DeepDeconUQ estimates malignant cell fraction prediction intervals in bulk RNA-seq tissue
Accurate estimation of malignant cell fractions in tissues plays a critical role in cancer diagnosis, prognosis, and subsequent treatment decisions. However, most currently available methods provide only point estimates, neglecting the quantification of uncertainties, which is essential for both cli...
Uloženo v:
| Vydáno v: | PLoS computational biology Ročník 21; číslo 6; s. e1013133 |
|---|---|
| Hlavní autoři: | , , , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
United States
Public Library of Science
04.06.2025
Public Library of Science (PLoS) |
| Témata: | |
| ISSN: | 1553-7358, 1553-734X, 1553-7358 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Accurate estimation of malignant cell fractions in tissues plays a critical role in cancer diagnosis, prognosis, and subsequent treatment decisions. However, most currently available methods provide only point estimates, neglecting the quantification of uncertainties, which is essential for both clinical and research applications. This study introduces DeepDeconUQ, a deep neural network model developed to estimate prediction intervals for malignant cell fractions based on bulk RNA-seq data. This approach addresses limitations in current malignant cell fraction estimation methods by integrating uncertainty quantification into predictions of cancer cell fractions. DeepDeconUQ leverages single-cell RNA sequencing (scRNA-seq) data in conjunction with conformalized quantile regression to produce reliable prediction intervals. The model trains a quantile regression neural network to establish upper and lower bounds for cancer cell proportions, followed by a calibration step that refines these intervals to ensure both statistical validity (coverage probability) and discrimination (narrow intervals). Benchmark analyses indicate that DeepDeconUQ consistently surpasses existing methods, achieving high coverage accuracy with tight prediction intervals across simulated and real cancer datasets. The robustness of DeepDeconUQ is further demonstrated by its resilience to various gene expression perturbations. The DeepDeconUQ method is publicly accessible at https://github.com/jiaweih14/DeepDeconUQ . |
|---|---|
| AbstractList | Accurate estimation of malignant cell fractions in tissues plays a critical role in cancer diagnosis, prognosis, and subsequent treatment decisions. However, most currently available methods provide only point estimates, neglecting the quantification of uncertainties, which is essential for both clinical and research applications. This study introduces DeepDeconUQ, a deep neural network model developed to estimate prediction intervals for malignant cell fractions based on bulk RNA-seq data. This approach addresses limitations in current malignant cell fraction estimation methods by integrating uncertainty quantification into predictions of cancer cell fractions. DeepDeconUQ leverages single-cell RNA sequencing (scRNA-seq) data in conjunction with conformalized quantile regression to produce reliable prediction intervals. The model trains a quantile regression neural network to establish upper and lower bounds for cancer cell proportions, followed by a calibration step that refines these intervals to ensure both statistical validity (coverage probability) and discrimination (narrow intervals). Benchmark analyses indicate that DeepDeconUQ consistently surpasses existing methods, achieving high coverage accuracy with tight prediction intervals across simulated and real cancer datasets. The robustness of DeepDeconUQ is further demonstrated by its resilience to various gene expression perturbations. The DeepDeconUQ method is publicly accessible at https://github.com/jiaweih14/DeepDeconUQ. Accurate estimation of malignant cell fractions in tissues plays a critical role in cancer diagnosis, prognosis, and subsequent treatment decisions. However, most currently available methods provide only point estimates, neglecting the quantification of uncertainties, which is essential for both clinical and research applications. This study introduces DeepDeconUQ, a deep neural network model developed to estimate prediction intervals for malignant cell fractions based on bulk RNA-seq data. This approach addresses limitations in current malignant cell fraction estimation methods by integrating uncertainty quantification into predictions of cancer cell fractions. DeepDeconUQ leverages single-cell RNA sequencing (scRNA-seq) data in conjunction with conformalized quantile regression to produce reliable prediction intervals. The model trains a quantile regression neural network to establish upper and lower bounds for cancer cell proportions, followed by a calibration step that refines these intervals to ensure both statistical validity (coverage probability) and discrimination (narrow intervals). Benchmark analyses