Comparative analysis of peak-detection techniques for comprehensive two-dimensional chromatography

Comprehensive two-dimensional gas chromatography (GC×GC) is a powerful technology for separating complex samples. The typical goal of GC×GC peak detection is to aggregate data points of analyte peaks based on their retention times and intensities. Two techniques commonly used for two-dimensional pea...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Journal of Chromatography A Ročník 1218; číslo 38; s. 6792 - 6798
Hlavní autori: Latha, Indu, Reichenbach, Stephen E., Tao, Qingping
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Amsterdam Elsevier B.V 23.09.2011
Elsevier
Predmet:
ISSN:0021-9673, 1873-3778, 1873-3778
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Comprehensive two-dimensional gas chromatography (GC×GC) is a powerful technology for separating complex samples. The typical goal of GC×GC peak detection is to aggregate data points of analyte peaks based on their retention times and intensities. Two techniques commonly used for two-dimensional peak detection are the two-step algorithm and the watershed algorithm. A recent study [4] compared the performance of the two-step and watershed algorithms for GC×GC data with retention-time shifts in the second-column separations. In that analysis, the peak retention-time shifts were corrected while applying the two-step algorithm but the watershed algorithm was applied without shift correction. The results indicated that the watershed algorithm has a higher probability of erroneously splitting a single two-dimensional peak than the two-step approach. This paper reconsiders the analysis by comparing peak-detection performance for resolved peaks after correcting retention-time shifts for both the two-step and watershed algorithms. Simulations with wide-ranging conditions indicate that when shift correction is employed with both algorithms, the watershed algorithm detects resolved peaks with greater accuracy than the two-step method.
AbstractList Comprehensive two-dimensional gas chromatography (GC×GC) is a powerful technology for separating complex samples. The typical goal of GC×GC peak detection is to aggregate data points of analyte peaks based on their retention times and intensities. Two techniques commonly used for two-dimensional peak detection are the two-step algorithm and the watershed algorithm. A recent study [4] compared the performance of the two-step and watershed algorithms for GC×GC data with retention-time shifts in the second-column separations. In that analysis, the peak retention-time shifts were corrected while applying the two-step algorithm but the watershed algorithm was applied without shift correction. The results indicated that the watershed algorithm has a higher probability of erroneously splitting a single two-dimensional peak than the two-step approach. This paper reconsiders the analysis by comparing peak-detection performance for resolved peaks after correcting retention-time shifts for both the two-step and watershed algorithms. Simulations with wide-ranging conditions indicate that when shift correction is employed with both algorithms, the watershed algorithm detects resolved peaks with greater accuracy than the two-step method.
Comprehensive two-dimensional gas chromatography (GCxGC) is a powerful technology for separating complex samples. The typical goal of GCxGC peak detection is to aggregate data points of analyte peaks based on their retention times and intensities. Two techniques commonly used for two-dimensional peak detection are the two-step algorithm and the watershed algorithm. A recent study [4] compared the performance of the two-step and watershed algorithms for GCxGC data with retention-time shifts in the second-column separations. In that analysis, the peak retention-time shifts were corrected while applying the two-step algorithm but the watershed algorithm was applied without shift correction. The results indicated that the watershed algorithm has a higher probability of erroneously splitting a single two-dimensional peak than the two-step approach. This paper reconsiders the analysis by comparing peak-detection performance for resolved peaks after correcting retention-time shifts for both the two-step and watershed algorithms. Simulations with wide-ranging conditions indicate that when shift correction is employed with both algorithms, the watershed algorithm detects resolved peaks with greater accuracy than the two-step method.
