A new optimization algorithm based on average and subtraction of the best and worst members of the population for solving various optimization problems

In this paper, a novel evolutionary-based method, called Average and Subtraction-Based Optimizer (ASBO), is presented to attain suitable quasi-optimal solutions for various optimization problems. The core idea in the design of the ASBO is to use the average information and the subtraction of the bes...

Full description

Saved in:
Bibliographic Details
Published in:PeerJ. Computer science Vol. 8; p. e910
Main Authors: Dehghani, Mohammad, Hubálovský, Štěpán, Trojovský, Pavel
Format: Journal Article
Language:English
Published: United States PeerJ. Ltd 07.03.2022
PeerJ, Inc
PeerJ Inc
Subjects:
ISSN:2376-5992, 2376-5992
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract In this paper, a novel evolutionary-based method, called Average and Subtraction-Based Optimizer (ASBO), is presented to attain suitable quasi-optimal solutions for various optimization problems. The core idea in the design of the ASBO is to use the average information and the subtraction of the best and worst population members for guiding the algorithm population in the problem search space. The proposed ASBO is mathematically modeled with the ability to solve optimization problems. Twenty-three test functions, including unimodal and multimodal functions, have been employed to evaluate ASBO’s performance in effectively solving optimization problems. The optimization results of the unimodal functions, which have only one main peak, show the high ASBO’s exploitation power in converging towards global optima. In addition, the optimization results of the high-dimensional multimodal functions and fixed-dimensional multimodal functions, which have several peaks and local optima, indicate the high exploration power of ASBO in accurately searching the problem-solving space and not getting stuck in nonoptimal peaks. The simulation results show the proper balance between exploration and exploitation in ASBO in order to discover and present the optimal solution. In addition, the results obtained from the implementation of ASBO in optimizing these objective functions are analyzed compared with the results of nine well-known metaheuristic algorithms. Analysis of the optimization results obtained from ASBO against the performance of the nine compared algorithms indicates the superiority and competitiveness of the proposed algorithm in providing more appropriate solutions.
AbstractList In this paper, a novel evolutionary-based method, called Average and Subtraction-Based Optimizer (ASBO), is presented to attain suitable quasi-optimal solutions for various optimization problems. The core idea in the design of the ASBO is to use the average information and the subtraction of the best and worst population members for guiding the algorithm population in the problem search space. The proposed ASBO is mathematically modeled with the ability to solve optimization problems. Twenty-three test functions, including unimodal and multimodal functions, have been employed to evaluate ASBO’s performance in effectively solving optimization problems. The optimization results of the unimodal functions, which have only one main peak, show the high ASBO’s exploitation power in converging towards global optima. In addition, the optimization results of the high-dimensional multimodal functions and fixed-dimensional multimodal functions, which have several peaks and local optima, indicate the high exploration power of ASBO in accurately searching the problem-solving space and not getting stuck in nonoptimal peaks. The simulation results show the proper balance between exploration and exploitation in ASBO in order to discover and present the optimal solution. In addition, the results obtained from the implementation of ASBO in optimizing these objective functions are analyzed compared with the results of nine well-known metaheuristic algorithms. Analysis of the optimization results obtained from ASBO against the performance of the nine compared algorithms indicates the superiority and competitiveness of the proposed algorithm in providing more appropriate solutions.
In this paper, a novel evolutionary-based method, called Average and Subtraction-Based Optimizer (ASBO), is presented to attain suitable quasi-optimal solutions for various optimization problems. The core idea in the design of the ASBO is to use the average information and the subtraction of the best and worst population members for guiding the algorithm population in the problem search space. The proposed ASBO is mathematically modeled with the ability to solve optimization problems. Twenty-three test functions, including unimodal and multimodal functions, have been employed to evaluate ASBO's performance in effectively solving optimization problems. The optimization results of the unimodal functions, which have only one main peak, show the high ASBO's exploitation power in converging towards global optima. In addition, the optimization results of the high-dimensional multimodal functions and fixed-dimensional multimodal functions, which have several peaks and local optima, indicate the high exploration power of ASBO in accurately searching the problem-solving space and not getting stuck in nonoptimal peaks. The simulation results show the proper balance between exploration and exploitation in ASBO in order to discover and present the optimal solution. In addition, the results obtained from the implementation of ASBO in optimizing these objective functions are analyzed compared with the results of nine well-known metaheuristic algorithms. Analysis of the optimization results obtained from ASBO against the performance of the nine compared algorithms indicates the superiority and competitiveness of the proposed algorithm in providing more appropriate solutions.In this paper, a novel evolutionary-based method, called Average and Subtraction-Based Optimizer (ASBO), is presented to attain suitable quasi-optimal solutions for various optimization problems. The core idea in the design of the ASBO is to use the average information and the subtraction of the best and worst population members for guiding the algorithm population in the problem search space. The proposed ASBO is mathematically modeled with the ability to solve optimization problems. Twenty-three test functions, including unimodal and multimodal functions, have been employed to evaluate ASBO's performance in effectively solving optimization problems. The optimization results of the unimodal functions, which have only one main peak, show the high ASBO's exploitation power in converging towards global optima. In addition, the optimization results of the high-dimensional multimodal functions and fixed-dimensional multimodal functions, which have several peaks and local optima, indicate the high exploration power of ASBO in accurately searching the problem-solving space and not getting stuck in nonoptimal peaks. The simulation results show the proper balance between exploration and exploitation in ASBO in order to discover and present the optimal solution. In addition, the results obtained from the implementation of ASBO in optimizing these objective functions are analyzed compared with the results of nine well-known metaheuristic algorithms. Analysis of the optimization results obtained from ASBO against the performance of the nine compared algorithms indicates the superiority and competitiveness of the proposed algorithm in providing more appropriate solutions.
