Cytometry masked autoencoder: An accurate and interpretable automated immunophenotyper

Single-cell cytometry data are crucial for understanding the role of the immune system in diseases and responses to treatment. However, traditional methods for annotating cytometry data face challenges in scalability, robustness, and accuracy. We propose a cytometry masked autoencoder (cyMAE), which...

Full description

Saved in:
Bibliographic Details
Published in:Cell reports. Medicine Vol. 5; no. 11; p. 101808
Main Authors: Kim, Jaesik, Ionita, Matei, Lee, Matthew, McKeague, Michelle L., Pattekar, Ajinkya, Painter, Mark M., Wagenaar, Joost, Truong, Van, Norton, Dylan T., Mathew, Divij, Nam, Yonghyun, Apostolidis, Sokratis A., Clendenin, Cynthia, Orzechowski, Patryk, Jung, Sang-Hyuk, Woerner, Jakob, Ittner, Caroline A.G., Turner, Alexandra P., Esperanza, Mika, Dunn, Thomas G., Mangalmurti, Nilam S., Reilly, John P., Meyer, Nuala J., Calfee, Carolyn S., Liu, Kathleen D., Matthy, Michael A., Swigart, Lamorna Brown, Burnham, Ellen L., McKeehan, Jeffrey, Gandotra, Sheetal, Russel, Derek W., Gibbs, Kevin W., Thomas, Karl W., Barot, Harsh, Greenplate, Allison R., Wherry, E. John, Kim, Dokyoon
Format: Journal Article
Language:English
Published: United States Elsevier Inc 19.11.2024
Elsevier
Subjects:
ISSN:2666-3791, 2666-3791
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Single-cell cytometry data are crucial for understanding the role of the immune system in diseases and responses to treatment. However, traditional methods for annotating cytometry data face challenges in scalability, robustness, and accuracy. We propose a cytometry masked autoencoder (cyMAE), which automates immunophenotyping tasks including cell type annotation. The model upholds user-defined cell type definitions, facilitating interpretability and cross-study comparisons. The training of cyMAE has a self-supervised phase, which leverages large amounts of unlabeled data, followed by fine-tuning on specialized tasks using smaller amounts of annotated data. The cost of training a new model is amortized over repeated inferences on new datasets using the same panel. Through validation across multiple studies using the same panel, we demonstrate that cyMAE delivers accurate and interpretable cellular immunophenotyping and improves the prediction of subject-level metadata. This proof of concept marks a significant step forward for large-scale immunology studies. [Display omitted] •Masked cytometry modeling learns relationships among proteins without cell identity•We develop cytometry masked autoencoder (cyMAE) to automate immunophenotyping•cyMAE improves both cell-level and subject-level immune profiling Kim et al. introduces cyMAE, a cytometry masked autoencoder that automates immune cell profiling from single-cell cytometry data. By leveraging unlabeled data for pre-training and fine-tuning on specific tasks, the model improves immune profiling accuracy and enhances prediction of subject-level clinical data, advancing large-scale immune studies.
AbstractList Single-cell cytometry data are crucial for understanding the role of the immune system in diseases and responses to treatment. However, traditional methods for annotating cytometry data face challenges in scalability, robustness, and accuracy. We propose a cytometry masked autoencoder (cyMAE), which automates immunophenotyping tasks including cell type annotation. The model upholds user-defined cell type definitions, facilitating interpretability and cross-study comparisons. The training of cyMAE has a self-supervised phase, which leverages large amounts of unlabeled data, followed by fine-tuning on specialized tasks using smaller amounts of annotated data. The cost of training a new model is amortized over repeated inferences on new datasets using the same panel. Through validation across multiple studies using the same panel, we demonstrate that cyMAE delivers accurate and interpretable cellular immunophenotyping and improves the prediction of subject-level metadata. This proof of concept marks a significant step forward for large-scale immunology studies. •Masked cytometry modeling learns relationships among proteins without cell identity•We develop cytometry masked autoencoder (cyMAE) to automate immunophenotyping•cyMAE improves both cell-level and subject-level immune profiling Kim et al. introduces cyMAE, a cytometry masked autoencoder that automates immune cell profiling from single-cell cytometry data. By leveraging unlabeled data for pre-training and fine-tuning on specific tasks, the model improves immune profiling accuracy and enhances prediction of subject-level clinical data, advancing large-scale immune studies.
Single-cell cytometry data are crucial for understanding the role of the immune system in diseases and responses to treatment. However, traditional methods for annotating cytometry data face challenges in scalability, robustness, and accuracy. We propose a cytometry masked autoencoder (cyMAE), which automates immunophenotyping tasks including cell type annotation. The model upholds user-defined cell type definitions, facilitating interpretability and cross-study comparisons. The training of cyMAE has a self-supervised phase, which leverages large amounts of unlabeled data, followed by fine-tuning on specialized tasks using smaller amounts of annotated data. The cost of training a new model is amortized over repeated inferences on new datasets using the same panel. Through validation across multiple studies using the same panel, we demonstrate that cyMAE delivers accurate and interpretable cellular immunophenotyping and improves the prediction of subject-level metadata. This proof of concept marks a significant step forward for large-scale immunology studies.
Single-cell cytometry data are crucial for understanding the role of the immune system in diseases and responses to treatment. However, traditional methods for annotating cytometry data face challenges in scalability, robustness, and accuracy. We propose a cytometry masked autoencoder (cyMAE), which automates immunophenotyping tasks including cell type annotation. The model upholds user-defined cell type definitions, facilitating interpretability and cross-study comparisons. The training of cyMAE has a self-supervised phase, which leverages large amounts of unlabeled data, followed by fine-tuning on specialized tasks using smaller amounts of annotated data. The cost of training a new model is amortized over repeated inferences on new datasets using the same panel. Through validation across multiple studies using the same panel, we demonstrate that cyMAE delivers accurate and interpretable cellular immunophenotyping and improves the prediction of subject-level metadata. This proof of concept marks a significant step forward for large-scale immunology studies.Single-cell cytometry data are crucial for understanding the role of the immune system in diseases and responses to treatment. However, traditional methods for annotating cytometry data face challenges in scalability, robustness, and accuracy. We propose a cytometry masked autoencoder (cyMAE), which automates immunophenotyping tasks including cell type annotation. The model upholds user-defined cell type definitions, facilitating interpretability and cross-study comparisons. The training of cyMAE has a self-supervised phase, which leverages large amounts of unlabeled data, followed by fine-tuning on specialized tasks using smaller amounts of annotated data. The cost of training a new model is amortized over repeated inferences on new datasets using the same panel. Through validation across multiple studies using the same panel, we demonstrate that cyMAE delivers accurate and interpretable cellular immunophenotyping and improves the prediction of subject-level metadata. This proof of concept marks a significant step forward for large-scale immunology studies.
SummarySingle-cell cytometry data are crucial for understanding the role of the immune system in diseases and responses to treatment. However, traditional methods for annotating cytometry data face challenges in scalability, robustness, and accuracy. We propose a cytometry masked autoencoder (cyMAE), which automates immunophenotyping tasks including cell type annotation. The model upholds user-defined cell type definitions, facilitating interpretability and cross-study comparisons. The training of cyMAE has a self-supervised phase, which leverages large amounts of unlabeled data, followed by fine-tuning on specialized tasks using smaller amounts of annotated data. The cost of training a new model is amortized over repeated inferences on new datasets using the same panel. Through validation across multiple studies using the same panel, we demonstrate that cyMAE delivers accurate and interpretable cellular immunophenotyping and improves the prediction of subject-level metadata. This proof of concept marks a significant step forward for large-scale immunology studies.
