DeepDeconUQ estimates malignant cell fraction prediction intervals in bulk RNA-seq tissue

Accurate estimation of malignant cell fractions in tissues plays a critical role in cancer diagnosis, prognosis, and subsequent treatment decisions. However, most currently available methods provide only point estimates, neglecting the quantification of uncertainties, which is essential for both cli...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:PLoS computational biology Ročník 21; číslo 6; s. e1013133
Hlavní autoři: Huang, Jiawei, Du, Yuxuan, Kelly, Kevin R., Lv, Jinchi, Fan, Yingying, Zhong, Jiang F., Sun, Fengzhu
Médium: Journal Article
Jazyk:angličtina
Vydáno: United States Public Library of Science 04.06.2025
Public Library of Science (PLoS)
Témata:
ISSN:1553-7358, 1553-734X, 1553-7358
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Accurate estimation of malignant cell fractions in tissues plays a critical role in cancer diagnosis, prognosis, and subsequent treatment decisions. However, most currently available methods provide only point estimates, neglecting the quantification of uncertainties, which is essential for both clinical and research applications. This study introduces DeepDeconUQ, a deep neural network model developed to estimate prediction intervals for malignant cell fractions based on bulk RNA-seq data. This approach addresses limitations in current malignant cell fraction estimation methods by integrating uncertainty quantification into predictions of cancer cell fractions. DeepDeconUQ leverages single-cell RNA sequencing (scRNA-seq) data in conjunction with conformalized quantile regression to produce reliable prediction intervals. The model trains a quantile regression neural network to establish upper and lower bounds for cancer cell proportions, followed by a calibration step that refines these intervals to ensure both statistical validity (coverage probability) and discrimination (narrow intervals). Benchmark analyses indicate that DeepDeconUQ consistently surpasses existing methods, achieving high coverage accuracy with tight prediction intervals across simulated and real cancer datasets. The robustness of DeepDeconUQ is further demonstrated by its resilience to various gene expression perturbations. The DeepDeconUQ method is publicly accessible at https://github.com/jiaweih14/DeepDeconUQ .
AbstractList Accurate estimation of malignant cell fractions in tissues plays a critical role in cancer diagnosis, prognosis, and subsequent treatment decisions. However, most currently available methods provide only point estimates, neglecting the quantification of uncertainties, which is essential for both clinical and research applications. This study introduces DeepDeconUQ, a deep neural network model developed to estimate prediction intervals for malignant cell fractions based on bulk RNA-seq data. This approach addresses limitations in current malignant cell fraction estimation methods by integrating uncertainty quantification into predictions of cancer cell fractions. DeepDeconUQ leverages single-cell RNA sequencing (scRNA-seq) data in conjunction with conformalized quantile regression to produce reliable prediction intervals. The model trains a quantile regression neural network to establish upper and lower bounds for cancer cell proportions, followed by a calibration step that refines these intervals to ensure both statistical validity (coverage probability) and discrimination (narrow intervals). Benchmark analyses indicate that DeepDeconUQ consistently surpasses existing methods, achieving high coverage accuracy with tight prediction intervals across simulated and real cancer datasets. The robustness of DeepDeconUQ is further demonstrated by its resilience to various gene expression perturbations. The DeepDeconUQ method is publicly accessible at https://github.com/jiaweih14/DeepDeconUQ.
Accurate estimation of malignant cell fractions in tissues plays a critical role in cancer diagnosis, prognosis, and subsequent treatment decisions. However, most currently available methods provide only point estimates, neglecting the quantification of uncertainties, which is essential for both clinical and research applications. This study introduces DeepDeconUQ, a deep neural network model developed to estimate prediction intervals for malignant cell fractions based on bulk RNA-seq data. This approach addresses limitations in current malignant cell fraction estimation methods by integrating uncertainty quantification into predictions of cancer cell fractions. DeepDeconUQ leverages single-cell RNA sequencing (scRNA-seq) data in conjunction with conformalized quantile regression to produce reliable prediction intervals. The model trains a quantile regression neural network to establish upper and lower bounds for cancer cell proportions, followed by a calibration step that refines these intervals to ensure both statistical validity (coverage probability) and discrimination (narrow intervals). Benchmark analyses indicate that DeepDeconUQ consistently surpasses existing methods, achieving high coverage accuracy with tight prediction intervals across simulated and real cancer datasets. The robustness of DeepDeconUQ is further demonstrated by its resilience to various gene expression perturbations. The DeepDeconUQ method is publicly accessible at https://github.com/jiaweih14/DeepDeconUQ.Accurate estimation of malignant cell fractions in tissues plays a critical role in cancer diagnosis, prognosis, and subsequent treatment decisions. However, most currently available methods provide only point estimates, neglecting the quantification of uncertainties, which is essential for both clinical and research applications. This study introduces DeepDeconUQ, a deep neural network model developed to estimate prediction intervals for malignant cell fractions based on bulk RNA-seq data. This approach addresses limitations in current malignant cell fraction estimation methods by integrating uncertainty quantification into predictions of cancer cell fractions. DeepDeconUQ leverages single-cell RNA sequencing (scRNA-seq) data in conjunction with conformalized quantile regression to produce reliable prediction intervals. The model trains a quantile regression neural network to establish upper and lower bounds for cancer cell proportions, followed by a calibration step that refines these intervals to ensure both statistical validity (coverage probability) and discrimination (narrow intervals). Benchmark analyses indicate that DeepDeconUQ consistently surpasses existing methods, achieving high coverage accuracy with tight prediction intervals across simulated and real cancer datasets. The robustness of DeepDeconUQ is further demonstrated by its resilience to various gene expression perturbations. The DeepDeconUQ method is publicly accessible at https://github.com/jiaweih14/DeepDeconUQ.