ArticleNumber e910
Audience Academic
Author Trojovský, Pavel
Hubálovský, Štěpán
Dehghani, Mohammad
Author_xml – sequence: 1
  givenname: Mohammad
  surname: Dehghani
  fullname: Dehghani, Mohammad
  organization: Department of Mathematics/Faculty of Science, University of Hradec Králové, Hradec Kralove, Czech Republic
– sequence: 2
  givenname: Štěpán
  surname: Hubálovský
  fullname: Hubálovský, Štěpán
  organization: Department of Applied Cybernetics/Faculty of Science, University of Hradec Králové, Hradec Kralove, Czech Republic
– sequence: 3
  givenname: Pavel
  orcidid: 0000-0001-8992-125X
  surname: Trojovský
  fullname: Trojovský, Pavel
  organization: Department of Mathematics/Faculty of Science, University of Hradec Králové, Hradec Kralove, Czech Republic
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35494852$$D View this record in MEDLINE/PubMed
BookMark eNptkk1v1DAQhiNUREvpjTOKxAUkdnGcOI4vSKuKj5UqIfFxtsbOOPUqiYOdbIE_wt_Fu9uFpmpyiDXzzJvMm_dpctK7HpPkeUaWnGf87YDoNwsdliIjj5IzmvNywYSgJ3fOp8lFCBtCSMayeIknyWnOClFUjJ4lf1ZpjzepG0bb2d8wWten0DbO2_G6SxUErNNdaYseGkyhr9MwqdGD3qPOpOM1pgrDuO_dOB9PHXYKfTh2BzdM7UHaOJ8G125t36Rb8NZNYf7uwTvVYheeJY8NtAEvbp_nyfcP779dflpcff64vlxdLTTjYlyA1jkloEwFgpYKSaWYEcCU0CURRgtRldpgqeLqQGskSiAq0KQosRLG5OfJ-qBbO9jIwdsO_C_pwMp9wflGgh-tblFmVOQF1RkQXhZlzqqCCwaglWJaCaKi1ruD1jCpDmuNffSpnYnOO729lo3bSkGKgnIWBV7dCnj3Y4qeys4GjW0LPUanJC1ZVbKMUxrRl_fQjZt8H62KVM5JnrOy-E81EBewvXG7P7cTlStO4gJZUeSRWj5AxbvGzuoYOGNjfTbwejYQmRF_jg1MIcj11y9z9sVdU_65cYxgBOgB0N6F4NFIbcd9GOJX2FZmRO6iLvdRlzrIGPU49Obe0FH3QfwvprAEXA
CitedBy_id crossref_primary_10_1002_jnm_70030
crossref_primary_10_1016_j_advengsoft_2022_103387
crossref_primary_10_32604_cmc_2023_030379
crossref_primary_10_1016_j_eswa_2025_127303
crossref_primary_10_1007_s11276_023_03588_y
crossref_primary_10_3233_IDT_220130
crossref_primary_10_32604_cmc_2023_034695
crossref_primary_10_3390_biomimetics8050386
crossref_primary_10_1016_j_eswa_2022_119246
crossref_primary_10_1080_13682199_2023_2187518
crossref_primary_10_1155_2023_9709608
crossref_primary_10_1016_j_heliyon_2024_e29339
crossref_primary_10_1080_0954898X_2024_2449173
crossref_primary_10_1007_s10479_024_05837_5
crossref_primary_10_1007_s00366_023_01830_x
crossref_primary_10_1038_s41598_025_06121_7
crossref_primary_10_1016_j_chaos_2024_114723
crossref_primary_10_1016_j_eswa_2025_127533
crossref_primary_10_1016_j_vehcom_2024_100824
Cites_doi 10.1016/j.swevo.2015.07.002
10.1007/s12652-020-02580-0
10.22266/ijies2021.0630.46
10.3390/s21155214
10.1109/TEVC.2008.919004
10.1023/A:1015059928466
10.22266/ijies2020.1231.32
10.3390/app10186173
10.1023/A:1008202821328
10.1016/j.knosys.2021.106926
10.1016/j.eswa.2020.113377
10.1016/j.advengsoft.2016.01.008
10.1007/s00521-019-04452-x
10.20998/2074-272X.2019.4.10
10.1007/s10489-020-01836-8
10.1166/jctn.2019.8261
10.1109/3477.484436
10.1016/j.cad.2010.12.015
10.1109/ICSPCT.2014.6884887
10.1109/4235.585893
10.1007/s42452-020-03511-6
10.1023/A:1022602019183
10.1016/j.advengsoft.2013.12.007
10.3390/electronics10111320
10.1007/s10489-020-01893-z
10.32604/cmc.2022.021072
10.1109/ICNN.1995.488968
10.1016/j.cie.2021.107250
10.22266/ijies2020.0831.19
10.1016/j.asoc.2017.11.043
10.1016/j.cie.2021.107224
10.3390/app11031286
10.1002/int.22535
10.3390/su122310053
10.1080/10286608.2013.820280
10.3390/app10217683
10.22266/ijies2020.1031.45
10.1007/s10898-017-0589-7
10.1016/j.knosys.2020.106711
10.3390/e23040491
10.1007/BFb0055923
10.22266/ijies2020.1031.26
10.1016/j.eswa.2020.114522
10.1016/j.ins.2009.03.004
10.1016/j.advengsoft.2017.05.014
10.3390/s21134567
10.1016/j.engappai.2020.103541
10.1016/j.cie.2020.107050
ContentType Journal Article
Copyright 2022 Dehghani et al.
COPYRIGHT 2022 PeerJ. Ltd.
2022 Dehghani et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: https://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, reproduction and adaptation in any medium and for any purpose provided that it is properly attributed. For attribution, the original author(s), title, publication source (PeerJ Computer Science) and either DOI or URL of the article must be cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2022 Dehghani et al. 2022 Dehghani et al.
