Application of machine learning algorithms to predict the thyroid disease risk: an experimental comparative study
Thyroid disease is the general concept for a medical problem that prevents one’s thyroid from producing enough hormones. Thyroid disease can affect everyone—men, women, children, adolescents, and the elderly. Thyroid disorders are detected by blood tests, which are notoriously difficult to interpret...
Saved in:
| Published in: | PeerJ. Computer science Vol. 8; p. e898 |
|---|---|
| Main Authors: | , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
United States
PeerJ. Ltd
03.03.2022
PeerJ, Inc PeerJ Inc |
| Subjects: | |
| ISSN: | 2376-5992, 2376-5992 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Thyroid disease is the general concept for a medical problem that prevents one’s thyroid from producing enough hormones. Thyroid disease can affect everyone—men, women, children, adolescents, and the elderly. Thyroid disorders are detected by blood tests, which are notoriously difficult to interpret due to the enormous amount of data necessary to forecast results. For this reason, this study compares eleven machine learning algorithms to determine which one produces the best accuracy for predicting thyroid risk accurately. This study utilizes the Sick-euthyroid dataset, acquired from the University of California, Irvine’s machine learning repository, for this purpose. Since the target variable classes in this dataset are mostly one, the accuracy score does not accurately indicate the prediction outcome. Thus, the evaluation metric contains accuracy and recall ratings. Additionally, the F1-score produces a single value that balances the precision and recall when an uneven distribution class exists. Finally, the F1-score is utilized to evaluate the performance of the employed machine learning algorithms as it is one of the most effective output measurements for unbalanced classification problems. The experiment shows that the ANN Classifier with an F1-score of 0.957 outperforms the other nine algorithms in terms of accuracy. |
|---|---|
| AbstractList | Thyroid disease is the general concept for a medical problem that prevents one's thyroid from producing enough hormones. Thyroid disease can affect everyone-men, women, children, adolescents, and the elderly. Thyroid disorders are detected by blood tests, which are notoriously difficult to interpret due to the enormous amount of data necessary to forecast results. For this reason, this study compares eleven machine learning algorithms to determine which one produces the best accuracy for predicting thyroid risk accurately. This study utilizes the Sick-euthyroid dataset, acquired from the University of California, Irvine's machine learning repository, for this purpose. Since the target variable classes in this dataset are mostly one, the accuracy score does not accurately indicate the prediction outcome. Thus, the evaluation metric contains accuracy and recall ratings. Additionally, the F1-score produces a single value that balances the precision and recall when an uneven distribution class exists. Finally, the F1-score is utilized to evaluate the performance of the employed machine learning algorithms as it is one of the most effective output measurements for unbalanced classification problems. The experiment shows that the ANN Classifier with an F1-score of 0.957 outperforms the other nine algorithms in terms of accuracy. Thyroid disease is the general concept for a medical problem that prevents one's thyroid from producing enough hormones. Thyroid disease can affect everyone-men, women, children, adolescents, and the elderly. Thyroid disorders are detected by blood tests, which are notoriously difficult to interpret due to the enormous amount of data necessary to forecast results. For