How a well-adapting immune system remembers
An adaptive agent predicting the future state of an environment must weigh trust in new observations against prior experiences. In this light, we propose a view of the adaptive immune system as a dynamic Bayesian machinery that updates its memory repertoire by balancing evidence from new pathogen en...
Gespeichert in:
| Veröffentlicht in: | Proceedings of the National Academy of Sciences - PNAS Jg. 116; H. 18; S. 8815 |
|---|---|
| Hauptverfasser: | , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
United States
30.04.2019
|
| Schlagworte: | |
| ISSN: | 1091-6490, 1091-6490 |
| Online-Zugang: | Weitere Angaben |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | An adaptive agent predicting the future state of an environment must weigh trust in new observations against prior experiences. In this light, we propose a view of the adaptive immune system as a dynamic Bayesian machinery that updates its memory repertoire by balancing evidence from new pathogen encounters against past experience of infection to predict and prepare for future threats. This framework links the observed initial rapid increase of the memory pool early in life followed by a midlife plateau to the ease of learning salient features of sparse environments. We also derive a modulated memory pool update rule in agreement with current vaccine-response experiments. Our results suggest that pathogenic environments are sparse and that memory repertoires significantly decrease infection costs, even with moderate sampling. The predicted optimal update scheme maps onto commonly considered competitive dynamics for antigen receptors. |
|---|---|
| AbstractList | An adaptive agent predicting the future state of an environment must weigh trust in new observations against prior experiences. In this light, we propose a view of the adaptive immune system as a dynamic Bayesian machinery that updates its memory repertoire by balancing evidence from new pathogen encounters against past experience of infection to predict and prepare for future threats. This framework links the observed initial rapid increase of the memory pool early in life followed by a midlife plateau to the ease of learning salient features of sparse environments. We also derive a modulated memory pool update rule in agreement with current vaccine-response experiments. Our results suggest that pathogenic environments are sparse and that memory repertoires significantly decrease infection costs, even with moderate sampling. The predicted optimal update scheme maps onto commonly considered competitive dynamics for antigen receptors.An adaptive agent predicting the future state of an environment must weigh trust in new observations against prior experiences. In this light, we propose a view of the adaptive immune system as a dynamic Bayesian machinery that updates its memory repertoire by balancing evidence from new pathogen encounters against past experience of infection to predict and prepare for future threats. This framework links the observed initial rapid increase of the memory pool early in life followed by a midlife plateau to the ease of learning salient features of sparse environments. We also derive a modulated memory pool update rule in agreement with current vaccine-response experiments. Our results suggest that pathogenic environments are sparse and that memory repertoires significantly decrease infection costs, even with moderate sampling. The predicted optimal update scheme maps onto commonly considered competitive dynamics for antigen receptors. An adaptive agent predicting the future state of an environment must weigh trust in new observations against prior experiences. In this light, we propose a view of the adaptive immune system as a dynamic Bayesian machinery that updates its memory repertoire by balancing evidence from new pathogen encounters against past experience of infection to predict and prepare for future threats. This framework links the observed initial rapid increase of the memory pool early in life followed by a midlife plateau to the ease of learning salient features of sparse environments. We also derive a modulated memory pool update rule in agreement with current vaccine-response experiments. Our results suggest that pathogenic environments are sparse and that memory repertoires significantly decrease infection costs, even with moderate sampling. The predicted optimal update scheme maps onto commonly considered competitive dynamics for antigen receptors. |