Copyright_xml – notice: 2022 Dehghani et al.
– notice: COPYRIGHT 2022 PeerJ. Ltd.
– notice: 2022 Dehghani et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: https://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, reproduction and adaptation in any medium and for any purpose provided that it is properly attributed. For attribution, the original author(s), title, publication source (PeerJ Computer Science) and either DOI or URL of the article must be cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2022 Dehghani et al. 2022 Dehghani et al.
DBID AAYXX
CITATION
NPM
ISR
3V.
7XB
8AL
8FE
8FG
8FK
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
M0N
P5Z
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
DOA
DOI 10.7717/peerj-cs.910
DatabaseName CrossRef
PubMed
Gale In Context: Science
ProQuest Central (Corporate)
ProQuest Central (purchase pre-March 2016)
Computing Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials - QC
ProQuest Central
ProQuest Technology Collection
ProQuest One Community College
ProQuest Central Korea
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
Computing Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
Computer Science Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies & Aerospace Collection
ProQuest Computing
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList CrossRef
MEDLINE - Academic
Publicly Available Content Database



PubMed
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 2376-5992
ExternalDocumentID oai_doaj_org_article_129342c1a076463584795aacbb5cb90b
PMC9044275
A708471443
35494852
10_7717_peerj_cs_910
Genre Journal Article
GrantInformation_xml – fundername: Excellence Project PřF UHK
  grantid: 2208/2021–2022
– fundername: Faculty of Science, University of Hradec Kralove, Czech Republic
GroupedDBID 53G
5VS
8FE
8FG
AAFWJ
AAYXX
ABUWG
ADBBV
AFFHD
AFKRA
AFPKN
ALMA_UNASSIGNED_HOLDINGS
ARAPS
AZQEC
BCNDV
BENPR
BGLVJ
BPHCQ
CCPQU
CITATION
DWQXO
FRP
GNUQQ
GROUPED_DOAJ
H13
HCIFZ
IAO
ICD
IEA
ISR
ITC
K6V
K7-
M~E
OK1
P62
PHGZM
PHGZT
PIMPY
PQGLB
PQQKQ
PROAC
RPM
3V.
ARCSS
M0N
NPM
7XB
8AL
8FK
JQ2
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
PUEGO
5PM
ID FETCH-LOGICAL-c579t-acc320abf8a926be08b5f9a5b9c609fc9986cfe6b511a2de0b9eebac046e89ff3
IEDL.DBID P5Z
ISICitedReferencesCount 24
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000768601100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2376-5992
IngestDate Fri Oct 03 12:37:14 EDT 2025
Tue Nov 04 01:46:09 EST 2025
Fri Sep 05 06:55:46 EDT 2025
Fri Jul 25 22:04:28 EDT 2025
Tue Nov 11 08:19:17 EST 2025
Tue Nov 04 17:27:46 EST 2025
Thu Nov 13 14:32:45 EST 2025
Thu Jan 02 22:54:08 EST 2025
Sat Nov 29 03:45:06 EST 2025
Tue Nov 18 22:36:39 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Optimization algorithm
Algorithm of best and worst members of the population
Optimization
Optimization problem
Language English
License https://creativecommons.org/licenses/by/4.0
2022 Dehghani et al.
This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, reproduction and adaptation in any medium and for any purpose provided that it is properly attributed. For attribution, the original author(s), title, publication source (PeerJ Computer Science) and either DOI or URL of the article must be cited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c579t-acc320abf8a926be08b5f9a5b9c609fc9986cfe6b511a2de0b9eebac046e89ff3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-8992-125X
OpenAccessLink https://www.proquest.com/docview/2637033564?pq-origsite=%requestingapplication%
PMID 35494852
PQID 2637033564
PQPubID 2045934
PageCount e910
ParticipantIDs doaj_primary_oai_doaj_org_article_129342c1a076463584795aacbb5cb90b
pubmedcentral_primary_oai_pubmedcentral_nih_gov_9044275
proquest_miscellaneous_2658651722
proquest_journals_2637033564
gale_infotracmisc_A708471443
gale_infotracacademiconefile_A708471443
gale_incontextgauss_ISR_A708471443
pubmed_primary_35494852
crossref_citationtrail_10_7717_peerj_cs_910
crossref_primary_10_7717_peerj_cs_910
PublicationCentury 2000
PublicationDate 2022-03-07
PublicationDateYYYYMMDD 2022-03-07
PublicationDate_xml – month: 03
  year: 2022
  text: 2022-03-07
  day: 07
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: San Diego
– name: San Diego, USA
PublicationTitle PeerJ. Computer science
PublicationTitleAlternate PeerJ Comput Sci
PublicationYear 2022
Publisher PeerJ. Ltd
PeerJ, Inc
PeerJ Inc
Publisher_xml – name: PeerJ. Ltd
– name: PeerJ, Inc
– name: PeerJ Inc
References Dehghani (10.7717/peerj-cs.910/ref-10) 2021; 11
Dehghani (10.7717/peerj-cs.910/ref-18) 2021; 21
Abdollahzadeh (10.7717/peerj-cs.910/ref-1) 2021; 36
Faramarzi (10.7717/peerj-cs.910/ref-26) 2020; 152
Rashedi (10.7717/peerj-cs.910/ref-46) 2009; 179
Dehghani (10.7717/peerj-cs.910/ref-11) 2020c; 13
Kaur (10.7717/peerj-cs.910/ref-32) 2020; 90
Doumari (10.7717/peerj-cs.910/ref-24) 2021b; 23
Prakash (10.7717/peerj-cs.910/ref-42) 2014a
Hashim (10.7717/peerj-cs.910/ref-30) 2021; 51
Prakash (10.7717/peerj-cs.910/ref-43) 2014b
Zeidabadi (10.7717/peerj-cs.910/ref-52) 2022; 70
Dehghani (10.7717/peerj-cs.910/ref-9) 2020b; 12