Comprehensive two-dimensional gas chromatography (GC×GC) is a powerful technology for separating complex samples. The typical goal of GC×GC peak detection is to aggregate data points of analyte peaks based on their retention times and intensities. Two techniques commonly used for two-dimensional peak detection are the two-step algorithm and the watershed algorithm. A recent study [4] compared the performance of the two-step and watershed algorithms for GC×GC data with retention-time shifts in the second-column separations. In that analysis, the peak retention-time shifts were corrected while applying the two-step algorithm but the watershed algorithm was applied without shift correction. The results indicated that the watershed algorithm has a higher probability of erroneously splitting a single two-dimensional peak than the two-step approach. This paper reconsiders the analysis by comparing peak-detection performance for resolved peaks after correcting retention-time shifts for both the two-step and watershed algorithms. Simulations with wide-ranging conditions indicate that when shift correction is employed with both algorithms, the watershed algorithm detects resolved peaks with greater accuracy than the two-step method.Comprehensive two-dimensional gas chromatography (GC×GC) is a powerful technology for separating complex samples. The typical goal of GC×GC peak detection is to aggregate data points of analyte peaks based on their retention times and intensities. Two techniques commonly used for two-dimensional peak detection are the two-step algorithm and the watershed algorithm. A recent study [4] compared the performance of the two-step and watershed algorithms for GC×GC data with retention-time shifts in the second-column separations. In that analysis, the peak retention-time shifts were corrected while applying the two-step algorithm but the watershed algorithm was applied without shift correction. The results indicated that the watershed algorithm has a higher probability of erroneously splitting a single two-dimensional peak than the two-step approach. This paper reconsiders the analysis by comparing peak-detection performance for resolved peaks after correcting retention-time shifts for both the two-step and watershed algorithms. Simulations with wide-ranging conditions indicate that when shift correction is employed with both algorithms, the watershed algorithm detects resolved peaks with greater accuracy than the two-step method.
Comprehensive two-dimensional gas chromatography (GC×GC) is a powerful technology for separating complex samples. The typical goal of GC×GC peak detection is to aggregate data points of analyte peaks based on their retention times and intensities. Two techniques commonly used for two-dimensional peak detection are the two-step algorithm and the watershed algorithm. A recent study [4] compared the performance of the two-step and watershed algorithms for GC×GC data with retention-time shifts in the second-column separations. In that analysis, the peak retention-time shifts were corrected while applying the two-step algorithm but the watershed algorithm was applied without shift correction. The results indicated that the watershed algorithm has a higher probability of erroneously splitting a single two-dimensional peak than the two-step approach. This paper reconsiders the analysis by comparing peak-detection performance for resolved peaks after correcting retention-time shifts for both the two-step and watershed algorithms. Simulations with wide-ranging conditions indicate that when shift correction is employed with both algorithms, the watershed algorithm detects resolved peaks with greater accuracy than the two-step method.
Author Reichenbach, Stephen E.
Latha, Indu
Tao, Qingping
Author_xml – sequence: 1
  givenname: Indu
  surname: Latha
  fullname: Latha, Indu
  email: ilatha@cse.unl.edu
  organization: Computer Science and Engineering Department, University of Nebraska-Lincoln, Lincoln, NE 68588-0115, USA
– sequence: 2
  givenname: Stephen E.
  surname: Reichenbach
  fullname: Reichenbach, Stephen E.
