Standardized evaluation framework for evaluating coronary artery stenosis detection, stenosis quantification and lumen segmentation algorithms in computed tomography angiography

[Display omitted] •Evaluation framework for coronary artery lumen segmentation and stenosis grading.•Description of the datasets and creation of reference standard is given.•Standardized evaluation measures are defined.•Results on current 11 submissions are presented.•Framework is open for new submi...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Medical image analysis Ročník 17; číslo 8; s. 859 - 876
Hlavní autori: Kirişli, H.A., Schaap, M., Metz, C.T., Dharampal, A.S., Meijboom, W.B., Papadopoulou, S.L., Dedic, A., Nieman, K., de Graaf, M.A., Meijs, M.F.L., Cramer, M.J., Broersen, A., Cetin, S., Eslami, A., Flórez-Valencia, L., Lor, K.L., Matuszewski, B., Melki, I., Mohr, B., Öksüz, I., Shahzad, R., Wang, C., Kitslaar, P.H., Unal, G., Katouzian, A., Orkisz, M., Chen, C.M., Precioso, F., Najman, L., Masood, S., Ünay, D., van Vliet, L., Moreno, R., Goldenberg, R., Vuçini, E., Krestin, G.P., Niessen, W.J., van Walsum, T.
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Netherlands Elsevier B.V 01.12.2013
Elsevier
Predmet:
ISSN:1361-8415, 1361-8423, 1361-8423
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract [Display omitted] •Evaluation framework for coronary artery lumen segmentation and stenosis grading.•Description of the datasets and creation of reference standard is given.•Standardized evaluation measures are defined.•Results on current 11 submissions are presented.•Framework is open for new submissions. Though conventional coronary angiography (CCA) has been the standard of reference for diagnosing coronary artery disease in the past decades, computed tomography angiography (CTA) has rapidly emerged, and is nowadays widely used in clinical practice. Here, we introduce a standardized evaluation framework to reliably evaluate and compare the performance of the algorithms devised to detect and quantify the coronary artery stenoses, and to segment the coronary artery lumen in CTA data. The objective of this evaluation framework is to demonstrate the feasibility of dedicated algorithms to: (1) (semi-)automatically detect and quantify stenosis on CTA, in comparison with quantitative coronary angiography (QCA) and CTA consensus reading, and (2) (semi-)automatically segment the coronary lumen on CTA, in comparison with expert’s manual annotation. A database consisting of 48 multicenter multivendor cardiac CTA datasets with corresponding reference standards are described and made available. The algorithms from 11 research groups were quantitatively evaluated and compared. The results show that (1) some of the current stenosis detection/quantification algorithms may be used for triage or as a second-reader in clinical practice, and that (2) automatic lumen segmentation is possible with a precision similar to that obtained by experts. The framework is open for new submissions through the website, at http://coronary.bigr.nl/stenoses/.
AbstractList Though conventional coronary angiography (CCA) has been the standard of reference for diagnosing coronary artery disease in the past decades, computed tomography angiography (CTA) has rapidly emerged, and is nowadays widely used in clinical practice. Here, we introduce a standardized evaluation framework to reliably evaluate and compare the performance of the algorithms devised to detect and quantify the coronary artery stenoses, and to segment the coronary artery lumen in CTA data. The objective of this evaluation framework is to demonstrate the feasibility of dedicated algorithms to: (1) (semi-)automatically detect and quantify stenosis on CTA, in comparison with quantitative coronary angiography (QCA) and CTA consensus reading, and (2) (semi-)automatically segment the coronary lumen on CTA, in comparison with expert's manual annotation. A database consisting of 48 multicenter multivendor cardiac CTA datasets with corresponding reference standards are described and made available. The algorithms from 11 research groups were quantitatively evaluated and compared. The results show that (1) some of the current stenosis detection/quantification algorithms may be used for triage or as a second-reader in clinical practice, and that (2) automatic lumen segmentation is possible with a precision similar to that obtained by experts. The framework is open for new submissions through the website, at http://coronary.bigr.nl/stenoses/.
Though conventional coronary angiography (CCA) has been the standard of reference for diagnosing coronary artery disease in the past decades, computed tomography angiography (CTA) has rapidly emerged, and is nowadays widely used in clinical practice. Here, we introduce a standardized evaluation framework to reliably evaluate and compare the performance of the algorithms devised to detect and quantify the coronary artery stenoses, and to segment the coronary artery lumen in CTA data. The objective of this evaluation framework is to demonstrate the feasibility of dedicated algorithms to: (1) (semi-)automatically detect and quantify stenosis on CTA, in comparison with quantitative coronary angiography (QCA) and CTA consensus reading, and (2) (semi-)automatically segment the coronary lumen on CTA, in comparison with expert's manual annotation. A database consisting of 48 multicenter multivendor cardiac CTA datasets with corresponding reference standards are described and made available. The algorithms from 11 research groups were quantitatively evaluated and compared. The results show that (1) some of the current stenosis detection/quantification algorithms may be used for triage or as a second-reader in clinical practice, and that (2) automatic lumen segmentation is possible with a precision similar to that obtained by experts. The framework is open for new submissions through the website, at http://coronary.bigr.nl/stenoses/.Though conventional coronary angiography (CCA) has been the standard of reference for diagnosing coronary artery disease in the past decades, computed tomography angiography (CTA) has rapidly emerged, and is nowadays widely used in clinical practice. Here, we introduce a standardized evaluation framework to reliably evaluate and compare the performance of the algorithms devised to detect and quantify the coronary artery stenoses, and to segment the coronary artery lumen in CTA data. The objective of this evaluation framework is to demonstrate the feasibility of dedicated algorithms to: (1) (semi-)automatically detect and quantify stenosis on CTA, in comparison with quantitative coronary angiography (QCA) and CTA consensus reading, and (2) (semi-)automatically segment the coronary lumen on CTA, in comparison with expert's manual annotation. A database consisting of 48 multicenter multivendor cardiac CTA datasets with corresponding reference standards are described and made available. The algorithms from 11 research groups were quantitatively evaluated and compared. The results show that (1) some of the current stenosis detection/quantification algorithms may be used for triage or as a second-reader in clinical practice, and that (2) automatic lumen segmentation is possible with a precision similar to that obtained by experts. The framework is open for new submissions through the website, at http://coronary.bigr.nl/stenoses/.
Though conventional coronary angiography (CCA) has been the standard of reference for diagnosing coronary artery disease in the past decades, computed tomography angiography (CTA) has rapidly emerged, and is nowadays widely used in clinical practice. Here, we introduce a standardized evaluation framework to reliably evaluate and compare the performance of the algorithms devised to detect and quantify the coronary artery stenoses, and to segment the coronary artery lumen in CTA data. The objective of this evaluation framework is to demonstrate the feasibility of dedicated algorithms to: (1) (semi-)automatically detect and quantify stenosis on CTA, in comparison with quantitative coronary angiography (QCA) and CTA consensus reading, and (2) (semi-)automatically segment the coronary lumen on CTA, in comparison with expert's manual annotation. A database consisting of 48 multicenter multivendor cardiac CTA datasets with corresponding reference standards are described and made available. The algorithms from 11 research groups were quantitatively evaluated and compared. The results show that (1) some of the current stenosis detection/quantification algorithms may be used for triage or as a second-reader in clinical practice, and that (2) automatic lumen segmentation is possible with a precision similar to that obtained by experts. The framework is open for new submissions through the website, at coronary.bigr.nl/stenoses/.
Though conventional coronary angiography (CCA) has been the standard of reference for diagnosing coronary artery disease in the past decades, computed tomography angiography (CIA) has rapidly emerged, and is nowadays widely used in clinical practice. Here, we introduce a standardized evaluation framework to reliably evaluate and compare the performance of the algorithms devised to detect and quantify the coronary artery stenoses, and to segment the coronary artery lumen in CIA data. The objective of this evaluation framework is to demonstrate the feasibility of dedicated algorithms to: (I) (semi-)automatically detect and quantify stenosis on CIA, in comparison with quantitative coronary angiography (QCA) and CIA consensus reading, and (2) (semi-)automatically segment the coronary lumen on CIA, in comparison with expert's manual annotation. A database consisting of 48 multicenter multivendor cardiac CIA datasets with corresponding reference standards are described and made available. The algorithms from 11 research groups were quantitatively evaluated and compared. The results show that (1) some of the current stenosis detection/quantification algorithms may be used for triage or as a second-reader in clinical practice, and that (2) automatic lumen segmentation is possible with a precision similar to that obtained by experts. The framework is open for new submissions through the website, at http://coronary.bigr.nl/stenoses/. (C) 2013 Elsevier B.V. All rights reserved.
[Display omitted] •Evaluation framework for coronary artery lumen segmentation and stenosis grading.•Description of the datasets and creation of reference standard is given.•Standardized evaluation measures are defined.•Results on current 11 submissions are presented.•Framework is open for new submissions. Though conventional coronary angiography (CCA) has been the standard of reference for diagnosing coronary artery disease in the past decades, computed tomography angiography (CTA) has rapidly emerged, and is nowadays widely used in clinical practice. Here, we introduce a standardized evaluation framework to reliably evaluate and compare the performance of the algorithms devised to detect and quantify the coronary artery stenoses, and to segment the coronary artery lumen in CTA data. The objective of this evaluation framework is to demonstrate the feasibility of dedicated algorithms to: (1) (semi-)automatically detect and quantify stenosis on CTA, in comparison with quantitative coronary angiography (QCA) and CTA consensus reading, and (2) (semi-)automatically segment the coronary lumen on CTA, in comparison with expert’s manual annotation. A database consisting of 48 multicenter multivendor cardiac CTA datasets with corresponding reference standards are described and made available. The algorithms from 11 research groups were quantitatively evaluated and compared. The results show that (1) some of the current stenosis detection/quantification algorithms may be used for triage or as a second-reader in clinical practice, and that (2) automatic lumen segmentation is possible with a precision similar to that obtained by experts. The framework is open for new submissions through the website, at http://coronary.bigr.nl/stenoses/.