Moghdani (10.7717/peerj-cs.910/ref-39) 2018; 64
Vassallo (10.7717/peerj-cs.910/ref-49) 2019; 16
Goldberg (10.7717/peerj-cs.910/ref-28) 1988; 3
Mohammadi-Balani (10.7717/peerj-cs.910/ref-40) 2021; 152
Abualigah (10.7717/peerj-cs.910/ref-3) 2021; 157
Prakash (10.7717/peerj-cs.910/ref-44) 2021; 10
Cavazzuti (10.7717/peerj-cs.910/ref-6) 2013
Dehghani (10.7717/peerj-cs.910/ref-14) 2020f; 13
Rao (10.7717/peerj-cs.910/ref-45) 2011; 43
Karami (10.7717/peerj-cs.910/ref-31) 2021; 156
Dhiman (10.7717/peerj-cs.910/ref-19) 2021; 222
Lera (10.7717/peerj-cs.910/ref-35) 2018; 71
Mirjalili (10.7717/peerj-cs.910/ref-38) 2014; 69
Pereira (10.7717/peerj-cs.910/ref-41) 2021; 170
Beyer (10.7717/peerj-cs.910/ref-5) 2002; 1
Dehghani (10.7717/peerj-cs.910/ref-15) 2019; 2019
Wolpert (10.7717/peerj-cs.910/ref-51) 1997; 1
Dhiman (10.7717/peerj-cs.910/ref-20) 2020; 12
Dhiman (10.7717/peerj-cs.910/ref-21) 2017; 114
MiarNaeimi (10.7717/peerj-cs.910/ref-36) 2021; 213
Dehghani (10.7717/peerj-cs.910/ref-13) 2020e; 10
Zhao (10.7717/peerj-cs.910/ref-53) 2020; 32
Kaveh (10.7717/peerj-cs.910/ref-33) 2016; 6
Banzhaf (10.7717/peerj-cs.910/ref-4) 1998; 1
Dorigo (10.7717/peerj-cs.910/ref-22) 1996; 26
Faramarzi (10.7717/peerj-cs.910/ref-25) 2014; 31
Dehghani (10.7717/peerj-cs.910/ref-16) 2020g; 13
Mirjalili (10.7717/peerj-cs.910/ref-37) 2016; 95
Simon (10.7717/peerj-cs.910/ref-47) 2008; 12
Storn (10.7717/peerj-cs.910/ref-48) 1997; 11
Han (10.7717/peerj-cs.910/ref-29) 2021; 51
Dehghani (10.7717/peerj-cs.910/ref-17) 2020; 2
Kennedy (10.7717/peerj-cs.910/ref-34) 1995
Fogel (10.7717/peerj-cs.910/ref-27) 1966
Dehghani (10.7717/peerj-cs.910/ref-12) 2020d; 10
Wilcoxon (10.7717/peerj-cs.910/ref-50) 1992
Abedinpourshotorban (10.7717/peerj-cs.910/ref-2) 2016; 26
Dehghani (10.7717/peerj-cs.910/ref-7) 2021; 21
Doumari (10.7717/peerj-cs.910/ref-23) 2021a; 14
Dehghani (10.7717/peerj-cs.910/ref-8) 2020a; 13
References_xml – year: 2014b
  ident: 10.7717/peerj-cs.910/ref-43
  article-title: An efficient workflow scheduling approach in cloud computing
– volume: 26
  start-page: 8
  year: 2016
  ident: 10.7717/peerj-cs.910/ref-2
  article-title: Electromagnetic field optimization: a physics-inspired metaheuristic optimization algorithm
  publication-title: Swarm and Evolutionary Computation
  doi: 10.1016/j.swevo.2015.07.002
– volume: 12
  start-page: 8457
  year: 2020
  ident: 10.7717/peerj-cs.910/ref-20
  article-title: A novel algorithm for global optimization: rat swarm optimizer
  publication-title: Journal of Ambient Intelligence and Humanized Computing
  doi: 10.1007/s12652-020-02580-0
– volume: 14
  start-page: 545
  issue: 3
  year: 2021a
  ident: 10.7717/peerj-cs.910/ref-23
  article-title: Ring toss game-based optimization algorithm for solving various optimization problems
  publication-title: International Journal of Intelligent Engineering and Systems
  doi: 10.22266/ijies2021.0630.46
– volume: 21
  start-page: 5214
  issue: 15
  year: 2021
  ident: 10.7717/peerj-cs.910/ref-7
  article-title: Cat and mouse based optimizer: a new nature-inspired optimization algorithm
  publication-title: Sensors
  doi: 10.3390/s21155214
– volume: 12
  start-page: 702
  issue: 6
  year: 2008
  ident: 10.7717/peerj-cs.910/ref-47
  article-title: Biogeography-based optimization
  publication-title: IEEE Transactions on Evolutionary Computation
  doi: 10.1109/TEVC.2008.919004
– volume: 1
  start-page: 3
  year: 2002
  ident: 10.7717/peerj-cs.910/ref-5
  article-title: Evolution strategies—a comprehensive introduction
  publication-title: Natural Computing
  doi: 10.1023/A:1015059928466
– start-page: 77
  year: 2013
  ident: 10.7717/peerj-cs.910/ref-6
  article-title: Deterministic optimization
– volume: 13
  start-page: 364
  issue: 6
  year: 2020c
  ident: 10.7717/peerj-cs.910/ref-11
  article-title: MLO: multi leader optimizer
  publication-title: International Journal of Intelligent Engineering and Systems
  doi: 10.22266/ijies2020.1231.32
– volume: 10
  start-page: 6173
  issue: 18
  year: 2020e
  ident: 10.7717/peerj-cs.910/ref-13
  article-title: A spring search algorithm applied to engineering optimization problems
  publication-title: Applied Sciences
  doi: 10.3390/app10186173
– volume: 11
  start-page: 341
  issue: 4
  year: 1997
  ident: 10.7717/peerj-cs.910/ref-48
  article-title: Differential evolution—a simple and efficient heuristic for global optimization over continuous spaces
  publication-title: Journal of Global Optimization
  doi: 10.1023/A:1008202821328
– volume: 222
  start-page: 106926
  issue: 35
  year: 2021
  ident: 10.7717/peerj-cs.910/ref-19
  article-title: SSC: a hybrid nature-inspired meta-heuristic optimization algorithm for engineering applications
  publication-title: Knowledge-Based Systems
  doi: 10.1016/j.knosys.2021.106926
– volume: 152
  start-page: 113377
  issue: 4
  year: 2020
  ident: 10.7717/peerj-cs.910/ref-26
  article-title: Marine predators algorithm: a nature-inspired metaheuristic
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2020.113377
– start-page: 196
  year: 1992
  ident: 10.7717/peerj-cs.910/ref-50
  article-title: Individual comparisons by ranking methods
