Cytometry masked autoencoder: An accurate and interpretable automated immunophenotyper
Single-cell cytometry data are crucial for understanding the role of the immune system in diseases and responses to treatment. However, traditional methods for annotating cytometry data face challenges in scalability, robustness, and accuracy. We propose a cytometry masked autoencoder (cyMAE), which...
Saved in:
| Published in: | Cell reports. Medicine Vol. 5; no. 11; p. 101808 |
|---|---|
| Main Authors: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
United States
Elsevier Inc
19.11.2024
Elsevier |
| Subjects: | |
| ISSN: | 2666-3791, 2666-3791 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Single-cell cytometry data are crucial for understanding the role of the immune system in diseases and responses to treatment. However, traditional methods for annotating cytometry data face challenges in scalability, robustness, and accuracy. We propose a cytometry masked autoencoder (cyMAE), which automates immunophenotyping tasks including cell type annotation. The model upholds user-defined cell type definitions, facilitating interpretability and cross-study comparisons. The training of cyMAE has a self-supervised phase, which leverages large amounts of unlabeled data, followed by fine-tuning on specialized tasks using smaller amounts of annotated data. The cost of training a new model is amortized over repeated inferences on new datasets using the same panel. Through validation across multiple studies using the same panel, we demonstrate that cyMAE delivers accurate and interpretable cellular immunophenotyping and improves the prediction of subject-level metadata. This proof of concept marks a significant step forward for large-scale immunology studies.
[Display omitted]
•Masked cytometry modeling learns relationships among proteins without cell identity•We develop cytometry masked autoencoder (cyMAE) to automate immunophenotyping•cyMAE improves both cell-level and subject-level immune profiling
Kim et al. introduces cyMAE, a cytometry masked autoencoder that automates immune cell profiling from single-cell cytometry data. By leveraging unlabeled data for pre-training and fine-tuning on specific tasks, the model improves immune profiling accuracy and enhances prediction of subject-level clinical data, advancing large-scale immune studies. |
|---|---|
| AbstractList | Single-cell cytometry data are crucial for understanding the role of the immune system in diseases and responses to treatment. However, traditional methods for annotating cytometry data face challenges in scalability, robustness, and accuracy. We propose a cytometry masked autoencoder (cyMAE), which automates immunophenotyping tasks including cell type annotation. The model upholds user-defined cell type definitions, facilitating interpretability and cross-study comparisons. The training of cyMAE has a self-supervised phase, which leverages large amounts of unlabeled data, followed by fine-tuning on specialized tasks using smaller amounts of annotated data. The cost of training a new model is amortized over repeated inferences on new datasets using the same panel. Through validation across multiple studies using the same panel, we demonstrate that cyMAE delivers accurate and interpretable cellular immunophenotyping and improves the prediction of subject-level metadata. This proof of concept marks a significant step forward for large-scale immunology studies. •Masked cytometry modeling learns relationships among proteins without cell identity•We develop cytometry masked autoencoder (cyMAE) to automate immunophenotyping•cyMAE improves both cell-level and subject-level immune profiling Kim et al. introduces cyMAE, a cytometry masked autoencoder that automates immune cell profiling from single-cell cytometry data. By leveraging unlabeled data for pre-training and fine-tuning on specific tasks, the model improves immune profiling accuracy and enhances prediction of subject-level clinical data, advancing large-scale immune studies. Single-cell cytometry data are crucial for understanding the role of the immune system in diseases and responses to treatment. However, traditional methods for annotating cytometry data face challenges in scalability, robustness, and accuracy. We propose a cytometry masked autoencoder (cyMAE), which automates immunophenotyping tasks including cell type annotation. The model upholds user-defined cell type definitions, facilitating interpretability and cross-study comparisons. The training of cyMAE has a self-supervised phase, which leverages large amounts of unlabeled data, followed by fine-tuning on specialized tasks using smaller amounts of annotated data. The cost of training a new model is amortized over repeated inferences on new datasets using the same panel. Through validation across multiple studies using the same panel, we demonstrate that cyMAE delivers accurate and interpretable cellular immunophenotyping and improves the prediction of subject-level metadata. This proof of concept marks a significant step forward for large-scale immunology studies. Single-cell cytometry data are crucial for understanding the role of the immune system in diseases and responses to treatment. However, traditional methods for annotating cytometry data face challenges in scalability, robustness, and accuracy. We propose a cytometry masked autoencoder (cyMAE), which automates immunophenotyping tasks including cell type annotation. The model upholds user-defined cell type definitions, facilitating interpretability and cross-study comparisons. The training of cyMAE has a self-supervised phase, which leverages large amounts of unlabeled data, followed by fine-tuning on specialized tasks using smaller amounts of annotated data. The cost of training a new model is amortized over repeated inferences on new datasets using the same panel. Through validation across multiple studies using the same panel, we demonstrate that cyMAE delivers accurate and interpretable cellular immunophenotyping and improves the prediction of subject-level metadata. This proof of concept marks a significant step forward for large-scale immunology studies.Single-cell cytometry data are crucial for understanding the role of the immune system in diseases and responses to treatment. However, traditional methods for annotating cytometry data face challenges in scalability, robustness, and accuracy. We