Though conventional coronary angiography (CCA) has been the standard of reference for diagnosing coronary artery disease in the past decades, computed tomography angiography (CIA) has rapidly emerged, and is nowadays widely used in clinical practice. Here, we introduce a standardized evaluation framework to reliably evaluate and compare the performance of the algorithms devised to detect and quantify the coronary artery stenoses, and to segment the coronary artery lumen in CIA data. The objective of this evaluation framework is to demonstrate the feasibility of dedicated algorithms to: (I) (semi-)automatically detect and quantify stenosis on CIA, in comparison with quantitative coronary angiography (QCA) and CIA consensus reading, and (2) (semi-)automatically segment the coronary lumen on CIA, in comparison with expert's manual annotation. A database consisting of 48 multicenter multivendor cardiac CIA datasets with corresponding reference standards are described and made available. The algorithms from 11 research groups were quantitatively evaluated and compared. The results show that (1) some of the current stenosis detection/quantification algorithms may be used for triage or as a second-reader in clinical practice, and that (2) automatic lumen segmentation is possible with a precision similar to that obtained by experts. The framework is open for new submissions through the website, at http://coronary.bigr.nl/stenoses/.
Author Eslami, A.
Niessen, W.J.
Moreno, R.
Meijs, M.F.L.
Orkisz, M.
Flórez-Valencia, L.
Mohr, B.
Schaap, M.
Wang, C.
Vuçini, E.
Metz, C.T.
Dedic, A.
Katouzian, A.
Broersen, A.
Ünay, D.
Dharampal, A.S.
Papadopoulou, S.L.
de Graaf, M.A.
Kirişli, H.A.
Nieman, K.
Unal, G.
Najman, L.
van Walsum, T.
Cramer, M.J.
Cetin, S.
Öksüz, I.
Krestin, G.P.
Shahzad, R.
Kitslaar, P.H.
Masood, S.
Chen, C.M.
Meijboom, W.B.
Melki, I.
Precioso, F.
van Vliet, L.
Lor, K.L.
Matuszewski, B.
Goldenberg, R.
Author_xml – sequence: 1
  givenname: H.A.
  surname: Kirişli
  fullname: Kirişli, H.A.
  organization: Biomedical Imaging Group Rotterdam, Dept.of Radiology and Med. Informatics, Erasmus MC, Rotterdam, The Netherlands
– sequence: 2
  givenname: M.
  surname: Schaap
  fullname: Schaap, M.
  organization: Biomedical Imaging Group Rotterdam, Dept.of Radiology and Med. Informatics, Erasmus MC, Rotterdam, The Netherlands
– sequence: 3
  givenname: C.T.
  surname: Metz
  fullname: Metz, C.T.
  organization: Biomedical Imaging Group Rotterdam, Dept.of Radiology and Med. Informatics, Erasmus MC, Rotterdam, The Netherlands
– sequence: 4
  givenname: A.S.
  surname: Dharampal
  fullname: Dharampal, A.S.
  organization: Dept.of Radiology, Erasmus MC, Rotterdam, The Netherlands
– sequence: 5
  givenname: W.B.
  surname: Meijboom
  fullname: Meijboom, W.B.
  organization: Dept.of Cardiology, Erasmus MC, Rotterdam, The Netherlands
– sequence: 6
  givenname: S.L.
  surname: Papadopoulou
  fullname: Papadopoulou, S.L.
  organization: Dept.of Radiology, Erasmus MC, Rotterdam, The Netherlands
– sequence: 7
  givenname: A.
  surname: Dedic
  fullname: Dedic, A.
  organization: Dept.of Cardiology, Erasmus MC, Rotterdam, The Netherlands
– sequence: 8
  givenname: K.
  surname: Nieman
  fullname: Nieman, K.
  organization: Dept.of Radiology, Erasmus MC, Rotterdam, The Netherlands
– sequence: 9
  givenname: M.A.
  surname: de Graaf
  fullname: de Graaf, M.A.
  organization: Dept.of Cardiology, Leiden UMC, Leiden, The Netherlands
– sequence: 10
  givenname: M.F.L.
  surname: Meijs
  fullname: Meijs, M.F.L.
  organization: Dept.of Cardiology, UMC Utrecht, Utrecht, The Netherlands
– sequence: 11
  givenname: M.J.
  surname: Cramer
  fullname: Cramer, M.J.
  organization: Dept.of Cardiology, UMC Utrecht, Utrecht, The Netherlands
– sequence: 12
  givenname: A.
  surname: Broersen
  fullname: Broersen, A.
  organization: Div. of Image Processing, Dept.of Radiology, Leiden UMC, Leiden, The Netherlands
– sequence: 13
  givenname: S.
  surname: Cetin
  fullname: Cetin, S.
  organization: Faculty of Engineering and Natural Sciences, SabancıUniversity, Turkey
– sequence: 14
  givenname: A.
  surname: Eslami
  fullname: Eslami, A.
  organization: Computer Aided Medical Procedures, Technical University of Munich, Munich, Germany
– sequence: 15
  givenname: L.
  surname: Flórez-Valencia
  fullname: Flórez-Valencia, L.
  organization: Grupo Takina, Departamento de Ingeniería de Sistemas, Pontificia Universidad Javeriana, Bogotá, Colombia
– sequence: 16
  givenname: K.L.
  surname: Lor
  fullname: Lor, K.L.
  organization: Institute of Biomedical Engineering, National Taiwan University, Taipei, Taiwan
– sequence: 17
  givenname: B.
  surname: Matuszewski
  fullname: Matuszewski, B.
  organization: School of Computing Engineering and Physical Sciences, University of Central Lancashire, Preston, UK
– sequence: 18
  givenname: I.
  surname: Melki
  fullname: Melki, I.
  organization: Université Paris-Est, Laboratoire d’Informatique Gaspard-Monge, Equipe A3SI, Noisy-le-Grand, France
– sequence: 19
  givenname: B.
  surname: Mohr
  fullname: Mohr, B.
  organization: Toshiba Medical Visualization Systems, Edinburgh, UK
– sequence: 20
  givenname: I.
  surname: Öksüz
  fullname: Öksüz, I.
  organization: Electrical and Electronics Engineering, Bahçeşehir University, Istanbul, Turkey
– sequence: 21
  givenname: R.
  surname: Shahzad
  fullname: Shahzad, R.
  organization: Biomedical Imaging Group Rotterdam, Dept.of Radiology and Med. Informatics, Erasmus MC, Rotterdam, The Netherlands
– sequence: 22
  givenname: C.
  surname: Wang
  fullname: Wang, C.
  organization: Center for Medical Imaging Science and Visualization, Dept.of Medical and Health Sciences, Linköping University, Linköping, Sweden
– sequence: 23
  givenname: P.H.
  surname: Kitslaar
  fullname: Kitslaar, P.H.
  organization: Div. of Image Processing, Dept.of Radiology, Leiden UMC, Leiden, The Netherlands
– sequence: 24
  givenname: G.
  surname: Unal
  fullname: Unal, G.
  organization: Faculty of Engineering and Natural Sciences, SabancıUniversity, Turkey
– sequence: 25
  givenname: A.
  surname: Katouzian
  fullname: Katouzian, A.
  organization: Computer Aided Medical Procedures, Technical University of Munich, Munich, Germany
– sequence: 26
  givenname: M.
  surname: Orkisz
  fullname: Orkisz, M.
  organization: Université de Lyon, CREATIS, CNRS UMR 5220, INSERM U 1044, INSA-Lyon, Lyon, France
– sequence: 27
  givenname: C.M.
  surname: Chen
  fullname: Chen, C.M.
  organization: Institute of Biomedical Engineering, National Taiwan University, Taipei, Taiwan
– sequence: 28
  givenname: F.
  surname: Precioso
  fullname: Precioso, F.
  organization: University Nice-Sophia Antipolis, Laboratory of Informatics, Signal and Systems (I3S), Nice Sophia Antipolis, France
– sequence: 29
  givenname: L.
  surname: Najman
  fullname: Najman, L.
  organization: Université Paris-Est, Laboratoire d’Informatique Gaspard-Monge, Equipe A3SI, Noisy-le-Grand, France
– sequence: 30
  givenname: S.
  surname: Masood
  fullname: Masood, S.
  organization: Toshiba Medical Visualization Systems, Edinburgh, UK
– sequence: 31
  givenname: D.
  surname: Ünay
  fullname: Ünay, D.
  organization: Biomedical Engineering, Bahçeşehir University, Istanbul, Turkey
– sequence: 32
  givenname: L.
  surname: van Vliet
  fullname: van Vliet, L.
  organization: Quantitative Imaging Group, Imaging Science and Technology, Faculty of Applied Sciences, Delft Univ. of Technology, Delft, The Netherlands
– sequence: 33
  givenname: R.
  surname: Moreno
  fullname: Moreno, R.
  organization: Center for Medical Imaging Science and Visualization, Dept.of Medical and Health Sciences, Linköping University, Linköping, Sweden
– sequence: 34
  givenname: R.
  surname: Goldenberg
  fullname: Goldenberg, R.
  organization: Rcadia Medical Imaging, Haïfa, Israel
– sequence: 35
  givenname: E.
  surname: Vuçini
  fullname: Vuçini, E.
  organization: VRVis Research Center for Virtual Reality and Visualization, Vienna, Austria
– sequence: 36
  givenname: G.P.
  surname: Krestin
  fullname: Krestin, G.P.
  organization: Dept.of Radiology, Erasmus MC, Rotterdam, The Netherlands
– sequence: 37
  givenname: W.J.
  surname: Niessen
  fullname: Niessen, W.J.
  organization: Biomedical Imaging Group Rotterdam, Dept.of Radiology and Med. Informatics, Erasmus MC, Rotterdam, The Netherlands
– sequence: 38
  givenname: T.
  surname: van Walsum
  fullname: van Walsum, T.