Single-cell cytometry data are crucial for understanding the role of the immune system in diseases and responses to treatment. However, traditional methods for annotating cytometry data face challenges in scalability, robustness, and accuracy. We propose a cytometry masked autoencoder (cyMAE), which automates immunophenotyping tasks including cell type annotation. The model upholds user-defined cell type definitions, facilitating interpretability and cross-study comparisons. The training of cyMAE has a self-supervised phase, which leverages large amounts of unlabeled data, followed by fine-tuning on specialized tasks using smaller amounts of annotated data. The cost of training a new model is amortized over repeated inferences on new datasets using the same panel. Through validation across multiple studies using the same panel, we demonstrate that cyMAE delivers accurate and interpretable cellular immunophenotyping and improves the prediction of subject-level metadata. This proof of concept marks a significant step forward for large-scale immunology studies. [Display omitted] •Masked cytometry modeling learns relationships among proteins without cell identity•We develop cytometry masked autoencoder (cyMAE) to automate immunophenotyping•cyMAE improves both cell-level and subject-level immune profiling Kim et al. introduces cyMAE, a cytometry masked autoencoder that automates immune cell profiling from single-cell cytometry data. By leveraging unlabeled data for pre-training and fine-tuning on specific tasks, the model improves immune profiling accuracy and enhances prediction of subject-level clinical data, advancing large-scale immune studies.
ArticleNumber 101808
Author Kim, Jaesik
Swigart, Lamorna Brown
Wagenaar, Joost
Apostolidis, Sokratis A.
Painter, Mark M.
Thomas, Karl W.
Jung, Sang-Hyuk
Norton, Dylan T.
Matthy, Michael A.
Wherry, E. John
McKeehan, Jeffrey
Ittner, Caroline A.G.
Russel, Derek W.
Turner, Alexandra P.
Woerner, Jakob
Liu, Kathleen D.
Esperanza, Mika
Burnham, Ellen L.
Orzechowski, Patryk
Mangalmurti, Nilam S.
Kim, Dokyoon
Pattekar, Ajinkya
Reilly, John P.
Truong, Van
Clendenin, Cynthia
Dunn, Thomas G.
Barot, Harsh
Nam, Yonghyun
Gibbs, Kevin W.
Meyer, Nuala J.
Ionita, Matei
Calfee, Carolyn S.
Gandotra, Sheetal
Greenplate, Allison R.
McKeague, Michelle L.
Mathew, Divij
Lee, Matthew
Author_xml – sequence: 1
  givenname: Jaesik
  surname: Kim
  fullname: Kim, Jaesik
  organization: Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
– sequence: 2
  givenname: Matei
  surname: Ionita
  fullname: Ionita, Matei
  organization: Institute for Immunology & Immune Health (I3H), Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
– sequence: 3
  givenname: Matthew
  surname: Lee
  fullname: Lee, Matthew
  organization: Institute for Immunology & Immune Health (I3H), Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
– sequence: 4
  givenname: Michelle L.
  surname: McKeague
  fullname: McKeague, Michelle L.
  organization: Institute for Immunology & Immune Health (I3H), Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
– sequence: 5
  givenname: Ajinkya
  surname: Pattekar
  fullname: Pattekar, Ajinkya
  organization: Institute for Immunology & Immune Health (I3H), Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
– sequence: 6
  givenname: Mark M.
  surname: Painter
  fullname: Painter, Mark M.
  organization: Institute for Immunology & Immune Health (I3H), Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
– sequence: 7
  givenname: Joost
  surname: Wagenaar
  fullname: Wagenaar, Joost
  organization: Institute for Immunology & Immune Health (I3H), Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
– sequence: 8
  givenname: Van
  surname: Truong
  fullname: Truong, Van
  organization: Institute for Immunology & Immune Health (I3H), Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
– sequence: 9
  givenname: Dylan T.
  surname: Norton
  fullname: Norton, Dylan T.
  organization: Institute for Immunology & Immune Health (I3H), Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
– sequence: 10
  givenname: Divij
  surname: Mathew
  fullname: Mathew, Divij
  organization: Institute for Immunology & Immune Health (I3H), Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
– sequence: 11
  givenname: Yonghyun
  surname: Nam
  fullname: Nam, Yonghyun
  organization: Institute for Immunology & Immune Health (I3H), Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
– sequence: 12
  givenname: Sokratis A.
  surname: Apostolidis
  fullname: Apostolidis, Sokratis A.
  organization: Institute for Immunology & Immune Health (I3H), Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
– sequence: 13
  givenname: Cynthia
  surname: Clendenin
  fullname: Clendenin, Cynthia
  organization: Institute for Immunology & Immune Health (I3H), Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
– sequence: 14
  givenname: Patryk
  surname: Orzechowski
  fullname: Orzechowski, Patryk
  organization: Institute for Immunology & Immune Health (I3H), Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
– sequence: 15
  givenname: Sang-Hyuk
  surname: Jung
  fullname: Jung, Sang-Hyuk
  organization: Institute for Immunology & Immune Health (I3H), Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
– sequence: 16
  givenname: Jakob
  surname: Woerner
  fullname: Woerner, Jakob
  organization: Institute for Immunology & Immune Health (I3H), Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
– sequence: 17
  givenname: Caroline A.G.
  surname: Ittner
  fullname: Ittner, Caroline A.G.
  organization: Division of Pulmonary and Critical Care Medicine, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
– sequence: 18
  givenname: Alexandra P.
  surname: Turner
  fullname: Turner, Alexandra P.
  organization: Division of Pulmonary and Critical Care Medicine, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
– sequence: 19
  givenname: Mika
  surname: Esperanza
  fullname: Esperanza, Mika
  organization: Division of Pulmonary and Critical Care Medicine, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
– sequence: 20
  givenname: Thomas G.
  surname: Dunn
  fullname: Dunn, Thomas G.
  organization: Division of Hematology/Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
– sequence: 21
  givenname: Nilam S.
  surname: Mangalmurti
  fullname: Mangalmurti, Nilam S.
  organization: Institute for Immunology & Immune Health (I3H), Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
– sequence: 22
  givenname: John P.
  surname: Reilly
  fullname: Reilly, John P.
  organization: Institute for Immunology & Immune Health (I3H), Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
– sequence: 23
  givenname: Nuala J.
  surname: Meyer
  fullname: Meyer, Nuala J.
  organization: Division of Pulmonary and Critical Care Medicine, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
– sequence: 24
  givenname: Carolyn S.
  surname: Calfee
  fullname: Calfee, Carolyn S.
  organization: Department of Anesthesia and Perioperative Care, University of California, San Francisco, School of Medicine, San Francisco, CA 94143, USA
– sequence: 25
  givenname: Kathleen D.
  surname: Liu
  fullname: Liu, Kathleen D.
  organization: Division of Nephrology and Critical Care Medicine, University of California, San Francisco, School of Medicine, San Francisco, CA 94143, USA
– sequence: 26
  givenname: Michael A.
  surname: Matthy
  fullname: Matthy, Michael A.