propose a cytometry masked autoencoder (cyMAE), which automates immunophenotyping tasks including cell type annotation. The model upholds user-defined cell type definitions, facilitating interpretability and cross-study comparisons. The training of cyMAE has a self-supervised phase, which leverages large amounts of unlabeled data, followed by fine-tuning on specialized tasks using smaller amounts of annotated data. The cost of training a new model is amortized over repeated inferences on new datasets using the same panel. Through validation across multiple studies using the same panel, we demonstrate that cyMAE delivers accurate and interpretable cellular immunophenotyping and improves the prediction of subject-level metadata. This proof of concept marks a significant step forward for large-scale immunology studies. SummarySingle-cell cytometry data are crucial for understanding the role of the immune system in diseases and responses to treatment. However, traditional methods for annotating cytometry data face challenges in scalability, robustness, and accuracy. We propose a cytometry masked autoencoder (cyMAE), which automates immunophenotyping tasks including cell type annotation. The model upholds user-defined cell type definitions, facilitating interpretability and cross-study comparisons. The training of cyMAE has a self-supervised phase, which leverages large amounts of unlabeled data, followed by fine-tuning on specialized tasks using smaller amounts of annotated data. The cost of training a new model is amortized over repeated inferences on new datasets using the same panel. Through validation across multiple studies using the same panel, we demonstrate that cyMAE delivers accurate and interpretable cellular immunophenotyping and improves the prediction of subject-level metadata. This proof of concept marks a significant step forward for large-scale immunology studies. Single-cell cytometry data are crucial for understanding the role of the immune system in diseases and responses to treatment. However, traditional methods for annotating cytometry data face challenges in scalability, robustness, and accuracy. We propose a cytometry masked autoencoder (cyMAE), which automates immunophenotyping tasks including cell type annotation. The model upholds user-defined cell type definitions, facilitating interpretability and cross-study comparisons. The training of cyMAE has a self-supervised phase, which leverages large amounts of unlabeled data, followed by fine-tuning on specialized tasks using smaller amounts of annotated data. The cost of training a new model is amortized over repeated inferences on new datasets using the same panel. Through validation across multiple studies using the same panel, we demonstrate that cyMAE delivers accurate and interpretable cellular immunophenotyping and improves the prediction of subject-level metadata. This proof of concept marks a significant step forward for large-scale immunology studies. [Display omitted] •Masked cytometry modeling learns relationships among proteins without cell identity•We develop cytometry masked autoencoder (cyMAE) to automate immunophenotyping•cyMAE improves both cell-level and subject-level immune profiling Kim et al. introduces cyMAE, a cytometry masked autoencoder that automates immune cell profiling from single-cell cytometry data. By leveraging unlabeled data for pre-training and fine-tuning on specific tasks, the model improves immune profiling accuracy and enhances prediction of subject-level clinical data, advancing large-scale immune studies. |
| ArticleNumber | 101808 |
| Author | Kim, Jaesik Swigart, Lamorna Brown Wagenaar, Joost Apostolidis, Sokratis A. Painter, Mark M. Thomas, Karl W. Jung, Sang-Hyuk Norton, Dylan T. Matthy, Michael A. Wherry, E. John McKeehan, Jeffrey Ittner, Caroline A.G. Russel, Derek W. Turner, Alexandra P. Woerner, Jakob Liu, Kathleen D. Esperanza, Mika Burnham, Ellen L. Orzechowski, Patryk Mangalmurti, Nilam S. Kim, Dokyoon Pattekar, Ajinkya Reilly, John P. Truong, Van Clendenin, Cynthia Dunn, Thomas G. Barot, Harsh Nam, Yonghyun Gibbs, Kevin W. Meyer, Nuala J. Ionita, Matei Calfee, Carolyn S. Gandotra, Sheetal Greenplate, Allison R. McKeague, Michelle L. Mathew, Divij Lee, Matthew |
| Author_xml | – sequence: 1 givenname: Jaesik surname: Kim fullname: Kim, Jaesik organization: Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA – sequence: 2 givenname: Matei surname: Ionita fullname: Ionita, Matei organization: Institute for Immunology & Immune Health (I3H), Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA – sequence: 3 givenname: Matthew surname: Lee fullname: Lee, Matthew organization: Institute for Immunology & Immune Health (I3H), Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA – sequence: 4 givenname: Michelle L. surname: McKeague fullname: McKeague, Michelle L. organization: Institute for Immunology & Immune Health (I3H), Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA – sequence: 5 givenname: Ajinkya surname: Pattekar fullname: Pattekar, Ajinkya organization: Institute for Immunology & Immune Health (I3H), Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA – sequence: 6 givenname: Mark M. surname: Painter fullname: Painter, Mark M. organization: Institute for Immunology & Immune Health (I3H), Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA – sequence: 7 givenname: Joost surname: Wagenaar fullname: Wagenaar, Joost organization: Institute for Immunology & Immune Health (I3H), Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA – sequence: 8 givenname: Van surname: Truong fullname: Truong, Van organization: Institute for Immunology & Immune Health (I3H), Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA – sequence: 9 givenname: Dylan T. surname: Norton fullname: Norton, Dylan T. organization: Institute for Immunology & Immune Health (I3H), Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA – sequence: 10 givenname: Divij surname: Mathew fullname: Mathew, Divij organization: Institute for Immunology & Immune Health (I3H), Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA – sequence: 11 givenname: Yonghyun surname: Nam fullname: Nam, Yonghyun organization: Institute for Immunology & Immune Health (I3H), Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA – sequence: 12 givenname: Sokratis A. surname: Apostolidis fullname: Apostolidis, Sokratis A. organization: Institute for Immunology & Immune Health (I3H), Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA – sequence: 13 givenname: Cynthia surname: Clendenin fullname: Clendenin, Cynthia organization: Institute for Immunology & Immune Health (I3H), Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA – sequence: 14 givenname: Patryk surname: Orzechowski fullname: Orzechowski, Patryk organization: Institute for Immunology & Immune Health (I3H), Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA – sequence: 15 givenname: Sang-Hyuk surname: Jung fullname: Jung, Sang-Hyuk organization: Institute for Immunology & Immune Health (I3H), Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA – sequence: 16 givenname: Jakob surname: Woerner fullname: Woerner, Jakob organization: Institute for Immunology & Immune Health (I3H), Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA – sequence: 17 givenname: Caroline A.G. surname: Ittner fullname: Ittner, Caroline A.G. organization: Division of Pulmonary and Critical Care Medicine, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA – sequence: 18 givenname: Alexandra P. surname: Turner fullname: Turner, Alexandra P. organization: Division of Pulmonary and Critical Care Medicine, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA – sequence: 19 givenname: Mika surname: Esperanza fullname: Esperanza, Mika organization: Division of Pulmonary and Critical Care Medicine, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA – sequence: 20 givenname: Thomas G. surname: Dunn fullname: Dunn, Thomas G. organization: Division of Hematology/Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA – sequence: 21 givenname: Nilam S. surname: Mangalmurti fullname: Mangalmurti, Nilam S. organization: Institute for Immunology & Immune Health (I3H), Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA – sequence: 22 givenname: John P. surname: Reilly fullname: Reilly, John P. organization: Institute for Immunology & Immune Health (I3H), Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA – sequence: 23 givenname: Nuala J. surname: Meyer fullname: Meyer, Nuala J. organization: Division of Pulmonary and Critical Care Medicine, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA – sequence: 24 givenname: Carolyn S. surname: Calfee fullname: Calfee, Carolyn S. organization: Department of Anesthesia and Perioperative Care, University of California, San Francisco, School of Medicine, San Francisco, CA 94143, USA – sequence: 25 givenname: Kathleen D. surname: Liu fullname: Liu, Kathleen D. organization: Division of Nephrology and Critical Care Medicine, University of California, San Francisco, School of Medicine, San Francisco, CA 94143, USA – sequence: 26 givenname: Michael A. surname: Matthy fullname: Matthy, Michael A. organization: Cardiovascular Research Institute, Department of Medicine, University of California, San Francisco, School of Medicine, San Francisco, CA 94158, USA – sequence: 27 givenname: Lamorna Brown surname: Swigart fullname: Swigart, Lamorna Brown organization: Department of Laboratory Medicine, University of California, San Francisco, School of Medicine, San Francisco, CA 94143, USA – sequence: 28 givenname: Ellen L. surname: Burnham fullname: Burnham, Ellen L. organization: Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado School of Medicine, Aurora, CO 80045, USA – sequence: 29 givenname: Jeffrey surname: McKeehan fullname: McKeehan, Jeffrey organization: Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado School of Medicine, Aurora, CO 80045, USA – sequence: 30 givenname: Sheetal surname: Gandotra fullname: Gandotra, Sheetal organization: Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA – sequence: 31 givenname: Derek W. surname: Russel fullname: Russel, Derek W. organization: Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA – sequence: 32 givenname: Kevin W. surname: Gibbs fullname: Gibbs, Kevin W. organization: Section on Pulmonary and Critical Care, Allergy, and Immunology, Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA – sequence: 33 givenname: Karl W. surname: Thomas fullname: Thomas, Karl W. organization: Section on Pulmonary and Critical Care, Allergy, and Immunology, Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA – sequence: 34 givenname: Harsh surname: Barot fullname: Barot, Harsh organization: Section on Hospital Medicine, Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA – sequence: 35 givenname: Allison R. surname: Greenplate fullname: Greenplate, Allison R. email: allie.greenplate@pennmedicine.upenn.edu organization: Institute for Immunology & Immune Health (I3H), Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA – sequence: 36 givenname: E. John surname: Wherry fullname: Wherry, E. John email: wherry@pennmedicine.upenn.edu organization: Institute for Immunology & Immune Health (I3H), Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA – sequence: 37 givenname: Dokyoon orcidid: 0000-0002-4592-9564 surname: Kim fullname: Kim, Dokyoon email: dokyoon.kim@pennmedicine.upenn.edu organization: Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/39515318$$D View this record in MEDLINE/PubMed |
| BookMark | eNqFkltv1DAQhSNUREvpH-AB5ZGXLXZ8WbtCoGrFpVIlHriIN2viTFpvE3uxnYr99zjdUrVIwIttjc98R5o5T6s9HzxW1XNKjimh8tX6-KeN43FDGj4XFFGPqoNGSrlgS0337r33q6OU1oSQRlCqGHlS7TMtqGBUHVTfVtscRsxxW4-QrrCrYcoBvQ0dxpP61Ndg7RQhYw2-q53PGDcRM7QD3kjH8lXq4zj5sLlEH_J2g_FZ9biHIeHR7X1YfX3_7svq4-L804ez1en5woqlzou2lVS1WneNFrzRyx45cqWX5UDRcU00lxo0cEakFUA4yJ51EhFAMN1adlid7bhdgLXZRDdC3JoAztwUQrwwELOzAxpNGkKBKVBUcV18UROlQAqhews9FNbbHWsztSN2Fn2OMDyAPvzx7tJchGtDqSSca1oIL28JMfyYMGUzumRxGMBjmJJhtFGsYVTKIn1x3-zO5fdmiqDZCWwMKUXs7ySUmDkBZm3mBJg5AWaXgNL0eteEZebXDqNJ1pVlYuci2lyG4v7d_uaPdjs47ywMV7jFtA5T9GWbhprUGGI-zxGbE9ZwQoQQ3wvg5O-A_7n_AiV44lk |
| Cites_doi | 10.1093/bioinformatics/btx448 10.1038/s41587-023-01763-2 10.1126/sciadv.abg0505 10.1126/science.abc8511 10.21105/joss.01686 10.1073/pnas.2003026117 10.1056/NEJM199909303411407 10.1002/cyto.a.23738 10.1093/bioinformatics/btab409 10.1038/s41467-023-35923-4 10.1002/cyto.a.23621 10.1038/s41586-023-06139-9 10.1016/j.isci.2023.106536 10.18653/v1/P19-3007 10.21105/joss.00861 10.1371/journal.pcbi.1008885 10.1002/cyto.a.22625 10.1038/nrc3239 10.1002/cyto.a.23030 10.1016/j.cell.2015.05.047 10.1038/s42256-022-00534-z 10.1038/nmeth.3863 10.1093/bioinformatics/btx054 10.1002/eji.201545774 10.1126/science.ade2574 10.1038/s41587-022-01618-2 10.1126/science.1259425 10.1109/TPAMI.2021.3095381 10.1002/cyto.a.24317 10.1038/nri3158 10.3390/genes10070531 |
