBKbPRT0m5kbJZDKgZpt86k5BtDKM3KBSThTIlRzgVW17EvO5fgDRNXkKmaiiom9BexIY7ceC0ZNZ7BrYeFI3DT9_gRBpEtUhYNnNh111nvnz7ag4VB0cNkSqfkneZKbYwl97mUwgwLgTCGnHujzhh2fkReQ_1ZTOczrBKQnoIBlNBy40OXU9-vSXjR7HKLYV2jTy0khIR16Zkd1C5rUg47lFzARQ1UsaRzMaUNP_Z44Ujih9kmvr5zV1-Qe5XeLFxX8m5Tyar5Tq8JHf9r9W8W77qV9kf_3EnDA priority: 102 providerName: Public Library of Science |
| Title | Relating sparse and predictive coding to divisive normalization |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/40424462 https://www.proquest.com/docview/3270867308 https://www.proquest.com/docview/3212771012 https://pubmed.ncbi.nlm.nih.gov/PMC12112309 https://doaj.org/article/2d1cca69c6fd4b60b973acc3146eba4c http://dx.doi.org/10.1371/journal.pcbi.1013059 |
| Volume | 21 |
| WOSCitedRecordID | wos001497415400004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ: Directory of Open Access Journal (DOAJ) customDbUrl: eissn: 1553-7358 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0035896 issn: 1553-7358 databaseCode: DOA dateStart: 20050101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVPQU databaseName: Advanced Technologies & Aerospace Database customDbUrl: eissn: 1553-7358 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0035896 issn: 1553-7358 databaseCode: P5Z dateStart: 20050601 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: Biological Science Database customDbUrl: eissn: 1553-7358 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0035896 issn: 1553-7358 databaseCode: M7P dateStart: 20050601 isFulltext: true titleUrlDefault: http://search.proquest.com/biologicalscijournals providerName: ProQuest – providerCode: PRVPQU databaseName: Computer Science Database (ProQuest) customDbUrl: eissn: 1553-7358 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0035896 issn: 1553-7358 databaseCode: K7- dateStart: 20050601 isFulltext: true titleUrlDefault: http://search.proquest.com/compscijour providerName: ProQuest – providerCode: PRVPQU databaseName: Health & Medical Collection (ProQuest) customDbUrl: eissn: 1553-7358 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0035896 issn: 1553-7358 databaseCode: 7X7 dateStart: 20050601 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central Database Suite (ProQuest) customDbUrl: eissn: 1553-7358 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0035896 issn: 1553-7358 databaseCode: BENPR dateStart: 20050601 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 1553-7358 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0035896 issn: 1553-7358 databaseCode: PIMPY dateStart: 20050601 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest – providerCode: PRVATS databaseName: Public Library of Science (PLoS) Journals Open Access customDbUrl: eissn: 1553-7358 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0035896 issn: 1553-7358 databaseCode: FPL dateStart: 20050101 isFulltext: true titleUrlDefault: http://www.plos.org/publications/ providerName: Public Library of Science |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwELdYBxIvfI8VRhUQEk9mc-zEztO0oVVMjCoaIBVeIsdxSqUpCUmLxH_PneOWBU288GJV9aWpfef7sM-_I-R1CSaJhdpSm-uSCiYszcHOUQa-PUtKZYrcgbheyNlMzedJ6jfcOp9WudGJTlEXtcE98kMeSvC-QR7VcfODYtUoPF31JTR2yC6iJIQudS_daGIeKVefC0vjUMnF3F-d45Idek69bUy-xAiWO7TSa6bJIfhv9fSouaq7m5zQv3Mprxmn6f3_HdYDcs-7pcFJL0cPyS1bPSJ3-kKVvx6T4z5nrloEoIDazga6KoKmxUMeVJeBqdEEBqs6wOtdmBEfVOgMX_lbnk_Il-nZ53fvqS-9QE0kkxUtmGC6sEbyODdlKKzlEJpZVVhuokgrHkNwm6tImiMjCoS3ZcrqMuGiAB8kT_geGVV1ZfdJAArEQFgmLTwjSq20KGMdwoeYMa5LMyZ0M-tZ0yNsZO6YTUJk0o8-Qy5lnktjcoqs2dIiPrb7om4XmV9uWVgwEM04MXFZiDw-yhPJtTEc7AIIpYCXvkLGZoiAUWGKzUKvuy47_3SZnSgBRh28WjEmbzxRWQNvjfY3FmBcCJo1oDwYUMISNYPufZSfzXC67A_X4cmNXNzc_XLbjT-KGXGVrddIw0IpEZ1tTJ72IridEoHn2SKGHjUQzsGcDXuq5XeHLY6IfxCVJs_-_b-ek7shFkJ2mZ8HZLRq1_YFuW1-rpZdOyE7ci5dqyZk9_Rsll5O3GYHtNP0AtoPkk7cWoU2jb4BVXr-Mf36G3j2Q9U |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1bb9MwFLamAoIX7rDCgIBAPJnNsRs7D2gal2lVS4VgSH0zju2USlMSkha0P8Vv5JxcyoIm3vbAW1WftLHznVt8_B1CnqfgklhoPPWJSalgwtME_BxlENuzOFXWJTWJ61TOZmo-jz9ukV_dWRgsq-xsYm2oXW7xHfkuDyVE34BHtV98p9g1CndXuxYaDSwm_vQnpGzV6_E7eL4vwvDw_fHbI9p2FaB2JOMVdUww47yVPEpsGgrvOWQdXjnP7WhkFI8gb0vUSNo9KxwytzLlTRpz4cC9Jki-BCb_kuBKol5NJO0sPx-puh8YtuKhkot5e1SPS7bbIuNVYZMlZsy8Zkc94wrrjgEbvzAoTvLqvKD379rNM87w8Mb_tow3yfU27A4OGj25RbZ8dptcaRpxnt4h-01NYLYIwMCWlQ9M5oKixE0sdAeBzdHFB6s8wONrWPEfZBjsn7SnWO-SLxdy9_fIIMszv00CMJAW0k7p4RqRGmVEGpkQPkSMcZPaIaHdU9ZFwyCi621ECZlXM3uNqNAtKobkDUJhI4v83_UXebnQrTnRoWOgelFso9SJJNpLYsmNtRz8HiidgD99hkDSyPCRYQnRwqyrSo8_f9IHSkDQAlG7GJKXrVCaA5asaU9kwLyQFKwnudOTBBNke8PbiNduOpX-gzK4ssPh-cNPN8P4o1jxl_l8jTIslBLZ54bkfgP5zZII3K8XEYyonjL01qw_ki2_1dzpyGgIWXf84N_39YRcPTr-MNXT8WzykFwLselzXeW6Qwarcu0fkcv2x2pZlY9rCxCQrxetK78B5HeXmg |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1bb9MwFLamchEv484KAwIC8RQ6x07sPKBpMCqqTVXFRap4MY5jd5WmJCQtaH-NX8c5uZQFTbztgbeqdtrY-c4tPuc7hLxwYJJooK1vE-18Trn1E7BzPgXfnsZOmjSpSVyPxXQq5_N4tkV-dbUwmFbZ6cRaUae5wXfkIxYI8L4Bj3Lk2rSI2eF4v_juYwcpPGnt2mk0EDmyZz8hfKveTA7hWb8MgvH7z-8--G2HAd-EIl75KeVUp9YIFiXGBdxaBhGIlallJgy1ZBHEcIkMhdkzPEUWVyqtdjHjKZjaBImYQP1fERBjYjrhLPzaWQEWyro3GLbl8QXj87Zsjwk6alHyujDJEqNnVjOlnjOLdfeAjY0YFKd5dZED_Hce5znDOL75P2_pLbLduuPeQSM_t8mWze6Qa02DzrO7ZL_JFcwWHijesrKezlKvKPFwC82EZ3I0_d4q97CsDSsBvAyDgNO2uvUe-XIpd3-fDLI8szvEA8VpIBwVFq7hTkvNXaQD-BBRyrQzQ-J3T1wVDbOIqo8XBURkzeoVIkS1CBmStwiLzVzkBa-_yMuFatWMClIKIhnFJnIpT6K9JBZMG8PAHoIwcvjT5wgqhcwfGT7whV5XlZp8-qgOJAdnBrx5PiSv2kkuB1wZ3VZqwLqQLKw3c7c3E1ST6Q3vIHa75VTqD-Lgyg6TFw8_2wzjj2ImYGbzNc6hgRDISjckDxr4b7aE4zk-j2BE9gSjt2f9kWx5UnOqI9MhROPxw3_f11NyHUREHU-mR4_IjQB7QdfJr7tksCrX9jG5an6sllX5pFYGHvl22aLyG-XuoL4 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Relating+sparse+and+predictive+coding+to+divisive+normalization&rft.jtitle=PLoS+computational+biology&rft.au=Lian%2C+Yanbo&rft.au=Burkitt%2C+Anthony+N&rft.date=2025-05-01&rft.eissn=1553-7358&rft.volume=21&rft.issue=5&rft.spage=e1013059&rft_id=info:doi/10.1371%2Fjournal.pcbi.1013059&rft_id=info%3Apmid%2F40424462&rft.externalDocID=40424462 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1553-7358&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1553-7358&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1553-7358&client=summon |