indicate that DeepDeconUQ consistently surpasses existing methods, achieving high coverage accuracy with tight prediction intervals across simulated and real cancer datasets. The robustness of DeepDeconUQ is further demonstrated by its resilience to various gene expression perturbations. The DeepDeconUQ method is publicly accessible at https://github.com/jiaweih14/DeepDeconUQ.Accurate estimation of malignant cell fractions in tissues plays a critical role in cancer diagnosis, prognosis, and subsequent treatment decisions. However, most currently available methods provide only point estimates, neglecting the quantification of uncertainties, which is essential for both clinical and research applications. This study introduces DeepDeconUQ, a deep neural network model developed to estimate prediction intervals for malignant cell fractions based on bulk RNA-seq data. This approach addresses limitations in current malignant cell fraction estimation methods by integrating uncertainty quantification into predictions of cancer cell fractions. DeepDeconUQ leverages single-cell RNA sequencing (scRNA-seq) data in conjunction with conformalized quantile regression to produce reliable prediction intervals. The model trains a quantile regression neural network to establish upper and lower bounds for cancer cell proportions, followed by a calibration step that refines these intervals to ensure both statistical validity (coverage probability) and discrimination (narrow intervals). Benchmark analyses indicate that DeepDeconUQ consistently surpasses existing methods, achieving high coverage accuracy with tight prediction intervals across simulated and real cancer datasets. The robustness of DeepDeconUQ is further demonstrated by its resilience to various gene expression perturbations. The DeepDeconUQ method is publicly accessible at https://github.com/jiaweih14/DeepDeconUQ. Accurate estimation of malignant cell fractions in tissues plays a critical role in cancer diagnosis, prognosis, and subsequent treatment decisions. However, most currently available methods provide only point estimates, neglecting the quantification of uncertainties, which is essential for both clinical and research applications. This study introduces DeepDeconUQ, a deep neural network model developed to estimate prediction intervals for malignant cell fractions based on bulk RNA-seq data. This approach addresses limitations in current malignant cell fraction estimation methods by integrating uncertainty quantification into predictions of cancer cell fractions. DeepDeconUQ leverages single-cell RNA sequencing (scRNA-seq) data in conjunction with conformalized quantile regression to produce reliable prediction intervals. The model trains a quantile regression neural network to establish upper and lower bounds for cancer cell proportions, followed by a calibration step that refines these intervals to ensure both statistical validity (coverage probability) and discrimination (narrow intervals). Benchmark analyses indicate that DeepDeconUQ consistently surpasses existing methods, achieving high coverage accuracy with tight prediction intervals across simulated and real cancer datasets. The robustness of DeepDeconUQ is further demonstrated by its resilience to various gene expression perturbations. The DeepDeconUQ method is publicly accessible at Accurate estimation of malignant cell fractions in tissues plays a critical role in cancer diagnosis, prognosis, and subsequent treatment decisions. However, most currently available methods provide only point estimates, neglecting the quantification of uncertainties, which is essential for both clinical and research applications. This study introduces DeepDeconUQ, a deep neural network model developed to estimate prediction intervals for malignant cell fractions based on bulk RNA-seq data. This approach addresses limitations in current malignant cell fraction estimation methods by integrating uncertainty quantification into predictions of cancer cell fractions. DeepDeconUQ leverages single-cell RNA sequencing (scRNA-seq) data in conjunction with conformalized quantile regression to produce reliable prediction intervals. The model trains a quantile regression neural network to establish upper and lower bounds for cancer cell proportions, followed by a calibration step that refines these intervals to ensure both statistical validity (coverage probability) and discrimination (narrow intervals). Benchmark analyses indicate that DeepDeconUQ consistently surpasses existing methods, achieving high coverage accuracy with tight prediction intervals across simulated and real cancer datasets. The robustness of DeepDeconUQ is further demonstrated by its resilience to various gene expression perturbations. The DeepDeconUQ method is publicly accessible at https://github.com/jiaweih14/DeepDeconUQ. Accurately determining the proportion of malignant cells in tumor tissues is crucial