| ContentType | Journal Article |
| Copyright | 2024 The Author(s) The Author(s) Copyright © 2024 The Author(s). Published by Elsevier Inc. All rights reserved. 2024 The Author(s) 2024 |
| Copyright_xml | – notice: 2024 The Author(s) – notice: The Author(s) – notice: Copyright © 2024 The Author(s). Published by Elsevier Inc. All rights reserved. – notice: 2024 The Author(s) 2024 |
| DBID | 6I. AAFTH AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM DOA |
| DOI | 10.1016/j.xcrm.2024.101808 |
| DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine |
| EISSN | 2666-3791 |
| EndPage | 101808 |
| ExternalDocumentID | oai_doaj_org_article_90201a38a81849618e9088a6559fcafa PMC11604491 39515318 10_1016_j_xcrm_2024_101808 S266637912400555X 1_s2_0_S266637912400555X |
| Genre | Journal Article |
| GrantInformation_xml | – fundername: NHLBI NIH HHS grantid: R35 HL161196 |
| GroupedDBID | .1- .FO 0R~ 53G AAEDW AALRI AAMRU AAXUO AAYWO ACVFH ADCNI ADVLN AEUPX AFPUW AFRHN AIGII AITUG AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ APXCP EBS FDB GROUPED_DOAJ M41 M~E OK1 ROL RPM Z5R 6I. AAFTH AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM |
| ID | FETCH-LOGICAL-c579t-bb618b99d2954297fe4e4897e48e5d4909469a9a4306c5a04a6f3d6eeaa539bc3 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 1 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001364268700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2666-3791 |
| IngestDate | Mon Dec 01 19:30:18 EST 2025 Tue Sep 30 17:06:25 EDT 2025 Fri Jul 11 12:29:51 EDT 2025 Thu Apr 03 07:00:18 EDT 2025 Sat Nov 29 07:25:30 EST 2025 Sun Oct 19 01:40:04 EDT 2025 Sun Oct 19 01:21:44 EDT 2025 Sat Oct 25 11:12:40 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 11 |
| Keywords | deep learning automated gating representation learning immunophenotyping high-dimensional cytometry mass cytometry machine learning |
| Language | English |
| License | This is an open access article under the CC BY-NC-ND license. Copyright © 2024 The Author(s). Published by Elsevier Inc. All rights reserved. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c579t-bb618b99d2954297fe4e4897e48e5d4909469a9a4306c5a04a6f3d6eeaa539bc3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 These authors contributed equally Lead contact |
| ORCID | 0000-0002-4592-9564 |
| OpenAccessLink | https://doaj.org/article/90201a38a81849618e9088a6559fcafa |
| PMID | 39515318 |
| PQID | 3128323166 |
| PQPubID | 23479 |
| PageCount | 1 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_90201a38a81849618e9088a6559fcafa pubmedcentral_primary_oai_pubmedcentral_nih_gov_11604491 proquest_miscellaneous_3128323166 pubmed_primary_39515318 crossref_primary_10_1016_j_xcrm_2024_101808 elsevier_sciencedirect_doi_10_1016_j_xcrm_2024_101808 elsevier_clinicalkeyesjournals_1_s2_0_S266637912400555X elsevier_clinicalkey_doi_10_1016_j_xcrm_2024_101808 |
| PublicationCentury | 2000 |
| PublicationDate | 2024-11-19 |
| PublicationDateYYYYMMDD | 2024-11-19 |
| PublicationDate_xml | – month: 11 year: 2024 text: 2024-11-19 day: 19 |
| PublicationDecade | 2020 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States |
| PublicationTitle | Cell reports. Medicine |
| PublicationTitleAlternate | Cell Rep Med |
| PublicationYear | 2024 |
| Publisher | Elsevier Inc Elsevier |
| Publisher_xml | – name: Elsevier Inc – name: Elsevier |
| References | Abdelaal, van Unen, Höllt, Koning, Reinders, Mahfouz (bib11) 2019; 95 Samusik, Good, Spitzer, Davis, Nolan (bib7) 2016; 13 Zhang, Luo, Zhong, Choi, Ma, Wang, Mahrt, Guo, Stawiski, Modrusan (bib10) 2019; 10 Shen, Liu, Hu, Shen, Zhang, Wu, Feng, Yang, Li, Yang (bib29) 2023; 26 Pardoll (bib40) 2012; 12 Lundberg, Lee (bib42) 2017 Spitzer, Gherardini, Fragiadakis, Bhattacharya, Yuan, Hotson, Finck, Carmi, Zunder, Fantl (bib6) 2015; 349 Hu, Tang, Singh, Bhattacharya, Butte (bib8) 2020; 117 (bib32) 2023; 58 Lee, Kosoy, Becker, Dudley, Kidd (bib9) 2017; 33 Mathew, Giles, Baxter, Oldridge, Greenplate, Wu, Alanio, Kuri-Cervantes, Pampena, D'Andrea (bib33) 2020; 369 Vaswani, Shazeer, Parmar, Uszkoreit, Jones, Gomez, Kaiser, Polosukhin (bib13) 2017; 30 Minsheng, Jing, Zeng, Liu, Guo, Cheng, Wang, Ma, Song (bib30) 2023 Becht, Tolstrup, Dutertre, Morawski, Campbell, Ginhoux, Newell, Gottardo, Headley (bib37) 2021; 7 Elnaggar, Heinzinger, Dallago, Rehawi, Wang, Jones, Gibbs, Feher, Angerer, Steinegger (bib20) 2022; 44 Theodoris, Xiao, Chopra, Chaffin, Al Sayed, Hill, Mantineo, Brydon, Zeng, Liu, Ellinor (bib31) 2023; 618 Gong, Hao, Zeng, Liu, Ma, Cheng, Wang, Zhang, Song (bib26) 2023 Eguchi, Choe, Parekh, Khalek, Ward, Vithani, Bowman, Jardine, Huang (bib24) 2022 Brown, Mann, Ryder, Subbiah, Kaplan, Dhariwal, Neelakantan, Shyam, Sastry, Askell (bib15) 2020; 33 Mair, Hartmann, Mrdjen, Tosevski, Krieg, Becher (bib2) 2016; 46 Lowenberg, Downing, Burnett (bib39) 1999; 341 Devlin, Chang, Lee, Toutanova (bib14) 2019; 1 Madani, Krause, Greene, Subramanian, Mohr, Holton, Olmos, Xiong, Sun, Socher (bib19) 2023; 41 Majmundar, Goyal, Netrapalli, Jain (bib51) 2022 Seabold, Perktold (bib45) 2010; 7 Geanon, Lee, Gonzalez-Kozlova, Kelly, Handler, Upadhyaya, Leech, De Real, Herbinet, Magen (bib47) 2021; 99 Hie, Shanker, Xu, Bruun, Weidenbacher, Tang, Wu, Pak, Kim (bib22) 2024; 42 Oquab, Darcet, Moutakanni, Vo, Szafraniec, Khalidov, Fernandez, Haziza, Massa, El-Nouby (bib16) 2023 Kaushik, Dunham, He, Manohar, Desai, Nadeau, Andorf (bib12) 2021; 37 Bao, H., Dong, L., Piao, S., and Wei, F. (2022). BEiT: BERT Pre-Training of Image Transformers. International Conference on Learning Representations. Chen, Xu, Tao, Chen, Zhao, Han (bib28) 2023; 14 Van Gassen, Callebaut, Van Helden, Lambrecht, Demeester, Dhaene, Saeys (bib4) 2015; 87 Wickham, Averick, Bryan, Chang, François, François, Grolemund, Hayes, Henry, Hester (bib46) 2019; 4 Cheng, Karkhanis, Gokbag, Liu, Li (bib34) 2022; 18 Weber, Robinson (bib52) 2016; 89 McInnes, Healy, Saul, Großberger (bib41) 2018; 3 Yang, Wang, Wang, Fang, Tang, Huang, Lu, Yao (bib27) 2022; 4 Maecker, McCoy, Nussenblatt (bib1) 2012; 12 Ba, Kiros, Hinton (bib48) 2016 Lin, Akin, Rao, Hie, Zhu, Lu, Smetanin, Verkuil, Kabeli, Shmueli (bib21) 2023; 379 Pedregosa, Varoquaux, Gramfort, Michel, Thirion, Grisel, Blondel, Müller, Nothman, Louppe (bib43) 2011; 12 Cui, Wang, Maan, Pang, Luo, Wang (bib25) 2023 Vig (bib38) 2019 