this reason, this study compares eleven machine learning algorithms to determine which one produces the best accuracy for predicting thyroid risk accurately. This study utilizes the Sick-euthyroid dataset, acquired from the University of California, Irvine's machine learning repository, for this purpose. Since the target variable classes in this dataset are mostly one, the accuracy score does not accurately indicate the prediction outcome. Thus, the evaluation metric contains accuracy and recall ratings. Additionally, the F1-score produces a single value that balances the precision and recall when an uneven distribution class exists. Finally, the F1-score is utilized to evaluate the performance of the employed machine learning algorithms as it is one of the most effective output measurements for unbalanced classification problems. The experiment shows that the ANN Classifier with an F1-score of 0.957 outperforms the other nine algorithms in terms of accuracy.Thyroid disease is the general concept for a medical problem that prevents one's thyroid from producing enough hormones. Thyroid disease can affect everyone-men, women, children, adolescents, and the elderly. Thyroid disorders are detected by blood tests, which are notoriously difficult to interpret due to the enormous amount of data necessary to forecast results. For this reason, this study compares eleven machine learning algorithms to determine which one produces the best accuracy for predicting thyroid risk accurately. This study utilizes the Sick-euthyroid dataset, acquired from the University of California, Irvine's machine learning repository, for this purpose. Since the target variable classes in this dataset are mostly one, the accuracy score does not accurately indicate the prediction outcome. Thus, the evaluation metric contains accuracy and recall ratings. Additionally, the F1-score produces a single value that balances the precision and recall when an uneven distribution class exists. Finally, the F1-score is utilized to evaluate the performance of the employed machine learning algorithms as it is one of the most effective output measurements for unbalanced classification problems. The experiment shows that the ANN Classifier with an F1-score of 0.957 outperforms the other nine algorithms in terms of accuracy. |
| ArticleNumber | e898 |
| Audience | Academic |
| Author | Haque, Md. Samiul Miah, M. Saef Ullah Islam, Saima Sharleen Nugraha, Ramdhan Sarwar, Talha Bin |
| Author_xml | – sequence: 1 givenname: Saima Sharleen surname: Islam fullname: Islam, Saima Sharleen organization: Department of Computer Science, Faculty of Science and Technology, American International University - Bangladesh (AIUB), Dhaka, Bangladesh – sequence: 2 givenname: Md. Samiul surname: Haque fullname: Haque, Md. Samiul organization: Department of Computer Science, Faculty of Science and Technology, American International University - Bangladesh (AIUB), Dhaka, Bangladesh – sequence: 3 givenname: M. Saef Ullah surname: Miah fullname: Miah, M. Saef Ullah organization: Faculty of Computing, College of Computing and Applied Sciences, Universiti Malaysia Pahang, Pekan, Pahang, Malaysia – sequence: 4 givenname: Talha Bin surname: Sarwar fullname: Sarwar, Talha Bin organization: Faculty of Computing, College of Computing and Applied Sciences, Universiti Malaysia Pahang, Pekan, Pahang, Malaysia – sequence: 5 givenname: Ramdhan surname: Nugraha fullname: Nugraha, Ramdhan organization: Faculty of Electrical Engineering, Telkom University, Bandung, Indonesia |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35494828$$D View this record in MEDLINE/PubMed |