for cancer diagnosis and treatment planning. Current methods often provide single estimates without indicating the uncertainty, which can lead to overconfidence in clinical decisions. Here, we present DeepDeconUQ, a deep learning tool that not only predicts the fraction of malignant cells in bulk RNA sequencing data but also quantifies the uncertainty around these estimates. By leveraging single-cell RNA sequencing data to simulate realistic tumor samples, DeepDeconUQ trains a neural network to generate prediction intervals—ranges within which the true malignant cell fraction is likely to lie with high probability. This approach combines quantile regression and statistical calibration to ensure reliability without restrictive assumptions about data distribution. When tested on both simulated and real-world datasets, DeepDeconUQ consistently outperformed existing methods, delivering precise intervals that reliably capture true values while remaining robust against technical noise in gene expression measurements. Our tool addresses a critical gap in cancer genomics by providing clinicians and researchers with confidence intervals that enhance the interpretability of bulk tissue analyses. This advancement could improve personalized treatment strategies and reduce errors in downstream research applications. |
| Audience | Academic |
| Author | Kelly, Kevin R. Lv, Jinchi Du, Yuxuan Zhong, Jiang F. Huang, Jiawei Fan, Yingying Sun, Fengzhu |
| AuthorAffiliation | 2 Department of Electrical and Computer Engineering, University of Texas at San Antonio, San Antonio, Texas, United States of America Tsinghua University, CHINA 1 Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, California, United States of America 4 Data Sciences and Operations Department, University of Southern California, Los Angeles, California, United States of America 3 Division of Hematology, University of Southern California, Los Angeles, California, United States of America 5 Department of Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, California, United States of America |
| AuthorAffiliation_xml | – name: 4 Data Sciences and Operations Department, University of Southern California, Los Angeles, California, United States of America – name: 3 Division of Hematology, University of Southern California, Los Angeles, California, United States of America – name: 1 Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, California, United States of America – name: Tsinghua University, CHINA – name: 5 Department of Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, California, United States of America – name: 2 Department of Electrical and Computer Engineering, University of Texas at San Antonio, San Antonio, Texas, United States of America |
| Author_xml | – sequence: 1 givenname: Jiawei surname: Huang fullname: Huang, Jiawei – sequence: 2 givenname: Yuxuan surname: Du fullname: Du, Yuxuan – sequence: 3 givenname: Kevin R. surname: Kelly fullname: Kelly, Kevin R. – sequence: 4 givenname: Jinchi surname: Lv fullname: Lv, Jinchi – sequence: 5 givenname: Yingying surname: Fan fullname: Fan, Yingying – sequence: 6 givenname: Jiang F. surname: Zhong fullname: Zhong, Jiang F. – sequence: 7 givenname: Fengzhu orcidid: 0000-0002-8552-043X surname: Sun fullname: Sun, Fengzhu |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/40465796$$D View this record in MEDLINE/PubMed |
| BookMark | eNptkl9v0zAUxSM0xLbCN0AQiRd4aLFjx3aeULXxp9IEYrAHnizbuSkuqd3ZzgTfHodm04qmPOTK_vlcn-N7Whw576AonmO0wITjtxs_BKf6xc5ou8AIE0zIo-IE1zWZc1KLo3v1cXEa4wahXDbsSXFMEWU1b9hJ8eMcYHcOxrurryXEZLcqQSy3qrdrp1wqDfR92QVlkvWu3AVo7b60LkG4UX3MVamH_ld5-Xk5j3BdJhvjAE-Lx13ehWfTf1ZcfXj__ezT_OLLx9XZ8mJu8g3SXNWixkQDNwQxbbhGjTBdgzWqOWpaAgx0hwym3IgKdazllFcac8oUwkwAmRUv97q73kc5pRIlqTgaLYo6E6s90Xq1kbuQPYY_0isr_y34sJYqJGt6kJrxhlcUMCINrRsikAFNO1ZhTYUyNGu9m7oNegutAZeC6g9ED3ec_SnX_kbiCmeV_ASz4vWkEPz1kCOXWxvHlJUDP4wXx3UjKoF5Rl_9hz5sb6LWKjuwrvO5sRlF5VJQxhAjeGy7eIDKXwtbm58fOpvXDw68OTiQmQS_01oNMcrVt8tD9sX9VO7iuJ2zDNA9YIKPMUB3h2Akx3G-dSbHcZbTOJO_SU3moQ |
| Cites_doi | 10.1093/bfgp/elu035 10.1038/s41587-019-0114-2 10.1038/s41467-023-40503-7 10.1126/sciadv.aba2619 10.1038/s41467-022-34550-9 10.1007/BF02295996 10.1080/01621459.2024.2382435 10.1186/s13059-015-0844-5 10.1038/nm.4336 10.1101/gr.272344.120 10.1038/s41467-020-19015-1 10.1186/s12864-018-4922-4 10.1158/2159-8290.CD-12-0095 10.1002/1099-131X(200007)19:4<299::AID-FOR775>3.0.CO;2-V 10.1038/nmeth.1613 10.1109/JPROC.2016.2607121 10.1007/s12551-024-01201-w 10.1016/j.patter.2024.100969 10.1016/j.ccell.2020.08.014 10.1038/s41586-018-0623-z 10.1158/1078-0432.CCR-22-2041 10.1038/s42256-022-00532-1 10.1186/s13059-017-1382-0 10.1080/01621459.2017.1307116 10.3150/10-BEJ267 10.1093/nar/gkx1090 10.1038/s41467-018-08023-x 10.1016/j.cell.2019.01.031 |
| ContentType | Journal Article |