Shanehsazzadeh, McPartlon, Kasun, Steiger, Sutton, Yassine, McCloskey, Haile, Shuai, Alverio (bib23) 2023 He, Chen, Xie, Li, Dollár, Girshick (bib18) 2022 Li, Shaham, Stanton, Yao, Montgomery, Kluger (bib35) 2017; 33 Levine, Simonds, Bendall, Davis, Amir, Tadmor, Litvin, Fienberg, Jager, Zunder (bib5) 2015; 162 Kaplan, McCandlish, Henighan, Brown, Chess, Child, Gray, Radford, Wu, Amodei (bib50) 2020 Olsen, Leipold, Pedersen, Maecker (bib3) 2019; 95 Yurtsev, Friedman, Gore (bib44) 2015 Chen, Guestrin (bib36) 2016 Larsson, Maire, Shakhnarovich (bib49) 2016 Geanon (10.1016/j.xcrm.2024.101808_bib47) 2021; 99 Weber (10.1016/j.xcrm.2024.101808_bib52) 2016; 89 Levine (10.1016/j.xcrm.2024.101808_bib5) 2015; 162 Larsson (10.1016/j.xcrm.2024.101808_bib49) 2016 Yurtsev (10.1016/j.xcrm.2024.101808_bib44) 2015 Madani (10.1016/j.xcrm.2024.101808_bib19) 2023; 41 Becht (10.1016/j.xcrm.2024.101808_bib37) 2021; 7 Yang (10.1016/j.xcrm.2024.101808_bib27) 2022; 4 Li (10.1016/j.xcrm.2024.101808_bib35) 2017; 33 Devlin (10.1016/j.xcrm.2024.101808_bib14) 2019; 1 Hu (10.1016/j.xcrm.2024.101808_bib8) 2020; 117 Gong (10.1016/j.xcrm.2024.101808_bib26) 2023 Zhang (10.1016/j.xcrm.2024.101808_bib10) 2019; 10 Pardoll (10.1016/j.xcrm.2024.101808_bib40) 2012; 12 Lowenberg (10.1016/j.xcrm.2024.101808_bib39) 1999; 341 Cheng (10.1016/j.xcrm.2024.101808_bib34) 2022; 18 Olsen (10.1016/j.xcrm.2024.101808_bib3) 2019; 95 Cui (10.1016/j.xcrm.2024.101808_bib25) 2023 (10.1016/j.xcrm.2024.101808_bib32) 2023; 58 McInnes (10.1016/j.xcrm.2024.101808_bib41) 2018; 3 Pedregosa (10.1016/j.xcrm.2024.101808_bib43) 2011; 12 Hie (10.1016/j.xcrm.2024.101808_bib22) 2024; 42 Shen (10.1016/j.xcrm.2024.101808_bib29) 2023; 26 Lundberg (10.1016/j.xcrm.2024.101808_bib42) 2017 Shanehsazzadeh (10.1016/j.xcrm.2024.101808_bib23) 2023 Kaplan (10.1016/j.xcrm.2024.101808_bib50) 2020 10.1016/j.xcrm.2024.101808_bib17 Theodoris (10.1016/j.xcrm.2024.101808_bib31) 2023; 618 Eguchi (10.1016/j.xcrm.2024.101808_bib24) 2022 Lin (10.1016/j.xcrm.2024.101808_bib21) 2023; 379 Mair (10.1016/j.xcrm.2024.101808_bib2) 2016; 46 Majmundar (10.1016/j.xcrm.2024.101808_bib51) 2022 Lee (10.1016/j.xcrm.2024.101808_bib9) 2017; 33 Vaswani (10.1016/j.xcrm.2024.101808_bib13) 2017; 30 Elnaggar (10.1016/j.xcrm.2024.101808_bib20) 2022; 44 Chen (10.1016/j.xcrm.2024.101808_bib28) 2023; 14 Spitzer (10.1016/j.xcrm.2024.101808_bib6) 2015; 349 Minsheng (10.1016/j.xcrm.2024.101808_bib30) 2023 Samusik (10.1016/j.xcrm.2024.101808_bib7) 2016; 13 Mathew (10.1016/j.xcrm.2024.101808_bib33) 2020; 369 Chen (10.1016/j.xcrm.2024.101808_bib36) 2016 Maecker (10.1016/j.xcrm.2024.101808_bib1) 2012; 12 Abdelaal (10.1016/j.xcrm.2024.101808_bib11) 2019; 95 Wickham (10.1016/j.xcrm.2024.101808_bib46) 2019; 4 Brown (10.1016/j.xcrm.2024.101808_bib15) 2020; 33 Kaushik (10.1016/j.xcrm.2024.101808_bib12) 2021; 37 He (10.1016/j.xcrm.2024.101808_bib18) 2022 Oquab (10.1016/j.xcrm.2024.101808_bib16) 2023 Ba (10.1016/j.xcrm.2024.101808_bib48) 2016 Van Gassen (10.1016/j.xcrm.2024.101808_bib4) 2015; 87 Vig (10.1016/j.xcrm.2024.101808_bib38) 2019 Seabold (10.1016/j.xcrm.2024.101808_bib45) 2010; 7 |
| References_xml | – year: 2023 ident: bib23 article-title: Unlocking de novo antibody design with generative artificial intelligence publication-title: bioRxiv – volume: 618 start-page: 616 year: 2023 end-page: 624 ident: bib31 article-title: Transfer learning enables predictions in network biology publication-title: Nature – start-page: 37 year: 2019 end-page: 42 ident: bib38 article-title: A Multiscale Visualization of Attention in the Transformer Model. publication-title: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics: System Demonstrations – volume: 33 start-page: 1689 year: 2017 end-page: 1695 ident: bib9 article-title: Automated cell type discovery and classification through knowledge transfer publication-title: Bioinformatics – year: 2023 ident: bib16 article-title: DINOv2: Learning Robust Visual Features without Supervision publication-title: arXiv – volume: 349 year: 2015 ident: bib6 article-title: IMMUNOLOGY. An interactive reference framework for modeling a dynamic immune system publication-title: Science – volume: 10 year: 2019 ident: bib10 article-title: SCINA: A Semi-Supervised Subtyping Algorithm of Single Cells and Bulk Samples publication-title: Genes – volume: 369 year: 2020 ident: bib33 article-title: Deep immune profiling of COVID-19 patients reveals distinct immunotypes with therapeutic implications publication-title: Science – year: 2016 ident: bib48 article-title: Layer Normalization publication-title: arXiv – year: 2020 ident: bib50 article-title: Scaling Laws for Neural Language Models publication-title: arXiv – volume: 379 start-page: 1123 year: 2023 end-page: 1130 ident: bib21 article-title: Evolutionary-scale prediction of atomic-level protein structure with a language model publication-title: Science – year: 2016 ident: bib49 article-title: FractalNet: Ultra-Deep Neural Networks without Residuals publication-title: International Conference on Learning Representations. – volume: 14 start-page: 223 year: 2023 ident: bib28 article-title: Transformer for one stop interpretable cell type annotation publication-title: Nat. Commun. – volume: 162 start-page: 184 year: 2015 end-page: 197 ident: bib5 article-title: Data-Driven Phenotypic Dissection of AML Reveals Progenitor-like Cells that Correlate with Prognosis publication-title: Cell – volume: 13 start-page: 493 year: 2016 end-page: 496 ident: bib7 article-title: Automated mapping of phenotype space with single-cell data publication-title: Nat. Methods – volume: 58 year: 2023 ident: bib32 article-title: Report of the first seven agents in the I-SPY COVID trial: a phase 2, open label, adaptive platform randomised controlled trial publication-title: EClinicalMedicine – volume: 42 start-page: 275 year: 2024 end-page: 283 ident: bib22 article-title: Efficient evolution of human antibodies from general protein language models publication-title: Nat. Biotechnol. – volume: 3 start-page: 861 year: 2018 ident: bib41 article-title: UMAP: Uniform Manifold Approximation and Projection publication-title: J. Open Source Softw. – volume: 4 start-page: 1686 year: 2019 ident: bib46 article-title: Welcome to the tidyverse publication-title: J. Open Source Softw. – volume: 12 start-page: 191 year: 2012 end-page: 200 ident: bib1 article-title: Standardizing immunophenotyping for the Human Immunology Project