  email: coronarystenoses@bigr.nl
  organization: Biomedical Imaging Group Rotterdam, Dept.of Radiology and Med. Informatics, Erasmus MC, Rotterdam, The Netherlands
BackLink https://www.ncbi.nlm.nih.gov/pubmed/23837963$$D View this record in MEDLINE/PubMed
https://hal.science/hal-00874107$$DView record in HAL
https://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-258850$$DView record from Swedish Publication Index (Kungliga Tekniska Högskolan)
https://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-95876$$DView record from Swedish Publication Index (Linköpings universitet)
BookMark eNqFkstu1DAUhiNURC_wBEgoS5CawY6dOFmwGJVLkUZiwWVr-XKS8TSxp7YzFbwVb4iHTAfBoqyOdfz9_7F1_vPsxDoLWfYcowVGuH69WYygjViUCJMFqhYIsUfZGSY1LhpakpPjGVen2XkIG5QIStGT7LQkDWFtTc6yn5-jsFp4bX6AzmEnhklE42zeeTHCnfM3eef88cL2uXLeWeG_58JHSCVEsC6YkGuIoPbayz-920nYaDqjZtM0Kh-mEWweoE8lHtpD77yJ6zHkxqYB43aK6TXRja73YrtOs2xvDuen2eNODAGeHepF9vX9uy9X18Xq04ePV8tVoSrWxqJBmNZItxoQYY0EqamWGDNGOyVbLBnIstJABAIkS1SXVLSVpIg2WoHqJLnILmffcAfbSfKtN2P6NnfC8Lfm25I73_PBTLytGlYnvPg_fhPXvKyapkKJfzXzazH8BV8vV3zfQ6hhFCO2w4l9ObNb724nCJGPJigYBmHBTYFjSknacktZQl8c0EmmeByd7zeegHYGlHcheOi4MvMaohdm4Bjxfbr4hv9OF9-ni6MqPWdvTv7R3ts_rHozqyBta2fA86AMWJVAnwLDtTMP6n8BbBXwew
CitedBy_id crossref_primary_10_1186_s12938_023_01163_2
crossref_primary_10_1007_s11548_017_1582_9
crossref_primary_10_3389_fcvm_2021_597568
crossref_primary_10_1002_mp_12753
crossref_primary_10_1016_j_jbiomech_2015_11_036
crossref_primary_10_1016_j_media_2025_103465
crossref_primary_10_1016_j_compbiomed_2023_106998
crossref_primary_10_1016_j_media_2025_103467
crossref_primary_10_1016_j_media_2015_07_001
crossref_primary_10_1109_TMI_2018_2883807
crossref_primary_10_1007_s00330_022_08664_z
crossref_primary_10_1016_j_carpath_2017_05_005
crossref_primary_10_1016_j_jcmg_2019_05_009
crossref_primary_10_1007_s00414_021_02530_1
crossref_primary_10_1016_j_cmpb_2015_10_019
crossref_primary_10_1016_j_jcct_2025_07_001
crossref_primary_10_1109_TMI_2019_2953054
crossref_primary_10_1109_ACCESS_2019_2931359
crossref_primary_10_1016_j_cmpb_2022_107015
crossref_primary_10_1038_s41598_021_02427_4
crossref_primary_10_1049_iet_ipr_2015_0687
crossref_primary_10_1088_0031_9155_60_10_3905
crossref_primary_10_1177_09544119231167926
crossref_primary_10_1016_j_irbm_2013_12_001
crossref_primary_10_3233_IDA_237442
crossref_primary_10_1007_s11548_018_1891_7
crossref_primary_10_3390_s21144758
crossref_primary_10_1080_10255842_2021_1957099
crossref_primary_10_1016_j_irbm_2017_04_004
crossref_primary_10_1007_s12204_023_2653_4
crossref_primary_10_1016_j_compbiomed_2024_108328
crossref_primary_10_1016_j_cmpb_2022_107001
crossref_primary_10_1016_j_compmedimag_2020_101840
crossref_primary_10_1016_j_compmedimag_2020_101721
crossref_primary_10_1109_TMI_2023_3326243
crossref_primary_10_1038_s41598_018_37168_4
crossref_primary_10_1016_j_dib_2016_02_052
crossref_primary_10_1016_j_patcog_2023_109926
crossref_primary_10_1016_j_cmpb_2018_02_001
crossref_primary_10_1016_j_jpurol_2021_01_006
crossref_primary_10_3390_jcdd11030073
crossref_primary_10_1016_j_ahj_2023_08_009
crossref_primary_10_1007_s11548_022_02655_7
crossref_primary_10_1016_j_cmpb_2022_106787
crossref_primary_10_1016_j_medengphy_2023_104000
crossref_primary_10_1038_s41598_017_15617_w
crossref_primary_10_1007_s00595_021_02349_8
crossref_primary_10_1177_08953996241292476
crossref_primary_10_3390_s24030846
crossref_primary_10_4218_etrij_17_0116_0889
crossref_primary_10_1016_j_compmedimag_2022_102049
crossref_primary_10_1002_mp_12121
crossref_primary_10_1088_0031_9155_59_17_5163
crossref_primary_10_1016_j_compmedimag_2016_06_003
crossref_primary_10_3390_diagnostics14030255
crossref_primary_10_1016_j_media_2017_06_009
crossref_primary_10_1007_s10554_013_0271_1
crossref_primary_10_1016_j_icte_2024_09_008
crossref_primary_10_1109_TIP_2021_3125490
crossref_primary_10_1016_j_compbiomed_2025_110708
crossref_primary_10_1118_1_4962468
crossref_primary_10_1038_s41597_023_02016_2
crossref_primary_10_3889_oamjms_2021_7806
crossref_primary_10_1109_TMI_2016_2553001
crossref_primary_10_1007_s42399_022_01377_w
crossref_primary_10_1016_j_cmpb_2017_03_020
crossref_primary_10_1016_j_compmedimag_2023_102287
crossref_primary_10_1587_transinf_2016EDP7419
crossref_primary_10_1118_1_4945045
crossref_primary_10_1002_mp_13993
crossref_primary_10_3390_jimaging9120268
crossref_primary_10_1016_j_jcmg_2019_06_009
crossref_primary_10_1016_j_cmpb_2025_108952
crossref_primary_10_1016_j_bspc_2017_04_002
crossref_primary_10_1002_jmri_25240
crossref_primary_10_1088_2057_1976_ac9e03
crossref_primary_10_1007_s00138_018_0978_z
crossref_primary_10_1016_j_cmpb_2016_03_012
crossref_primary_10_3233_XST_200707
crossref_primary_10_1016_j_compbiomed_2015_06_006
crossref_primary_10_1080_17434440_2017_1300057
crossref_primary_10_1145_3615862
crossref_primary_10_1016_j_acha_2021_12_002
crossref_primary_10_1007_s10494_019_00009_z
crossref_primary_10_1007_s11042_024_18953_y
crossref_primary_10_1109_RBME_2018_2885714
crossref_primary_10_1155_2014_704791
crossref_primary_10_1097_RLI_0000000000001109
crossref_primary_10_1177_0284185114538793
crossref_primary_10_1016_j_compbiomed_2017_07_021
crossref_primary_10_1016_j_neunet_2019_11_017
crossref_primary_10_1016_j_bspc_2024_106880
crossref_primary_10_1016_j_media_2023_102889
crossref_primary_10_1177_00033197231187063
crossref_primary_10_1016_j_bspc_2020_101868
crossref_primary_10_1109_ACCESS_2020_3007465
crossref_primary_10_1109_TMI_2019_2905990
crossref_primary_10_1016_j_compbiomed_2020_103657
crossref_primary_10_1016_j_jocs_2019_01_004
crossref_primary_10_1088_1748_605X_ad3f60
crossref_primary_10_3390_app15063113
crossref_primary_10_3390_diagnostics11030551
crossref_primary_10_3389_fphys_2023_1138257
crossref_primary_10_1155_2016_3530251
crossref_primary_10_1016_j_medengphy_2024_104182
crossref_primary_10_1186_s13019_015_0249_2
crossref_primary_10_1016_j_ejmp_2015_08_002
crossref_primary_10_1016_j_irbm_2014_07_003
crossref_primary_10_1038_s41467_018_07619_7
crossref_primary_10_1007_s11517_018_1880_6
Cites_doi 10.1016/j.media.2009.06.003
10.1109/TMI.2010.2072789
10.1118/1.3254077
10.1007/s10554-011-9894-2
10.1161/CIR.0b013e31823ac046
10.1016/j.jcmg.2010.05.004
10.1016/j.compmedimag.2011.03.004
10.1007/s11548-010-0494-8
10.1016/j.acra.2010.10.014
10.1002/ccd.1810300205
10.1109/IEMBS.2007.4352409
10.1007/978-3-642-15948-0_1
10.1016/j.jcmg.2010.01.010
10.1016/j.media.2009.07.011
10.1007/BFb0056195
10.1117/12.811639
10.1016/j.jacc.2008.08.058
10.1016/j.jacc.2005.10.065
10.1161/01.CIR.92.3.657
10.1007/s10278-006-9947-6
10.1016/j.media.2011.02.004
10.1016/j.amjcard.2009.07.011
10.1007/s00330-009-1644-7
10.1007/s00330-006-0159-8
10.1093/eurheartj/ehr465
10.1016/j.jcct.2009.01.001
10.1007/s11548-011-0552-x
10.1007/s10554-007-9281-1
10.1109/TMI.2012.2227118
10.1161/01.CIR.51.4.5
10.1007/978-3-642-02498-6_44
10.54294/l78zbl
10.1161/CIRCULATIONAHA.106.178458
10.1037/h0026256
10.1007/s12471-011-0096-2
10.1117/12.844391
10.1007/s00330-012-2551-x
10.7326/0003-4819-118-2-199301150-00001
ContentType Journal Article
Copyright 2013 Elsevier B.V.
Copyright © 2013 Elsevier B.V. All rights reserved.
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: 2013 Elsevier B.V.
– notice: Copyright © 2013 Elsevier B.V. All rights reserved.