– volume: 95
  start-page: 51
  issue: 12
  year: 2016
  ident: 10.7717/peerj-cs.910/ref-37
  article-title: The whale optimization algorithm
  publication-title: Advances in Engineering Software
  doi: 10.1016/j.advengsoft.2016.01.008
– volume: 32
  start-page: 9383
  issue: 13
  year: 2020
  ident: 10.7717/peerj-cs.910/ref-53
  article-title: Artificial ecosystem-based optimization: a novel nature-inspired meta-heuristic algorithm
  publication-title: Neural Computing and Applications
  doi: 10.1007/s00521-019-04452-x
– volume: 2019
  start-page: 69
  issue: 4
  year: 2019
  ident: 10.7717/peerj-cs.910/ref-15
  article-title: Energy commitment: a planning of energy carrier based on energy consumption
  publication-title: Electrical Engineering & Electromechanics
  doi: 10.20998/2074-272X.2019.4.10
– volume: 51
  start-page: 775
  issue: 2
  year: 2021
  ident: 10.7717/peerj-cs.910/ref-29
  article-title: State-transition simulated annealing algorithm for constrained and unconstrained multi-objective optimization problems
  publication-title: Applied Intelligence
  doi: 10.1007/s10489-020-01836-8
– volume: 16
  start-page: 3854
  issue: 9
  year: 2019
  ident: 10.7717/peerj-cs.910/ref-49
  article-title: Contemporary technologies and methods for cross-platform application development
  publication-title: Journal of Computational and Theoretical Nanoscience
  doi: 10.1166/jctn.2019.8261
– volume: 26
  start-page: 29
  issue: 1
  year: 1996
  ident: 10.7717/peerj-cs.910/ref-22
  article-title: Ant system: optimization by a colony of cooperating agents
  publication-title: IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics)
  doi: 10.1109/3477.484436
– volume: 43
  start-page: 303
  issue: 3
  year: 2011
  ident: 10.7717/peerj-cs.910/ref-45
  article-title: Teaching-learning-based optimization: a novel method for constrained mechanical design optimization problems
  publication-title: Computer-Aided Design
  doi: 10.1016/j.cad.2010.12.015
– year: 2014a
  ident: 10.7717/peerj-cs.910/ref-42
  article-title: A novel scheduling approach for workflow management in cloud computing
  doi: 10.1109/ICSPCT.2014.6884887
– volume: 1
  start-page: 67
  issue: 1
  year: 1997
  ident: 10.7717/peerj-cs.910/ref-51
  article-title: No free lunch theorems for optimization
  publication-title: IEEE Transactions on Evolutionary computation
  doi: 10.1109/4235.585893
– volume: 2
  start-page: 1
  issue: 10
  year: 2020
  ident: 10.7717/peerj-cs.910/ref-17
  article-title: Momentum search algorithm: a new meta-heuristic optimization algorithm inspired by momentum conservation law
  publication-title: SN Applied Sciences
  doi: 10.1007/s42452-020-03511-6
– volume: 3
  start-page: 95
  issue: 2
  year: 1988
  ident: 10.7717/peerj-cs.910/ref-28
  article-title: Genetic algorithms and machine learning
  publication-title: Machine Learning
  doi: 10.1023/A:1022602019183
– volume: 69
  start-page: 46
  year: 2014
  ident: 10.7717/peerj-cs.910/ref-38
  article-title: Grey wolf optimizer
  publication-title: Advances in Engineering Software
  doi: 10.1016/j.advengsoft.2013.12.007
– volume: 10
  start-page: 1320
  issue: 11
  year: 2021
  ident: 10.7717/peerj-cs.910/ref-44
  article-title: Multi-dependency and time based resource scheduling algorithm for scientific applications in cloud computing
  publication-title: Electronics
  doi: 10.3390/electronics10111320
– volume: 51
  start-page: 1531
  issue: 3
  year: 2021
  ident: 10.7717/peerj-cs.910/ref-30
  article-title: Archimedes optimization algorithm: a new metaheuristic algorithm for solving optimization problems
  publication-title: Applied Intelligence
  doi: 10.1007/s10489-020-01893-z
– volume: 70
  start-page: 5631
  issue: 3
  year: 2022
  ident: 10.7717/peerj-cs.910/ref-52
  article-title: MLA: a new mutated leader algorithm for solving optimization problems
  publication-title: Computers, Materials & Continua
  doi: 10.32604/cmc.2022.021072
– year: 1995
  ident: 10.7717/peerj-cs.910/ref-34
  article-title: Particle swarm optimization
  doi: 10.1109/ICNN.1995.488968
– volume: 157
  start-page: 107250
  issue: 11
  year: 2021
  ident: 10.7717/peerj-cs.910/ref-3
  article-title: Aquila optimizer: a novel meta-heuristic optimization algorithm
  publication-title: Computers & Industrial Engineering
  doi: 10.1016/j.cie.2021.107250
– volume: 6
  start-page: 469
  issue: 4
  year: 2016
  ident: 10.7717/peerj-cs.910/ref-33
  article-title: A novel meta-heuristic algorithm: tug of war optimization
  publication-title: International Journal of Optimization in Civil Engineering
– year: 1966
  ident: 10.7717/peerj-cs.910/ref-27
  article-title: Artificial intelligence through simulated evolution
– volume: 13
  start-page: 216
  issue: 10
  year: 2020g
  ident: 10.7717/peerj-cs.910/ref-16
  article-title: HOGO: hide objects game optimization
  publication-title: International Journal of Intelligent Engineering and Systems
  doi: 10.22266/ijies2020.0831.19
– volume: 64
  start-page: 161
  issue: 5
  year: 2018
  ident: 10.7717/peerj-cs.910/ref-39
  article-title: Volleyball premier league algorithm
  publication-title: Applied Soft Computing