  organization: Cardiovascular Research Institute, Department of Medicine, University of California, San Francisco, School of Medicine, San Francisco, CA 94158, USA
– sequence: 27
  givenname: Lamorna Brown
  surname: Swigart
  fullname: Swigart, Lamorna Brown
  organization: Department of Laboratory Medicine, University of California, San Francisco, School of Medicine, San Francisco, CA 94143, USA
– sequence: 28
  givenname: Ellen L.
  surname: Burnham
  fullname: Burnham, Ellen L.
  organization: Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado School of Medicine, Aurora, CO 80045, USA
– sequence: 29
  givenname: Jeffrey
  surname: McKeehan
  fullname: McKeehan, Jeffrey
  organization: Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado School of Medicine, Aurora, CO 80045, USA
– sequence: 30
  givenname: Sheetal
  surname: Gandotra
  fullname: Gandotra, Sheetal
  organization: Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
– sequence: 31
  givenname: Derek W.
  surname: Russel
  fullname: Russel, Derek W.
  organization: Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
– sequence: 32
  givenname: Kevin W.
  surname: Gibbs
  fullname: Gibbs, Kevin W.
  organization: Section on Pulmonary and Critical Care, Allergy, and Immunology, Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
– sequence: 33
  givenname: Karl W.
  surname: Thomas
  fullname: Thomas, Karl W.
  organization: Section on Pulmonary and Critical Care, Allergy, and Immunology, Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
– sequence: 34
  givenname: Harsh
  surname: Barot
  fullname: Barot, Harsh
  organization: Section on Hospital Medicine, Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
– sequence: 35
  givenname: Allison R.
  surname: Greenplate
  fullname: Greenplate, Allison R.
  email: allie.greenplate@pennmedicine.upenn.edu
  organization: Institute for Immunology & Immune Health (I3H), Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
– sequence: 36
  givenname: E. John
  surname: Wherry
  fullname: Wherry, E. John
  email: wherry@pennmedicine.upenn.edu
  organization: Institute for Immunology & Immune Health (I3H), Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
– sequence: 37
  givenname: Dokyoon
  orcidid: 0000-0002-4592-9564
  surname: Kim
  fullname: Kim, Dokyoon
  email: dokyoon.kim@pennmedicine.upenn.edu
  organization: Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39515318$$D View this record in MEDLINE/PubMed
BookMark eNqFkltv1DAQhSNUREvpH-AB5ZGXLXZ8WbtCoGrFpVIlHriIN2viTFpvE3uxnYr99zjdUrVIwIttjc98R5o5T6s9HzxW1XNKjimh8tX6-KeN43FDGj4XFFGPqoNGSrlgS0337r33q6OU1oSQRlCqGHlS7TMtqGBUHVTfVtscRsxxW4-QrrCrYcoBvQ0dxpP61Ndg7RQhYw2-q53PGDcRM7QD3kjH8lXq4zj5sLlEH_J2g_FZ9biHIeHR7X1YfX3_7svq4-L804ez1en5woqlzou2lVS1WneNFrzRyx45cqWX5UDRcU00lxo0cEakFUA4yJ51EhFAMN1adlid7bhdgLXZRDdC3JoAztwUQrwwELOzAxpNGkKBKVBUcV18UROlQAqhews9FNbbHWsztSN2Fn2OMDyAPvzx7tJchGtDqSSca1oIL28JMfyYMGUzumRxGMBjmJJhtFGsYVTKIn1x3-zO5fdmiqDZCWwMKUXs7ySUmDkBZm3mBJg5AWaXgNL0eteEZebXDqNJ1pVlYuci2lyG4v7d_uaPdjs47ywMV7jFtA5T9GWbhprUGGI-zxGbE9ZwQoQQ3wvg5O-A_7n_AiV44lk
Cites_doi 10.1093/bioinformatics/btx448
10.1038/s41587-023-01763-2
10.1126/sciadv.abg0505
10.1126/science.abc8511
10.21105/joss.01686
10.1073/pnas.2003026117
10.1056/NEJM199909303411407
10.1002/cyto.a.23738
10.1093/bioinformatics/btab409
10.1038/s41467-023-35923-4
10.1002/cyto.a.23621
10.1038/s41586-023-06139-9
10.1016/j.isci.2023.106536
10.18653/v1/P19-3007
10.21105/joss.00861
10.1371/journal.pcbi.1008885
10.1002/cyto.a.22625
10.1038/nrc3239
10.1002/cyto.a.23030
10.1016/j.cell.2015.05.047
10.1038/s42256-022-00534-z
10.1038/nmeth.3863
10.1093/bioinformatics/btx054
10.1002/eji.201545774
10.1126/science.ade2574
10.1038/s41587-022-01618-2
10.1126/science.1259425
10.1109/TPAMI.2021.3095381
10.1002/cyto.a.24317
10.1038/nri3158
10.3390/genes10070531
ContentType Journal Article
Copyright 2024 The Author(s)
The Author(s)
Copyright © 2024 The Author(s). Published by Elsevier Inc. All rights reserved.
2024 The Author(s) 2024
Copyright_xml – notice: 2024 The Author(s)
– notice: The Author(s)
– notice: Copyright © 2024 The Author(s). Published by Elsevier Inc. All rights reserved.
– notice: 2024 The Author(s) 2024
DBID 6I.
AAFTH
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOA
DOI 10.1016/j.xcrm.2024.101808
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList
MEDLINE
MEDLINE - Academic




Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 2666-3791
EndPage 101808
ExternalDocumentID oai_doaj_org_article_90201a38a81849618e9088a6559fcafa
PMC11604491
39515318
10_1016_j_xcrm_2024_101808
S266637912400555X
1_s2_0_S266637912400555X
Genre Journal Article
GrantInformation_xml – fundername: NHLBI NIH HHS
  grantid: R35 HL161196
GroupedDBID .1-
.FO
0R~
53G
AAEDW
AALRI
AAMRU
AAXUO
AAYWO
ACVFH
ADCNI
ADVLN
AEUPX
AFPUW
AFRHN
AIGII
AITUG
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
APXCP
EBS
FDB
GROUPED_DOAJ
M41
M~E
OK1
ROL
RPM
Z5R
6I.
AAFTH
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
ID FETCH-LOGICAL-c579t-bb618b99d2954297fe4e4897e48e5d4909469a9a4306c5a04a6f3d6eeaa539bc3
IEDL.DBID DOA
ISICitedReferencesCount 1
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001364268700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2666-3791
IngestDate Mon Dec 01 19:30:18 EST 2025
Tue Sep 30 17:06:25 EDT 2025
Fri Jul 11 12:29:51 EDT 2025
Thu Apr 03 07:00:18 EDT 2025
Sat Nov 29 07:25:30 EST 2025
Sun Oct 19 01:40:04 EDT 2025
Sun Oct 19 01:21:44 EDT 2025
Sat Oct 25 11:12:40 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 11
Keywords deep learning
automated gating
representation learning
immunophenotyping
high-dimensional cytometry
mass cytometry
machine learning
Language English
License This is an open access article under the CC BY-NC-ND license.