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
1XC
VOOES
ADTPV
AOWAS
D8V
DG8
DOI 10.1016/j.media.2013.05.007
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
SwePub
SwePub Articles
SWEPUB Kungliga Tekniska Högskolan
SWEPUB Linköpings universitet
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic




Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Engineering
Computer Science
EISSN 1361-8423
EndPage 876
ExternalDocumentID oai_DiVA_org_liu_95876
oai_DiVA_org_kth_258850
oai:HAL:hal-00874107v1
23837963
10_1016_j_media_2013_05_007
S1361841513000819
Genre Research Support, Non-U.S. Gov't
Multicenter Study
Journal Article
GroupedDBID ---
--K
--M
.~1
0R~
1B1
1~.
1~5
29M
4.4
457
4G.
53G
5GY
5VS
7-5
71M
8P~
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABBQC
ABJNI
ABLVK
ABMAC
ABMZM
ABXDB
ABYKQ
ACDAQ
ACGFS
ACIUM
ACIWK
ACNNM
ACPRK
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFRAH
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AJRQY
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ANZVX
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
BNPGV
C45
CAG
COF
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HVGLF
HX~
HZ~
IHE
J1W
JJJVA
KOM
LCYCR
M41
MO0
N9A
O-L
O9-
OAUVE
OVD
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SDP
SEL
SES
SEW
SPC
SPCBC
SSH
SST
SSV
SSZ
T5K
TEORI
UHS
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACIEU
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
CGR
CUY
CVF
ECM
EIF
NPM
7X8
1XC
VOOES
ADTPV
AOWAS
D8V
DG8
ID FETCH-LOGICAL-c579t-801460d9de0378bebd4db11774fcb91b7eb25de3a0e0b20624a95b4048dcecfb3
ISICitedReferencesCount 156
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000326662000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1361-8415
1361-8423
IngestDate Tue Nov 04 16:18:42 EST 2025
Tue Nov 04 16:57:23 EST 2025
Tue Oct 14 20:50:54 EDT 2025
Sun Sep 28 10:47:07 EDT 2025
Wed Feb 19 01:54:00 EST 2025
Tue Nov 18 22:29:02 EST 2025
Sat Nov 29 04:06:00 EST 2025
Fri Feb 23 02:28:18 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 8
Keywords stenoses quantification
Computed tomography angiography (CTA)
stenoses detection
Standardized evaluation framework
Coronary arteries
Language English
License Copyright © 2013 Elsevier B.V. All rights reserved.
Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c579t-801460d9de0378bebd4db11774fcb91b7eb25de3a0e0b20624a95b4048dcecfb3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-8712-1443
0000-0002-6190-0235
0000-0003-1709-5766
OpenAccessLink https://hal.science/hal-00874107
PMID 23837963
PQID 1443415947
PQPubID 23479
PageCount 18
ParticipantIDs swepub_primary_oai_DiVA_org_liu_95876
swepub_primary_oai_DiVA_org_kth_258850
hal_primary_oai_HAL_hal_00874107v1
proquest_miscellaneous_1443415947
pubmed_primary_23837963
crossref_citationtrail_10_1016_j_media_2013_05_007
crossref_primary_10_1016_j_media_2013_05_007
elsevier_sciencedirect_doi_10_1016_j_media_2013_05_007
PublicationCentury 2000
PublicationDate 2013-12-01
PublicationDateYYYYMMDD 2013-12-01
PublicationDate_xml – month: 12
  year: 2013
  text: 2013-12-01
  day: 01
PublicationDecade 2010
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle Medical image analysis
PublicationTitleAlternate Med Image Anal
PublicationYear 2013
Publisher Elsevier B.V
Elsevier
Publisher_xml – name: Elsevier B.V
– name: Elsevier
References Baltaxe Milwer, M., Flórez-Valencia, L., Hernández-Hoyos, M., Magnin, I., Orkisz, M., 2007. Fast-marching contours for the segmentation of vessel lumen in CTA cross-sections. In: Proc. of the IEEE Engineering in Medicine and Biology Society, pp. 791 –794.
Teßmann, M., Vega-Higuera, F., Fritz, D., Scheuering, M., Greiner, G., 2009. Multi-scale feature extraction for learning-based classification of coronary artery stenosis. In: Proc. of SPIE, Medical Imaging 2009: Computer-Aided Diagnosis.
Cohen (b0060) 1968; 70
Boogers, Broersen, van Velzen, de Graaf, El-Naggar, Kitslaar, Dijkstra, Delgado, Boersma, de Roos, Schuijf, Schalij, Reiber, Bax, Jukema (b0030) 2012; 33
Khan, Wesarg, Gurung, Dogan, Maataoui, Brehmer, Herzog, Ackermann, Assmus, Vogl (b0130) 2006; 16
Roger, Go, Lloyd-Jones, Benjamin, Berry, Borden, Bravata, Dai, Ford, Fox, Fullerton, Gillespie, Hailpern, Heit, Howard, Kissela, Kittner, Lackland, Lichtman, Lisabeth, Makuc, Marcus, Marelli, Matchar, Moy, Mozaffarian, Mussolino, Nichol, Paynter, Soliman, Sorlie, Sotoodehnia, Turan, Virani, Wong, Woo, Turner, Committee, Subcommittee (b0195) 2012; 125
Zuluaga, Magnin, Hernández Hoyos, Delgado Leyton, Lozano, Orkisz (b0275) 2011; 6
Yang, Kitslaar, Frenay, Broersen, Boogers, Bax, Reiber, Dijkstra (b0260) 2012; 28
Goldenberg, Peled (b0100) 2011; 6
Gülsün, Tek (b0105) 2008
Falk, Shah, Fuster (b0080) 1995; 92
den Dekker, de Smet, de Bock, Tio, Oudkerk, Vliegenthart (b0065) 2012; 22
Virmani, Burke, Farb, Kolodgie (b0230) 2006; 47
Kelm, Mittal, Zheng, Tsymbal, Bernhardt, Vega-Higuera, Zhou, Meer, Comaniciu (b0125) 2011; 14
Cetin, S., Unal, G., 2012. Automatic detection of coronary artery stenosis in CTA based on vessel intensity and geometric features. In: Proc. of MICCAI Workshop 3D Cardiovascular Imaging: A MICCAI Segmentation Challenge.
Zambal, S., Hladuvka, J., Kanitsar, A., Bühler, K., 2008. Shape and appearance models for automatic coronary artery tracking. In: Proc. of MICCAI Workshop 3D Segmentation in the Clinic: A Grand Challenge II.
Schaap, M., Neefjes, L., Metz, C., van der Giessen, A., Weustink, A., Mollet, N., Wentzel, J., van Walsum, T., Niessen, W., 2009b. Coronary lumen segmentation using graph cuts and robust kernel regression, Information Processing in Medical Imaging, Lecture Notes in Computer Science 5636, pp. 528–539.
Austen, Edwards, Frye, Gensini, Gott, Griffith, McGoon, Murphy, Roe (b0020) 1975; 51
Goldenberg, Eilot, Begelman, Walach, Ben-Ishai, Peled (b0095) 2012
Schaap, Metz, van Walsum, van der Giessen, Weustink, Mollet, Bauer, Bogunović, Castro, Deng, Dikici, O’Donnell, Frenay, Friman, Hernández Hoyos, Kitslaar, Krissian, Kühnel, Luengo-Oroz, Orkisz, Smedby, Styner, Szymczak, Tek, Wang, Warfield, Zambal, Zhang, Krestin, Niessen (b0205) 2009; 13
Broersen, A., Kitslaar, P., Frenay, M., Dijkstra, J., 2012. FrenchCoast: fast, robust extraction for the nice challenge on coronary artery segmentation of the tree. In: Proc. of MICCAI Workshop 3D Cardiovascular Imaging: A MICCAI Segmentation Challenge.
Metz, Schaap, Weustink, Mollet, van Walsum, Niessen (b0155) 2009; 36
Wang, C., Moreno, R., Smedby, Ö., 2012. Vessel segmentation using implicit model-guided level sets. In: Proc. of MICCAI Workshop “3D Cardiovascular Imaging: A MICCAI Segmentation Challenge.
Zhou, C., Chan, H.-P., Chughtai, A., Patel, S., Hadjiiski, L.M., Sahiner, B., Wei, J., Kazerooni, E.A., 2010. Automated segmentation and tracking of coronary arteries in cardiac CT scans: comparison of performance with a clinically used commercial software. In: Proc. of SPIE, Medical Imaging 2010: Computer-Aided Diagnosis, vol. 7624.
Haase, Escaned, Montauban van Swijndregt, Ozaki, Gronenschild, Slager, Serruys (b0110) 1993; 30
Shahzad, R., van Walsum, T., Kirişli, H., Tang, H., Metz, C., Schaap, M., van Vliet, L., Niessen, W., 2012. Automatic detection, quantification and lumen segmentation of the coronary arteries using two-point centerline extraction scheme. In: Proc. of MICCAI Workshop 3D Cardiovascular Imaging: A MICCAI Segmentation Challenge.
Shaw, Marwick, Zoghbi, Hundley, Kramer, Achenbach, Dilsizian, Kern, Chandrashekhar, Narula (b0220) 2010; 3
Lesage, Angelini, Bloch, Funka-Lea (b0135) 2009; 13
Raff, Abidov, Achenbach, Berman, Boxt, Budoff, Cheng, DeFrance, Hellinger, Karlsberg (b0190) 2009; 3
Duval, M., Ouzeau, E., Precioso, F., Matuszewski, B., 2012. Coronary artery stenoses detection with random forest. In: Proc. of MICCAI Workshop 3D Cardiovascular Imaging: A MICCAI Segmentation Challenge.
Cetin, Demir, Yezzi, Degertekin, Unal (b0050) 2013; 32
Niemeijer, Loog, Abràmoff, Viergever, Prokop, van Ginneken (b0175) 2011; 30
Weustink, de Feyter (b0245) 2011; 19
Wesarg, Khan, Firle (b0240) 2006; 19
Achenbach (b0005) 2008; 24
Mohr, B., Masood, S., Plakas, C., 2012. Accurate stenosis detection and quantification in coronary CTA. In: Proc. of MICCAI Workshop 3D Cardiovascular Imaging: A MICCAI Segmentation Challenge.