| Author | Balasubramanian, Vijay Walczak, Aleksandra M Mora, Thierry Mayer, Andreas |
| Author_xml | – sequence: 1 givenname: Andreas orcidid: 0000-0002-6643-7622 surname: Mayer fullname: Mayer, Andreas organization: Laboratoire de Physique de l'École Normale Supérieure, PSL University, Centre National de la Recherche Scientifique, Sorbonne University, University Paris-Diderot, 75005 Paris, France – sequence: 2 givenname: Vijay surname: Balasubramanian fullname: Balasubramanian, Vijay organization: Initiative for the Theoretical Sciences, The Graduate Center, The City University of New York, New York, NY 10016 – sequence: 3 givenname: Aleksandra M surname: Walczak fullname: Walczak, Aleksandra M email: awalczak@lpt.ens.fr, tmora@lps.ens.fr organization: Laboratoire de Physique de l'École Normale Supérieure, PSL University, Centre National de la Recherche Scientifique, Sorbonne University, University Paris-Diderot, 75005 Paris, France; awalczak@lpt.ens.fr tmora@lps.ens.fr – sequence: 4 givenname: Thierry surname: Mora fullname: Mora, Thierry email: awalczak@lpt.ens.fr, tmora@lps.ens.fr organization: Laboratoire de Physique de l'École Normale Supérieure, PSL University, Centre National de la Recherche Scientifique, Sorbonne University, University Paris-Diderot, 75005 Paris, France; awalczak@lpt.ens.fr tmora@lps.ens.fr |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30988203$$D View this record in MEDLINE/PubMed |
| BookMark | eNpNj81Lw0AUxBep2A89e5McBUl9b5P9OkqpVih40XPYzb5IpJvEbELpf2_ACp5mDr8ZZpZs1rQNMXaLsEZQ2WPX2LhGjVwjIMoLtkAwmMrcwOyfn7NljF8AYISGKzbPwGjNIVuwh117TGxypMMhtd52Q918JnUIY0NJPMWBQtJToOCoj9fssrKHSDdnXbGP5-37Zpfu315eN0_7tBTKDKlWsjJSWHKVNVmJ3gmjlJFeWOWryniJHkuR8xxM6VBTThUqdDLj2mkh-Ird__Z2ffs9UhyKUMdyWmgbasdYcI7ApzzwCb07o6ML5Iuur4PtT8XfQf4DpGlTMg |
| CitedBy_id | crossref_primary_10_1103_PhysRevX_13_021022 crossref_primary_10_1073_pnas_2207516120 crossref_primary_10_1103_PhysRevX_12_021063 crossref_primary_10_1016_j_copsyc_2022_101299 crossref_primary_10_1038_s41467_025_61873_0 crossref_primary_10_1073_pnas_2113512119 crossref_primary_10_1073_pnas_2205598119 crossref_primary_10_1016_j_cels_2019_08_008 crossref_primary_10_1016_j_coisb_2019_10_001 crossref_primary_10_1016_j_physrep_2020_01_001 crossref_primary_10_1158_0008_5472_CAN_19_2732 crossref_primary_10_1080_17437199_2023_2171900 crossref_primary_10_1016_j_mbs_2023_109024 crossref_primary_10_1371_journal_pcbi_1008743 crossref_primary_10_3390_e25040609 crossref_primary_10_1103_PhysRevResearch_3_013222 crossref_primary_10_1146_annurev_biophys_081624_030543 crossref_primary_10_1073_pnas_1903666117 crossref_primary_10_1016_j_jtbi_2024_112032 crossref_primary_10_3390_biophysica3020015 crossref_primary_10_7554_eLife_82786 crossref_primary_10_1038_s43588_021_00076_1 crossref_primary_10_7554_eLife_61346 crossref_primary_10_3390_pharmaceutics16040516 crossref_primary_10_1073_pnas_2213264120 crossref_primary_10_1016_j_cub_2022_05_021 crossref_primary_10_1038_s41576_023_00623_8 crossref_primary_10_1371_journal_pgen_1010652 crossref_primary_10_1073_pnas_2305859120 crossref_primary_10_3390_pathogens8030115 crossref_primary_10_2174_0929867330666230509110108 crossref_primary_10_7554_eLife_81692 |
| ContentType | Journal Article |
| Copyright | Copyright © 2019 the Author(s). Published by PNAS. |
| Copyright_xml | – notice: Copyright © 2019 the Author(s). Published by PNAS. |
| DBID | CGR CUY CVF ECM EIF NPM 7X8 |
| DOI | 10.1073/pnas.1812810116 |
| DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
| DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic MEDLINE |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | no_fulltext_linktorsrc |
| Discipline | Sciences (General) |