Accurate estimation of malignant cell fractions in tissues plays a critical role in cancer diagnosis, prognosis, and subsequent treatment decisions. However, most currently available methods provide only point estimates, neglecting the quantification of uncertainties, which is essential for both clinical and research applications. This study introduces DeepDeconUQ, a deep neural network model developed to estimate prediction intervals for malignant cell fractions based on bulk RNA-seq data. This approach addresses limitations in current malignant cell fraction estimation methods by integrating uncertainty quantification into predictions of cancer cell fractions. DeepDeconUQ leverages single-cell RNA sequencing (scRNA-seq) data in conjunction with conformalized quantile regression to produce reliable prediction intervals. The model trains a quantile regression neural network to establish upper and lower bounds for cancer cell proportions, followed by a calibration step that refines these intervals to ensure both statistical validity (coverage probability) and discrimination (narrow intervals). Benchmark analyses indicate that DeepDeconUQ consistently surpasses existing methods, achieving high coverage accuracy with tight prediction intervals across simulated and real cancer datasets. The robustness of DeepDeconUQ is further demonstrated by its resilience to various gene expression perturbations. The DeepDeconUQ method is publicly accessible at
Accurate estimation of malignant cell fractions in tissues plays a critical role in cancer diagnosis, prognosis, and subsequent treatment decisions. However, most currently available methods provide only point estimates, neglecting the quantification of uncertainties, which is essential for both clinical and research applications. This study introduces DeepDeconUQ, a deep neural network model developed to estimate prediction intervals for malignant cell fractions based on bulk RNA-seq data. This approach addresses limitations in current malignant cell fraction estimation methods by integrating uncertainty quantification into predictions of cancer cell fractions. DeepDeconUQ leverages single-cell RNA sequencing (scRNA-seq) data in conjunction with conformalized quantile regression to produce reliable prediction intervals. The model trains a quantile regression neural network to establish upper and lower bounds for cancer cell proportions, followed by a calibration step that refines these intervals to ensure both statistical validity (coverage probability) and discrimination (narrow intervals). Benchmark analyses indicate that DeepDeconUQ consistently surpasses existing methods, achieving high coverage accuracy with tight prediction intervals across simulated and real cancer datasets. The robustness of DeepDeconUQ is further demonstrated by its resilience to various gene expression perturbations. The DeepDeconUQ method is publicly accessible at https://github.com/jiaweih14/DeepDeconUQ. Accurately determining the proportion of malignant cells in tumor tissues is crucial for cancer diagnosis and treatment planning. Current methods often provide single estimates without indicating the uncertainty, which can lead to overconfidence in clinical decisions. Here, we present DeepDeconUQ, a deep learning tool that not only predicts the fraction of malignant cells in bulk RNA sequencing data but also quantifies the uncertainty around these estimates. By leveraging single-cell RNA sequencing data to simulate realistic tumor samples, DeepDeconUQ trains a neural network to generate prediction intervals—ranges within which the true malignant cell fraction is likely to lie with high probability. This approach combines quantile regression and statistical calibration to ensure reliability without restrictive assumptions about data distribution. When tested on both simulated and real-world datasets, DeepDeconUQ consistently outperformed existing methods, delivering precise intervals that reliably capture true values while remaining robust against technical noise in gene expression measurements. Our tool addresses a critical gap in cancer genomics by providing clinicians and researchers with confidence intervals that enhance the interpretability of bulk tissue analyses. This advancement could improve personalized treatment strategies and reduce errors in downstream research applications.
Audience Academic
Author Kelly, Kevin R.
Lv, Jinchi
Du, Yuxuan
Zhong, Jiang F.
Huang, Jiawei
Fan, Yingying
Sun, Fengzhu
AuthorAffiliation 2 Department of Electrical and Computer Engineering, University of Texas at San Antonio, San Antonio, Texas, United States of America
Tsinghua University, CHINA
1 Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, California, United States of America
4 Data Sciences and Operations Department, University of Southern California, Los Angeles, California, United States of America
3 Division of Hematology, University of Southern California, Los Angeles, California, United States of America
5 Department of Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, California, United States of America
AuthorAffiliation_xml – name: 4 Data Sciences and Operations Department, University of Southern California, Los Angeles, California, United States of America
– name: 3 Division of Hematology, University of Southern California, Los Angeles, California, United States of America
– name: 1 Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, California, United States of America
– name: Tsinghua University, CHINA
– name: 5 Department of Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, California, United States of America
– name: 2 Department of Electrical and Computer Engineering, University of Texas at San Antonio, San Antonio, Texas, United States of America
Author_xml – sequence: 1
  givenname: Jiawei
  surname: Huang
  fullname: Huang, Jiawei
– sequence: 2
  givenname: Yuxuan
  surname: Du
  fullname: Du, Yuxuan
– sequence: 3
  givenname: Kevin R.
  surname: Kelly
  fullname: Kelly, Kevin R.
– sequence: 4
  givenname: Jinchi
  surname: Lv
  fullname: Lv, Jinchi
– sequence: 5
  givenname: Yingying
  surname: Fan
  fullname: Fan, Yingying
– sequence: 6
  givenname: Jiang F.
  surname: Zhong
  fullname: Zhong, Jiang F.