  email: reich@unl.edu
  organization: Computer Science and Engineering Department, University of Nebraska-Lincoln, Lincoln, NE 68588-0115, USA
– sequence: 3
  givenname: Qingping
  surname: Tao
  fullname: Tao, Qingping
  email: qtao@gcimage.com
  organization: GC Image LLC, P.O. Box 57403, Lincoln, NE 68505-7403, USA
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=24493625$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/21839457$$D View this record in MEDLINE/PubMed
BookMark eNqNkktv1DAUhS1URKeFf4AgGwSbBD_iR1ggoREvqRIL6Npy7JuOhyQOdqZo_j2OMhUSi5bVtaXvXB_fcy_Q2RhGQOg5wRXBRLzdV3YXw2AqigmpsKwwp4_QhijJSialOkMbjCkpGyHZObpIaY8xkVjSJ-icEsWamssNardhmEw0s7-FwoymPyafitAVE5ifpYMZ7OzDWOS6G_2vA6SiC7GwWRVhB2NadPPvUDo_LLeQWxSrsTncRDPtjk_R4870CZ6d6iW6_vTxx_ZLefXt89fth6vSctnMpXKNwlbIljBoGuxcDRyMc5Zx2dbQtlR0rQPRYOAqHxmzyirODeOEm1ayS_R67TvFsBid9eCThb43I4RD0g3BopZK1g-SSgmBJSE4k2_uJYnIY8xjbuh_oDVlVBHBMvrihB7aAZyeoh9MPOq7WDLw6gSYZE3fRTNan_5ydd0wQXnm3q2cjSGlCJ22fjZLYHM0vtcE62VX9F6vkehlVzSWOu9KFtf_iO_6PyB7uco6E7S5idnX9fcM5DFk-5gu33u_EpDTvvUQdbIeRgvOx7xO2gV__xN_AGlt5E4
CODEN JOCRAM
CitedBy_id crossref_primary_10_1016_j_aca_2024_342724
crossref_primary_10_1016_j_trac_2016_07_009
crossref_primary_10_1016_j_jchromb_2012_06_039
crossref_primary_10_1002_jssc_202000011
crossref_primary_10_1016_j_chroma_2016_05_018
crossref_primary_10_1002_jssc_201900770
crossref_primary_10_1016_j_chroma_2014_11_049
crossref_primary_10_1016_j_chroma_2011_12_082
crossref_primary_10_1109_JSEN_2019_2942801
crossref_primary_10_1016_j_chroma_2019_460644
crossref_primary_10_1016_j_chroma_2012_01_078
crossref_primary_10_56530_lcgc_na_jk4782s5
crossref_primary_10_1016_j_chroma_2012_04_048
crossref_primary_10_1007_s00521_018_3917_z
crossref_primary_10_1016_j_chroma_2015_04_029
crossref_primary_10_1016_j_aca_2022_339605
crossref_primary_10_1016_j_trac_2015_10_011
crossref_primary_10_1016_j_aca_2013_03_049
crossref_primary_10_1002_rcm_10034
crossref_primary_10_1038_s43586_023_00269_0
crossref_primary_10_3390_separations6030038
crossref_primary_10_1016_j_aca_2025_344634
crossref_primary_10_1016_j_chroma_2014_07_053
crossref_primary_10_1016_j_trac_2013_08_009
crossref_primary_10_1016_j_chroma_2012_07_034
Cites_doi 10.1117/12.365811
10.1016/j.chroma.2011.02.028
10.1016/j.chemolab.2003.12.009
10.1016/j.chroma.2007.11.039
10.1002/(SICI)1521-4168(19980101)21:1<47::AID-JHRC47>3.0.CO;2-5
10.1021/ac0010025
10.1021/ac061710b
10.1016/j.chroma.2006.10.066
10.1016/j.chroma.2005.03.118
10.1016/j.chroma.2009.02.049
10.1021/ac980164m
10.1002/(SICI)1521-4168(20000301)23:3<215::AID-JHRC215>3.0.CO;2-Q
10.1016/j.chroma.2005.05.103
10.1002/(SICI)1520-667X(1999)11:2<97::AID-MCS2>3.0.CO;2-Z
10.1016/j.chroma.2003.08.081
10.1016/j.chroma.2009.12.063
10.1021/ac010637g
ContentType Journal Article
Copyright 2011 Elsevier B.V.
2015 INIST-CNRS
Copyright © 2011 Elsevier B.V. All rights reserved.
Copyright_xml – notice: 2011 Elsevier B.V.
– notice: 2015 INIST-CNRS
– notice: Copyright © 2011 Elsevier B.V. All rights reserved.