| BookMark | eNptkttr2zAUh83oWLusb3segr1ssGSy5IvUh0EouwQKg12ehSwdO8psyZXk0vz3U5Kua0otjGX5O5-lw-9ldmKdhSx7neNFXef1xxHAb-YqLBhnz7IzQutqXnJOTh7MT7PzEDYY47zM08VfZKe0LHjBCDvLrpfj2Bslo3EWuRYNUq2NBdSD9NbYDsm-c97E9RBQdGj0oI2KKK4h3VvvjEbaBJABkDfhzwWSFsHtCN4MYKPskXLDKH3y3wAKcdLbV9nzVvYBzu-es-z3l8-_Lr_Nr75_XV0ur-aqrHmcVw2rWiprXildgdSVIpXmTS4ZLmpcNhywrGjDcqhpW-BaMYJp2WCdXhhtczrLVgevdnIjxrQh6bfCSSP2C853QvpoVA-ipoRy3TJNcFW0rJQagOWFAkZU3rY4uT4dXOPUDKBVOpqX_ZH0-Is1a9G5G8FxUZBkn2Xv7gTeXU8QohhMUND30oKbgiBVyaoy52SHvn2EbtzkbWpVomhJKUnO_1Qn0wGMbV36r9pJxbLGLLWoSOgsWzxBpaFhMCpFqTVp_ajg_VFBYiLcxk5OIYjVzx_H7JuHTbnvxr9wJeDDAVDeheChvUdyLHbxFfv4ChVEim_CySNcmbgPZtq06Z8u-gt8PPUA |
| CitedBy_id | crossref_primary_10_3390_diagnostics13121995 crossref_primary_10_1016_j_compbiomed_2025_109974 crossref_primary_10_3390_make5030061 crossref_primary_10_1016_j_procs_2025_04_602 crossref_primary_10_1007_s44163_025_00225_9 crossref_primary_10_1016_j_bspc_2024_107207 crossref_primary_10_7717_peerj_cs_2819 crossref_primary_10_3390_cancers16193417 crossref_primary_10_1371_journal_pone_0300670 crossref_primary_10_7759_cureus_54393 crossref_primary_10_1097_MD_0000000000037396 crossref_primary_10_1016_j_compbiomed_2023_106578 crossref_primary_10_1016_j_heliyon_2023_e23163 crossref_primary_10_1016_j_heliyon_2024_e29583 crossref_primary_10_1007_s10115_023_01894_7 crossref_primary_10_1016_j_engappai_2025_110209 crossref_primary_10_3390_cancers16234046 crossref_primary_10_1109_ACCESS_2024_3418974 crossref_primary_10_7717_peerj_cs_1394 crossref_primary_10_2196_43734 crossref_primary_10_1109_TCSS_2024_3449748 crossref_primary_10_1186_s12911_024_02780_0 crossref_primary_10_22581_muet1982_0035 crossref_primary_10_1109_ACCESS_2024_3408869 crossref_primary_10_1109_ACCESS_2023_3279724 crossref_primary_10_1371_journal_pone_0325900 crossref_primary_10_12720_jait_16_8_1169_1177 crossref_primary_10_1016_j_nut_2022_111947 crossref_primary_10_1177_09544119231186074 crossref_primary_10_1109_TAI_2023_3327981 crossref_primary_10_1007_s42979_025_04321_6 crossref_primary_10_1016_j_bioana_2024_08_001 crossref_primary_10_3390_cancers17010121 crossref_primary_10_32604_cmc_2024_047621 crossref_primary_10_7717_peerj_cs_2397 crossref_primary_10_1080_10255842_2024_2341969 |
| Cites_doi | 10.1109/ACCESS.2019.2901920 10.5603/EP.a2020.0079 10.1136/bmj.297.6663.1586 10.1038/nrendo.2018.18 10.1109/MSP.2004.1311138 10.1016/j.procs.2021.08.106 10.1016/j.patcog.2017.07.024 10.1016/j.elerap.2018.08.002 10.14569/IJACSA.2020.0110277 10.1016/j.eswa.2006.02.007 10.1109/ACCESS.2020.2982390 10.1007/978-981-15-2780-7_25 10.22266/ijies2020.1031.02 10.14257/ijbsbt.2015.7.6.28 10.23907/2016.024 10.1038/s41574-019-0304-5 10.1016/j.bdr.2015.12.001 10.1613/jair.953 10.1016/j.eswa.2006.09.028 10.1007/978-1-4419-9326-7_11 10.1016/j.inffus.2015.06.005 10.1016/j.nicl.2014.08.023 10.1016/j.cmpb.2013.01.002 10.1016/j.engappai.2006.06.005 10.4236/eng.2013.510B055 10.1007/s13042-017-0756-7 10.1177/1748301818756225 |
| ContentType | Journal Article |
| Copyright | 2022 Islam et al. COPYRIGHT 2022 PeerJ. Ltd. 2022 Islam et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: https://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, reproduction and adaptation in any medium and for any purpose provided that it is properly attributed. For attribution, the original author(s), title, publication source (PeerJ Computer Science) and either DOI or URL of the article must be cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2022 Islam et al. 2022 Islam et al. |
| Copyright_xml | – notice: 2022 Islam et al. – notice: COPYRIGHT 2022 PeerJ. Ltd. – notice: 2022 Islam et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: https://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, reproduction and adaptation in any medium and for any purpose provided that it is properly attributed. For attribution, the original author(s), title, publication source (PeerJ Computer Science) and either DOI or URL of the article must be cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2022 Islam et al. 2022 Islam et al. |