– sequence: 7
  givenname: Fengzhu
  orcidid: 0000-0002-8552-043X
  surname: Sun
  fullname: Sun, Fengzhu
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40465796$$D View this record in MEDLINE/PubMed
BookMark eNptkl9v0zAUxSM0xLbCN0AQiRd4aLFjx3aeULXxp9IEYrAHnizbuSkuqd3ZzgTfHodm04qmPOTK_vlcn-N7Whw576AonmO0wITjtxs_BKf6xc5ou8AIE0zIo-IE1zWZc1KLo3v1cXEa4wahXDbsSXFMEWU1b9hJ8eMcYHcOxrurryXEZLcqQSy3qrdrp1wqDfR92QVlkvWu3AVo7b60LkG4UX3MVamH_ld5-Xk5j3BdJhvjAE-Lx13ehWfTf1ZcfXj__ezT_OLLx9XZ8mJu8g3SXNWixkQDNwQxbbhGjTBdgzWqOWpaAgx0hwym3IgKdazllFcac8oUwkwAmRUv97q73kc5pRIlqTgaLYo6E6s90Xq1kbuQPYY_0isr_y34sJYqJGt6kJrxhlcUMCINrRsikAFNO1ZhTYUyNGu9m7oNegutAZeC6g9ED3ec_SnX_kbiCmeV_ASz4vWkEPz1kCOXWxvHlJUDP4wXx3UjKoF5Rl_9hz5sb6LWKjuwrvO5sRlF5VJQxhAjeGy7eIDKXwtbm58fOpvXDw68OTiQmQS_01oNMcrVt8tD9sX9VO7iuJ2zDNA9YIKPMUB3h2Akx3G-dSbHcZbTOJO_SU3moQ
Cites_doi 10.1093/bfgp/elu035
10.1038/s41587-019-0114-2
10.1038/s41467-023-40503-7
10.1126/sciadv.aba2619
10.1038/s41467-022-34550-9
10.1007/BF02295996
10.1080/01621459.2024.2382435
10.1186/s13059-015-0844-5
10.1038/nm.4336
10.1101/gr.272344.120
10.1038/s41467-020-19015-1
10.1186/s12864-018-4922-4
10.1158/2159-8290.CD-12-0095
10.1002/1099-131X(200007)19:4<299::AID-FOR775>3.0.CO;2-V
10.1038/nmeth.1613
10.1109/JPROC.2016.2607121
10.1007/s12551-024-01201-w
10.1016/j.patter.2024.100969
10.1016/j.ccell.2020.08.014
10.1038/s41586-018-0623-z
10.1158/1078-0432.CCR-22-2041
10.1038/s42256-022-00532-1
10.1186/s13059-017-1382-0
10.1080/01621459.2017.1307116
10.3150/10-BEJ267
10.1093/nar/gkx1090
10.1038/s41467-018-08023-x
10.1016/j.cell.2019.01.031
ContentType Journal Article
Copyright Copyright: © 2025 Huang et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
COPYRIGHT 2025 Public Library of Science
2025 Huang et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2025 Huang et al 2025 Huang et al
2025 Huang et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: Copyright: © 2025 Huang et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
– notice: COPYRIGHT 2025 Public Library of Science
– notice: 2025 Huang et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2025 Huang et al 2025 Huang et al
– notice: 2025 Huang et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
ISR
3V.
7QO
7QP
7TK
7TM
7X7
7XB
88E
8AL
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
HCIFZ
JQ2
K7-
K9.
LK8
M0N
M0S
M1P
M7P
P5Z
P62
P64
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
RC3
7X8
5PM
DOA
DOI 10.1371/journal.pcbi.1013133
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Gale In Context: Science
ProQuest Central (Corporate)
Biotechnology Research Abstracts
Calcium & Calcified Tissue Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Computing Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology Collection
Natural Science Collection
ProQuest One
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
Computing Database
Health & Medical Collection (Alumni Edition)
Medical Database
Biological Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
Computer Science Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Nucleic Acids Abstracts
SciTech Premium Collection
ProQuest Central China
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Advanced Technologies & Aerospace Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Genetics Abstracts
Biotechnology Research Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
ProQuest Computing
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList Publicly Available Content Database

MEDLINE - Academic



MEDLINE
CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
DocumentTitleAlternate DeepDeconUQ estimates malignant cell fraction prediction intervals
EISSN 1553-7358
ExternalDocumentID 3270579685
oai_doaj_org_article_b679724e1039459380ceb4f621b48ac4
PMC12162100
A846606310
40465796
10_1371_journal_pcbi_1013133
Genre Journal Article
GeographicLocations United States
GeographicLocations_xml – name: United States
GrantInformation_xml – fundername: NCI NIH HHS
  grantid: R01 CA197903
– fundername: NCI NIH HHS
  grantid: R01 CA251848
– fundername: ;
  grantid: R01CA251848
– fundername: ;
  grantid: R01CA197903
GroupedDBID ---
123
29O
2WC
53G
5VS
7X7
88E
8FE
8FG
8FH
8FI
8FJ
AAFWJ
AAKPC
AAUCC
AAWOE
AAYXX
ABDBF
ABUWG
ACCTH
ACGFO
ACIHN
ACIWK
ACPRK
ACUHS
ADBBV
AEAQA
AENEX
AEUYN
AFFHD
AFKRA
AFPKN
AFRAH
AHMBA
ALMA_UNASSIGNED_HOLDINGS
AOIJS
ARAPS
AZQEC
B0M
BAIFH
BAWUL
BBNVY
BBTPI
BCNDV
BENPR
BGLVJ
BHPHI
BPHCQ
BVXVI
BWKFM
CCPQU
CITATION
CS3
DIK
DWQXO
E3Z
EAP
EAS
EBD
EBS
EJD
EMK
EMOBN
ESX
F5P
FPL
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HMCUK
HYE
IAO
IGS
INH
INR
ISN
ISR
ITC
J9A
K6V
K7-
KQ8
LK8
M1P
M48
M7P
O5R
O5S
OK1
OVT
P2P
P62
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PV9
RNS
RPM
RZL
SV3
TR2
TUS
UKHRP
WOW
XSB
~8M
ADRAZ
ALIPV
C1A
CGR
CUY
CVF
ECM
EIF
H13
IPNFZ
NPM
RIG
WOQ
3V.