DBID FBQ
AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7U5
8FD
L7M
7S9
L.6
7X8
7QH
7UA
C1K
F1W
H96
H97
L.G
DOI 10.1016/j.chroma.2011.07.052
DatabaseName AGRIS
CrossRef
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
AGRICOLA
AGRICOLA - Academic
MEDLINE - Academic
Aqualine
Water Resources Abstracts
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality
Aquatic Science & Fisheries Abstracts (ASFA) Professional
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Technology Research Database
Advanced Technologies Database with Aerospace
Solid State and Superconductivity Abstracts
AGRICOLA
AGRICOLA - Academic
MEDLINE - Academic
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
ASFA: Aquatic Sciences and Fisheries Abstracts
Aqualine
Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality
Water Resources Abstracts
Environmental Sciences and Pollution Management
DatabaseTitleList
Technology Research Database
MEDLINE
MEDLINE - Academic

AGRICOLA
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1873-3778
EndPage 6798
ExternalDocumentID 21839457
24493625
10_1016_j_chroma_2011_07_052
US201500183023
S0021967311010624
Genre Research Support, U.S. Gov't, Non-P.H.S
Comparative Study
Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
--K
--M
-~X
.GJ
.~1
0R~
1B1
1RT
1~.
1~5
29K
4.4
457
4G.
53G
5GY
5RE
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARLI
AAXUO
AAYJJ
ABFNM
ABFRF
ABJNI
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ADBBV
ADECG
ADEZE
AEBSH
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AFZHZ
AGHFR
AGUBO
AGYEJ
AHHHB
AHPSJ
AI.
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AJQLL
AJSZI
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
D-I
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FLBIZ
FNPLU
FYGXN
G-Q
G8K
GBLVA
HMU
HVGLF
HZ~
H~9
IH2
IHE
J1W
KOM
M36
M41
MO0
N9A
O-L
O9-
OAUVE
OHT
OZT
P-8
P-9
P2P
PC.
Q38
RIG
ROL
RPZ
SCB
SCC
SCH
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SSK
SSZ
T5K
UQL
VH1
WH7
WUQ
XFK
XPP
YK3
ZGI
ZKB
ZMT
ZXP
~02
~G-
~KM
ABPIF
ABPTK
FBQ
9DU
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ACLOT
ACVFH
ADCNI
AEIPS
AEUPX
AFJKZ
AFPUW
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
AFXIZ
AGCQF
AGRNS
BNPGV
IQODW
SSH
CGR
CUY
CVF
ECM
EIF
NPM
7U5
8FD
L7M
7S9
L.6
7X8
7QH
7UA
C1K
F1W
H96
H97
L.G
ID FETCH-LOGICAL-c579t-8d980c67b13e990dd4e5eaddc357b4ebb26fbde690e586fb33c8c855a3515ab73
ISICitedReferencesCount 30
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000295432700027&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0021-9673
1873-3778
IngestDate Tue Oct 07 11:16:21 EDT 2025
Fri Jul 11 10:46:37 EDT 2025
Thu Oct 02 07:38:31 EDT 2025
Sun Nov 09 10:19:39 EST 2025
Thu Jan 02 22:13:19 EST 2025
Mon Jul 21 09:16:16 EDT 2025
Sat Nov 29 08:10:23 EST 2025
Tue Nov 18 21:16:44 EST 2025
Wed Dec 27 19:21:17 EST 2023
Fri Feb 23 02:33:05 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 38
Keywords Peak detection
Comprehensive two-dimensional gas chromatography (GC×GC)
Two-dimensional chromatography
Watershed algorithm
Two-step peak detection
Chemometrics
Peak resolution
Two dimensional chromatography
Theoretical study
chromatography (GC×GC)
Gas chromatography
Comprehensive two-dimensional gas
Numerical simulation
Comparative study
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
CC BY 4.0
Copyright © 2011 Elsevier B.V. All rights reserved.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c579t-8d980c67b13e990dd4e5eaddc357b4ebb26fbde690e586fb33c8c855a3515ab73