publication-title: Nat. Rev. Immunol. – start-page: 16000 year: 2022 end-page: 16009 ident: bib18 article-title: Masked Autoencoders Are Scalable Vision Learners – volume: 33 start-page: 1877 year: 2020 end-page: 1901 ident: bib15 article-title: Language Models are Few-Shot Learners publication-title: Adv. Neural Inf. Process. Syst. – volume: 7 year: 2021 ident: bib37 article-title: High-throughput single-cell quantification of hundreds of proteins using conventional flow cytometry and machine learning publication-title: Sci. Adv. – year: 2022 ident: bib51 article-title: MET: Masked Encoding for Tabular Data publication-title: NeurIPS 2022 First Table Representation Workshop. – volume: 117 start-page: 21373 year: 2020 end-page: 21380 ident: bib8 article-title: A robust and interpretable end-to-end deep learning model for cytometry data publication-title: Proc. Natl. Acad. Sci. USA – volume: 18 year: 2022 ident: bib34 article-title: DGCyTOF: Deep learning with graphic cluster visualization to predict cell types of single cell mass cytometry data publication-title: PLoS Comput. Biol. – volume: 341 start-page: 1051 year: 1999 end-page: 1062 ident: bib39 article-title: Acute myeloid leukemia publication-title: N. Engl. J. Med. – year: 2023 ident: bib30 article-title: Large Scale Foundation Model on Single-cell Transcriptomics publication-title: bioRxiv – volume: 37 start-page: 4164 year: 2021 end-page: 4171 ident: bib12 article-title: CyAnno: a semi-automated approach for cell type annotation of mass cytometry datasets publication-title: Bioinformatics – volume: 41 start-page: 1099 year: 2023 end-page: 1106 ident: bib19 article-title: Large language models generate functional protein sequences across diverse families publication-title: Nat. Biotechnol. – volume: 26 year: 2023 ident: bib29 article-title: Generative pretraining from large-scale transcriptomes for single-cell deciphering publication-title: iScience – volume: 99 start-page: 446 year: 2021 end-page: 461 ident: bib47 article-title: A streamlined whole blood CyTOF workflow defines a circulating immune cell signature of COVID-19 publication-title: Cytometry A. – volume: 95 start-page: 769 year: 2019 end-page: 781 ident: bib11 article-title: Predicting Cell Populations in Single Cell Mass Cytometry Data publication-title: Cytometry A. – volume: 12 start-page: 2825 year: 2011 end-page: 2830 ident: bib43 article-title: Scikit-learn: Machine Learning in Python publication-title: J. Mach. Learn. Res. – volume: 30 start-page: 6000 year: 2017 end-page: 6010 ident: bib13 article-title: Attention is All you Need publication-title: Adv. Neural Inf. Process. Syst. – year: 2016 ident: bib36 article-title: XGBoost: A Scalable Tree Boosting System. Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. publication-title: Association for Computing Machinery. – volume: 89 start-page: 1084 year: 2016 end-page: 1096 ident: bib52 article-title: Comparison of clustering methods for high-dimensional single-cell flow and mass cytometry data publication-title: Cytometry A. – volume: 95 start-page: 156 year: 2019 end-page: 172 ident: bib3 article-title: The anatomy of single cell mass cytometry data publication-title: Cytometry – volume: 46 start-page: 34 year: 2016 end-page: 43 ident: bib2 article-title: The end of gating? An introduction to automated analysis of high dimensional cytometry data publication-title: Eur. J. Immunol. – year: 2023 ident: bib25 article-title: scGPT: Towards Building a Foundation Model for Single-Cell Multi-omics Using Generative AI publication-title: bioRxiv – year: 2022 ident: bib24 article-title: Deep Generative Design of Epitope-Specific Binding Proteins by Latent Conformation Optimization publication-title: bioRxiv – start-page: 4768 year: 2017 end-page: 4777 ident: bib42 article-title: A Unified Approach to Interpreting Model Predictions. Proceedings of the 31st International Conference on Neural Information Processing Systems – volume: 12 start-page: 252 year: 2012 end-page: 264 ident: bib40 article-title: The blockade of immune checkpoints in cancer immunotherapy publication-title: Nat. Rev. Cancer – volume: 1 start-page: 4171 year: 2019 end-page: 4186 ident: bib14 article-title: BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding. In Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics publication-title: Human Language Technologies – volume: 33 start-page: 3423 year: 2017 end-page: 3430 ident: bib35 article-title: Gating mass cytometry data by deep learning publication-title: Bioinformatics – reference: Bao, H., Dong, L., Piao, S., and Wei, F. (2022). BEiT: BERT Pre-Training of Image Transformers. International Conference on Learning Representations. – year: 2023 ident: bib26 article-title: xTrimoGene: An Efficient and Scalable Representation Learner for Single-Cell RNA-Seq Data publication-title: bioRxiv – volume: 7 start-page: 1 year: 2010 ident: bib45 article-title: Statsmodels: econometric and statistical modeling with python publication-title: SciPy – volume: 87 start-page: 636 year: 2015 end-page: 645 ident: bib4 article-title: FlowSOM: Using self-organizing maps for visualization and interpretation of cytometry data publication-title: Cytometry A. – volume: 44 start-page: 7112 year: 2022 end-page: 7127 ident: bib20 article-title: ProtTrans: Toward Understanding the Language of Life Through Self-Supervised Learning publication-title: Ieee T Pattern Anal – volume: 4 start-page: 852 year: 2022 end-page: 866 ident: bib27 article-title: scBERT as a large-scale pretrained deep language model for cell type annotation of single-cell RNA-seq data publication-title: Nat. Mach. Intell. – year: 2015 ident: bib44 article-title: FlowCytometryTools. Zenodo – volume: 33 start-page: 3423 year: 2017 ident: 10.1016/j.xcrm.2024.101808_bib35 article-title: Gating mass cytometry data by deep learning publication-title: Bioinformatics doi: 10.1093/bioinformatics/btx448 – volume: 33 start-page: 1877 year: 2020 ident: 10.1016/j.xcrm.2024.101808_bib15 article-title: Language Models are Few-Shot Learners publication-title: Adv. Neural Inf. Process. Syst. – volume: 42 start-page: 275 year: 2024 ident: 10.1016/j.xcrm.2024.101808_bib22 article-title: Efficient evolution of human antibodies from general protein language models publication-title: Nat. Biotechnol. doi: 10.1038/s41587-023-01763-2 – volume: 7 year: 2021 ident: 10.1016/j.xcrm.2024.101808_bib37 article-title: High-throughput single-cell quantification of hundreds of proteins using conventional flow cytometry and machine learning publication-title: Sci. Adv. doi: 10.1126/sciadv.abg0505 – volume: 369 year: 2020 ident: 10.1016/j.xcrm.2024.101808_bib33 article-title: Deep immune profiling of COVID-19 patients reveals distinct immunotypes with therapeutic implications publication-title: Science doi: 10.1126/science.abc8511 – year: 2016 ident: 10.1016/j.xcrm.2024.101808_bib48 article-title: Layer Normalization publication-title: arXiv – volume: 1 start-page: 4171 year: 2019 ident: 10.1016/j.xcrm.2024.101808_bib14 article-title: BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding. In Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics – volume: 30 start-page: 6000 year: 2017 ident: 10.1016/j.xcrm.2024.101808_bib13 article-title: Attention is All you Need publication-title: Adv. Neural Inf. Process. Syst. – volume: 12 start-page: 2825 year: 2011 ident: 10.1016/j.xcrm.2024.101808_bib43 article-title: Scikit-learn: Machine Learning in Python publication-title: J. Mach. Learn. Res. – year: 2023 ident: 10.1016/j.xcrm.2024.101808_bib25 article-title: scGPT: Towards Building a Foundation Model for Single-Cell Multi-omics Using Generative AI publication-title: bioRxiv – volume: 4 start-page: 1686 year: 2019 ident: 10.1016/j.xcrm.2024.101808_bib46 article-title: Welcome to the tidyverse publication-title: J. Open Source Softw. doi: 10.21105/joss.01686 – volume: 117 start-page: 21373 year: 2020 ident: 10.1016/j.xcrm.2024.101808_bib8 article-title: A robust and interpretable end-to-end deep learning model for cytometry data publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.2003026117 – volume: 341 start-page: 1051 year: 1999 ident: 10.1016/j.xcrm.2024.101808_bib39 article-title: Acute myeloid leukemia publication-title: N. Engl. J. Med. doi: 10.1056/NEJM199909303411407 – volume: 95 start-page: 769 year: 2019 ident: 10.1016/j.xcrm.2024.101808_bib11 article-title: Predicting Cell Populations in Single Cell Mass Cytometry Data publication-title: Cytometry A. doi: 10.1002/cyto.a.23738 – volume: 37 start-page: 4164 year: 2021 ident: 10.1016/j.xcrm.2024.101808_bib12 article-title: CyAnno: a semi-automated approach for cell type annotation of mass cytometry datasets publication-title: Bioinformatics doi: 10.1093/bioinformatics/btab409 – volume: 14 start-page: 223 year: 2023 ident: 10.1016/j.xcrm.2024.101808_bib28 article-title: Transformer for one stop interpretable cell type annotation publication-title: Nat. Commun. doi: 10.1038/s41467-023-35923-4 – year: 2015 ident: 10.1016/j.xcrm.2024.101808_bib44 – volume: 95 start-page: 156 year: 2019 ident: 10.1016/j.xcrm.2024.101808_bib3 article-title: The anatomy of single cell mass cytometry data publication-title: Cytometry doi: 10.1002/cyto.a.23621 – volume: 618 start-page: 616 year: 2023 ident: 10.1016/j.xcrm.2024.101808_bib31 article-title: Transfer learning enables predictions in network biology publication-title: Nature doi: 10.1038/s41586-023-06139-9 – year: 2022 ident: 10.1016/j.xcrm.2024.101808_bib51 article-title: MET: Masked Encoding for Tabular Data publication-title: NeurIPS 2022 First Table Representation Workshop. – volume: 26 year: 2023 ident: 10.1016/j.xcrm.2024.101808_bib29 article-title: Generative pretraining from large-scale transcriptomes for single-cell deciphering publication-title: iScience doi: 10.1016/j.isci.2023.106536 – start-page: 37 year: 2019 ident: 10.1016/j.xcrm.2024.101808_bib38 article-title: A Multiscale Visualization of Attention in the Transformer Model. publication-title: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics: System Demonstrations doi: 10.18653/v1/P19-3007 – volume: 3 start-page: 861 year: 2018 ident: 10.1016/j.xcrm.2024.101808_bib41 article-title: UMAP: Uniform Manifold Approximation and Projection publication-title: J. Open Source Softw. doi: 10.21105/joss.00861 – year: 2023 ident: 10.1016/j.xcrm.2024.101808_bib26 article-title: xTrimoGene: An Efficient and Scalable Representation Learner for Single-Cell RNA-Seq Data publication-title: bioRxiv – year: 2016 ident: 10.1016/j.xcrm.2024.101808_bib49 article-title: FractalNet: Ultra-Deep Neural Networks without Residuals publication-title: International Conference on Learning Representations. – year: 2023 ident: 10.1016/j.xcrm.2024.101808_bib23 article-title: Unlocking de novo antibody design with generative artificial intelligence publication-title: bioRxiv – ident: 10.1016/j.xcrm.2024.101808_bib17 – volume: 18 year: 2022 ident: 10.1016/j.xcrm.2024.101808_bib34 article-title: DGCyTOF: Deep learning with graphic cluster visualization to predict cell types of single cell mass cytometry data publication-title: PLoS Comput. Biol. doi: 10.1371/journal.pcbi.1008885 – volume: 87 start-page: 636 year: 2015 ident: 10.1016/j.xcrm.2024.101808_bib4 article-title: FlowSOM: Using self-organizing maps for visualization and interpretation of cytometry data publication-title: Cytometry A. doi: 10.1002/cyto.a.22625 – year: 2022 ident: 10.1016/j.xcrm.2024.101808_bib24 article-title: Deep Generative Design of Epitope-Specific Binding Proteins by Latent Conformation Optimization publication-title: bioRxiv – year: 2020 ident: 10.1016/j.xcrm.2024.101808_bib50 article-title: Scaling Laws for Neural Language Models publication-title: arXiv – year: 2023 ident: 10.1016/j.xcrm.2024.101808_bib30 article-title: Large Scale Foundation Model on Single-cell Transcriptomics publication-title: bioRxiv – volume: 12 start-page: 252 year: 2012 ident: 10.1016/j.xcrm.2024.101808_bib40 article-title: The blockade of immune checkpoints in cancer immunotherapy publication-title: Nat. Rev. Cancer doi: 10.1038/nrc3239 – volume: 89 start-page: 1084 year: 2016 ident: 10.1016/j.xcrm.2024.101808_bib52 article-title: Comparison of clustering methods for high-dimensional single-cell flow and mass cytometry data publication-title: Cytometry A. doi: 10.1002/cyto.a.23030 – volume: 162 start-page: 184 year: 2015 ident: 10.1016/j.xcrm.2024.101808_bib5 article-title: Data-Driven Phenotypic Dissection of AML Reveals Progenitor-like Cells that Correlate with Prognosis publication-title: Cell doi: 10.1016/j.cell.2015.05.047 – volume: 4 start-page: 852 year: 2022 ident: 10.1016/j.xcrm.2024.101808_bib27 article-title: scBERT as a large-scale pretrained deep language model for cell type annotation of single-cell RNA-seq data publication-title: Nat. Mach. Intell. doi: 