7QO
7QP
7TK
7TM
7XB
8AL
8FD
8FK
FR3
JQ2
K9.
M0N
P64
PKEHL
PQEST
PQUKI
PRINS
Q9U
RC3
7X8
PUEGO
5PM
ID FETCH-LOGICAL-c579t-a58513be7c306bc7b098cf91b05709d3e6ebf0c147c820f6d7472b1746a0168e3
IEDL.DBID FPL
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001502389800005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1553-7358
1553-734X
IngestDate Tue Dec 02 00:10:29 EST 2025
Fri Oct 03 12:42:05 EDT 2025
Tue Nov 04 02:01:58 EST 2025
Fri Sep 05 15:57:38 EDT 2025
Tue Nov 11 06:31:01 EST 2025
Tue Nov 11 10:49:23 EST 2025
Tue Nov 04 18:14:19 EST 2025
Thu Nov 13 15:56:22 EST 2025
Mon Jul 21 05:36:09 EDT 2025
Sat Nov 29 07:52:15 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
License Copyright: © 2025 Huang et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Creative Commons Attribution License
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c579t-a58513be7c306bc7b098cf91b05709d3e6ebf0c147c820f6d7472b1746a0168e3
Notes new_version
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
The authors have declared that no competing interests exist.
Lead Contact.
ORCID 0000-0002-8552-043X
OpenAccessLink http://dx.doi.org/10.1371/journal.pcbi.1013133
PMID 40465796
PQID 3270579685
PQPubID 1436340
PageCount e1013133
ParticipantIDs plos_journals_3270579685
doaj_primary_oai_doaj_org_article_b679724e1039459380ceb4f621b48ac4
pubmedcentral_primary_oai_pubmedcentral_nih_gov_12162100
proquest_miscellaneous_3215982817
proquest_journals_3270579685
gale_infotracmisc_A846606310
gale_infotracacademiconefile_A846606310
gale_incontextgauss_ISR_A846606310
pubmed_primary_40465796
crossref_primary_10_1371_journal_pcbi_1013133
PublicationCentury 2000
PublicationDate 20250604
PublicationDateYYYYMMDD 2025-06-04
PublicationDate_xml – month: 6
  year: 2025
  text: 20250604
  day: 4
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: San Francisco
– name: San Francisco, CA USA
PublicationTitle PLoS computational biology
PublicationTitleAlternate PLoS Comput Biol
PublicationYear 2025
Publisher Public Library of Science
Public Library of Science (PLoS)
Publisher_xml – name: Public Library of Science
– name: Public Library of Science (PLoS)
References E Cerami (pcbi.1013133.ref026) 2012; 2
G Finak (pcbi.1013133.ref021) 2015; 16
J Huang (pcbi.1013133.ref022) 2024; 5
J Lei (pcbi.1013133.ref041) 2018; 113
Y Chen (pcbi.1013133.ref017) 2022; 13
JW Tyner (pcbi.1013133.ref025) 2018; 562
Y Qin (pcbi.1013133.ref003) 2020; 16
H Papadopoulos (pcbi.1013133.ref038) 2002
S Feldman (pcbi.1013133.ref040) 2023; 24
V Vovk (pcbi.1013133.ref037) 1999
F Avila Cobos (pcbi.1013133.ref011) 2020; 11
pcbi.1013133.ref014
D Sun (pcbi.1013133.ref028) 2021; 49
S Mohammadi (pcbi.1013133.ref010) 2017; 105
F Finotello (pcbi.1013133.ref002) 2015; 14
V Vovk (pcbi.1013133.ref039) 2005
X Wang (pcbi.1013133.ref006) 2019; 10
P van Galen (pcbi.1013133.ref023) 2019; 176
I Steinwart (pcbi.1013133.ref034) 2011; 17
B Cai (pcbi.1013133.ref013) 2024; 119
Q McNEMAR (pcbi.1013133.ref016) 1947; 12
R Dong (pcbi.1013133.ref027) 2020; 38
AM Newman (pcbi.1013133.ref005) 2019; 37
Z Lin (pcbi.1013133.ref012) 2021; 34
JM Sagendorf (pcbi.1013133.ref018) 2024; 16
GG Chowdhury (pcbi.1013133.ref032) 2010
V Teller (pcbi.1013133.ref031) 2000; 26
pcbi.1013133.ref042
A Giustacchini (pcbi.1013133.ref004) 2017; 23
M Garber (pcbi.1013133.ref001) 2011; 8
FA Wolf (pcbi.1013133.ref024) 2018; 19
SV Vasaikar (pcbi.1013133.ref029) 2018; 46
pcbi.1013133.ref007
I Takeuchi (pcbi.1013133.ref036) 2006; 7
DD Erdmann-Pham (pcbi.1013133.ref009) 2021; 31
A Sathe (pcbi.1013133.ref030) 2023; 29
M Moussa (pcbi.1013133.ref033) 2018; 19
M Long (pcbi.1013133.ref019) 2017
E Castro (pcbi.1013133.ref020) 2022; 4
JW Taylor (pcbi.1013133.ref035) 2000; 19
K Menden (pcbi.1013133.ref008) 2020; 6
C Su (pcbi.1013133.ref015) 2023; 14
References_xml – ident: pcbi.1013133.ref007
– volume: 14
  start-page: 130
  issue: 2
  year: 2015
  ident: pcbi.1013133.ref002
  article-title: Measuring differential gene expression with RNA-seq: challenges and strategies for data analysis
  publication-title: Brief Funct Genomics
  doi: 10.1093/bfgp/elu035
– volume: 37
  start-page: 773
  issue: 7
  year: 2019
  ident: pcbi.1013133.ref005
  article-title: Determining cell type abundance and expression from bulk tissues with digital cytometry
  publication-title: Nat Biotechnol
  doi: 10.1038/s41587-019-0114-2
– volume: 7
  start-page: 1231
  issue: 45
  year: 2006
  ident: pcbi.1013133.ref036
  article-title: Nonparametric quantile estimation
  publication-title: J Mach Learn Res
– volume: 14
  start-page: 4846
  issue: 1
  year: 2023
  ident: pcbi.1013133.ref015
  article-title: Cell-type-specific co-expression inference from single cell RNA-sequencing data
  publication-title: Nat Commun
  doi: 10.1038/s41467-023-40503-7
– start-page: 2208
  volume-title: International conference on machine learning
  year: 2017
  ident: pcbi.1013133.ref019
  article-title: Deep transfer learning with joint adaptation networks.