| Copyright | Copyright: © 2025 Huang et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. COPYRIGHT 2025 Public Library of Science 2025 Huang et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2025 Huang et al 2025 Huang et al 2025 Huang et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: Copyright: © 2025 Huang et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. – notice: COPYRIGHT 2025 Public Library of Science – notice: 2025 Huang et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2025 Huang et al 2025 Huang et al – notice: 2025 Huang et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM ISR 3V. 7QO 7QP 7TK 7TM 7X7 7XB 88E 8AL 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ HCIFZ JQ2 K7- K9. LK8 M0N M0S M1P M7P P5Z P62 P64 PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS Q9U RC3 7X8 5PM DOA |
| DOI | 10.1371/journal.pcbi.1013133 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Gale In Context: Science ProQuest Central (Corporate) Biotechnology Research Abstracts Calcium & Calcified Tissue Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Computing Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Technology Collection Natural Science Collection ProQuest One ProQuest Central Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database ProQuest Health & Medical Complete (Alumni) Biological Sciences Computing Database Health & Medical Collection (Alumni Edition) Medical Database Biological Science Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database Computer Science Database ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Nucleic Acids Abstracts SciTech Premium Collection ProQuest Central China ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) Advanced Technologies & Aerospace Collection ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Central ProQuest Health & Medical Research Collection Genetics Abstracts Biotechnology Research Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea ProQuest Computing ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | Publicly Available Content Database MEDLINE - Academic MEDLINE CrossRef |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Biology |
| DocumentTitleAlternate | DeepDeconUQ estimates malignant cell fraction prediction intervals |
| EISSN | 1553-7358 |
| ExternalDocumentID | 3270579685 oai_doaj_org_article_b679724e1039459380ceb4f621b48ac4 PMC12162100 A846606310 40465796 10_1371_journal_pcbi_1013133 |
| Genre | Journal Article |
| GeographicLocations | United States |
| GeographicLocations_xml | – name: United States |
| GrantInformation_xml | – fundername: NCI NIH HHS grantid: R01 CA197903 – fundername: NCI NIH HHS grantid: R01 CA251848 – fundername: ; grantid: R01CA251848 – fundername: ; grantid: R01CA197903 |
| GroupedDBID | --- 123 29O 2WC 53G 5VS 7X7 88E 8FE 8FG 8FH 8FI 8FJ AAFWJ AAKPC AAUCC AAWOE AAYXX ABDBF ABUWG ACCTH ACGFO ACIHN ACIWK ACPRK ACUHS ADBBV AEAQA AENEX AEUYN AFFHD AFKRA AFPKN AFRAH AHMBA ALMA_UNASSIGNED_HOLDINGS AOIJS ARAPS AZQEC B0M BAIFH BAWUL BBNVY BBTPI BCNDV BENPR BGLVJ BHPHI BPHCQ BVXVI BWKFM CCPQU CITATION CS3 DIK DWQXO E3Z EAP EAS EBD EBS EJD EMK EMOBN ESX F5P FPL FYUFA GNUQQ GROUPED_DOAJ GX1 HCIFZ HMCUK HYE IAO IGS INH INR ISN ISR ITC J9A K6V K7- KQ8 LK8 M1P M48 M7P O5R O5S OK1 OVT P2P P62 PHGZM PHGZT PIMPY PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO PV9 RNS RPM RZL SV3 TR2 TUS UKHRP WOW XSB ~8M ADRAZ ALIPV C1A CGR CUY CVF ECM EIF H13 IPNFZ NPM RIG WOQ 3V. 7QO 7QP 7TK 7TM 7XB 8AL 8FD 8FK FR3 JQ2 K9. M0N P64 PKEHL PQEST PQUKI PRINS Q9U RC3 7X8 PUEGO 5PM |
| ID | FETCH-LOGICAL-c579t-a58513be7c306bc7b098cf91b05709d3e6ebf0c147c820f6d7472b1746a0168e3 |
| IEDL.DBID | FPL |
| ISICitedReferencesCount | 0 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001502389800005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1553-7358 1553-734X |
| IngestDate | Tue Dec 02 00:10:29 EST 2025 Fri Oct 03 12:42:05 EDT 2025 Tue Nov 04 02:01:58 EST 2025 Fri Sep 05 15:57:38 EDT 2025 Tue Nov 11 06:31:01 EST 2025 Tue Nov 11 10:49:23 EST 2025 Tue Nov 04 18:14:19 EST 2025 Thu Nov 13 15:56:22 EST 2025 Mon Jul 21 05:36:09 EDT 2025 Sat Nov 29 07:52:15 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 6 |
| Language | English |
| License | Copyright: © 2025 Huang et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Creative Commons Attribution License |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c579t-a58513be7c306bc7b098cf91b05709d3e6ebf0c147c820f6d7472b1746a0168e3 |
| Notes | new_version ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 The authors have declared that no competing interests exist. Lead Contact. |
| ORCID | 0000-0002-8552-043X |
| OpenAccessLink | http://dx.doi.org/10.1371/journal.pcbi.1013133 |
| PMID | 40465796 |
| PQID | 3270579685 |
| PQPubID | 1436340 |
| PageCount | e1013133 |
| ParticipantIDs | plos_journals_3270579685 doaj_primary_oai_doaj_org_article_b679724e1039459380ceb4f621b48ac4 pubmedcentral_primary_oai_pubmedcentral_nih_gov_12162100 proquest_miscellaneous_3215982817 proquest_journals_3270579685 gale_infotracmisc_A846606310 gale_infotracacademiconefile_A846606310 gale_incontextgauss_ISR_A846606310 pubmed_primary_40465796 crossref_primary_10_1371_journal_pcbi_1013133 |