  doi: 10.1016/j.asoc.2017.11.043
– volume: 156
  start-page: 107224
  issue: 4
  year: 2021
  ident: 10.7717/peerj-cs.910/ref-31
  article-title: Flow Direction Algorithm (FDA): a novel optimization approach for solving optimization problems
  publication-title: Computers & Industrial Engineering
  doi: 10.1016/j.cie.2021.107224
– volume: 11
  start-page: 1286
  issue: 3
  year: 2021
  ident: 10.7717/peerj-cs.910/ref-10
  article-title: Binary spring search algorithm for solving various optimization problems
  publication-title: Applied Sciences
  doi: 10.3390/app11031286
– volume: 36
  start-page: 5887
  issue: 10
  year: 2021
  ident: 10.7717/peerj-cs.910/ref-1
  article-title: Artificial gorilla troops optimizer: a new nature-inspired metaheuristic algorithm for global optimization problems
  publication-title: International Journal of Intelligent Systems
  doi: 10.1002/int.22535
– volume: 12
  start-page: 10053
  issue: 23
  year: 2020b
  ident: 10.7717/peerj-cs.910/ref-9
  article-title: Genetic algorithm for energy commitment in a power system supplied by multiple energy carriers
  publication-title: Sustainability
  doi: 10.3390/su122310053
– volume: 31
  start-page: 209
  issue: 3
  year: 2014
  ident: 10.7717/peerj-cs.910/ref-25
  article-title: A novel hybrid cellular automata-linear programming approach for the optimal sizing of planar truss structures
  publication-title: Civil Engineering and Environmental Systems
  doi: 10.1080/10286608.2013.820280
– volume: 10
  start-page: 7683
  issue: 21
  year: 2020d
  ident: 10.7717/peerj-cs.910/ref-12
  article-title: DM: Dehghani method for modifying optimization algorithms
  publication-title: Applied Sciences
  doi: 10.3390/app10217683
– volume: 13
  start-page: 514
  issue: 5
  year: 2020a
  ident: 10.7717/peerj-cs.910/ref-8
  article-title: Football game based optimization: an application to solve energy commitment problem
  publication-title: International Journal of Intelligent Engineering and Systems
  doi: 10.22266/ijies2020.1031.45
– volume: 71
  start-page: 193
  issue: 1
  year: 2018
  ident: 10.7717/peerj-cs.910/ref-35
  article-title: GOSH: derivative-free global optimization using multi-dimensional space-filling curves
  publication-title: Journal of Global Optimization
  doi: 10.1007/s10898-017-0589-7
– volume: 213
  start-page: 106711
  issue: 2
  year: 2021
  ident: 10.7717/peerj-cs.910/ref-36
  article-title: Horse herd optimization algorithm: a nature-inspired algorithm for high-dimensional optimization problems
  publication-title: Knowledge-Based Systems
  doi: 10.1016/j.knosys.2020.106711
– volume: 23
  start-page: 491
  issue: 4
  year: 2021b
  ident: 10.7717/peerj-cs.910/ref-24
  article-title: A new two-stage algorithm for solving optimization problems
  publication-title: Entropy
  doi: 10.3390/e23040491
– volume: 1
  volume-title: Genetic programming: an introduction
  year: 1998
  ident: 10.7717/peerj-cs.910/ref-4
  doi: 10.1007/BFb0055923
– volume: 13
  start-page: 286
  issue: 5
  year: 2020f
  ident: 10.7717/peerj-cs.910/ref-14
  article-title: Darts game optimizer: a new optimization technique based on darts game
  publication-title: International Journal of Intelligent Engineering and Systems
  doi: 10.22266/ijies2020.1031.26
– volume: 170
  start-page: 114522
  issue: 11
  year: 2021
  ident: 10.7717/peerj-cs.910/ref-41
  article-title: Lichtenberg algorithm: a novel hybrid physics-based meta-heuristic for global optimization
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2020.114522
– volume: 179
  start-page: 2232
  issue: 13
  year: 2009
  ident: 10.7717/peerj-cs.910/ref-46
  article-title: GSA: a gravitational search algorithm
  publication-title: Information Sciences
  doi: 10.1016/j.ins.2009.03.004
– volume: 114
  start-page: 48
  issue: 10
  year: 2017
  ident: 10.7717/peerj-cs.910/ref-21
  article-title: Spotted hyena optimizer: a novel bio-inspired based metaheuristic technique for engineering applications
  publication-title: Advances in Engineering Software
  doi: 10.1016/j.advengsoft.2017.05.014
– volume: 21
  start-page: 4567
  issue: 13
  year: 2021
  ident: 10.7717/peerj-cs.910/ref-18
  article-title: Teamwork optimization algorithm: a new optimization approach for function minimization/maximization
  publication-title: Sensors
  doi: 10.3390/s21134567
– volume: 90
  start-page: 103541
  issue: 2
  year: 2020
  ident: 10.7717/peerj-cs.910/ref-32
  article-title: Tunicate swarm algorithm: a new bio-inspired based metaheuristic paradigm for global optimization
  publication-title: Engineering Applications of Artificial Intelligence
  doi: 10.1016/j.engappai.2020.103541
– volume: 152
  start-page: 107050
  year: 2021
  ident: 10.7717/peerj-cs.910/ref-40
  article-title: Golden eagle optimizer: a nature-inspired metaheuristic algorithm
  publication-title: Computers & Industrial Engineering
  doi: 10.1016/j.cie.2020.107050
SSID ssj0001511119
Score 2.4478326
Snippet In this paper, a novel evolutionary-based method, called Average and Subtraction-Based Optimizer (ASBO), is presented to attain suitable quasi-optimal...