– volume: 24
  start-page: 1
  issue: 24
  year: 2023
  ident: pcbi.1013133.ref040
  article-title: Calibrated multiple-output quantile regression with representation learning
  publication-title: J Mach Learn Res
– volume: 6
  issue: 30
  year: 2020
  ident: pcbi.1013133.ref008
  article-title: Deep learning-based cell composition analysis from tissue expression profiles
  publication-title: Sci Adv
  doi: 10.1126/sciadv.aba2619
– volume: 13
  start-page: 6735
  issue: 1
  year: 2022
  ident: pcbi.1013133.ref017
  article-title: Deep autoencoder for interpretable tissue-adaptive deconvolution and cell-type-specific gene analysis
  publication-title: Nat Commun
  doi: 10.1038/s41467-022-34550-9
– volume: 26
  start-page: 638
  issue: 4
  year: 2000
  ident: pcbi.1013133.ref031
  article-title: Speech and language processing: an introduction to natural language processing, computational linguistics, and speech recognition
  publication-title: Comput Linguist
– volume: 12
  start-page: 153
  issue: 2
  year: 1947
  ident: pcbi.1013133.ref016
  article-title: Note on the sampling error of the difference between correlated proportions or percentages
  publication-title: Psychometrika
  doi: 10.1007/BF02295996
– volume: 119
  start-page: 2521
  issue: 548
  year: 2024
  ident: pcbi.1013133.ref013
  article-title: Statistical inference of cell-type proportions estimated from bulk expression data
  publication-title: J Am Stat Assoc
  doi: 10.1080/01621459.2024.2382435
– volume: 16
  start-page: 278
  year: 2015
  ident: pcbi.1013133.ref021
  article-title: MAST: a flexible statistical framework for assessing transcriptional changes and characterizing heterogeneity in single-cell RNA sequencing data
  publication-title: Genome Biol
  doi: 10.1186/s13059-015-0844-5
– volume: 23
  start-page: 692
  issue: 6
  year: 2017
  ident: pcbi.1013133.ref004
  article-title: Single-cell transcriptomics uncovers distinct molecular signatures of stem cells in chronic myeloid leukemia
  publication-title: Nat Med
  doi: 10.1038/nm.4336
– volume: 31
  start-page: 1794
  issue: 10
  year: 2021
  ident: pcbi.1013133.ref009
  article-title: Likelihood-based deconvolution of bulk gene expression data using single-cell references
  publication-title: Genome Res
  doi: 10.1101/gr.272344.120
– volume: 11
  start-page: 5650
  issue: 1
  year: 2020
  ident: pcbi.1013133.ref011
  article-title: Benchmarking of cell type deconvolution pipelines for transcriptomics data
  publication-title: Nat Commun
  doi: 10.1038/s41467-020-19015-1
– volume-title: Algorithmic learning in a random world
  year: 2005
  ident: pcbi.1013133.ref039
– volume: 19
  start-page: 569
  year: 2018
  ident: pcbi.1013133.ref033
  article-title: Single cell RNA-seq data clustering using TF-IDF based methods
  publication-title: BMC Genomics
  doi: 10.1186/s12864-018-4922-4
– volume: 2
  start-page: 401
  issue: 5
  year: 2012
  ident: pcbi.1013133.ref026
  article-title: The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data
  publication-title: Cancer Discov
  doi: 10.1158/2159-8290.CD-12-0095
– volume-title: Introduction to modern information retrieval
  year: 2010
  ident: pcbi.1013133.ref032
– volume: 19
  start-page: 299
  issue: 4
  year: 2000
  ident: pcbi.1013133.ref035
  article-title: A quantile regression neural network approach to estimating the conditional density of multiperiod returns
  publication-title: J Forecast
  doi: 10.1002/1099-131X(200007)19:4<299::AID-FOR775>3.0.CO;2-V
– volume: 8
  start-page: 469
  issue: 6
  year: 2011
  ident: pcbi.1013133.ref001
  article-title: Computational methods for transcriptome annotation and quantification using RNA-seq
  publication-title: Nat Methods
  doi: 10.1038/nmeth.1613
– ident: pcbi.1013133.ref042
– volume: 105
  start-page: 340
  issue: 2
  year: 2017
  ident: pcbi.1013133.ref010
  article-title: A critical survey of deconvolution methods for separating cell types in complex tissues
  publication-title: Proc IEEE
  doi: 10.1109/JPROC.2016.2607121
– start-page: 444
  volume-title: Proceedings of the Sixteenth International Conference on Machine Learning. ICML ’99
  year: 1999
  ident: pcbi.1013133.ref037
  article-title: Machine-learning applications of algorithmic randomness.