Copyright © 2024 The Author(s). Published by Elsevier Inc. All rights reserved.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c579t-bb618b99d2954297fe4e4897e48e5d4909469a9a4306c5a04a6f3d6eeaa539bc3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
These authors contributed equally
Lead contact
ORCID 0000-0002-4592-9564
OpenAccessLink https://doaj.org/article/90201a38a81849618e9088a6559fcafa
PMID 39515318
PQID 3128323166
PQPubID 23479
PageCount 1
ParticipantIDs doaj_primary_oai_doaj_org_article_90201a38a81849618e9088a6559fcafa
pubmedcentral_primary_oai_pubmedcentral_nih_gov_11604491
proquest_miscellaneous_3128323166
pubmed_primary_39515318
crossref_primary_10_1016_j_xcrm_2024_101808
elsevier_sciencedirect_doi_10_1016_j_xcrm_2024_101808
elsevier_clinicalkeyesjournals_1_s2_0_S266637912400555X
elsevier_clinicalkey_doi_10_1016_j_xcrm_2024_101808
PublicationCentury 2000
PublicationDate 2024-11-19
PublicationDateYYYYMMDD 2024-11-19
PublicationDate_xml – month: 11
  year: 2024
  text: 2024-11-19
  day: 19
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Cell reports. Medicine
PublicationTitleAlternate Cell Rep Med
PublicationYear 2024
Publisher Elsevier Inc
Elsevier
Publisher_xml – name: Elsevier Inc
– name: Elsevier
References Abdelaal, van Unen, Höllt, Koning, Reinders, Mahfouz (bib11) 2019; 95
Samusik, Good, Spitzer, Davis, Nolan (bib7) 2016; 13
Zhang, Luo, Zhong, Choi, Ma, Wang, Mahrt, Guo, Stawiski, Modrusan (bib10) 2019; 10
Shen, Liu, Hu, Shen, Zhang, Wu, Feng, Yang, Li, Yang (bib29) 2023; 26
Pardoll (bib40) 2012; 12
Lundberg, Lee (bib42) 2017
Spitzer, Gherardini, Fragiadakis, Bhattacharya, Yuan, Hotson, Finck, Carmi, Zunder, Fantl (bib6) 2015; 349
Hu, Tang, Singh, Bhattacharya, Butte (bib8) 2020; 117
(bib32) 2023; 58
Lee, Kosoy, Becker, Dudley, Kidd (bib9) 2017; 33
Mathew, Giles, Baxter, Oldridge, Greenplate, Wu, Alanio, Kuri-Cervantes, Pampena, D'Andrea (bib33) 2020; 369
Vaswani, Shazeer, Parmar, Uszkoreit, Jones, Gomez, Kaiser, Polosukhin (bib13) 2017; 30
Minsheng, Jing, Zeng, Liu, Guo, Cheng, Wang, Ma, Song (bib30) 2023
Becht, Tolstrup, Dutertre, Morawski, Campbell, Ginhoux, Newell, Gottardo, Headley (bib37) 2021; 7
Elnaggar, Heinzinger, Dallago, Rehawi, Wang, Jones, Gibbs, Feher, Angerer, Steinegger (bib20) 2022; 44
Theodoris, Xiao, Chopra, Chaffin, Al Sayed, Hill, Mantineo, Brydon, Zeng, Liu, Ellinor (bib31) 2023; 618
Gong, Hao, Zeng, Liu, Ma, Cheng, Wang, Zhang, Song (bib26) 2023
Eguchi, Choe, Parekh, Khalek, Ward, Vithani, Bowman, Jardine, Huang (bib24) 2022
Brown, Mann, Ryder, Subbiah, Kaplan, Dhariwal, Neelakantan, Shyam, Sastry, Askell (bib15) 2020; 33
Mair, Hartmann, Mrdjen, Tosevski, Krieg, Becher (bib2) 2016; 46
Lowenberg, Downing, Burnett (bib39) 1999; 341
Devlin, Chang, Lee, Toutanova (bib14) 2019; 1
Madani, Krause, Greene, Subramanian, Mohr, Holton, Olmos, Xiong, Sun, Socher (bib19) 2023; 41
Majmundar, Goyal, Netrapalli, Jain (bib51) 2022
Seabold, Perktold (bib45) 2010; 7
Geanon, Lee, Gonzalez-Kozlova, Kelly, Handler, Upadhyaya, Leech, De Real, Herbinet, Magen (bib47) 2021; 99
Hie, Shanker, Xu, Bruun, Weidenbacher, Tang, Wu, Pak, Kim (bib22) 2024; 42
Oquab, Darcet, Moutakanni, Vo, Szafraniec, Khalidov, Fernandez, Haziza, Massa, El-Nouby (bib16) 2023
Kaushik, Dunham, He, Manohar, Desai, Nadeau, Andorf (bib12) 2021; 37
Bao, H., Dong, L., Piao, S., and Wei, F. (2022). BEiT: BERT Pre-Training of Image Transformers. International Conference on Learning Representations.
Chen, Xu, Tao, Chen, Zhao, Han (bib28) 2023; 14
Van Gassen, Callebaut, Van Helden, Lambrecht, Demeester, Dhaene, Saeys (bib4) 2015; 87
Wickham, Averick, Bryan, Chang, François, François, Grolemund, Hayes, Henry, Hester (bib46) 2019; 4
Cheng, Karkhanis, Gokbag, Liu, Li (bib34) 2022; 18
Weber, Robinson (bib52) 2016; 89
McInnes, Healy, Saul, Großberger (bib41) 2018; 3
Yang, Wang, Wang, Fang, Tang, Huang, Lu, Yao (bib27) 2022; 4
Maecker, McCoy, Nussenblatt (bib1) 2012; 12
Ba, Kiros, Hinton (bib48) 2016
Lin, Akin, Rao, Hie, Zhu, Lu, Smetanin, Verkuil, Kabeli, Shmueli (bib21) 2023; 379
Pedregosa, Varoquaux, Gramfort, Michel, Thirion, Grisel, Blondel, Müller, Nothman, Louppe (bib43) 2011; 12
Cui, Wang, Maan, Pang, Luo, Wang (bib25) 2023
Vig (bib38) 2019
Shanehsazzadeh, McPartlon, Kasun, Steiger, Sutton, Yassine, McCloskey, Haile, Shuai, Alverio (bib23) 2023
He, Chen, Xie, Li, Dollár, Girshick (bib18) 2022
Li, Shaham, Stanton, Yao, Montgomery, Kluger (bib35) 2017; 33
Levine, Simonds, Bendall, Davis, Amir, Tadmor, Litvin, Fienberg, Jager, Zunder (bib5) 2015; 162
Kaplan, McCandlish, Henighan, Brown, Chess, Child, Gray, Radford, Wu, Amodei (bib50) 2020
Olsen, Leipold, Pedersen, Maecker (bib3) 2019; 95
Yurtsev, Friedman, Gore (bib44) 2015
Chen, Guestrin (bib36) 2016
Larsson, Maire, Shakhnarovich (bib49) 2016
Geanon (10.1016/j.xcrm.2024.101808_bib47) 2021; 99
Weber (10.1016/j.xcrm.2024.101808_bib52) 2016; 89
Levine (10.1016/j.xcrm.2024.101808_bib5) 2015; 162
Larsson (10.1016/j.xcrm.2024.101808_bib49) 2016
Yurtsev (10.1016/j.xcrm.2024.101808_bib44) 2015
Madani (10.1016/j.xcrm.2024.101808_bib19) 2023; 41
Becht (10.1016/j.xcrm.2024.101808_bib37) 2021; 7
Yang (10.1016/j.xcrm.2024.101808_bib27) 2022; 4
Li (10.1016/j.xcrm.2024.101808_bib35) 2017; 33
Devlin (10.1016/j.xcrm.2024.101808_bib14) 2019; 1
Hu (10.1016/j.xcrm.2024.101808_bib8) 2020; 117
Gong (10.1016/j.xcrm.2024.101808_bib26) 2023
Zhang (10.1016/j.xcrm.2024.101808_bib10) 2019; 10
Pardoll (10.1016/j.xcrm.2024.101808_bib40) 2012; 12