| DBID | AAYXX CITATION NPM ISR 3V. 7XB 8AL 8FE 8FG 8FK ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO GNUQQ HCIFZ JQ2 K7- M0N P5Z P62 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 5PM DOA |
| DOI | 10.7717/peerj-cs.898 |
| DatabaseName | CrossRef PubMed Gale In Context: Science ProQuest Central (Corporate) ProQuest Central (purchase pre-March 2016) Computing Database (Alumni Edition) ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials - QC ProQuest Central ProQuest Technology Collection ProQuest One ProQuest Central Korea ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database Computing Database ProQuest advanced technologies & aerospace journals ProQuest Advanced Technologies & Aerospace Collection Proquest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) Directory of Open Access Journals |
| DatabaseTitle | CrossRef PubMed Publicly Available Content Database Computer Science Database ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Central Korea ProQuest Central (New) Advanced Technologies & Aerospace Collection ProQuest Computing ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | PubMed MEDLINE - Academic CrossRef Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 2376-5992 |
| ExternalDocumentID | oai_doaj_org_article_73239df8d2064f85adee814ce82c1ff0 PMC9044232 A708470453 35494828 10_7717_peerj_cs_898 |
| Genre | Journal Article |
| GrantInformation_xml | – fundername: The Directorate of Research and Community Service, Telkom University |
| GroupedDBID | 53G 5VS 8FE 8FG AAFWJ AAYXX ABUWG ADBBV AFFHD AFKRA AFPKN ALMA_UNASSIGNED_HOLDINGS ARAPS AZQEC BCNDV BENPR BGLVJ BPHCQ CCPQU CITATION DWQXO FRP GNUQQ GROUPED_DOAJ H13 HCIFZ IAO ICD IEA ISR ITC K6V K7- M~E OK1 P62 PHGZM PHGZT PIMPY PQGLB PQQKQ PROAC RPM 3V. ARCSS M0N NPM 7XB 8AL 8FK JQ2 PKEHL PQEST PQUKI PRINS Q9U 7X8 PUEGO 5PM |
| ID | FETCH-LOGICAL-c579t-6b86f3a796cd6ead6c26d9b1a804705b9e0a63b81e73f407c82035b0df4083f13 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 40 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000767379800004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2376-5992 |
| IngestDate | Mon Nov 10 04:29:51 EST 2025 Tue Nov 04 02:05:28 EST 2025 Thu Sep 04 16:38:17 EDT 2025 Sun Nov 30 04:10:54 EST 2025 Tue Nov 11 08:19:16 EST 2025 Tue Nov 04 17:27:46 EST 2025 Thu Nov 13 14:32:45 EST 2025 Thu Jan 02 22:54:08 EST 2025 Tue Nov 18 22:29:51 EST 2025 Sat Nov 29 03:45:05 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Machine Learning Algorithm Machine Learning Classifier Thyroid Risk Prediction Sick-euthyroid Thyroid Disease |
| Language | English |
| License | https://creativecommons.org/licenses/by/4.0 2022 Islam et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, reproduction and adaptation in any medium and for any purpose provided that it is properly attributed. For attribution, the original author(s), title, publication source (PeerJ Computer Science) and either DOI or URL of the article must be cited. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c579t-6b86f3a796cd6ead6c26d9b1a804705b9e0a63b81e73f407c82035b0df4083f13 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| OpenAccessLink | https://doaj.org/article/73239df8d2064f85adee814ce82c1ff0 |
| PMID | 35494828 |
| PQID | 2635332044 |
| PQPubID | 2045934 |
| PageCount | e898 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_73239df8d2064f85adee814ce82c1ff0 pubmedcentral_primary_oai_pubmedcentral_nih_gov_9044232 proquest_miscellaneous_2658651922 proquest_journals_2635332044 gale_infotracmisc_A708470453 gale_infotracacademiconefile_A708470453 gale_incontextgauss_ISR_A708470453 pubmed_primary_35494828 crossref_primary_10_7717_peerj_cs_898 crossref_citationtrail_10_7717_peerj_cs_898 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-03-03 |