10.1038/s42256-022-00534-z – volume: 13 start-page: 493 year: 2016 ident: 10.1016/j.xcrm.2024.101808_bib7 article-title: Automated mapping of phenotype space with single-cell data publication-title: Nat. Methods doi: 10.1038/nmeth.3863 – start-page: 16000 year: 2022 ident: 10.1016/j.xcrm.2024.101808_bib18 – start-page: 4768 year: 2017 ident: 10.1016/j.xcrm.2024.101808_bib42 – volume: 33 start-page: 1689 year: 2017 ident: 10.1016/j.xcrm.2024.101808_bib9 article-title: Automated cell type discovery and classification through knowledge transfer publication-title: Bioinformatics doi: 10.1093/bioinformatics/btx054 – volume: 46 start-page: 34 year: 2016 ident: 10.1016/j.xcrm.2024.101808_bib2 article-title: The end of gating? An introduction to automated analysis of high dimensional cytometry data publication-title: Eur. J. Immunol. doi: 10.1002/eji.201545774 – volume: 379 start-page: 1123 year: 2023 ident: 10.1016/j.xcrm.2024.101808_bib21 article-title: Evolutionary-scale prediction of atomic-level protein structure with a language model publication-title: Science doi: 10.1126/science.ade2574 – year: 2016 ident: 10.1016/j.xcrm.2024.101808_bib36 article-title: XGBoost: A Scalable Tree Boosting System. Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. publication-title: Association for Computing Machinery. – volume: 41 start-page: 1099 year: 2023 ident: 10.1016/j.xcrm.2024.101808_bib19 article-title: Large language models generate functional protein sequences across diverse families publication-title: Nat. Biotechnol. doi: 10.1038/s41587-022-01618-2 – volume: 349 year: 2015 ident: 10.1016/j.xcrm.2024.101808_bib6 article-title: IMMUNOLOGY. An interactive reference framework for modeling a dynamic immune system publication-title: Science doi: 10.1126/science.1259425 – volume: 58 year: 2023 ident: 10.1016/j.xcrm.2024.101808_bib32 article-title: Report of the first seven agents in the I-SPY COVID trial: a phase 2, open label, adaptive platform randomised controlled trial publication-title: EClinicalMedicine – volume: 44 start-page: 7112 year: 2022 ident: 10.1016/j.xcrm.2024.101808_bib20 article-title: ProtTrans: Toward Understanding the Language of Life Through Self-Supervised Learning publication-title: Ieee T Pattern Anal doi: 10.1109/TPAMI.2021.3095381 – volume: 99 start-page: 446 year: 2021 ident: 10.1016/j.xcrm.2024.101808_bib47 article-title: A streamlined whole blood CyTOF workflow defines a circulating immune cell signature of COVID-19 publication-title: Cytometry A. doi: 10.1002/cyto.a.24317 – volume: 12 start-page: 191 year: 2012 ident: 10.1016/j.xcrm.2024.101808_bib1 article-title: Standardizing immunophenotyping for the Human Immunology Project publication-title: Nat. Rev. Immunol. doi: 10.1038/nri3158 – year: 2023 ident: 10.1016/j.xcrm.2024.101808_bib16 article-title: DINOv2: Learning Robust Visual Features without Supervision publication-title: arXiv – volume: 10 year: 2019 ident: 10.1016/j.xcrm.2024.101808_bib10 article-title: SCINA: A Semi-Supervised Subtyping Algorithm of Single Cells and Bulk Samples publication-title: Genes doi: 10.3390/genes10070531 – volume: 7 start-page: 1 year: 2010 ident: 10.1016/j.xcrm.2024.101808_bib45 article-title: Statsmodels: econometric and statistical modeling with python publication-title: SciPy |
| SSID | ssj0002511830 |
| Score | 2.2816243 |
| Snippet | Single-cell cytometry data are crucial for understanding the role of the immune system in diseases and responses to treatment. However, traditional methods for... SummarySingle-cell cytometry data are crucial for understanding the role of the immune system in diseases and responses to treatment. However, traditional... |
| SourceID | doaj pubmedcentral proquest pubmed crossref elsevier |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Publisher |
| StartPage | 101808 |
| SubjectTerms | Advanced Basic Science Algorithms automated gating deep learning Flow Cytometry - methods high-dimensional cytometry Humans immunophenotyping Immunophenotyping - methods machine learning mass cytometry representation learning Single-Cell Analysis - methods |
| Title | Cytometry masked autoencoder: An accurate and interpretable automated immunophenotyper |
| URI | https://www.clinicalkey.com/#!/content/1-s2.0-S266637912400555X https://www.clinicalkey.es/playcontent/1-s2.0-S266637912400555X https://dx.doi.org/10.1016/j.xcrm.2024.101808 https://www.ncbi.nlm.nih.gov/pubmed/39515318 https://www.proquest.com/docview/3128323166 https://pubmed.ncbi.nlm.nih.gov/PMC11604491 https://doaj.org/article/90201a38a81849618e9088a6559fcafa |
| Volume | 5 |
| WOSCitedRecordID | wos001364268700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2666-3791 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002511830 issn: 2666-3791 databaseCode: DOA dateStart: 20200101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2666-3791 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002511830 issn: 2666-3791 databaseCode: M~E dateStart: 20200101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Jb9UwELagQogLYicsVZC4oUD87MQxt1K14tIKiUXvZk28iBSaoCQP0Qu_nZksTy-A6IWLD4kdJ5-3z_HMN4w9l1Yo5YRKINMhkaDypCxSkawkAGglkNSVQ7AJdXparNf63U6oL7IJG-WBR-BeaeQzHEQBuLJICk_iyTIHcmTCwUIYqFGq9M5miubggTiLdPKSGQ26ftiWXM9X8uWgWlUsVqJBsH-xIP1JOH-3m9xZiI5vsZsTg4wPxje_za74-g67fjKdkd9lnw4v-ubc9-1FfA7dF-9i2PQN6VU6376OD-oYrN2QQkQMtYurrdVh-dUPWZHDYqGKHEdIdKBu6Ddte499PD76cPg2maInJDZTuk_KEsEqtXZ0krfSKnjpZaEVJj5zUuO-LtegQeKmwWaQSsiDcLn3AJnQpRX32V7d1P4hi4UOJefOW2EDjvlQggIHwglQQXnuI_ZiRtJ8G0UyzGw9dmYId0O4mxH3iL0hsLc5SeB6uIDNbqZmN5c1e8TE3FRm9iHFWQ8fVP2zavW3Ur6bBm5nuOlWJjXvkbfkQmlOJrZZlq0jlm1LTtxk5ByX1vhs7kcGBy6dxkDtm01nBKcoUYLnecQejP1qC4lA3ouTI5YuFj1ugdnyTl19HsTBOc9TKTV_9D9Qfsxu0LeQ7yXXT9he3278U3bNfu-rrt1nV9W62B8GHqYnP49-AVKWM5s |
| linkProvider | Directory of Open Access Journals |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Cytometry+masked+autoencoder%3A+An+accurate+and+interpretable+automated+immunophenotyper&rft.jtitle=Cell+reports.+Medicine&rft.au=Kim%2C+Jaesik&rft.au=Ionita%2C+Matei&rft.au=Lee%2C+Matthew&rft.au=McKeague%2C+Michelle+L&rft.date=2024-11-19&rft.eissn=2666-3791&rft.volume=5&rft.issue=11&rft.spage=101808&rft_id=info:doi/10.1016%2Fj.xcrm.2024.101808&rft_id=info%3Apmid%2F39515318&rft.externalDocID=39515318 |
| thumbnail_m | http://cvtisr.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fcdn.clinicalkey.com%2Fck-thumbnails%2F26663791%2FS2666379123X00123%2Fcov150h.gif |