Lowenberg (10.1016/j.xcrm.2024.101808_bib39) 1999; 341
Cheng (10.1016/j.xcrm.2024.101808_bib34) 2022; 18
Olsen (10.1016/j.xcrm.2024.101808_bib3) 2019; 95
Cui (10.1016/j.xcrm.2024.101808_bib25) 2023
(10.1016/j.xcrm.2024.101808_bib32) 2023; 58
McInnes (10.1016/j.xcrm.2024.101808_bib41) 2018; 3
Pedregosa (10.1016/j.xcrm.2024.101808_bib43) 2011; 12
Hie (10.1016/j.xcrm.2024.101808_bib22) 2024; 42
Shen (10.1016/j.xcrm.2024.101808_bib29) 2023; 26
Lundberg (10.1016/j.xcrm.2024.101808_bib42) 2017
Shanehsazzadeh (10.1016/j.xcrm.2024.101808_bib23) 2023
Kaplan (10.1016/j.xcrm.2024.101808_bib50) 2020
10.1016/j.xcrm.2024.101808_bib17
Theodoris (10.1016/j.xcrm.2024.101808_bib31) 2023; 618
Eguchi (10.1016/j.xcrm.2024.101808_bib24) 2022
Lin (10.1016/j.xcrm.2024.101808_bib21) 2023; 379
Mair (10.1016/j.xcrm.2024.101808_bib2) 2016; 46
Majmundar (10.1016/j.xcrm.2024.101808_bib51) 2022
Lee (10.1016/j.xcrm.2024.101808_bib9) 2017; 33
Vaswani (10.1016/j.xcrm.2024.101808_bib13) 2017; 30
Elnaggar (10.1016/j.xcrm.2024.101808_bib20) 2022; 44
Chen (10.1016/j.xcrm.2024.101808_bib28) 2023; 14
Spitzer (10.1016/j.xcrm.2024.101808_bib6) 2015; 349
Minsheng (10.1016/j.xcrm.2024.101808_bib30) 2023
Samusik (10.1016/j.xcrm.2024.101808_bib7) 2016; 13
Mathew (10.1016/j.xcrm.2024.101808_bib33) 2020; 369
Chen (10.1016/j.xcrm.2024.101808_bib36) 2016
Maecker (10.1016/j.xcrm.2024.101808_bib1) 2012; 12
Abdelaal (10.1016/j.xcrm.2024.101808_bib11) 2019; 95
Wickham (10.1016/j.xcrm.2024.101808_bib46) 2019; 4
Brown (10.1016/j.xcrm.2024.101808_bib15) 2020; 33
Kaushik (10.1016/j.xcrm.2024.101808_bib12) 2021; 37
He (10.1016/j.xcrm.2024.101808_bib18) 2022
Oquab (10.1016/j.xcrm.2024.101808_bib16) 2023
Ba (10.1016/j.xcrm.2024.101808_bib48) 2016
Van Gassen (10.1016/j.xcrm.2024.101808_bib4) 2015; 87
Vig (10.1016/j.xcrm.2024.101808_bib38) 2019
Seabold (10.1016/j.xcrm.2024.101808_bib45) 2010; 7
References_xml – year: 2023
  ident: bib23
  article-title: Unlocking de novo antibody design with generative artificial intelligence
  publication-title: bioRxiv
– volume: 618
  start-page: 616
  year: 2023
  end-page: 624
  ident: bib31
  article-title: Transfer learning enables predictions in network biology
  publication-title: Nature
– start-page: 37
  year: 2019
  end-page: 42
  ident: bib38
  article-title: A Multiscale Visualization of Attention in the Transformer Model.
  publication-title: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics: System Demonstrations
– volume: 33
  start-page: 1689
  year: 2017
  end-page: 1695
  ident: bib9
  article-title: Automated cell type discovery and classification through knowledge transfer
  publication-title: Bioinformatics
– year: 2023
  ident: bib16
  article-title: DINOv2: Learning Robust Visual Features without Supervision
  publication-title: arXiv
– volume: 349
  year: 2015
  ident: bib6
  article-title: IMMUNOLOGY. An interactive reference framework for modeling a dynamic immune system
  publication-title: Science
– volume: 10
  year: 2019
  ident: bib10
  article-title: SCINA: A Semi-Supervised Subtyping Algorithm of Single Cells and Bulk Samples
  publication-title: Genes
– volume: 369
  year: 2020
  ident: bib33
  article-title: Deep immune profiling of COVID-19 patients reveals distinct immunotypes with therapeutic implications
  publication-title: Science
– year: 2016
  ident: bib48
  article-title: Layer Normalization
  publication-title: arXiv
– year: 2020
  ident: bib50
  article-title: Scaling Laws for Neural Language Models
  publication-title: arXiv
– volume: 379
  start-page: 1123
  year: 2023
  end-page: 1130
  ident: bib21
  article-title: Evolutionary-scale prediction of atomic-level protein structure with a language model
  publication-title: Science
– year: 2016
  ident: bib49
  article-title: FractalNet: Ultra-Deep Neural Networks without Residuals
  publication-title: International Conference on Learning Representations.
– volume: 14
  start-page: 223
  year: 2023
  ident: bib28
  article-title: Transformer for one stop interpretable cell type annotation
  publication-title: Nat. Commun.
– volume: 162
  start-page: 184
  year: 2015
  end-page: 197
  ident: bib5
  article-title: Data-Driven Phenotypic Dissection of AML Reveals Progenitor-like Cells that Correlate with Prognosis
  publication-title: Cell
– volume: 13
  start-page: 493
  year: 2016
  end-page: 496
  ident: bib7
  article-title: Automated mapping of phenotype space with single-cell data
  publication-title: Nat. Methods
– volume: 58
  year: 2023
  ident: bib32
  article-title: Report of the first seven agents in the I-SPY COVID trial: a phase 2, open label, adaptive platform randomised controlled trial
  publication-title: EClinicalMedicine
– volume: 42
  start-page: 275
  year: 2024
  end-page: 283
  ident: bib22
  article-title: Efficient evolution of human antibodies from general protein language models
  publication-title: Nat. Biotechnol.
– volume: 3
  start-page: 861
  year: 2018
  ident: bib41
  article-title: UMAP: Uniform Manifold Approximation and Projection
  publication-title: J. Open Source Softw.
– volume: 4
  start-page: 1686
  year: 2019
  ident: bib46
  article-title: Welcome to the tidyverse
  publication-title: J. Open Source Softw.
– volume: 12
  start-page: 191
  year: 2012
  end-page: 200
  ident: bib1
  article-title: Standardizing immunophenotyping for the Human Immunology Project
  publication-title: Nat. Rev. Immunol.