Arnoldi, Gebregziabher, Schoepf, Goldenberg, Ramos-Duran, Zwerner, Nikolaou, Reiser, Costello, Thilo (b0015) 2010; 20
Eslami, A., Aboee, A., Hodaei, Z., Moghaddam, M.J., Carlier, S., Katouzian, A., Navab, N., 2012. Quantification of coronary arterial stenosis by inflating tubes in CTA images. In: Proc. of MICCAI Workshop 3D Cardiovascular Imaging: A MICCAI Segmentation Challenge.
Nieman, Galema, Neefjes, Weustink, Musters, Moelker, Mollet, de Visser, Boersma, de Feijter (b0170) 2009; 104
Yang, Broersen, Petr, Kitslaar, de Graaf, Bax, Reiber, Dijkstra (b0255) 2011; 38
Flórez Valencia, L., Orkisz, M., Corredor Jerez, R.A., Torres Gonzlez, J.S., Correa Agudelo, E.M., Mouton, C., Hernández Hoyos, M., 2012. coronary artery segmentation and stenosis quantification in ct images with use of a right generalized cylinder model,. In: Proc. of MICCAI Workshop 3D Cardiovascular Imaging: A MICCAI Segmentation Challenge.
Boogers, Schuijf, Kitslaar, van Werkhoven, de Graaf, Boersma, van Velzen, Dijkstra, Adame, Kroft, de Roos, Schreur, Heijenbrok, Jukema, Reiber, Bax (b0035) 2010; 3
Budoff, Achenbach, Blumenthal, Carr, Goldin, Greenland, Guerci, Lima, Rader, Rubin, Shaw, Wiegers (b0045) 2006; 114
Melki, I., Talbot, H., Cousty, J., Pruvot, C., Knoplioch, J., Launay, L., Najman, L., 2012. Automatic coronary arteries stenoses detection in 3D CTA. In: Proceedings of MICCAI Workshop 3D Cardiovascular Imaging: A MICCAI Segmentation Challenge.
Mittal, S., Zheng, Y., Georgescu, B., Vega-Higuera, F., Zhou, S., Meer, P., Comaniciu, D., 2010. Fast automatic detection of calcified coronary lesions in 3D cardiac CT images. In: Proc. of MICCAI Workshop “Machine Learning in Medical Imaging” (MLMI), vol. 6357, pp. 1–9.
Achenbach, Schuhbaeck, Marwan, Bathina, Ovrehus, Anders, Hoffmann, Abbara, Aulbach, Ropers, Pflederer, Becker, Berman, Hausleiter (b0010) 2012; 59
Hameeteman, Zuluaga, Freiman, Joskowicz, Cuisenaire, Flórez Valencia, Gülsün, Krissian, Mille, Wong, Orkisz, Tek, Hernández Hoyos, Benmansour, Chung, Rozie, van Gils, van den Borne, Sosna, Berman, Cohen, Douek, Sánchez, Aissat, Schaap, Metz, Krestin, van der Lugt, Niessen, van Walsum (b0120) 2011; 15
Meijboom, Meijs, Schuijf, Cramer, Mollet, van Mieghem, Nieman, van Werkhoven, Pundziute, Weustink, de Vos, Pugliese, Rensing, Jukema, Bax, Prokop, Doevendans, Hunink, Krestin, de Feyter (b0145) 2008; 52
Frangi, A., Niessen, W., Vincken, K., Viergever, M., 1998. Multiscale vessel enhancement filtering. In: Proc. of MICCAI’98, vol. 1496, pp. 130–137.
Saur, Alkadhi, Desbiolles, Székely, Cattin (b0200) 2008; 11
Xu, Liang, Hu, Yang, Geng, Saha (b0250) 2012; 36
Öksüz, D., Ünay, D., Kadipaşaoğlu, K., 2012. A hybrid method for coronary artery stenosis detection and quantification. In: Proc. of MICCAI Workshop 3D Cardiovascular Imaging: A MICCAI Segmentation Challenge.
Pryor, Shaw, McCants, Lee, Mark, Harrell, Muhlbaier, Califf (b0185) 1993; 118
Lor, K., Chen, C., 2012. Probabilistic model based evaluation of coronary artery stenosis on CTA. In: Proc. of MICCAI Workshop “3D Cardiovascular Imaging: A MICCAI Segmentation Challenge.
Halpern, Halpern (b0115) 2011; 18
10.1016/j.media.2013.05.007_b0215
Nieman (10.1016/j.media.2013.05.007_b0170) 2009; 104
10.1016/j.media.2013.05.007_b0210
Achenbach (10.1016/j.media.2013.05.007_b0010) 2012; 59
Roger (10.1016/j.media.2013.05.007_b0195) 2012; 125
10.1016/j.media.2013.05.007_b0055
den Dekker (10.1016/j.media.2013.05.007_b0065) 2012; 22
10.1016/j.media.2013.05.007_b0090
Goldenberg (10.1016/j.media.2013.05.007_b0095) 2012
Pryor (10.1016/j.media.2013.05.007_b0185) 1993; 118
Kelm (10.1016/j.media.2013.05.007_b0125) 2011; 14
Budoff (10.1016/j.media.2013.05.007_b0045) 2006; 114
Niemeijer (10.1016/j.media.2013.05.007_b0175) 2011; 30
Goldenberg (10.1016/j.media.2013.05.007_b0100) 2011; 6
Hameeteman (10.1016/j.media.2013.05.007_b0120) 2011; 15
Metz (10.1016/j.media.2013.05.007_b0155) 2009; 36
Gülsün (10.1016/j.media.2013.05.007_b0105) 2008
Boogers (10.1016/j.media.2013.05.007_b0030) 2012; 33
10.1016/j.media.2013.05.007_b0085
Halpern (10.1016/j.media.2013.05.007_b0115) 2011; 18
10.1016/j.media.2013.05.007_b0160
10.1016/j.media.2013.05.007_b0040
Zuluaga (10.1016/j.media.2013.05.007_b0275) 2011; 6
Falk (10.1016/j.media.2013.05.007_b0080) 1995; 92
10.1016/j.media.2013.05.007_b0165
Austen (10.1016/j.media.2013.05.007_b0020) 1975; 51
Schaap (10.1016/j.media.2013.05.007_b0205) 2009; 13
Meijboom (10.1016/j.media.2013.05.007_b0145) 2008; 52
Achenbach (10.1016/j.media.2013.05.007_b0005) 2008; 24
Yang (10.1016/j.media.2013.05.007_b0260) 2012; 28
Lesage (10.1016/j.media.2013.05.007_b0135) 2009; 13
Arnoldi (10.1016/j.media.2013.05.007_b0015) 2010; 20
Raff (10.1016/j.media.2013.05.007_b0190) 2009; 3
Cetin (10.1016/j.media.2013.05.007_b0050) 2013; 32
Saur (10.1016/j.media.2013.05.007_b0200) 2008; 11
10.1016/j.media.2013.05.007_b0235
10.1016/j.media.2013.05.007_b0075
10.1016/j.media.2013.05.007_b0270
10.1016/j.media.2013.05.007_b0150
10.1016/j.media.2013.05.007_b0070
Boogers (10.1016/j.media.2013.05.007_b0035) 2010; 3
Shaw (10.1016/j.media.2013.05.007_b0220) 2010; 3
10.1016/j.media.2013.05.007_b0225
Xu (10.1016/j.media.2013.05.007_b0250) 2012; 36
10.1016/j.media.2013.05.007_b0025
Yang (10.1016/j.media.2013.05.007_b0255) 2011; 38
10.1016/j.media.2013.05.007_b0140
Wesarg (10.1016/j.media.2013.05.007_b0240) 2006; 19
Weustink (10.1016/j.media.2013.05.007_b0245) 2011; 19
Virmani (10.1016/j.media.2013.05.007_b0230) 2006; 47
10.1016/j.media.2013.05.007_b0265
10.1016/j.media.2013.05.007_b0180
Haase (10.1016/j.media.2013.05.007_b0110) 1993; 30
Khan (10.1016/j.media.2013.05.007_b0130) 2006; 16
Cohen (10.1016/j.media.2013.05.007_b0060) 1968; 70
References_xml – volume: 16
  start-page: 1789
  year: 2006
  end-page: 1795
  ident: b0130
  article-title: Facilitating coronary artery evaluation in MDCT using a 3D automatic vessel segmentation tool
  publication-title: European Radiology
– start-page: 1
  year: 2012
  end-page: 9
  ident: b0095
  article-title: Computer-aided simple triage (CAST) for coronary CT angiography (CCTA)
  publication-title: International Journal of Computer Assisted Radiology and Surgery
– volume: 32
  start-page: 348
  year: 2013
  end-page: 363
  ident: b0050
  article-title: Vessel tractography using an intensity based tensor model with branch detection
  publication-title: IEEE Transactions on Medical Imaging
– reference: Wang, C., Moreno, R., Smedby, Ö., 2012. Vessel segmentation using implicit model-guided level sets. In: Proc. of MICCAI Workshop “3D Cardiovascular Imaging: A MICCAI Segmentation Challenge.
– reference: Mohr, B., Masood, S., Plakas, C., 2012. Accurate stenosis detection and quantification in coronary CTA. In: Proc. of MICCAI Workshop 3D Cardiovascular Imaging: A MICCAI Segmentation Challenge.
– reference: Broersen, A., Kitslaar, P., Frenay, M., Dijkstra, J., 2012. FrenchCoast: fast, robust extraction for the nice challenge on coronary artery segmentation of the tree. In: Proc. of MICCAI Workshop 3D Cardiovascular Imaging: A MICCAI Segmentation Challenge.