– volume: 16
  start-page: 297
  issue: 3
  year: 2024
  ident: pcbi.1013133.ref018
  article-title: Structure-based prediction of protein-nucleic acid binding using graph neural networks
  publication-title: Biophys Rev
  doi: 10.1007/s12551-024-01201-w
– volume: 5
  start-page: 100969
  issue: 5
  year: 2024
  ident: pcbi.1013133.ref022
  article-title: DeepDecon accurately estimates cancer cell fractions in bulk RNA-seq data
  publication-title: Patterns (N Y)
  doi: 10.1016/j.patter.2024.100969
– volume: 38
  issue: 5
  year: 2020
  ident: pcbi.1013133.ref027
  article-title: Single-cell characterization of malignant phenotypes and developmental trajectories of adrenal neuroblastoma
  publication-title: Cancer Cell
  doi: 10.1016/j.ccell.2020.08.014
– start-page: 345
  volume-title: Machine learning: ECML 2002: 13th European conference on machine learning Helsinki, Finland, August 19–23, 2002 proceedings
  year: 2002
  ident: pcbi.1013133.ref038
– volume: 562
  start-page: 526
  issue: 7728
  year: 2018
  ident: pcbi.1013133.ref025
  article-title: Functional genomic landscape of acute myeloid leukaemia
  publication-title: Nature
  doi: 10.1038/s41586-018-0623-z
– volume: 29
  start-page: 244
  issue: 1
  year: 2023
  ident: pcbi.1013133.ref030
  article-title: Colorectal cancer metastases in the liver establish immunosuppressive spatial networking between tumor-associated SPP1+ macrophages and fibroblasts
  publication-title: Clin Cancer Res
  doi: 10.1158/1078-0432.CCR-22-2041
– volume: 34
  start-page: 8378
  year: 2021
  ident: pcbi.1013133.ref012
  article-title: Locally valid and discriminative prediction intervals for deep learning models
  publication-title: Adv Neural Inf Process Syst
– volume: 4
  start-page: 840
  issue: 10
  year: 2022
  ident: pcbi.1013133.ref020
  article-title: Transformer-based protein generation with regularized latent space optimization
  publication-title: Nat Mach Intell
  doi: 10.1038/s42256-022-00532-1
– ident: pcbi.1013133.ref014
– volume: 19
  start-page: 15
  issue: 1
  year: 2018
  ident: pcbi.1013133.ref024
  article-title: SCANPY: large-scale single-cell gene expression data analysis
  publication-title: Genome Biol
  doi: 10.1186/s13059-017-1382-0
– volume: 16
  issue: 11
  year: 2020
  ident: pcbi.1013133.ref003
  article-title: Deconvolution of heterogeneous tumor samples using partial reference signals
  publication-title: PLoS Comput Biol
– volume: 113
  start-page: 1094
  issue: 523
  year: 2018
  ident: pcbi.1013133.ref041
  publication-title: J Am Statist Assoc
  doi: 10.1080/01621459.2017.1307116
– volume: 17
  start-page: 211
  issue: 1
  year: 2011
  ident: pcbi.1013133.ref034
  article-title: Estimating conditional quantiles with the help of the pinball loss
  publication-title: Bernoulli
  doi: 10.3150/10-BEJ267
– volume: 49
  year: 2021
  ident: pcbi.1013133.ref028
  article-title: TISCH: a comprehensive web resource enabling interactive single-cell transcriptome visualization of tumor microenvironment
  publication-title: Nucleic Acids Res
– volume: 46
  year: 2018
  ident: pcbi.1013133.ref029
  article-title: LinkedOmics: analyzing multi-omics data within and across 32 cancer types
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkx1090
– volume: 10
  start-page: 380
  issue: 1
  year: 2019
  ident: pcbi.1013133.ref006
  article-title: Bulk tissue cell type deconvolution with multi-subject single-cell expression reference
  publication-title: Nat Commun
  doi: 10.1038/s41467-018-08023-x
– volume: 176
  issue: 6
  year: 2019
  ident: pcbi.1013133.ref023
  article-title: Single-cell RNA-Seq reveals AML hierarchies relevant to disease progression and immunity
  publication-title: Cell
  doi: 10.1016/j.cell.2019.01.031
SSID ssj0035896
Score 2.4623082
Snippet Accurate estimation of malignant cell fractions in tissues plays a critical role in cancer diagnosis, prognosis, and subsequent treatment decisions. However,...