| PublicationCentury | 2000 |
| PublicationDate | 20250604 |
| PublicationDateYYYYMMDD | 2025-06-04 |
| PublicationDate_xml | – month: 6 year: 2025 text: 20250604 day: 4 |
| PublicationDecade | 2020 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States – name: San Francisco – name: San Francisco, CA USA |
| PublicationTitle | PLoS computational biology |
| PublicationTitleAlternate | PLoS Comput Biol |
| PublicationYear | 2025 |
| Publisher | Public Library of Science Public Library of Science (PLoS) |
| Publisher_xml | – name: Public Library of Science – name: Public Library of Science (PLoS) |
| References | E Cerami (pcbi.1013133.ref026) 2012; 2 G Finak (pcbi.1013133.ref021) 2015; 16 J Huang (pcbi.1013133.ref022) 2024; 5 J Lei (pcbi.1013133.ref041) 2018; 113 Y Chen (pcbi.1013133.ref017) 2022; 13 JW Tyner (pcbi.1013133.ref025) 2018; 562 Y Qin (pcbi.1013133.ref003) 2020; 16 H Papadopoulos (pcbi.1013133.ref038) 2002 S Feldman (pcbi.1013133.ref040) 2023; 24 V Vovk (pcbi.1013133.ref037) 1999 F Avila Cobos (pcbi.1013133.ref011) 2020; 11 pcbi.1013133.ref014 D Sun (pcbi.1013133.ref028) 2021; 49 S Mohammadi (pcbi.1013133.ref010) 2017; 105 F Finotello (pcbi.1013133.ref002) 2015; 14 V Vovk (pcbi.1013133.ref039) 2005 X Wang (pcbi.1013133.ref006) 2019; 10 P van Galen (pcbi.1013133.ref023) 2019; 176 I Steinwart (pcbi.1013133.ref034) 2011; 17 B Cai (pcbi.1013133.ref013) 2024; 119 Q McNEMAR (pcbi.1013133.ref016) 1947; 12 R Dong (pcbi.1013133.ref027) 2020; 38 AM Newman (pcbi.1013133.ref005) 2019; 37 Z Lin (pcbi.1013133.ref012) 2021; 34 JM Sagendorf (pcbi.1013133.ref018) 2024; 16 GG Chowdhury (pcbi.1013133.ref032) 2010 V Teller (pcbi.1013133.ref031) 2000; 26 pcbi.1013133.ref042 A Giustacchini (pcbi.1013133.ref004) 2017; 23 M Garber (pcbi.1013133.ref001) 2011; 8 FA Wolf (pcbi.1013133.ref024) 2018; 19 SV Vasaikar (pcbi.1013133.ref029) 2018; 46 pcbi.1013133.ref007 I Takeuchi (pcbi.1013133.ref036) 2006; 7 DD Erdmann-Pham (pcbi.1013133.ref009) 2021; 31 A Sathe (pcbi.1013133.ref030) 2023; 29 M Moussa (pcbi.1013133.ref033) 2018; 19 M Long (pcbi.1013133.ref019) 2017 E Castro (pcbi.1013133.ref020) 2022; 4 JW Taylor (pcbi.1013133.ref035) 2000; 19 K Menden (pcbi.1013133.ref008) 2020; 6 C Su (pcbi.1013133.ref015) 2023; 14 |
| References_xml | – ident: pcbi.1013133.ref007 – volume: 14 start-page: 130 issue: 2 year: 2015 ident: pcbi.1013133.ref002 article-title: Measuring differential gene expression with RNA-seq: challenges and strategies for data analysis publication-title: Brief Funct Genomics doi: 10.1093/bfgp/elu035 – volume: 37 start-page: 773 issue: 7 year: 2019 ident: pcbi.1013133.ref005 article-title: Determining cell type abundance and expression from bulk tissues with digital cytometry publication-title: Nat Biotechnol doi: 10.1038/s41587-019-0114-2 – volume: 7 start-page: 1231 issue: 45 year: 2006 ident: pcbi.1013133.ref036 article-title: Nonparametric quantile estimation publication-title: J Mach Learn Res – volume: 14 start-page: 4846 issue: 1 year: 2023 ident: pcbi.1013133.ref015 article-title: Cell-type-specific co-expression inference from single cell RNA-sequencing data publication-title: Nat Commun doi: 10.1038/s41467-023-40503-7 – start-page: 2208 volume-title: International conference on machine learning year: 2017 ident: pcbi.1013133.ref019 article-title: Deep transfer learning with joint adaptation networks. – volume: 24 start-page: 1 issue: 24 year: 2023 ident: pcbi.1013133.ref040 article-title: Calibrated multiple-output quantile regression with representation learning publication-title: J Mach Learn Res – volume: 6 issue: 30 year: 2020 ident: pcbi.1013133.ref008 article-title: Deep learning-based cell composition analysis from tissue expression profiles publication-title: Sci Adv doi: 10.1126/sciadv.aba2619 – volume: 13 start-page: 6735 issue: 1 year: 2022 ident: pcbi.1013133.ref017 article-title: Deep autoencoder for interpretable tissue-adaptive deconvolution and cell-type-specific gene analysis publication-title: Nat Commun doi: 10.1038/s41467-022-34550-9 – volume: 26 start-page: 638 issue: 4 year: 2000 ident: pcbi.1013133.ref031 article-title: Speech and language processing: an introduction to natural language processing, computational linguistics, and speech recognition publication-title: Comput Linguist – volume: 12 start-page: 153 issue: 2 year: 1947 ident: pcbi.1013133.ref016 article-title: Note on the sampling error of the difference between correlated proportions or percentages publication-title: Psychometrika doi: 10.1007/BF02295996 – volume: 119 start-page: 2521 issue: 548 year: 2024 ident: pcbi.1013133.ref013 article-title: Statistical inference of cell-type proportions estimated from bulk expression data publication-title: J Am Stat Assoc doi: 