– volume: 114
  start-page: 1761
  year: 2006
  end-page: 1791
  ident: b0045
  article-title: Assessment of coronary artery disease by cardiac computed tomography: a scientific statement from the american heart association committee on cardiovascular imaging and intervention, council on cardiovascular radiology and intervention, and committee on cardiac imaging, council on clinical cardiology
  publication-title: Circulation
– volume: 3
  start-page: 789
  year: 2010
  end-page: 794
  ident: b0220
  article-title: Why all the focus on cardiac imaging?
  publication-title: Journal of American College of Cardiology
– volume: 30
  start-page: 104
  year: 1993
  end-page: 114
  ident: b0110
  article-title: Experimental validation of geometric and densitometric coronary measurements on the new generation cardiovascular angiography analysis system (CAAS II)
  publication-title: Catheterization and Cardiovascular Diagnosis
– volume: 125
  start-page: e2
  year: 2012
  end-page: e220
  ident: b0195
  article-title: Heart disease and stroke statistics—2012 update: a report from the american heart association
  publication-title: Circulation
– reference: Duval, M., Ouzeau, E., Precioso, F., Matuszewski, B., 2012. Coronary artery stenoses detection with random forest. In: Proc. of MICCAI Workshop 3D Cardiovascular Imaging: A MICCAI Segmentation Challenge.
– volume: 33
  start-page: 1007
  year: 2012
  end-page: 1016
  ident: b0030
  article-title: Automated quantification of coronary plaque with computed tomography: comparison with intravascular ultrasound using a dedicated registration algorithm for fusion-based quantification
  publication-title: European Heart Journal
– reference: Cetin, S., Unal, G., 2012. Automatic detection of coronary artery stenosis in CTA based on vessel intensity and geometric features. In: Proc. of MICCAI Workshop 3D Cardiovascular Imaging: A MICCAI Segmentation Challenge.
– volume: 19
  start-page: 249
  year: 2006
  end-page: 257
  ident: b0240
  article-title: Localizing calcifications in cardiac CT data sets using a new vessel segmentation approach
  publication-title: Journal of Digital Imaging
– reference: Eslami, A., Aboee, A., Hodaei, Z., Moghaddam, M.J., Carlier, S., Katouzian, A., Navab, N., 2012. Quantification of coronary arterial stenosis by inflating tubes in CTA images. In: Proc. of MICCAI Workshop 3D Cardiovascular Imaging: A MICCAI Segmentation Challenge.
– volume: 47
  start-page: 13
  year: 2006
  end-page: 18
  ident: b0230
  article-title: Pathology of the vulnerable plaque
  publication-title: Journal of American College of Cardiology
– reference: Zhou, C., Chan, H.-P., Chughtai, A., Patel, S., Hadjiiski, L.M., Sahiner, B., Wei, J., Kazerooni, E.A., 2010. Automated segmentation and tracking of coronary arteries in cardiac CT scans: comparison of performance with a clinically used commercial software. In: Proc. of SPIE, Medical Imaging 2010: Computer-Aided Diagnosis, vol. 7624.
– volume: 13
  start-page: 819
  year: 2009
  end-page: 845
  ident: b0135
  article-title: A review of 3D vessel lumen segmentation techniques: models, features and extraction schemes
  publication-title: Medical Image Analysis
– start-page: 602
  year: 2008
  end-page: 611
  ident: b0105
  article-title: Robust vessel tree modeling
  publication-title: Proc. of the 11th international conference on Medical Image Computing and Computer-Assisted Intervention – Part I. MICCAI ’08
– reference: Frangi, A., Niessen, W., Vincken, K., Viergever, M., 1998. Multiscale vessel enhancement filtering. In: Proc. of MICCAI’98, vol. 1496, pp. 130–137.
– volume: 20
  start-page: 1160
  year: 2010
  end-page: 1167
  ident: b0015
  article-title: Automated computer-aided stenosis detection at coronary CT angiography: initial experience
  publication-title: European Radiology
– volume: 19
  start-page: 336
  year: 2011
  end-page: 343
  ident: b0245
  article-title: The role of multi-lice computed tomography in stable angina management: a current perspective
  publication-title: Netherlands Heart Journal
– volume: 22
  start-page: 2688
  year: 2012
  end-page: 2698
  ident: b0065
  article-title: Diagnostic performance of coronary CT angiography for stenosis detection according to calcium score: systematic review and meta-analysis
  publication-title: European Radiology
– volume: 18
  start-page: 324
  year: 2011
  end-page: 333
  ident: b0115
  article-title: Diagnosis of coronary stenosis with ct angiography comparison of automated computer diagnosis with expert readings
  publication-title: Academic Radiology
– volume: 24
  start-page: 311
  year: 2008
  end-page: 312
  ident: b0005
  article-title: Can CT detect the vulnerable coronary plaque?
  publication-title: International Journal of Cardiovascular Imaging
– volume: 104
  start-page: 1499
  year: 2009
  end-page: 1504
  ident: b0170
  article-title: Comparison of the value of coronary calcium detection to computed tomographic angiography and exercise testing in patients with chest pain
  publication-title: American Journal Cardiology
– volume: 15
  start-page: 477
  year: 2011
  end-page: 488
  ident: b0120
  article-title: Evaluation framework for carotid bifurcation lumen segmentation and stenosis grading
  publication-title: Medical Image Analysis
– volume: 52
  start-page: 2135
  year: 2008
  end-page: 2144
  ident: b0145
  article-title: Diagnostic accuracy of 64-slice computed tomography coronary angiography: a prospective, multicenter, multivendor study
  publication-title: Journal of American College of Cardiology
– reference: Öksüz, D., Ünay, D., Kadipaşaoğlu, K., 2012. A hybrid method for coronary artery stenosis detection and quantification. In: Proc. of MICCAI Workshop 3D Cardiovascular Imaging: A MICCAI Segmentation Challenge.
– volume: 36
  start-page: 5568
  year: 2009
  end-page: 5579
  ident: b0155
  article-title: Coronary centerline extraction from ct coronary angiography images using a minimum cost path approach
  publication-title: Medical Physics
– volume: 30
  start-page: 215
  year: 2011
  end-page: 223
  ident: b0175
  article-title: On combining computer-aided detection systems
  publication-title: IEEE Transactions on Medical Imaging
– volume: 118
  start-page: 81
  year: 1993
  end-page: 90
  ident: b0185
  article-title: Value of the history and physical in identifying patients at increased risk for coronary artery disease
  publication-title: Annals of Internal Medicine
– reference: Baltaxe Milwer, M., Flórez-Valencia, L., Hernández-Hoyos, M., Magnin, I., Orkisz, M., 2007. Fast-marching contours for the segmentation of vessel lumen in CTA cross-sections. In: Proc. of the IEEE Engineering in Medicine and Biology Society, pp. 791 –794.
– volume: 38
  start-page: 109
  year: 2011
  end-page: 112
  ident: b0255
  article-title: Automatic coronary artery tree labeling in coronary computed tomographic angiography datasets
  publication-title: Computing in Cardiology
– reference: Lor, K., Chen, C., 2012. Probabilistic model based evaluation of coronary artery stenosis on CTA. In: Proc. of MICCAI Workshop “3D Cardiovascular Imaging: A MICCAI Segmentation Challenge.
– volume: 3
  start-page: 122
  year: 2009
  end-page: 136
  ident: b0190
  article-title: SCCT guidelines for the interpretation and reporting of coronary computed tomographic angiography
  publication-title: Journal of Cardiovascular Computed Tomography
– reference: Schaap, M., Neefjes, L., Metz, C., van der Giessen, A., Weustink, A., Mollet, N., Wentzel, J., van Walsum, T., Niessen, W., 2009b. Coronary lumen segmentation using graph cuts and robust kernel regression, Information Processing in Medical Imaging, Lecture Notes in Computer Science 5636, pp. 528–539.
– volume: 28
  start-page: 921
  year: 2012
  end-page: 933
  ident: b0260
  article-title: Automatic centerline extraction of coronary arteries in coronary computed tomographic angiography
  publication-title: International Journal of Cardiovascular Imaging
– volume: 36
  start-page: 11
  year: 2012
  end-page: 24
  ident: b0250
  article-title: Quantification of coronary arterial stenoses in CTA using fuzzy distance transform
  publication-title: Computerized Medical Imaging and Graphics
– volume: 14
  start-page: 25
  year: 2011
  end-page: 32
  ident: b0125
  article-title: Detection, grading and classification of coronary stenoses in computed tomography angiography
  publication-title: Medical Image Computing and Computer-Assisted Interventions
– reference: Teßmann, M., Vega-Higuera, F., Fritz, D., Scheuering, M., Greiner, G., 2009. Multi-scale feature extraction for learning-based classification of coronary artery stenosis. In: Proc. of SPIE, Medical Imaging 2009: Computer-Aided Diagnosis.
– reference: Shahzad, R., van Walsum, T., Kirişli, H., Tang, H., Metz, C., Schaap, M., van Vliet, L., Niessen, W., 2012. Automatic detection, quantification and lumen segmentation of the coronary arteries using two-point centerline extraction scheme. In: Proc. of MICCAI Workshop 3D Cardiovascular Imaging: A MICCAI Segmentation Challenge.
– volume: 6
  start-page: 163
  year: 2011
  end-page: 174
  ident: b0275
  article-title: Automatic detection of abnormal vascular cross-sections based on density level detection and support vector machines
  publication-title: International Journal of Computer Assisted Radiology and Surgery
– volume: 92
  start-page: 657
  year: 1995
  end-page: 671
  ident: b0080
  article-title: Coronary plaque disruption
  publication-title: Circulation
– volume: 51
  start-page: 5
  year: 1975
  end-page: 40
  ident: b0020
  article-title: A reporting system on patients evaluated for coronary artery disease. Report of the ad hoc committee for grading of coronary artery disease, council on cardiovascular surgery, American Heart Association
  publication-title: Circulation
– volume: 3
  start-page: 699
  year: 2010
  end-page: 709
  ident: b0035
  article-title: Automated quantification of stenosis severity on 64-slice CT: a comparison with quantitative coronary angiography
  publication-title: JACC Cardiovasc Imaging
– reference: Mittal, S., Zheng, Y., Georgescu, B., Vega-Higuera, F., Zhou, S., Meer, P., Comaniciu, D., 2010. Fast automatic detection of calcified coronary lesions in 3D cardiac CT images. In: Proc. of MICCAI Workshop “Machine Learning in Medical Imaging” (MLMI), vol. 6357, pp. 1–9.