Notes http://dx.doi.org/10.1016/j.chroma.2011.07.052
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ObjectType-Article-2
ObjectType-Feature-1
PMID 21839457
PQID 1642328163
PQPubID 23500
PageCount 7
ParticipantIDs proquest_miscellaneous_910647874
proquest_miscellaneous_886607110
proquest_miscellaneous_1694500292
proquest_miscellaneous_1642328163
pubmed_primary_21839457
pascalfrancis_primary_24493625
crossref_citationtrail_10_1016_j_chroma_2011_07_052
crossref_primary_10_1016_j_chroma_2011_07_052
fao_agris_US201500183023
elsevier_sciencedirect_doi_10_1016_j_chroma_2011_07_052
PublicationCentury 2000
PublicationDate 2011-09-23
PublicationDateYYYYMMDD 2011-09-23
PublicationDate_xml – month: 09
  year: 2011
  text: 2011-09-23
  day: 23
PublicationDecade 2010
PublicationPlace Amsterdam
PublicationPlace_xml – name: Amsterdam
– name: Netherlands
PublicationTitle Journal of Chromatography A
PublicationTitleAlternate J Chromatogr A
PublicationYear 2011
Publisher Elsevier B.V
Elsevier
Publisher_xml – name: Elsevier B.V
– name: Elsevier
References Beens, Boelens, Tijssen, Blomberg (bib0005) 1998; 21
Beucher (bib0045) 1992; 6
Bruckner, Prazen, Synovec (bib0055) 1998; 70
Prazen, Johnson, Weber, Synovec (bib0075) 2001; 73
Reichenbach (bib0050) 2009
Fraga, Corley (bib0090) 2005; 1096
Fraga, Bruckner, Synovec (bib0070) 2001; 73
Zeng, Chin, Hugel, Marriott (bib0105) 2011; 1218
Q. Song, A. Savant, S. Reichenbach, in: Applications of Digital Image Processing, SPIE, 1999, p. 2.
Vivó-Truyols, Janssen (bib0020) 2010; 1217
Hoggard, Synovec (bib0100) 2007; 79
Reichenbach, Ni, Kottapalli (bib0015) 2004; 71
Ramos, Sanz (bib0025) 2009
Fraga, Prazen, Synovec (bib0065) 2000; 23
Skov, Hoggard, Bro, Synovec (bib0030) 2009; 1216
Sinha, Hope, Prazen, Fraga, Nilsson, Synovec (bib0085) 2004; 1056
Kong, Ye, Lu, Guo, Tian, Xu (bib0095) 2005; 1086
Prazen, Bruckner, Synovec, Kowalski (bib0060) 1999; 11
van der Klift, Vivó-Truyols, Claassen, van Holthoon, van Beek (bib0040) 2008; 1178
Peters, Vivó-Truyols, Marriott, Schoenmakers (bib0035) 2007; 1156
Sinha, Fraga, Prazen, Synovec (bib0080) 2004; 1027
10.1016/j.chroma.2011.07.052_bib0010
Sinha (10.1016/j.chroma.2011.07.052_bib0085) 2004; 1056
Hoggard (10.1016/j.chroma.2011.07.052_bib0100) 2007; 79
Ramos (10.1016/j.chroma.2011.07.052_bib0025) 2009
Peters (10.1016/j.chroma.2011.07.052_bib0035) 2007; 1156
Bruckner (10.1016/j.chroma.2011.07.052_bib0055) 1998; 70
Fraga (10.1016/j.chroma.2011.07.052_bib0070) 2001; 73
Kong (10.1016/j.chroma.2011.07.052_bib0095) 2005; 1086
Prazen (10.1016/j.chroma.2011.07.052_bib0060) 1999; 11
Reichenbach (10.1016/j.chroma.2011.07.052_bib0050) 2009
Vivó-Truyols (10.1016/j.chroma.2011.07.052_bib0020) 2010; 1217
van der Klift (10.1016/j.chroma.2011.07.052_bib0040) 2008; 1178
Sinha (10.1016/j.chroma.2011.07.052_bib0080) 2004; 1027
Prazen (10.1016/j.chroma.2011.07.052_bib0075) 2001; 73
Beucher (10.1016/j.chroma.2011.07.052_bib0045) 1992; 6
Zeng (10.1016/j.chroma.2011.07.052_bib0105) 2011; 1218
Fraga (10.1016/j.chroma.2011.07.052_bib0065) 2000; 23
Beens (10.1016/j.chroma.2011.07.052_bib0005) 1998; 21
Reichenbach (10.1016/j.chroma.2011.07.052_bib0015) 2004; 71
Skov (10.1016/j.chroma.2011.07.052_bib0030) 2009; 1216
Fraga (10.1016/j.chroma.2011.07.052_bib0090) 2005; 1096
References_xml – volume: 21
  start-page: 47
  year: 1998
  ident: bib0005
  publication-title: J. High Resolut. Chromatogr.