SourceID plos
doaj
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
StartPage e1013133
SubjectTerms Accuracy
Artificial neural networks
Biology and Life Sciences
Calibration
Cancer
Computational Biology - methods
Computer and Information Sciences
Conformity
Datasets
Deep Learning
Estimates
Gene expression
Gene sequencing
Genetic aspects
Humans
Intervals
Lower bounds
Medical research
Medicine and Health Sciences
Methods
Neoplasms - genetics
Neoplasms - pathology
Neural networks
Neural Networks, Computer
Performance evaluation
Predictions
Quantiles
Research and analysis methods
Ribonucleic acid
RNA
RNA sequencing
RNA-Seq - methods
Sequence Analysis, RNA - methods
Single-Cell Analysis - methods
Statistical analysis
Uncertainty
Validity
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3fi9QwEA6yKPgi58-rnhJF8Kle06RN-rh6Hgqy6OnB-hSSNL1bvOv2truC_70zSXe5yoEvvpVmWsiXafNNMvmGkNcZ3C68sqnNapMKB3GKUQUMSF4rZZjkdRRx_SxnMzWfV1-ulfrCnLAoDxyBO7SlrGQuPG5ZiqLiKnPeiqbMmRXKuKAECqxnG0zFfzAvVKjMhUVxUsnFfDg0xyU7HMbobefsAmNXzjgfTUpBu3_3h550F8v-Jvr5dxbltWnpeI_cG_gkncZ-3Ce3fPuA3IkVJn8_JD-OvO-OMOg9_UpRUOMSuSW9BPZ9hikwFBfuabOKxxtot8J9m3C5CMmQ4JxwRe3m4ic9mU3T3l_RdRirR-T0-MP39x_ToZpC6gpZrVODG4DceukgSrBO2qxSrqmYBcaWVTX3pbdN5piQDlhBU9YQaOQWApbSAC1Unj8mk3bZ-n1Ca88YEDdmBBipuqwaoFl1aYsKJn_D84SkWzh1F0UzdNg5kxBsRFw0wq8H-BPyDjHf2aLkdbgBjqAHR9D_coSEvMIR0yhq0WLWzJnZ9L3-9O1ET4FkQaAGTDYhbwajZgmD5sxwCAH6hTpYI8uDkSV8dW7UvI-Ose1Or3kuw7leVcCTW2e5ufnlrhlfiklurV9u0IahnKJiMiFPom_tIBGZKPH5hKiR140wG7e0i_MgF85yBiBl2dP_gfIzcjfHCsi4DiUOyGS92vjn5Lb7Bb63ehE-wj_fGjLZ
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Computer Science Database
  dbid: K7-
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZgAakX3qWBggJC4hQaPxI7J7RQKhBoBYVKyymKHWdZtU3SZBeJf8-M410Iqrhwi-JJFHs-O994xjOEPI_hdmKVjnRcFpEwYKcUKgGFsFKpgkpeDklcP8rZTM3n2Se_4db7sMrNmugW6rIxuEd-wJl05yZV8qq9iLBqFHpXfQmNq-QaZYwizj_IaLMS80S5-lxYGieSXMz90Tku6YHX1MvW6CVasJxyPvo1uQz-23V60p41_WUk9O9Yyj9-Tke3_rdbt8lNT0vD6YCjO-SKre-SG0Ohyp_3yLdDa9tDtJ1PPoeYl-McKWp4DiR-gZE0Ie7_h1U3nJII2w7dP-5y6WIqAeNwFer12Wl4PJtGvb0IV07l98nJ0duvb95FvihDZOA7V1GBfkSurTRgbGgjdZwpU2VUQzfirOQ2tbqKDRXSALmo0hLsFabB7kkLYJfK8l0yqZva7pGwtJQC_6OFACFVplkFbK1MdZIBhyg4C0i00UfeDrk3cueAk2CzDOOSo_5yr7-AvEalbWUxc7a70XSL3E_EXKcyk0xYdIGLJOMqNlaLKmVUC1UYEZBnqPIcc2PUGHyzKNZ9n7__cpxPgauBvQeEOCAvvFDVgNZN4c8yQL8wndZIcn8kCZPXjJr3EFmb7vT5bzzAkxvEXN78dNuML8VYudo2a5ShmJVRURmQBwM4t0MiYpHi8wFRI9iOxmzcUi-_u6zjlFEYpDh--O_vekR2GJZIxo0qsU8mq25tH5Pr5gegqnvi5ucvYDlBwQ
  priority: 102
  providerName: ProQuest
Title DeepDeconUQ estimates malignant cell fraction prediction intervals in bulk RNA-seq tissue
URI https://www.ncbi.nlm.nih.gov/pubmed/40465796
https://www.proquest.com/docview/3270579685
https://www.proquest.com/docview/3215982817
https://pubmed.ncbi.nlm.nih.gov/PMC12162100
https://doaj.org/article/b679724e1039459380ceb4f621b48ac4
http://dx.doi.org/10.1371/journal.pcbi.1013133
Volume 21
WOSCitedRecordID wos001502389800005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1553-7358
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0035896
  issn: 1553-7358
  databaseCode: DOA
  dateStart: 20050101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 1553-7358
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0035896
  issn: 1553-7358
  databaseCode: P5Z
  dateStart: 20050601
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1553-7358
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0035896
  issn: 1553-7358
  databaseCode: 7X7
  dateStart: 20050601
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Biological Science Database (NC LIVE)
  customDbUrl:
  eissn: 1553-7358
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0035896
  issn: 1553-7358
  databaseCode: M7P
  dateStart: 20050601
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1553-7358
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0035896
  issn: 1553-7358
  databaseCode: BENPR
  dateStart: 20050601
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Computer Science Database (NC LIVE)
  customDbUrl:
  eissn: 1553-7358