– reference: Flórez Valencia, L., Orkisz, M., Corredor Jerez, R.A., Torres Gonzlez, J.S., Correa Agudelo, E.M., Mouton, C., Hernández Hoyos, M., 2012. coronary artery segmentation and stenosis quantification in ct images with use of a right generalized cylinder model,. In: Proc. of MICCAI Workshop 3D Cardiovascular Imaging: A MICCAI Segmentation Challenge.
– volume: 11
  start-page: 170
  year: 2008
  end-page: 177
  ident: b0200
  article-title: Automatic detection of calcified coronary plaques in computed tomography data sets
  publication-title: Medical Image Computing and Computer-Assisted Interventions
– reference: Melki, I., Talbot, H., Cousty, J., Pruvot, C., Knoplioch, J., Launay, L., Najman, L., 2012. Automatic coronary arteries stenoses detection in 3D CTA. In: Proceedings of MICCAI Workshop 3D Cardiovascular Imaging: A MICCAI Segmentation Challenge.
– volume: 70
  start-page: 213
  year: 1968
  end-page: 220
  ident: b0060
  article-title: Weighted kappa: nominal scale agreement with provision for scaled disagreement or partial credit
  publication-title: Psychological Bulletin
– volume: 6
  start-page: 705
  year: 2011
  end-page: 711
  ident: b0100
  article-title: Computer-aided simple triage
  publication-title: International Journal of Computer Assisted Radiology and Surgery
– volume: 13
  start-page: 701
  year: 2009
  end-page: 714
  ident: b0205
  article-title: Standardized evaluation methodology and reference database for evaluating coronary artery centerline extraction algorithms
  publication-title: Medical Image Analysis
– reference: Zambal, S., Hladuvka, J., Kanitsar, A., Bühler, K., 2008. Shape and appearance models for automatic coronary artery tracking. In: Proc. of MICCAI Workshop 3D Segmentation in the Clinic: A Grand Challenge II.
– volume: 59
  year: 2012
  ident: b0010
  article-title: Multicenter evaluation of dual source CT coronary angiography in patients with intermediate likelihood of coronary artery stenoses (MEDIC): accuracy for the detection of individuals with significant coronary artery stenoses
  publication-title: Journal of American College of Cardiology
– volume: 13
  start-page: 701
  issue: 5
  year: 2009
  ident: 10.1016/j.media.2013.05.007_b0205
  article-title: Standardized evaluation methodology and reference database for evaluating coronary artery centerline extraction algorithms
  publication-title: Medical Image Analysis
  doi: 10.1016/j.media.2009.06.003
– volume: 30
  start-page: 215
  issue: 2
  year: 2011
  ident: 10.1016/j.media.2013.05.007_b0175
  article-title: On combining computer-aided detection systems
  publication-title: IEEE Transactions on Medical Imaging
  doi: 10.1109/TMI.2010.2072789
– volume: 36
  start-page: 5568
  issue: 12
  year: 2009
  ident: 10.1016/j.media.2013.05.007_b0155
  article-title: Coronary centerline extraction from ct coronary angiography images using a minimum cost path approach
  publication-title: Medical Physics
  doi: 10.1118/1.3254077
– volume: 28
  start-page: 921
  issue: 4
  year: 2012
  ident: 10.1016/j.media.2013.05.007_b0260
  article-title: Automatic centerline extraction of coronary arteries in coronary computed tomographic angiography
  publication-title: International Journal of Cardiovascular Imaging
  doi: 10.1007/s10554-011-9894-2
– volume: 125
  start-page: e2
  issue: 1
  year: 2012
  ident: 10.1016/j.media.2013.05.007_b0195
  article-title: Heart disease and stroke statistics—2012 update: a report from the american heart association
  publication-title: Circulation
  doi: 10.1161/CIR.0b013e31823ac046
– volume: 3
  start-page: 789
  issue: 7
  year: 2010
  ident: 10.1016/j.media.2013.05.007_b0220
  article-title: Why all the focus on cardiac imaging?
  publication-title: Journal of American College of Cardiology
  doi: 10.1016/j.jcmg.2010.05.004
– volume: 36
  start-page: 11
  issue: 1
  year: 2012
  ident: 10.1016/j.media.2013.05.007_b0250
  article-title: Quantification of coronary arterial stenoses in CTA using fuzzy distance transform
  publication-title: Computerized Medical Imaging and Graphics
  doi: 10.1016/j.compmedimag.2011.03.004
– volume: 6
  start-page: 163
  issue: 2
  year: 2011
  ident: 10.1016/j.media.2013.05.007_b0275
  article-title: Automatic detection of abnormal vascular cross-sections based on density level detection and support vector machines
  publication-title: International Journal of Computer Assisted Radiology and Surgery
  doi: 10.1007/s11548-010-0494-8
– volume: 18
  start-page: 324
  issue: 3
  year: 2011
  ident: 10.1016/j.media.2013.05.007_b0115
  article-title: Diagnosis of coronary stenosis with ct angiography comparison of automated computer diagnosis with expert readings
  publication-title: Academic Radiology
  doi: 10.1016/j.acra.2010.10.014
– ident: 10.1016/j.media.2013.05.007_b0040
– volume: 14
  start-page: 25
  year: 2011
  ident: 10.1016/j.media.2013.05.007_b0125
  article-title: Detection, grading and classification of coronary stenoses in computed tomography angiography
  publication-title: Medical Image Computing and Computer-Assisted Interventions
– volume: 30
  start-page: 104
  year: 1993
  ident: 10.1016/j.media.2013.05.007_b0110
  article-title: Experimental validation of geometric and densitometric coronary measurements on the new generation cardiovascular angiography analysis system (CAAS II)
  publication-title: Catheterization and Cardiovascular Diagnosis
  doi: 10.1002/ccd.1810300205
– ident: 10.1016/j.media.2013.05.007_b0025
  doi: 10.1109/IEMBS.2007.4352409
– ident: 10.1016/j.media.2013.05.007_b0180
– ident: 10.1016/j.media.2013.05.007_b0160
  doi: 10.1007/978-3-642-15948-0_1
– ident: 10.1016/j.media.2013.05.007_b0075
– volume: 3
  start-page: 699
  issue: 7
  year: 2010
  ident: 10.1016/j.media.2013.05.007_b0035
  article-title: Automated quantification of stenosis severity on 64-slice CT: a comparison with quantitative coronary angiography
  publication-title: JACC Cardiovasc Imaging
  doi: 10.1016/j.jcmg.2010.01.010
– volume: 59
  issue: 1337
  year: 2012
  ident: 10.1016/j.media.2013.05.007_b0010
  article-title: Multicenter evaluation of dual source CT coronary angiography in patients with intermediate likelihood of coronary artery stenoses (MEDIC): accuracy for the detection of individuals with significant coronary artery stenoses
  publication-title: Journal of American College of Cardiology
– ident: 10.1016/j.media.2013.05.007_b0085
– volume: 13
  start-page: 819
  issue: 6
  year: 2009
  ident: 10.1016/j.media.2013.05.007_b0135
  article-title: A review of 3D vessel lumen segmentation techniques: models, features and extraction schemes
  publication-title: Medical Image Analysis
  doi: 10.1016/j.media.2009.07.011
– ident: 10.1016/j.media.2013.05.007_b0090
  doi: 10.1007/BFb0056195
– ident: 10.1016/j.media.2013.05.007_b0225
  doi: 10.1117/12.811639
– volume: 52
  start-page: 2135
  issue: 25
  year: 2008
  ident: 10.1016/j.media.2013.05.007_b0145
  article-title: Diagnostic accuracy of 64-slice computed tomography coronary angiography: a prospective, multicenter, multivendor study
  publication-title: Journal of American College of Cardiology
  doi: 10.1016/j.jacc.2008.08.058
– volume: 47
  start-page: 13
  issue: 8
  year: 2006
  ident: 10.1016/j.media.2013.05.007_b0230
  article-title: Pathology of the vulnerable plaque
  publication-title: Journal of American College of Cardiology
  doi: 10.1016/j.jacc.2005.10.065
– volume: 92
  start-page: 657
  issue: 3
  year: 1995
  ident: 10.1016/j.media.2013.05.007_b0080
  article-title: Coronary plaque disruption
  publication-title: Circulation
  doi: 10.1161/01.CIR.92.3.657
– volume: 19
  start-page: 249
  issue: 3
  year: 2006
  ident: 10.1016/j.media.2013.05.007_b0240
  article-title: Localizing calcifications in cardiac CT data sets using a new vessel segmentation approach
  publication-title: Journal of Digital Imaging
  doi: 10.1007/s10278-006-9947-6
– ident: 10.1016/j.media.2013.05.007_b0150
– volume: 15
  start-page: 477
  issue: 4
  year: 2011
  ident: 10.1016/j.media.2013.05.007_b0120
  article-title: Evaluation framework for carotid bifurcation lumen segmentation and stenosis grading
  publication-title: Medical Image Analysis
  doi: 10.1016/j.media.2011.02.004
– start-page: 602
  year: 2008
  ident: 10.1016/j.media.2013.05.007_b0105
  article-title: Robust vessel tree modeling
– ident: 10.1016/j.media.2013.05.007_b0070
– start-page: 1
  year: 2012
  ident: 10.1016/j.media.2013.05.007_b0095
  article-title: Computer-aided simple triage (CAST) for coronary CT angiography (CCTA)
  publication-title: International Journal of Computer Assisted Radiology and Surgery
– volume: 38
  start-page: 109
  year: 2011
  ident: 10.1016/j.media.2013.05.007_b0255
  article-title: Automatic coronary artery tree labeling in coronary computed tomographic angiography datasets
  publication-title: Computing in Cardiology
– ident: 10.1016/j.media.2013.05.007_b0055
– volume: 104
  start-page: 1499
  issue: 11
  year: 2009
  ident: 10.1016/j.media.2013.05.007_b0170
  article-title: Comparison of the value of coronary calcium detection to computed tomographic angiography and exercise testing in patients with chest pain
  publication-title: American Journal Cardiology
  doi: 10.1016/j.amjcard.2009.07.011
– volume: 20
  start-page: 1160
  issue: 5
  year: 2010
  ident: 10.1016/j.media.2013.05.007_b0015
  article-title: Automated computer-aided stenosis detection at coronary CT angiography: initial experience
  publication-title: European Radiology
  doi: 10.1007/s00330-009-1644-7
– volume: 16
  start-page: 1789
  issue: 8
  year: 2006
  ident: 10.1016/j.media.2013.05.007_b0130
  article-title: Facilitating coronary artery evaluation in MDCT using a 3D automatic vessel segmentation tool
  publication-title: European Radiology
  doi: 10.1007/s00330-006-0159-8
– volume: 33
  start-page: 1007
  issue: 8
  year: 2012
  ident: 10.1016/j.media.2013.05.007_b0030
  article-title: Automated quantification of coronary plaque with computed tomography: comparison with intravascular ultrasound using a dedicated registration algorithm for fusion-based quantification
  publication-title: European Heart Journal
  doi: 10.1093/eurheartj/ehr465
– volume: 3
  start-page: 122
  issue: 2
  year: 2009
  ident: 10.1016/j.media.2013.05.007_b0190
  article-title: SCCT guidelines for the interpretation and reporting of coronary computed tomographic angiography
  publication-title: Journal of Cardiovascular Computed Tomography
  doi: 10.1016/j.jcct.2009.01.001
– volume: 6
  start-page: 705
  issue: 5
  year: 2011
  ident: 10.1016/j.media.2013.05.007_b0100
  article-title: Computer-aided simple triage
  publication-title: International Journal of Computer Assisted Radiology and Surgery
  doi: 10.1007/s11548-011-0552-x
– volume: 24
  start-page: 311
  year: 2008
  ident: 10.1016/j.media.2013.05.007_b0005
  article-title: Can CT detect the vulnerable coronary plaque?