– volume: 71
  start-page: 107
  year: 2004
  ident: bib0015
  publication-title: Chemom. Intell. Lab. Syst.
– volume: 1056
  start-page: 145
  year: 2004
  ident: bib0085
  publication-title: J. Chromatogr. A
– volume: 1218
  start-page: 2301
  year: 2011
  ident: bib0105
  publication-title: J. Chromatogr. A
– volume: 1217
  start-page: 1375
  year: 2010
  ident: bib0020
  publication-title: J. Chromatogr. A
– volume: 1216
  start-page: 4020
  year: 2009
  ident: bib0030
  publication-title: J. Chromatogr. A
– volume: 79
  start-page: 1611
  year: 2007
  ident: bib0100
  publication-title: Anal. Chem.
– volume: 1156
  start-page: 14
  year: 2007
  ident: bib0035
  publication-title: J. Chromatogr. A
– volume: 73
  start-page: 675
  year: 2001
  ident: bib0070
  publication-title: Anal. Chem.
– volume: 1096
  start-page: 40
  year: 2005
  ident: bib0090
  publication-title: J. Chromatogr. A
– reference: Q. Song, A. Savant, S. Reichenbach, in: Applications of Digital Image Processing, SPIE, 1999, p. 2.
– volume: 70
  start-page: 2796
  year: 1998
  ident: bib0055
  publication-title: Anal. Chem.
– volume: 1027
  start-page: 269
  year: 2004
  ident: bib0080
  publication-title: J. Chromatogr. A
– volume: 23
  start-page: 215
  year: 2000
  ident: bib0065
  publication-title: J. High Resolut. Chromatogr.
– volume: 6
  start-page: 299
  year: 1992
  ident: bib0045
  publication-title: Scanning Microsc. Int.
– volume: 73
  start-page: 5677
  year: 2001
  ident: bib0075
  publication-title: Anal. Chem.
– volume: 11
  start-page: 97
  year: 1999
  ident: bib0060
  publication-title: J. Microcolumn Sep.
– start-page: 283
  year: 2009
  ident: bib0025
  publication-title: Comprehensive Two-dimensional Gas Chromatography
– volume: 1178
  start-page: 43
  year: 2008
  ident: bib0040
  publication-title: J. Chromatogr. A
– start-page: 77
  year: 2009
  ident: bib0050
  publication-title: Comprehensive Two-dimensional Gas Chromatography
– volume: 1086
  start-page: 160
  year: 2005
  ident: bib0095
  publication-title: J. Chromatogr. A
– ident: 10.1016/j.chroma.2011.07.052_bib0010
  doi: 10.1117/12.365811
– volume: 6
  start-page: 299
  year: 1992
  ident: 10.1016/j.chroma.2011.07.052_bib0045
  publication-title: Scanning Microsc. Int.
– volume: 1218
  start-page: 2301
  year: 2011
  ident: 10.1016/j.chroma.2011.07.052_bib0105
  publication-title: J. Chromatogr. A
  doi: 10.1016/j.chroma.2011.02.028
– volume: 71
  start-page: 107
  year: 2004
  ident: 10.1016/j.chroma.2011.07.052_bib0015
  publication-title: Chemom. Intell. Lab. Syst.