10.1080/01621459.2024.2382435 – volume: 16 start-page: 278 year: 2015 ident: pcbi.1013133.ref021 article-title: MAST: a flexible statistical framework for assessing transcriptional changes and characterizing heterogeneity in single-cell RNA sequencing data publication-title: Genome Biol doi: 10.1186/s13059-015-0844-5 – volume: 23 start-page: 692 issue: 6 year: 2017 ident: pcbi.1013133.ref004 article-title: Single-cell transcriptomics uncovers distinct molecular signatures of stem cells in chronic myeloid leukemia publication-title: Nat Med doi: 10.1038/nm.4336 – volume: 31 start-page: 1794 issue: 10 year: 2021 ident: pcbi.1013133.ref009 article-title: Likelihood-based deconvolution of bulk gene expression data using single-cell references publication-title: Genome Res doi: 10.1101/gr.272344.120 – volume: 11 start-page: 5650 issue: 1 year: 2020 ident: pcbi.1013133.ref011 article-title: Benchmarking of cell type deconvolution pipelines for transcriptomics data publication-title: Nat Commun doi: 10.1038/s41467-020-19015-1 – volume-title: Algorithmic learning in a random world year: 2005 ident: pcbi.1013133.ref039 – volume: 19 start-page: 569 year: 2018 ident: pcbi.1013133.ref033 article-title: Single cell RNA-seq data clustering using TF-IDF based methods publication-title: BMC Genomics doi: 10.1186/s12864-018-4922-4 – volume: 2 start-page: 401 issue: 5 year: 2012 ident: pcbi.1013133.ref026 article-title: The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data publication-title: Cancer Discov doi: 10.1158/2159-8290.CD-12-0095 – volume-title: Introduction to modern information retrieval year: 2010 ident: pcbi.1013133.ref032 – volume: 19 start-page: 299 issue: 4 year: 2000 ident: pcbi.1013133.ref035 article-title: A quantile regression neural network approach to estimating the conditional density of multiperiod returns publication-title: J Forecast doi: 10.1002/1099-131X(200007)19:4<299::AID-FOR775>3.0.CO;2-V – volume: 8 start-page: 469 issue: 6 year: 2011 ident: pcbi.1013133.ref001 article-title: Computational methods for transcriptome annotation and quantification using RNA-seq publication-title: Nat Methods doi: 10.1038/nmeth.1613 – ident: pcbi.1013133.ref042 – volume: 105 start-page: 340 issue: 2 year: 2017 ident: pcbi.1013133.ref010 article-title: A critical survey of deconvolution methods for separating cell types in complex tissues publication-title: Proc IEEE doi: 10.1109/JPROC.2016.2607121 – start-page: 444 volume-title: Proceedings of the Sixteenth International Conference on Machine Learning. ICML ’99 year: 1999 ident: pcbi.1013133.ref037 article-title: Machine-learning applications of algorithmic randomness. – volume: 16 start-page: 297 issue: 3 year: 2024 ident: pcbi.1013133.ref018 article-title: Structure-based prediction of protein-nucleic acid binding using graph neural networks publication-title: Biophys Rev doi: 10.1007/s12551-024-01201-w – volume: 5 start-page: 100969 issue: 5 year: 2024 ident: pcbi.1013133.ref022 article-title: DeepDecon accurately estimates cancer cell fractions in bulk RNA-seq data publication-title: Patterns (N Y) doi: 10.1016/j.patter.2024.100969 – volume: 38 issue: 5 year: 2020 ident: pcbi.1013133.ref027 article-title: Single-cell characterization of malignant phenotypes and developmental trajectories of adrenal neuroblastoma publication-title: Cancer Cell doi: 10.1016/j.ccell.2020.08.014 – start-page: 345 volume-title: Machine learning: ECML 2002: 13th European conference on machine learning Helsinki, Finland, August 19–23, 2002 proceedings year: 2002 ident: pcbi.1013133.ref038 – volume: 562 start-page: 526 issue: 7728 year: 2018 ident: pcbi.1013133.ref025 article-title: Functional genomic landscape of acute myeloid leukaemia publication-title: Nature doi: 10.1038/s41586-018-0623-z – volume: 29 start-page: 244 issue: 1 year: 2023 ident: pcbi.1013133.ref030 article-title: Colorectal cancer metastases in the liver establish immunosuppressive spatial networking between tumor-associated SPP1+ macrophages and fibroblasts publication-title: Clin Cancer Res doi: 10.1158/1078-0432.CCR-22-2041 – volume: 34 start-page: 8378 year: 2021 ident: pcbi.1013133.ref012 article-title: Locally valid and discriminative prediction intervals for deep learning models publication-title: Adv Neural Inf Process Syst – volume: 4 start-page: 840 issue: 10 year: 2022 ident: pcbi.1013133.ref020 article-title: Transformer-based protein generation with regularized latent space optimization publication-title: Nat Mach Intell doi: 10.1038/s42256-022-00532-1 – ident: pcbi.1013133.ref014 – volume: 19 start-page: 15 issue: 1 year: 2018 ident: pcbi.1013133.ref024 article-title: SCANPY: large-scale single-cell gene expression data analysis publication-title: Genome Biol doi: 10.1186/s13059-017-1382-0 – volume: 16 issue: 11 year: 2020 ident: pcbi.1013133.ref003 article-title: Deconvolution of heterogeneous tumor samples using partial reference signals