SourceID doaj
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage e910
SubjectTerms Algorithm of best and worst members of the population
Algorithms
Algorithms and Analysis of Algorithms
Analysis
Birth rate
Design
Evolution & development
Exploitation
Genetic algorithms
Heuristic methods
Linear programming
Mathematical optimization
Mathematical programming
Optimization
Optimization algorithm
Optimization algorithms
Optimization problem
Optimization Theory and Computation
Performance evaluation
Pheromones
Population
Problem solving
Simulation
Subtraction
Teaching
SummonAdditionalLinks – databaseName: Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQxYEL70egIINAHFCo6_gRHxdEBZcK8ZB6s2zHaRd1k1WSLT-Fv8tMko0SIcSFq2eiOJ7xzDfRPAh5KTQrECenTAeZikLz1OXapEoZEcFlg1cU_bAJfXqan52Zz7NRX5gTNrQHHg7uCP2R4OHYQcAtwDuCNTXSueC9DN4wj9aXaTMLpob6YDQFZsh01xCyHG1jbH6koX1rsFh25oP6Vv1_GuSZR1pmS87cz8ltcnPEjXQ17PcOuRaru-TWfiYDHa_oPfJrRQEo0xoswWYssaTu8rxu1t3FhqLPKigugQaDJaGuKmi7810z1DfQuqSACKmHrfW0nzWgQ7qJODak3VO309AvCpCXgvbiXwl6BWF3vWuX7x4H1rT3yfeTD9_ef0zH4QtpkNp0qQsh48z5MneGKx9Z7mVpnPQmKGbKAGGaCmVUHk7a8SIyb2L0LkC8HXNTltkDclDVVXxEaJY5VyiBUOsY0Fv0IjhuHFfa5yrzJiFv9uKwYexMjgMyLi1EKCg82wvPhtaC8BLyauLeDh05_sL3DiU78WAf7X4BtMuO2mX_pV0JeYF6YbFTRoWpOOdu17b209cvdqUZenYhsoS8HpnKGuXlxsoG-HpsrrXgPFxwwlUOS_Je_exoSlrLVQZWOZNKJOT5RMYnMT2uiiBY4JG5koBFeUIeDto6fXcm-w5AQNELPV4czJJSrS_6RuOGCcG1fPw_TvIJucGxcgTT9_QhOeiaXXxKroerbt02z_rb-xvVNk7w
  priority: 102
  providerName: Directory of Open Access Journals
Title A new optimization algorithm based on average and subtraction of the best and worst members of the population for solving various optimization problems
URI https://www.ncbi.nlm.nih.gov/pubmed/35494852
https://www.proquest.com/docview/2637033564
https://www.proquest.com/docview/2658651722
https://pubmed.ncbi.nlm.nih.gov/PMC9044275
https://doaj.org/article/129342c1a076463584795aacbb5cb90b
Volume 8
WOSCitedRecordID wos000768601100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2376-5992
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001511119
  issn: 2376-5992
  databaseCode: DOA
  dateStart: 20150101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2376-5992
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001511119
  issn: 2376-5992
  databaseCode: M~E
  dateStart: 20150101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 2376-5992
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001511119
  issn: 2376-5992
  databaseCode: P5Z
  dateStart: 20150527
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Computer Science Database
  customDbUrl:
  eissn: 2376-5992
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001511119
  issn: 2376-5992
  databaseCode: K7-
  dateStart: 20150527
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/compscijour
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2376-5992
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001511119
  issn: 2376-5992
  databaseCode: BENPR
  dateStart: 20150527
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 2376-5992
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001511119
  issn: 2376-5992
  databaseCode: PIMPY
  dateStart: 20150527