  doi: 10.1016/j.chemolab.2003.12.009
– volume: 1178
  start-page: 43
  year: 2008
  ident: 10.1016/j.chroma.2011.07.052_bib0040
  publication-title: J. Chromatogr. A
  doi: 10.1016/j.chroma.2007.11.039
– volume: 21
  start-page: 47
  year: 1998
  ident: 10.1016/j.chroma.2011.07.052_bib0005
  publication-title: J. High Resolut. Chromatogr.
  doi: 10.1002/(SICI)1521-4168(19980101)21:1<47::AID-JHRC47>3.0.CO;2-5
– volume: 73
  start-page: 675
  year: 2001
  ident: 10.1016/j.chroma.2011.07.052_bib0070
  publication-title: Anal. Chem.
  doi: 10.1021/ac0010025
– start-page: 77
  year: 2009
  ident: 10.1016/j.chroma.2011.07.052_bib0050
– volume: 79
  start-page: 1611
  year: 2007
  ident: 10.1016/j.chroma.2011.07.052_bib0100
  publication-title: Anal. Chem.
  doi: 10.1021/ac061710b
– volume: 1156
  start-page: 14
  year: 2007
  ident: 10.1016/j.chroma.2011.07.052_bib0035
  publication-title: J. Chromatogr. A
  doi: 10.1016/j.chroma.2006.10.066
– start-page: 283
  year: 2009
  ident: 10.1016/j.chroma.2011.07.052_bib0025
– volume: 1096
  start-page: 40
  year: 2005
  ident: 10.1016/j.chroma.2011.07.052_bib0090
  publication-title: J. Chromatogr. A
  doi: 10.1016/j.chroma.2005.03.118
– volume: 1216
  start-page: 4020
  year: 2009
  ident: 10.1016/j.chroma.2011.07.052_bib0030
  publication-title: J. Chromatogr. A
  doi: 10.1016/j.chroma.2009.02.049
– volume: 70
  start-page: 2796
  year: 1998
  ident: 10.1016/j.chroma.2011.07.052_bib0055
  publication-title: Anal. Chem.
  doi: 10.1021/ac980164m
– volume: 23
  start-page: 215
  year: 2000
  ident: 10.1016/j.chroma.2011.07.052_bib0065
  publication-title: J. High Resolut. Chromatogr.
  doi: 10.1002/(SICI)1521-4168(20000301)23:3<215::AID-JHRC215>3.0.CO;2-Q
– volume: 1086
  start-page: 160
  year: 2005
  ident: 10.1016/j.chroma.2011.07.052_bib0095
  publication-title: J. Chromatogr. A
  doi: 10.1016/j.chroma.2005.05.103
– volume: 11
  start-page: 97
  year: 1999
  ident: 10.1016/j.chroma.2011.07.052_bib0060
  publication-title: J. Microcolumn Sep.
  doi: 10.1002/(SICI)1520-667X(1999)11:2<97::AID-MCS2>3.0.CO;2-Z
– volume: 1027
  start-page: 269
  year: 2004
  ident: 10.1016/j.chroma.2011.07.052_bib0080
  publication-title: J. Chromatogr. A
  doi: 10.1016/j.chroma.2003.08.081
– volume: 1056
  start-page: 145
  year: 2004
  ident: 10.1016/j.chroma.2011.07.052_bib0085
  publication-title: J. Chromatogr. A
– volume: 1217
  start-page: 1375
  year: 2010
  ident: 10.1016/j.chroma.2011.07.052_bib0020
  publication-title: J. Chromatogr. A
  doi: 10.1016/j.chroma.2009.12.063
– volume: 73
  start-page: 5677
  year: 2001
  ident: 10.1016/j.chroma.2011.07.052_bib0075
  publication-title: Anal. Chem.
  doi: 10.1021/ac010637g
SSID ssj0017072
ssj0029838
Score 2.178113
Snippet Comprehensive two-dimensional gas chromatography (GC×GC) is a powerful technology for separating complex samples. The typical goal of GC×GC peak detection is...
Comprehensive two-dimensional gas chromatography (GCxGC) is a powerful technology for separating complex samples. The typical goal of GCxGC peak detection is...