publication-title: PLoS Comput Biol – volume: 113 start-page: 1094 issue: 523 year: 2018 ident: pcbi.1013133.ref041 publication-title: J Am Statist Assoc doi: 10.1080/01621459.2017.1307116 – volume: 17 start-page: 211 issue: 1 year: 2011 ident: pcbi.1013133.ref034 article-title: Estimating conditional quantiles with the help of the pinball loss publication-title: Bernoulli doi: 10.3150/10-BEJ267 – volume: 49 year: 2021 ident: pcbi.1013133.ref028 article-title: TISCH: a comprehensive web resource enabling interactive single-cell transcriptome visualization of tumor microenvironment publication-title: Nucleic Acids Res – volume: 46 year: 2018 ident: pcbi.1013133.ref029 article-title: LinkedOmics: analyzing multi-omics data within and across 32 cancer types publication-title: Nucleic Acids Res doi: 10.1093/nar/gkx1090 – volume: 10 start-page: 380 issue: 1 year: 2019 ident: pcbi.1013133.ref006 article-title: Bulk tissue cell type deconvolution with multi-subject single-cell expression reference publication-title: Nat Commun doi: 10.1038/s41467-018-08023-x – volume: 176 issue: 6 year: 2019 ident: pcbi.1013133.ref023 article-title: Single-cell RNA-Seq reveals AML hierarchies relevant to disease progression and immunity publication-title: Cell doi: 10.1016/j.cell.2019.01.031 |
| SSID | ssj0035896 |
| Score | 2.4623082 |
| Snippet | Accurate estimation of malignant cell fractions in tissues plays a critical role in cancer diagnosis, prognosis, and subsequent treatment decisions. However,... |
| SourceID | plos doaj pubmedcentral proquest gale pubmed crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database |
| StartPage | e1013133 |
| SubjectTerms | Accuracy Artificial neural networks Biology and Life Sciences Calibration Cancer Computational Biology - methods Computer and Information Sciences Conformity Datasets Deep Learning Estimates Gene expression Gene sequencing Genetic aspects Humans Intervals Lower bounds Medical research Medicine and Health Sciences Methods Neoplasms - genetics Neoplasms - pathology Neural networks Neural Networks, Computer Performance evaluation Predictions Quantiles Research and analysis methods Ribonucleic acid RNA RNA sequencing RNA-Seq - methods Sequence Analysis, RNA - methods Single-Cell Analysis - methods Statistical analysis Uncertainty Validity |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3fi9QwEA6yKPgi58-rnhJF8Kle06RN-rh6Hgqy6OnB-hSSNL1bvOv2truC_70zSXe5yoEvvpVmWsiXafNNMvmGkNcZ3C68sqnNapMKB3GKUQUMSF4rZZjkdRRx_SxnMzWfV1-ulfrCnLAoDxyBO7SlrGQuPG5ZiqLiKnPeiqbMmRXKuKAECqxnG0zFfzAvVKjMhUVxUsnFfDg0xyU7HMbobefsAmNXzjgfTUpBu3_3h550F8v-Jvr5dxbltWnpeI_cG_gkncZ-3Ce3fPuA3IkVJn8_JD-OvO-OMOg9_UpRUOMSuSW9BPZ9hikwFBfuabOKxxtot8J9m3C5CMmQ4JxwRe3m4ic9mU3T3l_RdRirR-T0-MP39x_ToZpC6gpZrVODG4DceukgSrBO2qxSrqmYBcaWVTX3pbdN5piQDlhBU9YQaOQWApbSAC1Unj8mk3bZ-n1Ca88YEDdmBBipuqwaoFl1aYsKJn_D84SkWzh1F0UzdNg5kxBsRFw0wq8H-BPyDjHf2aLkdbgBjqAHR9D_coSEvMIR0yhq0WLWzJnZ9L3-9O1ET4FkQaAGTDYhbwajZgmD5sxwCAH6hTpYI8uDkSV8dW7UvI-Ose1Or3kuw7leVcCTW2e5ufnlrhlfiklurV9u0IahnKJiMiFPom_tIBGZKPH5hKiR140wG7e0i_MgF85yBiBl2dP_gfIzcjfHCsi4DiUOyGS92vjn5Lb7Bb63ehE-wj_fGjLZ priority: 102 providerName: Directory of Open Access Journals – databaseName: Computer Science Database dbid: K7- link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZgAakX3qWBggJC4hQaPxI7J7RQKhBoBYVKyymKHWdZtU3SZBeJf8-M410Iqrhwi-JJFHs-O994xjOEPI_hdmKVjnRcFpEwYKcUKgGFsFKpgkpeDklcP8rZTM3n2Se_4db7sMrNmugW6rIxuEd-wJl05yZV8qq9iLBqFHpXfQmNq-QaZYwizj_IaLMS80S5-lxYGieSXMz90Tku6YHX1MvW6CVasJxyPvo1uQz-23V60p41_WUk9O9Yyj9-Tke3_rdbt8lNT0vD6YCjO-SKre-SG0Ohyp_3yLdDa9tDtJ1PPoeYl-McKWp4DiR-gZE0Ie7_h1U3nJII2w7dP-5y6WIqAeNwFer12Wl4PJtGvb0IV07l98nJ0duvb95FvihDZOA7V1GBfkSurTRgbGgjdZwpU2VUQzfirOQ2tbqKDRXSALmo0hLsFabB7kkLYJfK8l0yqZva7pGwtJQC_6OFACFVplkFbK1MdZIBhyg4C0i00UfeDrk3cueAk2CzDOOSo_5yr7-AvEalbWUxc7a70XSL3E_EXKcyk0xYdIGLJOMqNlaLKmVUC1UYEZBnqPIcc2PUGHyzKNZ9n7__cpxPgauBvQeEOCAvvFDVgNZN4c8yQL8wndZIcn8kCZPXjJr3EFmb7vT5bzzAkxvEXN78dNuML8VYudo2a5ShmJVRURmQBwM4t0MiYpHi8wFRI9iOxmzcUi-_u6zjlFEYpDh--O_vekR2GJZIxo0qsU8mq25tH5Pr5gegqnvi5ucvYDlBwQ priority: 102 providerName: ProQuest |
| Title | DeepDeconUQ estimates malignant cell fraction prediction intervals in bulk RNA-seq tissue |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/40465796 https://www.proquest.com/docview/3270579685 https://www.proquest.com/docview/3215982817 https://pubmed.ncbi.nlm.nih.gov/PMC12162100 https://doaj.org/article/b679724e1039459380ceb4f621b48ac4 http://dx.doi.org/10.1371/journal.pcbi.1013133 |
| Volume | 21 |