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0035896
  issn: 1553-7358
  databaseCode: K7-
  dateStart: 20050601
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/compscijour
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 1553-7358
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0035896
  issn: 1553-7358
  databaseCode: PIMPY
  dateStart: 20050601
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVATS
  databaseName: Public Library of Science (PLoS) Journals Open Access
  customDbUrl:
  eissn: 1553-7358
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0035896
  issn: 1553-7358
  databaseCode: FPL
  dateStart: 20050101
  isFulltext: true
  titleUrlDefault: http://www.plos.org/publications/
  providerName: Public Library of Science
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwELdYBxIv45sFRhUQEk9hcezYzmPHVjExqlCY1PESxY4zqm1p6AcS_z13TlrItD3wYkXxOXLuzsnvZ5_PhLwN4XZslQ50WOQBN8BTchWDQaJCqZxKVjRJXE_kaKQmkyT9SxSvreAzSfdbnb6vjZ4i12TAqrbIdsSEwBCuYXqy_vKyWCWi3R53W8vO78dl6d98i3v15WxxE9C8Hi_5zw9o-OB_u_6Q7LRQ0x80vvGI3LHVY3KvOXzy9xNydmhtfYh8-PSLj7k2rhB2-lcAzM8xOsbHOX2_nDc7H_x6jks67nLq4iTBb-HK16vLC388GgQL-9NfOjM-JafDo28fPgbtQQuBiWWyDHJcG2TaSgMEQhupw0SZMqEawFyYFMwKq8vQUC4NAIZSFMBBIg1cRuSAGJVlz0ivmlV2l_iFpRQwHc05CKlCJCUgsELoOAFckLPII8Fa_1nd5NPI3KKaBB7S6CVDdWWtujxygEbayGI2bHcD9Jy1gyvTQiYy4haXtXmcMBUaq3kpIqq5yg33yBs0cYb5LioMqDnPV4tFdvx1nA0AfwGHA5DrkXetUDkDK5u83Z8A74UpsjqSex1JGJCmU72LnrR-nUXGIum2_KoYWq696-bq15tqfCjGv1V2tkIZipkWFZUeed4440YlPOQC23tEddy0o7NuTTX94TKJ04iCksLwxe1dfknuR3jkMU488T3SW85X9hW5a36BR837ZEtOpCtVn2wfHI3Scd9Na_TdyITykwz6GFCbQpnG30EqPf6cnv0BK2k23w
linkProvider Public Library of Science
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3db9MwELdGAcEL32OBAQGBeMoWx07sPCBUKNOqlgrGJpWnEDtOqdiSrGlB-6f4G7nLRyFo4m0PvEWxHcX2z-ff-c53hDx34bVvpHKUm8QO16CnxNKHCfESKWMqWFIHcR2LyUROp-GHDfKzvQuDbpWtTKwEdZJrPCPfZZ6o7k1K_3Vx6mDWKLSutik0aliMzNkPUNnKV8MBzO8Lz9t7d_h232myCjga2i-dGA1hTBmhgS0rLZQbSp2GVMHn3TBhJjAqdTXlQsPumAYJEG5PAXEPYqBH0jD47iVymTMpMFb_SDit5Ge-rPKBYSoeRzA-ba7qMUF3G2TsFFrNUWNmlLHOVlhlDFjvC73iOC_PI71_-27-sRnu3fzfhvEWudHQbrtfr5PbZMNkd8jVOhHn2V3yeWBMMcCzgaOPNsYdOUEKbp-AkjJDTyEb7Rt2uqhvgdjFAs1b1eO88hmFNQxPtlodf7MPJn2nNKf2soL0PXJ0If3aJL0sz8wWsRNDKfBbGnOoJJMgTIGNJoHyQ-BIMfMs4rTzHxV1bJGoMjAK0MnqcYkQL1GDF4u8QZCs62Jk8OpFvphFjaCJVCBC4XGDJn7uh0y62iieBh5VXMaaW-QZQizC2B8ZOhfN4lVZRsNPB1EfuCjos0D4LfKyqZTmgDIdN3c1oF8YLqxTc7tTE4ST7hRvIZLb7pTRb_xByxah5xc_XRfjR9EXMDP5CutQjDopqbDI_XoxrIeEuzzA9haRnWXSGbNuSTb_WkVVpx6FQXLdB__-ryfk2v7h-3E0Hk5GD8l1D9NB46Ec3ya95WJlHpEr-jsgbPG4kg02-XLRq-gX_2OdXQ
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3db9MwELdG-RAvfI8FBgQE4ilrHDux84BQoVRUnaoxmFSeQuw4pWJLsqYF7V_jr-MuH4Wgibc98BbFFyd2fue7853vCHnuwm3fSOUoN4kdrsFOiaUPP8RLpIypYEmdxHVfTKdyNgsPtsjP9iwMhlW2a2K1UCe5xj3yPvNEdW5S-v20CYs4GI5eF6cOVpBCT2tbTqOGyMSc_QDzrXw1HsK_fuF5o3ef3r53mgoDjoa-Vk6MTjGmjNCgOSstlBtKnYZUwavcMGEmMCp1NeVCg6RMgwSUb0-BEh_EoCpJw6DfS-QySGEfeWwinFYKMF9WtcGwLI8jGJ81x_aYoP0GJXuFVgu0nhllrCMWq-oBGxnRK47z8jwF-O84zj8E4-jm_zylt8iNRh23BzX_3CZbJrtDrtYFOs_uks9DY4oh7hkcfbAxH8kJqub2CRgvc4wgstHvYafL-nSIXSzR7VVdLqpYUuBtuLLV-vibfTgdOKU5tVcV1O-RowsZ1zbpZXlmdoidGEpB76UxByKZBGEKWmoSKD8E3SlmnkWcFgtRUecciSrHowBbrZ6XCLETNdixyBsEzIYWM4ZXN_LlPGoWoEgFIhQeN-j6537IpKuN4mngUcVlrLlFniHcIswJkiEU5vG6LKPxx8NoADoq2LlgCFjkZUOU5oA4HTdnOGBcmEasQ7nboYRFS3eadxDV7XDK6DcW4ckWrec3P900Y6cYI5iZfI00FLNRSioscr9mjM2UcJcH-LxFZIdlOnPWbckWX6ts69SjMEmu--Df3_WEXAPmifbH08lDct3DKtG4V8d3SW-1XJtH5Ir-DgBbPq6WCZt8uWgm-gXNAKYX
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=DeepDeconUQ+estimates+malignant+cell+fraction+prediction+intervals+in+bulk+RNA-seq+tissue&rft.jtitle=PLoS+computational+biology&rft.au=Huang%2C+Jiawei&rft.au=Du%2C+Yuxuan&rft.au=Kelly%2C+Kevin&rft.au=Lv%2C+Jinchi&rft.date=2025-06-04&rft.pub=Public+Library+of+Science&rft.eissn=1553-7358&rft.volume=21&rft.issue=6&rft_id=info:doi/10.1371%2Fjournal.pcbi.1013133&rft.externalDocID=3270579685
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1553-7358&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1553-7358&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1553-7358&client=summon