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9NAEF7RlgMXyptAiRYE4oDcuvY-vCeUolRUqFFUQApcVrvrdVrU2CFOyo2_wd9lxtmksRBcuPjgmSTrzOub9ewMIS-ZjHPEyVEsHY9YLpPIZFJFQijmIWRDVGTNsAk5GGSjkRqGDbc6lFWufGLjqPPK4R75QSJSUM6UC_Z2-j3CqVH4djWM0NgiO9glAUc3DPnX6z0Wjg5BLevdJSQuB1PvZ98iV-8rPDK7EYmahv1_uuWNuNSumdwIQse7_7v8O-R2gJ-0t9SXu-SGL--R3dVoBxos_T751aOAt2kFDmUSTmpSczmGb5yfTyiGvpziLTAEcEjUlDmtF3Y-Wx6ToFVBAVhSC-traD8qAJl04nH6SL2iTtezwyggZwpGgJsb9Aqy92pRt387zL2pH5DPx_1P795HYYZD5LhU88g4lyaxsUVmVCKsjzPLC2W4VU7EqnCQ7QlXeGFBVCbJfWyV99Y4SNt9pooifUi2y6r0jwlNU2NywRCxHQII9JY5kyiTCGkzkVrVIW9W8tQuNDjHORuXGhIdlL5upK9drUH6HfJqzT1dNvb4C98RqsaaB9txNzeq2VgH69YImljiDk0sBQMIByFfcWOctdxZFdsOeYGKpbHhRokVPWOzqGt98vFM92SMAIGxtENeB6aiQnmZcEACnh57dLU491qc4BFcm7zSQR08Uq2vFbBDnq_J-Emssis9CBZ4eCY4QNqkQx4t1X393ClvGgkBRbYMofXHtCnlxXnTr1zFjCWSP_n3sp6SWwkeLcH6PrlHtuezhX9Gbrqr-UU965ItOcq6ZOeoPxiedZudE7h-kBFcT3_2u43hA314cjr88huIG2Tx
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LbxMxELZKQYIL5U2ggEFUHNDSrddrrw8IhUfVKCVCUKTejO31pkXNJuwmRfwS_gW_kZl9pFkhuPXALdqZPGzP4xtnHoQ85TJMEScHoXRxwFPJApNIFQihuAeXDV6RV8Mm5GiUHB6qD2vkV1sLg2mVrU2sDHU6dXhHvs1EBMIZxYK_mn0LcGoU_rvajtCoxWLof3yHkK18OXgL57vF2O67gzd7QTNVIHCxVPPAOBex0NgsMYoJ68PExpkysVVOhCpzEH8Il3lhAYoYlvrQKu-tcRBI-kRlWQSfe4Fc5FEiUa-GMji704nRAKk6v15CoLQ98774GrjyhcIS3RXPVw0I-NMNrPjBbo7mitPb3fjftusaudrAa9qv9eE6WfP5DbLRjq6gjSW7SX72KcQTdAoGc9JUolJzMoYVzI8mFF17SvERKDoYXGrylJYLOy_qMhA6zSgAZ2phPyoaLBBeTTxOVylb6mw5G41CZEBByfHyhp6aAvOOu9_dzPUpb5HP57I9t8l6Ps39XUKjyJhUcESkOwByveXOMGWYkDYRkVU98ryVH-2aBu44R-REQyCH0qYradOu1CBtPbK15J7VjUv-wvcaRXHJg-3GqwfTYqwb66URFHLmdkwoBQeICpBGxcY4a2NnVWh75AkKssaGIjlmLI3Noiz14NNH3ZchAiDOox551jBlUzwv0xSAwOqxB1mHc7PDCRbPdcmtzOvG4pb6TOB75PGSjO_ELMLcw8ECT5yIGCA765E7tXot1x3FVaMkoMiO4nU2pkvJj4-qfuwq5JzJ-N6_f9Yjcnnv4P2-3h-MhvfJFYZlNJjLKDfJ-rxY-AfkkjudH5fFw8qoUPLlvNXyNz4Avsw
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwELZKQYgL5c1CAYOoOKCwqeNHfECoUCqqotWKh1T1YmzH2Ra1yZJsi_gl_Bd-HTPZZNsIwa0HbqvM7MP2zDcz3nkQ8pSrOEM_OYqVFxHPFItsqnQkpeYBTDZYRd4Mm1CjUbq7q8dL5FdXC4NplR0mNkCdlR7vyIdMJiCciZB8mLdpEePNrVfTbxFOkMJ_WrtxGnMR2Qk_vkP4Vr_c3oSzXmNs6-2nN--idsJA5IXSs8h6n7DYujy1mkkX4tSJXFvhtJexzj3EItLnQTpwSyzLQux0CM56CCpDqvM8gc-9QC4qiDExnXAs9k7vdwSCkZ7n2isImobTEKqvka9faCzXPWMFm2EBf5qEMzaxn695xgBurfzPW3eNXG3dbrox15PrZCkUN8hKN9KCtgh3k_zcoBBn0BKA9KitUKX2cAIrmO0fUTT5GcVHAAAAxNQWGa2P3ayal4fQMqfgUFMHe9PQYIHw6ijg1JW6o04XM9MoRAwUlB8vdeiJrTAfuf_d7byf-hb5fC7bc5ssF2UR7hKaJNZmkqOnug7Ob3DcW6Ytk8qlMnF6QJ53smR829gd54scGgjwUPJMI3nG1wYkb0DWFtzTeUOTv_C9RrFc8GAb8uZBWU1Mi2oGnUXO_LqNleTguoKro4W13jnhnY7dgDxBoTbYaKRAuZvY47o22x8_mA0Vo2PEeTIgz1qmvMTzsm1hCKwee5P1OFd7nICEvk_u5N-0SFybU-EfkMcLMr4TswuLAAcLPCKVAlx5NiB35qq2WHcimgZKQFE9JextTJ9SHOw3fdp1zDlT4t6_f9Yjchm00bzfHu3cJ1cYVtdgiqNaJcuz6jg8IJf8yeygrh42-ELJl_PWyt80ksfw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+new+optimization+algorithm+based+on+average+and+subtraction+of+the+best+and+worst+members+of+the+population+for+solving+various+optimization+problems&rft.jtitle=PeerJ.+Computer+science&rft.au=Dehghani%2C+Mohammad&rft.au=Hub%C3%A1lovsk%C3%BD%2C+%C5%A0t%C4%9Bp%C3%A1n&rft.au=Trojovsk%C3%BD%2C+Pavel&rft.date=2022-03-07&rft.pub=PeerJ+Inc&rft.eissn=2376-5992&rft.volume=8&rft_id=info:doi/10.7717%2Fpeerj-cs.910&rft_id=info%3Apmid%2F35494852&rft.externalDocID=PMC9044275
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2376-5992&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2376-5992&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2376-5992&client=summon