– start-page: 16000
  year: 2022
  end-page: 16009
  ident: bib18
  article-title: Masked Autoencoders Are Scalable Vision Learners
– volume: 33
  start-page: 1877
  year: 2020
  end-page: 1901
  ident: bib15
  article-title: Language Models are Few-Shot Learners
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 7
  year: 2021
  ident: bib37
  article-title: High-throughput single-cell quantification of hundreds of proteins using conventional flow cytometry and machine learning
  publication-title: Sci. Adv.
– year: 2022
  ident: bib51
  article-title: MET: Masked Encoding for Tabular Data
  publication-title: NeurIPS 2022 First Table Representation Workshop.
– volume: 117
  start-page: 21373
  year: 2020
  end-page: 21380
  ident: bib8
  article-title: A robust and interpretable end-to-end deep learning model for cytometry data
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 18
  year: 2022
  ident: bib34
  article-title: DGCyTOF: Deep learning with graphic cluster visualization to predict cell types of single cell mass cytometry data
  publication-title: PLoS Comput. Biol.
– volume: 341
  start-page: 1051
  year: 1999
  end-page: 1062
  ident: bib39
  article-title: Acute myeloid leukemia
  publication-title: N. Engl. J. Med.
– year: 2023
  ident: bib30
  article-title: Large Scale Foundation Model on Single-cell Transcriptomics
  publication-title: bioRxiv
– volume: 37
  start-page: 4164
  year: 2021
  end-page: 4171
  ident: bib12
  article-title: CyAnno: a semi-automated approach for cell type annotation of mass cytometry datasets
  publication-title: Bioinformatics
– volume: 41
  start-page: 1099
  year: 2023
  end-page: 1106
  ident: bib19
  article-title: Large language models generate functional protein sequences across diverse families
  publication-title: Nat. Biotechnol.
– volume: 26
  year: 2023
  ident: bib29
  article-title: Generative pretraining from large-scale transcriptomes for single-cell deciphering
  publication-title: iScience
– volume: 99
  start-page: 446
  year: 2021
  end-page: 461
  ident: bib47
  article-title: A streamlined whole blood CyTOF workflow defines a circulating immune cell signature of COVID-19
  publication-title: Cytometry A.
– volume: 95
  start-page: 769
  year: 2019
  end-page: 781
  ident: bib11
  article-title: Predicting Cell Populations in Single Cell Mass Cytometry Data
  publication-title: Cytometry A.
– volume: 12
  start-page: 2825
  year: 2011
  end-page: 2830
  ident: bib43
  article-title: Scikit-learn: Machine Learning in Python
  publication-title: J. Mach. Learn. Res.
– volume: 30
  start-page: 6000
  year: 2017
  end-page: 6010
  ident: bib13
  article-title: Attention is All you Need
  publication-title: Adv. Neural Inf. Process. Syst.
– year: 2016
  ident: bib36
  article-title: XGBoost: A Scalable Tree Boosting System. Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.
  publication-title: Association for Computing Machinery.
– volume: 89
  start-page: 1084
  year: 2016
  end-page: 1096
  ident: bib52
  article-title: Comparison of clustering methods for high-dimensional single-cell flow and mass cytometry data
  publication-title: Cytometry A.
– volume: 95
  start-page: 156
  year: 2019
  end-page: 172
  ident: bib3
  article-title: The anatomy of single cell mass cytometry data
  publication-title: Cytometry
– volume: 46
  start-page: 34
  year: 2016
  end-page: 43
  ident: bib2
  article-title: The end of gating? An introduction to automated analysis of high dimensional cytometry data
  publication-title: Eur. J. Immunol.
– year: 2023
  ident: bib25
  article-title: scGPT: Towards Building a Foundation Model for Single-Cell Multi-omics Using Generative AI
  publication-title: bioRxiv
– year: 2022
  ident: bib24
  article-title: Deep Generative Design of Epitope-Specific Binding Proteins by Latent Conformation Optimization
  publication-title: bioRxiv
– start-page: 4768
  year: 2017
  end-page: 4777
  ident: bib42
  article-title: A Unified Approach to Interpreting Model Predictions. Proceedings of the 31st International Conference on Neural Information Processing Systems
– volume: 12
  start-page: 252
  year: 2012
  end-page: 264
  ident: bib40
  article-title: The blockade of immune checkpoints in cancer immunotherapy
  publication-title: Nat. Rev. Cancer
– volume: 1
  start-page: 4171
  year: 2019
  end-page: 4186
  ident: bib14
  article-title: BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding. In Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics
  publication-title: Human Language Technologies
– volume: 33
  start-page: 3423
  year: 2017
  end-page: 3430
  ident: bib35
  article-title: Gating mass cytometry data by deep learning
  publication-title: Bioinformatics
– reference: Bao, H., Dong, L., Piao, S., and Wei, F. (2022). BEiT: BERT Pre-Training of Image Transformers. International Conference on Learning Representations.
– year: 2023
  ident: bib26
  article-title: xTrimoGene: An Efficient and Scalable Representation Learner for Single-Cell RNA-Seq Data
  publication-title: bioRxiv
– volume: 7
  start-page: 1
  year: 2010
  ident: bib45
  article-title: Statsmodels: econometric and statistical modeling with python
  publication-title: SciPy
– volume: 87
  start-page: 636
  year: 2015
  end-page: 645
  ident: bib4
  article-title: FlowSOM: Using self-organizing maps for visualization and interpretation of cytometry data
  publication-title: Cytometry A.
– volume: 44
  start-page: 7112
  year: 2022
  end-page: 7127
  ident: bib20
  article-title: ProtTrans: Toward Understanding the Language of Life Through Self-Supervised Learning
  publication-title: Ieee T Pattern Anal
– volume: 4
  start-page: 852
  year: 2022
  end-page: 866
  ident: bib27
  article-title: scBERT as a large-scale pretrained deep language model for cell type annotation of single-cell RNA-seq data
  publication-title: Nat. Mach. Intell.
– year: 2015
  ident: bib44
  article-title: FlowCytometryTools. Zenodo
– volume: 33
  start-page: 3423
  year: 2017
  ident: 10.1016/j.xcrm.2024.101808_bib35
  article-title: Gating mass cytometry data by deep learning
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btx448
– volume: 33
  start-page: 1877
  year: 2020
  ident: 10.1016/j.xcrm.2024.101808_bib15
  article-title: Language Models are Few-Shot Learners
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 42
  start-page: 275
  year: 2024
  ident: 10.1016/j.xcrm.2024.101808_bib22
  article-title: Efficient evolution of human antibodies from general protein language models
  publication-title: Nat. Biotechnol.
  doi: 10.1038/s41587-023-01763-2
– volume: 7
  year: 2021
  ident: 10.1016/j.xcrm.2024.101808_bib37
  article-title: High-throughput single-cell quantification of hundreds of proteins using conventional flow cytometry and machine learning
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.abg0505
– volume: 369
  year: 2020
  ident: 10.1016/j.xcrm.2024.101808_bib33
  article-title: Deep immune profiling of COVID-19 patients reveals distinct immunotypes with therapeutic implications
  publication-title: Science
  doi: 10.1126/science.abc8511
– year: 2016
  ident: 10.1016/j.xcrm.2024.101808_bib48
  article-title: Layer Normalization
  publication-title: arXiv
– volume: 1
  start-page: 4171
  year: 2019
  ident: 10.1016/j.xcrm.2024.101808_bib14
  article-title: BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding. In Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics
– volume: 30
  start-page: 6000
  year: 2017
  ident: 10.1016/j.xcrm.2024.101808_bib13
  article-title: Attention is All you Need
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 12
  start-page: 2825
  year: 2011
  ident: 10.1016/j.xcrm.2024.101808_bib43
  article-title: Scikit-learn: Machine Learning in Python
  publication-title: J. Mach. Learn. Res.