| PublicationDateYYYYMMDD | 2022-03-03 |
| PublicationDate_xml | – month: 03 year: 2022 text: 2022-03-03 day: 03 |
| PublicationDecade | 2020 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States – name: San Diego – name: San Diego, USA |
| PublicationTitle | PeerJ. Computer science |
| PublicationTitleAlternate | PeerJ Comput Sci |
| PublicationYear | 2022 |
| Publisher | PeerJ. Ltd PeerJ, Inc PeerJ Inc |
| Publisher_xml | – name: PeerJ. Ltd – name: PeerJ, Inc – name: PeerJ Inc |
| References | Ali (10.7717/peerj-cs.898/ref-4) 2012; 9 Lebedev (10.7717/peerj-cs.898/ref-29) 2014; 6 Talasila (10.7717/peerj-cs.898/ref-52) 2020; 13 Tangirala (10.7717/peerj-cs.898/ref-53) 2020; 11 Pichardo (10.7717/peerj-cs.898/ref-41) 2021 Alqurashi (10.7717/peerj-cs.898/ref-5) 2019; 10 Kumar (10.7717/peerj-cs.898/ref-27) 2020 Zhu (10.7717/peerj-cs.898/ref-56) 2017; 72 Qi (10.7717/peerj-cs.898/ref-43) 2012 Beynon (10.7717/peerj-cs.898/ref-10) 2016; 6 Chaurasia (10.7717/peerj-cs.898/ref-12) 2018; 12 Chen (10.7717/peerj-cs.898/ref-15) 2015 Benardos (10.7717/peerj-cs.898/ref-9) 2007; 20 Ioniţă (10.7717/peerj-cs.898/ref-22) 2016; 7 Keleş (10.7717/peerj-cs.898/ref-26) 2008; 34 Leitch (10.7717/peerj-cs.898/ref-30) 2020; 16 Akbaş (10.7717/peerj-cs.898/ref-2) 2013; 5 Pandas development team (10.7717/peerj-cs.898/ref-39) 2021 Kumar (10.7717/peerj-cs.898/ref-28) 2020; 8 Dorogush (10.7717/peerj-cs.898/ref-17) 2018 Li (10.7717/peerj-cs.898/ref-31) 2020; 47 Jin (10.7717/peerj-cs.898/ref-23) 2009 Akbas (10.7717/peerj-cs.898/ref-3) 2021 Aversano (10.7717/peerj-cs.898/ref-6) 2021; 192 Paczkowska (10.7717/peerj-cs.898/ref-38) 2020; 71 Bastias (10.7717/peerj-cs.898/ref-8) 2011 Han (10.7717/peerj-cs.898/ref-21) 2005 Bhati (10.7717/peerj-cs.898/ref-11) 2020; 1125 Ozyilmaz (10.7717/peerj-cs.898/ref-37) 2002 Scikit-learn developers (10.7717/peerj-cs.898/ref-49) 2021 Liaw (10.7717/peerj-cs.898/ref-33) 2002; 2 Quinlan (10.7717/peerj-cs.898/ref-44) 1987 Chen (10.7717/peerj-cs.898/ref-14) 2017 Wang (10.7717/peerj-cs.898/ref-55) 2017 Zou (10.7717/peerj-cs.898/ref-57) 2016; 5 Stoica (10.7717/peerj-cs.898/ref-51) 2004; 21 Azar (10.7717/peerj-cs.898/ref-7) 2013; 111 Song (10.7717/peerj-cs.898/ref-50) 2015; 27 Liu (10.7717/peerj-cs.898/ref-34) 2008; 39 Ju (10.7717/peerj-cs.898/ref-24) 2019; 7 Eggertsen (10.7717/peerj-cs.898/ref-19) 1988; 297 Razia (10.7717/peerj-cs.898/ref-45) 2020; 885 Gou (10.7717/peerj-cs.898/ref-20) 2012; 9 Dua (10.7717/peerj-cs.898/ref-18) 2017 Ke (10.7717/peerj-cs.898/ref-25) 2017; 30 Polat (10.7717/peerj-cs.898/ref-42) 2007; 32 Dongare (10.7717/peerj-cs.898/ref-16) 2012; 2 Ma (10.7717/peerj-cs.898/ref-35) 2018; 31 Rish (10.7717/peerj-cs.898/ref-46) 2001 Taylor (10.7717/peerj-cs.898/ref-54) 2018; 14 Rokach (10.7717/peerj-cs.898/ref-47) 2016; 27 Chawla (10.7717/peerj-cs.898/ref-13) 2002; 16 Nguyen (10.7717/peerj-cs.898/ref-36) 2015; 8 Ahmad (10.7717/peerj-cs.898/ref-1) 2017; 7 Li (10.7717/peerj-cs.898/ref-32) 2020 Parikh (10.7717/peerj-cs.898/ref-40) 2015; 7 Rueping (10.7717/peerj-cs.898/ref-48) 2010 |
| References_xml | – volume: 7 start-page: 28309 year: 2019 ident: 10.7717/peerj-cs.898/ref-24 article-title: A model combining convolutional neural network and LightGBM algorithm for ultra-short-term wind power forecasting publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2901920 – volume: 71 start-page: 551 issue: 6 year: 2020 ident: 10.7717/peerj-cs.898/ref-38 article-title: Laboratory interference in the thyroid function test publication-title: Endokrynologia Polska doi: 10.5603/EP.a2020.0079 – volume: 297 start-page: 1586 issue: 6663 year: 1988 ident: 10.7717/peerj-cs.898/ref-19 article-title: Screening for thyroid disease in a primary care unit with a thyroid