| WOSCitedRecordID | wos001502389800005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1553-7358 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0035896 issn: 1553-7358 databaseCode: DOA dateStart: 20050101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVPQU databaseName: Advanced Technologies & Aerospace Database customDbUrl: eissn: 1553-7358 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0035896 issn: 1553-7358 databaseCode: P5Z dateStart: 20050601 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1553-7358 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0035896 issn: 1553-7358 databaseCode: 7X7 dateStart: 20050601 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Biological Science Database (NC LIVE) customDbUrl: eissn: 1553-7358 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0035896 issn: 1553-7358 databaseCode: M7P dateStart: 20050601 isFulltext: true titleUrlDefault: http://search.proquest.com/biologicalscijournals providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1553-7358 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0035896 issn: 1553-7358 databaseCode: BENPR dateStart: 20050601 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Computer Science Database (NC LIVE) customDbUrl: eissn: 1553-7358 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0035896 issn: 1553-7358 databaseCode: K7- dateStart: 20050601 isFulltext: true titleUrlDefault: http://search.proquest.com/compscijour providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 1553-7358 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0035896 issn: 1553-7358 databaseCode: PIMPY dateStart: 20050601 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest – providerCode: PRVATS databaseName: Public Library of Science (PLoS) Journals Open Access customDbUrl: eissn: 1553-7358 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0035896 issn: 1553-7358 databaseCode: FPL dateStart: 20050101 isFulltext: true titleUrlDefault: http://www.plos.org/publications/ providerName: Public Library of Science |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwELdYBxIv45sFRhUQEk9hcezYzmPHVjExqlCY1PESxY4zqm1p6AcS_z13TlrItD3wYkXxOXLuzsnvZ5_PhLwN4XZslQ50WOQBN8BTchWDQaJCqZxKVjRJXE_kaKQmkyT9SxSvreAzSfdbnb6vjZ4i12TAqrbIdsSEwBCuYXqy_vKyWCWi3R53W8vO78dl6d98i3v15WxxE9C8Hi_5zw9o-OB_u_6Q7LRQ0x80vvGI3LHVY3KvOXzy9xNydmhtfYh8-PSLj7k2rhB2-lcAzM8xOsbHOX2_nDc7H_x6jks67nLq4iTBb-HK16vLC388GgQL-9NfOjM-JafDo28fPgbtQQuBiWWyDHJcG2TaSgMEQhupw0SZMqEawFyYFMwKq8vQUC4NAIZSFMBBIg1cRuSAGJVlz0ivmlV2l_iFpRQwHc05CKlCJCUgsELoOAFckLPII8Fa_1nd5NPI3KKaBB7S6CVDdWWtujxygEbayGI2bHcD9Jy1gyvTQiYy4haXtXmcMBUaq3kpIqq5yg33yBs0cYb5LioMqDnPV4tFdvx1nA0AfwGHA5DrkXetUDkDK5u83Z8A74UpsjqSex1JGJCmU72LnrR-nUXGIum2_KoYWq696-bq15tqfCjGv1V2tkIZipkWFZUeed4440YlPOQC23tEddy0o7NuTTX94TKJ04iCksLwxe1dfknuR3jkMU488T3SW85X9hW5a36BR837ZEtOpCtVn2wfHI3Scd9Na_TdyITykwz6GFCbQpnG30EqPf6cnv0BK2k23w |
| linkProvider | Public Library of Science |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3db9MwELdGAcEL32OBAQGBeMoWx07sPCBUKNOqlgrGJpWnEDtOqdiSrGlB-6f4G7nLRyFo4m0PvEWxHcX2z-ff-c53hDx34bVvpHKUm8QO16CnxNKHCfESKWMqWFIHcR2LyUROp-GHDfKzvQuDbpWtTKwEdZJrPCPfZZ6o7k1K_3Vx6mDWKLSutik0aliMzNkPUNnKV8MBzO8Lz9t7d_h232myCjga2i-dGA1hTBmhgS0rLZQbSp2GVMHn3TBhJjAqdTXlQsPumAYJEG5PAXEPYqBH0jD47iVymTMpMFb_SDit5Ge-rPKBYSoeRzA-ba7qMUF3G2TsFFrNUWNmlLHOVlhlDFjvC73iOC_PI71_-27-sRnu3fzfhvEWudHQbrtfr5PbZMNkd8jVOhHn2V3yeWBMMcCzgaOPNsYdOUEKbp-AkjJDTyEb7Rt2uqhvgdjFAs1b1eO88hmFNQxPtlodf7MPJn2nNKf2soL0PXJ0If3aJL0sz8wWsRNDKfBbGnOoJJMgTIGNJoHyQ-BIMfMs4rTzHxV1bJGoMjAK0MnqcYkQL1GDF4u8QZCs62Jk8OpFvphFjaCJVCBC4XGDJn7uh0y62iieBh5VXMaaW-QZQizC2B8ZOhfN4lVZRsNPB1EfuCjos0D4LfKyqZTmgDIdN3c1oF8YLqxTc7tTE4ST7hRvIZLb7pTRb_xByxah5xc_XRfjR9EXMDP5CutQjDopqbDI_XoxrIeEuzzA9haRnWXSGbNuSTb_WkVVpx6FQXLdB__-ryfk2v7h-3E0Hk5GD8l1D9NB46Ec3ya95WJlHpEr-jsgbPG4kg02-XLRq-gX_2OdXQ |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3db9MwELdG-RAvfI8FBgQE4ilrHDux84BQoVRUnaoxmFSeQuw4pWJLsqYF7V_jr-MuH4Wgibc98BbFFyd2fue7853vCHnuwm3fSOUoN4kdrsFOiaUPP8RLpIypYEmdxHVfTKdyNgsPtsjP9iwMhlW2a2K1UCe5xj3yPvNEdW5S-v20CYs4GI5eF6cOVpBCT2tbTqOGyMSc_QDzrXw1HsK_fuF5o3ef3r53mgoDjoa-Vk6MTjGmjNCgOSstlBtKnYZUwavcMGEmMCp1NeVCg6RMgwSUb0-BEh_EoCpJw6DfS-QySGEfeWwinFYKMF9WtcGwLI8jGJ81x_aYoP0GJXuFVgu0nhllrCMWq-oBGxnRK47z8jwF-O84zj8E4-jm_zylt8iNRh23BzX_3CZbJrtDrtYFOs_uks9DY4oh7hkcfbAxH8kJqub2CRgvc4wgstHvYafL-nSIXSzR7VVdLqpYUuBtuLLV-vibfTgdOKU5tVcV1O-RowsZ1zbpZXlmdoidGEpB76UxByKZBGEKWmoSKD8E3SlmnkWcFgtRUecciSrHowBbrZ6XCLETNdixyBsEzIYWM4ZXN_LlPGoWoEgFIhQeN-j6537IpKuN4mngUcVlrLlFniHcIswJkiEU5vG6LKPxx8NoADoq2LlgCFjkZUOU5oA4HTdnOGBcmEasQ7nboYRFS3eadxDV7XDK6DcW4ckWrec3P900Y6cYI5iZfI00FLNRSioscr9mjM2UcJcH-LxFZIdlOnPWbckWX6ts69SjMEmu--Df3_WEXAPmifbH08lDct3DKtG4V8d3SW-1XJtH5Ir-DgBbPq6WCZt8uWgm-gXNAKYX |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=DeepDeconUQ+estimates+malignant+cell+fraction+prediction+intervals+in+bulk+RNA-seq+tissue&rft.jtitle=PLoS+computational+biology&rft.au=Huang%2C+Jiawei&rft.au=Du%2C+Yuxuan&rft.au=Kelly%2C+Kevin&rft.au=Lv%2C+Jinchi&rft.date=2025-06-04&rft.pub=Public+Library+of+Science&rft.eissn=1553-7358&rft.volume=21&rft.issue=6&rft_id=info:doi/10.1371%2Fjournal.pcbi.1013133&rft.externalDocID=3270579685 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1553-7358&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1553-7358&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1553-7358&client=summon |