– year: 2023
  ident: 10.1016/j.xcrm.2024.101808_bib25
  article-title: scGPT: Towards Building a Foundation Model for Single-Cell Multi-omics Using Generative AI
  publication-title: bioRxiv
– volume: 4
  start-page: 1686
  year: 2019
  ident: 10.1016/j.xcrm.2024.101808_bib46
  article-title: Welcome to the tidyverse
  publication-title: J. Open Source Softw.
  doi: 10.21105/joss.01686
– volume: 117
  start-page: 21373
  year: 2020
  ident: 10.1016/j.xcrm.2024.101808_bib8
  article-title: A robust and interpretable end-to-end deep learning model for cytometry data
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.2003026117
– volume: 341
  start-page: 1051
  year: 1999
  ident: 10.1016/j.xcrm.2024.101808_bib39
  article-title: Acute myeloid leukemia
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJM199909303411407
– volume: 95
  start-page: 769
  year: 2019
  ident: 10.1016/j.xcrm.2024.101808_bib11
  article-title: Predicting Cell Populations in Single Cell Mass Cytometry Data
  publication-title: Cytometry A.
  doi: 10.1002/cyto.a.23738
– volume: 37
  start-page: 4164
  year: 2021
  ident: 10.1016/j.xcrm.2024.101808_bib12
  article-title: CyAnno: a semi-automated approach for cell type annotation of mass cytometry datasets
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btab409
– volume: 14
  start-page: 223
  year: 2023
  ident: 10.1016/j.xcrm.2024.101808_bib28
  article-title: Transformer for one stop interpretable cell type annotation
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-023-35923-4
– year: 2015
  ident: 10.1016/j.xcrm.2024.101808_bib44
– volume: 95
  start-page: 156
  year: 2019
  ident: 10.1016/j.xcrm.2024.101808_bib3
  article-title: The anatomy of single cell mass cytometry data
  publication-title: Cytometry
  doi: 10.1002/cyto.a.23621
– volume: 618
  start-page: 616
  year: 2023
  ident: 10.1016/j.xcrm.2024.101808_bib31
  article-title: Transfer learning enables predictions in network biology
  publication-title: Nature
  doi: 10.1038/s41586-023-06139-9
– year: 2022
  ident: 10.1016/j.xcrm.2024.101808_bib51
  article-title: MET: Masked Encoding for Tabular Data
  publication-title: NeurIPS 2022 First Table Representation Workshop.
– volume: 26
  year: 2023
  ident: 10.1016/j.xcrm.2024.101808_bib29
  article-title: Generative pretraining from large-scale transcriptomes for single-cell deciphering
  publication-title: iScience
  doi: 10.1016/j.isci.2023.106536
– start-page: 37
  year: 2019
  ident: 10.1016/j.xcrm.2024.101808_bib38
  article-title: A Multiscale Visualization of Attention in the Transformer Model.
  publication-title: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics: System Demonstrations
  doi: 10.18653/v1/P19-3007
– volume: 3
  start-page: 861
  year: 2018
  ident: 10.1016/j.xcrm.2024.101808_bib41
  article-title: UMAP: Uniform Manifold Approximation and Projection
  publication-title: J. Open Source Softw.
  doi: 10.21105/joss.00861
– year: 2023
  ident: 10.1016/j.xcrm.2024.101808_bib26
  article-title: xTrimoGene: An Efficient and Scalable Representation Learner for Single-Cell RNA-Seq Data
  publication-title: bioRxiv
– year: 2016
  ident: 10.1016/j.xcrm.2024.101808_bib49
  article-title: FractalNet: Ultra-Deep Neural Networks without Residuals
  publication-title: International Conference on Learning Representations.
– year: 2023
  ident: 10.1016/j.xcrm.2024.101808_bib23
  article-title: Unlocking de novo antibody design with generative artificial intelligence
  publication-title: bioRxiv
– ident: 10.1016/j.xcrm.2024.101808_bib17
– volume: 18
  year: 2022
  ident: 10.1016/j.xcrm.2024.101808_bib34
  article-title: DGCyTOF: Deep learning with graphic cluster visualization to predict cell types of single cell mass cytometry data
  publication-title: PLoS Comput. Biol.
  doi: 10.1371/journal.pcbi.1008885
– volume: 87
  start-page: 636
  year: 2015
  ident: 10.1016/j.xcrm.2024.101808_bib4
  article-title: FlowSOM: Using self-organizing maps for visualization and interpretation of cytometry data
  publication-title: Cytometry A.
  doi: 10.1002/cyto.a.22625
– year: 2022
  ident: 10.1016/j.xcrm.2024.101808_bib24
  article-title: Deep Generative Design of Epitope-Specific Binding Proteins by Latent Conformation Optimization
  publication-title: bioRxiv
– year: 2020
  ident: 10.1016/j.xcrm.2024.101808_bib50
  article-title: Scaling Laws for Neural Language Models
  publication-title: arXiv
– year: 2023
  ident: 10.1016/j.xcrm.2024.101808_bib30
  article-title: Large Scale Foundation Model on Single-cell Transcriptomics
  publication-title: bioRxiv
– volume: 12
  start-page: 252
  year: 2012
  ident: 10.1016/j.xcrm.2024.101808_bib40
  article-title: The blockade of immune checkpoints in cancer immunotherapy
  publication-title: Nat. Rev. Cancer
  doi: 10.1038/nrc3239
– volume: 89
  start-page: 1084
  year: 2016
  ident: 10.1016/j.xcrm.2024.101808_bib52
  article-title: Comparison of clustering methods for high-dimensional single-cell flow and mass cytometry data
  publication-title: Cytometry A.
  doi: 10.1002/cyto.a.23030
– volume: 162
  start-page: 184
  year: 2015
  ident: 10.1016/j.xcrm.2024.101808_bib5
  article-title: Data-Driven Phenotypic Dissection of AML Reveals Progenitor-like Cells that Correlate with Prognosis
  publication-title: Cell
  doi: 10.1016/j.cell.2015.05.047
– volume: 4
  start-page: 852
  year: 2022
  ident: 10.1016/j.xcrm.2024.101808_bib27
  article-title: scBERT as a large-scale pretrained deep language model for cell type annotation of single-cell RNA-seq data
  publication-title: Nat. Mach. Intell.
  doi: 10.1038/s42256-022-00534-z
– volume: 13
  start-page: 493
  year: 2016
  ident: 10.1016/j.xcrm.2024.101808_bib7
  article-title: Automated mapping of phenotype space with single-cell data
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.3863
– start-page: 16000
  year: 2022
  ident: 10.1016/j.xcrm.2024.101808_bib18
– start-page: 4768
  year: 2017
  ident: 10.1016/j.xcrm.2024.101808_bib42
– volume: 33
  start-page: 1689
  year: 2017
  ident: 10.1016/j.xcrm.2024.101808_bib9
  article-title: Automated cell type discovery and classification through knowledge transfer
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btx054
– volume: 46
  start-page: 34
  year: 2016
  ident: 10.1016/j.xcrm.2024.101808_bib2
  article-title: The end of gating? An introduction to automated analysis of high dimensional cytometry data
  publication-title: Eur. J. Immunol.
  doi: 10.1002/eji.201545774
– volume: 379
  start-page: 1123
  year: 2023
  ident: 10.1016/j.xcrm.2024.101808_bib21
  article-title: Evolutionary-scale prediction of atomic-level protein structure with a language model
  publication-title: Science
  doi: 10.1126/science.ade2574
– year: 2016
  ident: 10.1016/j.xcrm.2024.101808_bib36
  article-title: XGBoost: A Scalable Tree Boosting System. Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.
  publication-title: Association for Computing Machinery.