SourceID proquest
pubmed
pascalfrancis
crossref
fao
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 6792
SubjectTerms Aggregates
Algorithms
Analytical chemistry
Chemistry
Chemometrics
Chromatographic methods and physical methods associated with chromatography
Chromatography
Chromatography, Gas - instrumentation
Chromatography, Gas - methods
comprehensive two-dimensional gas chromatography
Comprehensive two-dimensional gas chromatography (GC×GC)
Computer simulation
Data points
Exact sciences and technology
Gas chromatographic methods
Peak detection
probability
Splitting
Two dimensional
Two-dimensional chromatography
Two-step peak detection
Watershed algorithm
Watersheds
Title Comparative analysis of peak-detection techniques for comprehensive two-dimensional chromatography
URI https://dx.doi.org/10.1016/j.chroma.2011.07.052
https://www.ncbi.nlm.nih.gov/pubmed/21839457
https://www.proquest.com/docview/1642328163
https://www.proquest.com/docview/1694500292
https://www.proquest.com/docview/886607110
https://www.proquest.com/docview/910647874
Volume 1218
WOSCitedRecordID wos000295432700027&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1873-3778
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0029838
  issn: 0021-9673
  databaseCode: AIEXJ
  dateStart: 19950106
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Pb9MwFLbaDQkuiN8rP6ogcUNGSRzH9nGqhgCJaYhO6s1yHIdtTEnVpmMn_naeYydp6crgwCVKI6d1-n15frbf-x5Cb1KRGaW0wKSIKE4MK7BVpcMJLTQDlzdUUd4Um2DHx3w2EyeDwc82F-bqkpUlv74W8_8KNVwDsG3q7D_A3X0pXIBzAB2OADsc_wr4yZqet1qTHJkb9R3npjauOHgn3toIMjSh5Qtz5sPZ6x8Vzq3uv9PseKvPFhW4tuvy1tsO7Q2NGkXH2u0p2SIh3faOsRGoZaZcISofatZnRUxVs4L7BcbVeTu25v1aq8Aue9itl23lzPj8gQiL1BUw6Wxw3FvhVSv44m1qyly1PD8-222jG22_W4a4eOee1quzWl3WuB_rugjE06-xXesJI6t_RoZoP2ZUgGHfP_x4NPvU7UOxkHVqZLHgxA3s_gHaTMwmXHD7V3d5OsNCVTYEVy3hLSxc-ZTd85vGz5k-QPc9nsGhI9ZDNDDlI3R30tYFfIyyNYIFLcGCqgg2CRb0BAuAYMEGwYLfCBZscucJOn1_NJ18wL5SB9aUiRrzXPBQpyyLiAH3Js8TQ8FE5ZpQliUmy-K0yHKTitBQDqeEaK45pYqAO60yRp6ivbIqzQEKkkTlEUmUgvlUwniuIqEFI0an3CoxsREi7b8qtZext9VULmUbr3ghXZ-lxUKGTAIWI4S7u-ZOxuWW9qwFTHpX1LmYEth2y50HgK9U32CMlpssG6HxBuhdT8DFFuBI0hF63bJAAqh2606VplotZZTagAoOk6c_tREJtTSFPgQ72nCeWkHJKNzdBOYPNv-cJSP0zBGx76edTiWUPd_9jC_Qvd4SvER79WJlXqE7-qo-Xy7GaMhmfOxfMvh0fPL5F0MI81Y
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Comparative+analysis+of+peak-detection+techniques+for+comprehensive+two-dimensional+chromatography&rft.jtitle=Journal+of+chromatography&rft.au=Latha%2C+Indu&rft.au=Reichenbach%2C+Stephen+E&rft.au=Tao%2C+Qingping&rft.date=2011-09-23&rft.pub=Elsevier+B.V&rft.issn=0021-9673&rft.volume=1218&rft.issue=38&rft.spage=6792&rft.epage=6798&rft_id=info:doi/10.1016%2Fj.chroma.2011.07.052&rft.externalDocID=US201500183023
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9673&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9673&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9673&client=summon