  publication-title: International Journal of Cardiovascular Imaging
  doi: 10.1007/s10554-007-9281-1
– volume: 32
  start-page: 348
  issue: 2
  year: 2013
  ident: 10.1016/j.media.2013.05.007_b0050
  article-title: Vessel tractography using an intensity based tensor model with branch detection
  publication-title: IEEE Transactions on Medical Imaging
  doi: 10.1109/TMI.2012.2227118
– ident: 10.1016/j.media.2013.05.007_b0235
– volume: 51
  start-page: 5
  issue: Suppl. 4
  year: 1975
  ident: 10.1016/j.media.2013.05.007_b0020
  article-title: A reporting system on patients evaluated for coronary artery disease. Report of the ad hoc committee for grading of coronary artery disease, council on cardiovascular surgery, American Heart Association
  publication-title: Circulation
  doi: 10.1161/01.CIR.51.4.5
– ident: 10.1016/j.media.2013.05.007_b0210
  doi: 10.1007/978-3-642-02498-6_44
– ident: 10.1016/j.media.2013.05.007_b0265
  doi: 10.54294/l78zbl
– volume: 114
  start-page: 1761
  issue: 16
  year: 2006
  ident: 10.1016/j.media.2013.05.007_b0045
  publication-title: Circulation
  doi: 10.1161/CIRCULATIONAHA.106.178458
– volume: 70
  start-page: 213
  issue: 4
  year: 1968
  ident: 10.1016/j.media.2013.05.007_b0060
  article-title: Weighted kappa: nominal scale agreement with provision for scaled disagreement or partial credit
  publication-title: Psychological Bulletin
  doi: 10.1037/h0026256
– volume: 19
  start-page: 336
  issue: 7-8
  year: 2011
  ident: 10.1016/j.media.2013.05.007_b0245
  article-title: The role of multi-lice computed tomography in stable angina management: a current perspective
  publication-title: Netherlands Heart Journal
  doi: 10.1007/s12471-011-0096-2
– ident: 10.1016/j.media.2013.05.007_b0165
– ident: 10.1016/j.media.2013.05.007_b0270
  doi: 10.1117/12.844391
– volume: 22
  start-page: 2688
  issue: 12
  year: 2012
  ident: 10.1016/j.media.2013.05.007_b0065
  article-title: Diagnostic performance of coronary CT angiography for stenosis detection according to calcium score: systematic review and meta-analysis
  publication-title: European Radiology
  doi: 10.1007/s00330-012-2551-x
– ident: 10.1016/j.media.2013.05.007_b0140
– volume: 11
  start-page: 170
  year: 2008
  ident: 10.1016/j.media.2013.05.007_b0200
  article-title: Automatic detection of calcified coronary plaques in computed tomography data sets
  publication-title: Medical Image Computing and Computer-Assisted Interventions
– volume: 118
  start-page: 81
  issue: 2
  year: 1993
  ident: 10.1016/j.media.2013.05.007_b0185
  article-title: Value of the history and physical in identifying patients at increased risk for coronary artery disease
  publication-title: Annals of Internal Medicine
  doi: 10.7326/0003-4819-118-2-199301150-00001
– ident: 10.1016/j.media.2013.05.007_b0215
SSID ssj0007440
Score 2.5057826
Snippet [Display omitted] •Evaluation framework for coronary artery lumen segmentation and stenosis grading.•Description of the datasets and creation of reference...
Though conventional coronary angiography (CCA) has been the standard of reference for diagnosing coronary artery disease in the past decades, computed...
SourceID swepub
hal
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 859
SubjectTerms Adult
Aged
Aged, 80 and over
Algorithms
Bioengineering
Computed tomography angiography (CTA)
Computer Science
Coronary Angiography - standards
Coronary arteries
Coronary Stenosis - diagnostic imaging
Engineering Sciences
Humans
Imaging
Life Sciences
Middle Aged
Netherlands
Pattern Recognition, Automated - methods
Radiographic Image Enhancement - methods
Radiographic Image Enhancement - standards
Radiographic Image Interpretation, Computer-Assisted - methods
Radiographic Image Interpretation, Computer-Assisted - standards
Reproducibility of Results
Sensitivity and Specificity
Signal and Image processing
Standardized evaluation framework
stenoses detection
stenoses quantification
Tomography, X-Ray Computed - standards
Title Standardized evaluation framework for evaluating coronary artery stenosis detection, stenosis quantification and lumen segmentation algorithms in computed tomography angiography
URI https://dx.doi.org/10.1016/j.media.2013.05.007
https://www.ncbi.nlm.nih.gov/pubmed/23837963
https://www.proquest.com/docview/1443415947
https://hal.science/hal-00874107
https://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-258850
https://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-95876
Volume 17
WOSCitedRecordID wos000326662000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1361-8423
  dateEnd: 20160831
  omitProxy: false
  ssIdentifier: ssj0007440
  issn: 1361-8415
  databaseCode: AIEXJ
  dateStart: 19960301
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLa6DSF4QDAYlMtkEOWlS5WkudiPVbepIDohraC-WU7itBltOnrT4F_xp_gdHNu5dYOKPfASVUeJ0_Z8OT52vvMdhN464FOTCGEIk9oGpNTcCCLqGjE1eRjZnHuUq2YT_tkZGQ7pp1rtV14Ls574aUqurujlf3U12MDZsnT2Fu4uBgUDfAanwxHcDsd_cvx5tjmQ_IBcshTzbsY5DWtD5VuV3M5nqihX0Tu_N8Hv6UzqlERiqYhaKjAV1m8rrglGeli58S4DXNpciNE0q2QC82Q0myfL8VTxbUPdOyKCTHeaaWTDhaOkqpedt5XK3hwlU8km4plmSkkVmCeNrtugp7qsu9fqtMp3SWPOVbu9fmHrC9WvttltDQrbsdSohiio6Qmt81Z158NqV1gkOli3Pcsgji4HLaK5X0EtqYRmkimP57O898cJRO9lXLRU3Y5k_rWVsKvuzLsp131tGi3IjTlv7oKpQZgchJkuU6IHe7bvUoi-e533J8MPRc4gZRp1haD-Rbk-lmIi3vguf8uhdsaSzHtzpXRNBlelToOH6EG25sEdjdVHqCbSfXS_ooS5j-72M47HY_SzCmBcAhgXAMYAYFwCGOcAxhrAOIcqLgB8VNo24YvhVljBF1fhi0v44iTFOXxxCV9cge8T9Pn0ZNDtGVljESN0fbo0lGKSGdFImG2fBCKInCiQ7AUnDgNqBb4IbDcSbW4KM7BNz3Y4dQMHJrsoFGEctA_QbjpLxTOERWByi8AqJPaIE8V2QAgs6OPIg3WGcKhbR3buKhZmqvuy-cuEbYFJHR0VF11q0Zntp3s5BliWN-t8mAGqt1_4BhBT3EIqzfc6H5m0SalKxzL9tVVHr3NAMZh65PtEnorZasEsx4Ec2KUODPRUI60Yy5Y7XzC519E7Db2NuxwnXzpsNh-xr8sxs11CXLOOGttOnCQrRl14ap_f7r95ge6VoeMl2l3OV-IVuhOul8lifoh2_CE5zB7G34-3LPc
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Standardized+evaluation+framework+for+evaluating+coronary+artery+stenosis+detection%2C+stenosis+quantification+and+lumen+segmentation+algorithms+in+computed+tomography+angiography&rft.jtitle=Medical+image+analysis&rft.au=Kiri%C5%9Fli%2C+H.A.&rft.au=Schaap%2C+M.&rft.au=Metz%2C+C.T.&rft.au=Dharampal%2C+A.S.&rft.date=2013-12-01&rft.issn=1361-8415&rft.volume=17&rft.issue=8&rft.spage=859&rft.epage=876&rft_id=info:doi/10.1016%2Fj.media.2013.05.007&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_media_2013_05_007
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1361-8415&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1361-8415&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1361-8415&client=summon