– volume: 41
  start-page: 1099
  year: 2023
  ident: 10.1016/j.xcrm.2024.101808_bib19
  article-title: Large language models generate functional protein sequences across diverse families
  publication-title: Nat. Biotechnol.
  doi: 10.1038/s41587-022-01618-2
– volume: 349
  year: 2015
  ident: 10.1016/j.xcrm.2024.101808_bib6
  article-title: IMMUNOLOGY. An interactive reference framework for modeling a dynamic immune system
  publication-title: Science
  doi: 10.1126/science.1259425
– volume: 58
  year: 2023
  ident: 10.1016/j.xcrm.2024.101808_bib32
  article-title: Report of the first seven agents in the I-SPY COVID trial: a phase 2, open label, adaptive platform randomised controlled trial
  publication-title: EClinicalMedicine
– volume: 44
  start-page: 7112
  year: 2022
  ident: 10.1016/j.xcrm.2024.101808_bib20
  article-title: ProtTrans: Toward Understanding the Language of Life Through Self-Supervised Learning
  publication-title: Ieee T Pattern Anal
  doi: 10.1109/TPAMI.2021.3095381
– volume: 99
  start-page: 446
  year: 2021
  ident: 10.1016/j.xcrm.2024.101808_bib47
  article-title: A streamlined whole blood CyTOF workflow defines a circulating immune cell signature of COVID-19
  publication-title: Cytometry A.
  doi: 10.1002/cyto.a.24317
– volume: 12
  start-page: 191
  year: 2012
  ident: 10.1016/j.xcrm.2024.101808_bib1
  article-title: Standardizing immunophenotyping for the Human Immunology Project
  publication-title: Nat. Rev. Immunol.
  doi: 10.1038/nri3158
– year: 2023
  ident: 10.1016/j.xcrm.2024.101808_bib16
  article-title: DINOv2: Learning Robust Visual Features without Supervision
  publication-title: arXiv
– volume: 10
  year: 2019
  ident: 10.1016/j.xcrm.2024.101808_bib10
  article-title: SCINA: A Semi-Supervised Subtyping Algorithm of Single Cells and Bulk Samples
  publication-title: Genes
  doi: 10.3390/genes10070531
– volume: 7
  start-page: 1
  year: 2010
  ident: 10.1016/j.xcrm.2024.101808_bib45
  article-title: Statsmodels: econometric and statistical modeling with python
  publication-title: SciPy
SSID ssj0002511830
Score 2.2816243
Snippet Single-cell cytometry data are crucial for understanding the role of the immune system in diseases and responses to treatment. However, traditional methods for...
SummarySingle-cell cytometry data are crucial for understanding the role of the immune system in diseases and responses to treatment. However, traditional...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 101808
SubjectTerms Advanced Basic Science
Algorithms
automated gating
deep learning
Flow Cytometry - methods
high-dimensional cytometry
Humans
immunophenotyping
Immunophenotyping - methods
machine learning
mass cytometry
representation learning
Single-Cell Analysis - methods
Title Cytometry masked autoencoder: An accurate and interpretable automated immunophenotyper
URI https://www.clinicalkey.com/#!/content/1-s2.0-S266637912400555X
https://www.clinicalkey.es/playcontent/1-s2.0-S266637912400555X
https://dx.doi.org/10.1016/j.xcrm.2024.101808
https://www.ncbi.nlm.nih.gov/pubmed/39515318
https://www.proquest.com/docview/3128323166
https://pubmed.ncbi.nlm.nih.gov/PMC11604491
https://doaj.org/article/90201a38a81849618e9088a6559fcafa
Volume 5
WOSCitedRecordID wos001364268700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2666-3791
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002511830
  issn: 2666-3791
  databaseCode: DOA
  dateStart: 20200101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2666-3791
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002511830
  issn: 2666-3791
  databaseCode: M~E
  dateStart: 20200101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Jb9UwELagQogLYicsVZC4oUD87MQxt1K14tIKiUXvZk28iBSaoCQP0Qu_nZksTy-A6IWLD4kdJ5-3z_HMN4w9l1Yo5YRKINMhkaDypCxSkawkAGglkNSVQ7AJdXparNf63U6oL7IJG-WBR-BeaeQzHEQBuLJICk_iyTIHcmTCwUIYqFGq9M5miubggTiLdPKSGQ26ftiWXM9X8uWgWlUsVqJBsH-xIP1JOH-3m9xZiI5vsZsTg4wPxje_za74-g67fjKdkd9lnw4v-ubc9-1FfA7dF-9i2PQN6VU6376OD-oYrN2QQkQMtYurrdVh-dUPWZHDYqGKHEdIdKBu6Ddte499PD76cPg2maInJDZTuk_KEsEqtXZ0krfSKnjpZaEVJj5zUuO-LtegQeKmwWaQSsiDcLn3AJnQpRX32V7d1P4hi4UOJefOW2EDjvlQggIHwglQQXnuI_ZiRtJ8G0UyzGw9dmYId0O4mxH3iL0hsLc5SeB6uIDNbqZmN5c1e8TE3FRm9iHFWQ8fVP2zavW3Ur6bBm5nuOlWJjXvkbfkQmlOJrZZlq0jlm1LTtxk5ByX1vhs7kcGBy6dxkDtm01nBKcoUYLnecQejP1qC4lA3ouTI5YuFj1ugdnyTl19HsTBOc9TKTV_9D9Qfsxu0LeQ7yXXT9he3278U3bNfu-rrt1nV9W62B8GHqYnP49-AVKWM5s
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Cytometry+masked+autoencoder%3A+An+accurate+and+interpretable+automated+immunophenotyper&rft.jtitle=Cell+reports.+Medicine&rft.au=Kim%2C+Jaesik&rft.au=Ionita%2C+Matei&rft.au=Lee%2C+Matthew&rft.au=McKeague%2C+Michelle+L&rft.date=2024-11-19&rft.eissn=2666-3791&rft.volume=5&rft.issue=11&rft.spage=101808&rft_id=info:doi/10.1016%2Fj.xcrm.2024.101808&rft_id=info%3Apmid%2F39515318&rft.externalDocID=39515318
thumbnail_m http://cvtisr.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fcdn.clinicalkey.com%2Fck-thumbnails%2F26663791%2FS2666379123X00123%2Fcov150h.gif