| EISSN | 1091-6490 |
| ExternalDocumentID | 30988203 |
| Genre | Research Support, U.S. Gov't, Non-P.H.S Journal Article |
| GroupedDBID | --- -DZ -~X .55 0R~ 123 29P 2AX 2FS 2WC 4.4 53G 5RE 5VS 85S AACGO AAFWJ AANCE ABBHK ABOCM ABPLY ABPPZ ABTLG ABXSQ ABZEH ACGOD ACHIC ACIWK ACNCT ACPRK ADULT AENEX AEUPB AEXZC AFFNX AFOSN AFRAH ALMA_UNASSIGNED_HOLDINGS AQVQM BKOMP CGR CS3 CUY CVF D0L DCCCD DIK DOOOF DU5 E3Z EBS ECM EIF EJD F5P FRP GX1 H13 HH5 HYE IPSME JAAYA JBMMH JENOY JHFFW JKQEH JLS JLXEF JPM JSG JSODD JST KQ8 L7B LU7 N9A NPM N~3 O9- OK1 PNE PQQKQ R.V RHF RHI RNA RNS RPM RXW SA0 SJN TAE TN5 UKR VQA W8F WH7 WOQ WOW X7M XSW Y6R YBH YIF YIN YKV YSK ZCA ~02 ~KM 7X8 ADQXQ |
| ID | FETCH-LOGICAL-c579t-876f965aebfa93c1db597796d5a7dff9d61d1c542409cb18e4ef171b6328b8552 |
| IEDL.DBID | 7X8 |
| ISICitedReferencesCount | 34 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000466446500031&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1091-6490 |
| IngestDate | Wed Oct 01 14:49:49 EDT 2025 Wed Feb 19 02:31:04 EST 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 18 |
| Keywords | immune repertoire Bayesian prediction immune memory biophysics stochastic dynamics |
| Language | English |
| License | Copyright © 2019 the Author(s). Published by PNAS. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c579t-876f965aebfa93c1db597796d5a7dff9d61d1c542409cb18e4ef171b6328b8552 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| ORCID | 0000-0002-6643-7622 |
| OpenAccessLink | https://hal.science/hal-02360266 |
| PMID | 30988203 |
| PQID | 2210254202 |
| PQPubID | 23479 |
| ParticipantIDs | proquest_miscellaneous_2210254202 pubmed_primary_30988203 |
| PublicationCentury | 2000 |
| PublicationDate | 2019-04-30 |
| PublicationDateYYYYMMDD | 2019-04-30 |
| PublicationDate_xml | – month: 04 year: 2019 text: 2019-04-30 day: 30 |
| PublicationDecade | 2010 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States |
| PublicationTitle | Proceedings of the National Academy of Sciences - PNAS |
| PublicationTitleAlternate | Proc Natl Acad Sci U S A |
| PublicationYear | 2019 |
| SSID | ssj0009580 |
| Score | 2.507354 |
| Snippet | An adaptive agent predicting the future state of an environment must weigh trust in new observations against prior experiences. In this light, we propose a... |
| SourceID | proquest pubmed |
| SourceType | Aggregation Database Index Database |
| StartPage | 8815 |
| SubjectTerms | Adaptation, Physiological - immunology Adaptive Immunity - physiology Animals Host-Pathogen Interactions Immunologic Memory - physiology Lymphocytes - physiology Models, Biological |
| Title | How a well-adapting immune system remembers |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/30988203 https://www.proquest.com/docview/2210254202 |
| Volume | 116 |
| WOSCitedRecordID | wos000466446500031&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEA7qevCirs_1RQQPitRt2uZ1EhGXPeiyB4W9lcmjsJe22lX_vkmbRS-C4CW3QJhkZr555BuELpLUKEmUUyQwKsqAKadzTq8MFM67WEgKaNn1H_lkImYzOQ0Jtya0VS5tYmuoTaV9jnyY-NiEZi5Wv61fIz81yldXwwiNVdRLHZTxLV18Jn6Q7oqOjUCSiGUyXlL78HRYl9DceO_mCa4I-x1ftn5mtPXfE26jzYAw8V33JPpoxZY7qB90uMGXgWj6ahddj6tPDNin7yIwUPsOaDz3H0Ys7hiesc8e-pEhzR56GT0834-jMDwh0pTLhbdyhWQUrHLSTjUxyjPNSWYocFMU0jBiiHbHdQGeVkTYzBaEE8XSRChBabKP1sqqtIcIC82kpdZdnVCZNgRiAppBwijnSmkyQOdLgeTucfqKA5S2em_yb5EM0EEn1bzuWDTyNJYO3cfp0R92H6MNB1RCFecE9QqnmvYUreuPxbx5O2tv3a2T6dMXmPW2Sg |
| linkProvider | ProQuest |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=How+a+well-adapting+immune+system+remembers&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Mayer%2C+Andreas&rft.au=Balasubramanian%2C+Vijay&rft.au=Walczak%2C+Aleksandra+M&rft.au=Mora%2C+Thierry&rft.date=2019-04-30&rft.eissn=1091-6490&rft.volume=116&rft.issue=18&rft.spage=8815&rft_id=info:doi/10.1073%2Fpnas.1812810116&rft_id=info%3Apmid%2F30988203&rft_id=info%3Apmid%2F30988203&rft.externalDocID=30988203 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1091-6490&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1091-6490&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1091-6490&client=summon |