stimulating hormone assay with a low detection limit publication-title: British Medical Journal doi: 10.1136/bmj.297.6663.1586 – start-page: 072093 year: 2020 ident: 10.7717/peerj-cs.898/ref-32 article-title: Diabetes prediction based on xgboost algorithm – start-page: 92 year: 2011 ident: 10.7717/peerj-cs.898/ref-8 article-title: Predictive model based on neural networks to assist the diagnosis of malignancy of thyroid nodules – volume: 14 start-page: 301 issue: 5 year: 2018 ident: 10.7717/peerj-cs.898/ref-54 article-title: Global epidemiology of hyperthyroidism and hypothyroidism publication-title: Nature Reviews Endocrinology doi: 10.1038/nrendo.2018.18 – start-page: 836 year: 2020 ident: 10.7717/peerj-cs.898/ref-27 article-title: A novel approach of SVM based classification on thyroid disease stage detection – volume: 39 start-page: 539 issue: 2 year: 2008 ident: 10.7717/peerj-cs.898/ref-34 article-title: Exploratory undersampling for class-imbalance learning publication-title: IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics) – volume: 9 start-page: 1429 issue: 6 year: 2012 ident: 10.7717/peerj-cs.898/ref-20 article-title: A new distance-weighted k-nearest neighbor classifier publication-title: Journal of Information and Computing Science – volume: 21 start-page: 36 issue: 4 year: 2004 ident: 10.7717/peerj-cs.898/ref-51 article-title: Model-order selection: a review of information criterion rules publication-title: IEEE Signal Processing Magazine doi: 10.1109/MSP.2004.1311138 – volume: 2 start-page: 189 issue: 1 year: 2012 ident: 10.7717/peerj-cs.898/ref-16 article-title: Introduction to artificial neural network publication-title: International Journal of Engineering and Innovative Technology (IJEIT) – volume: 885 start-page: 203 year: 2020 ident: 10.7717/peerj-cs.898/ref-45 article-title: Machine learning techniques for thyroid disease diagnosis: a systematic review publication-title: Modern Approaches in Machine Learning and Cognitive Science: A Walkthrough – start-page: 878 year: 2005 ident: 10.7717/peerj-cs.898/ref-21 article-title: Borderline-SMOTE: a new over-sampling method in imbalanced data sets learning – year: 2021 ident: 10.7717/peerj-cs.898/ref-41 article-title: Thyroid cancer: symptoms, causes, diagnosis, treatment, WebMD – year: 2021 ident: 10.7717/peerj-cs.898/ref-3 article-title: Key statistics for thyroid cancer – volume: 30 start-page: 3146 year: 2017 ident: 10.7717/peerj-cs.898/ref-25 article-title: Lightgbm: a highly efficient gradient boosting decision tree publication-title: Advances in Neural Information Processing Systems – volume: 192 start-page: 1031 year: 2021 ident: 10.7717/peerj-cs.898/ref-6 article-title: Thyroid disease treatment prediction with machine learning approaches publication-title: Procedia Computer Science doi: 10.1016/j.procs.2021.08.106 – volume: 72 start-page: 327 year: 2017 ident: 10.7717/peerj-cs.898/ref-56 article-title: Synthetic minority oversampling technique for multiclass imbalance problems publication-title: Pattern Recognition doi: 10.1016/j.patcog.2017.07.024 – volume: 31 start-page: 24 year: 2018 ident: 10.7717/peerj-cs.898/ref-35 article-title: Study on a prediction of P2P network loan default based on the machine learning LightGBM and XGboost algorithms according to different high dimensional data cleaning publication-title: Electronic Commerce Research and Applications doi: 10.1016/j.elerap.2018.08.002 – start-page: 199 year: 2017 ident: 10.7717/peerj-cs.898/ref-14 article-title: A deep-learning based ultrasound text classifier for predicting benign and malignant thyroid nodules – volume: 47 start-page: 25 issue: 1 year: 2020 ident: 10.7717/peerj-cs.898/ref-31 article-title: Ar-ann: incorporating association rule mining in artificial neural network for thyroid disease knowledge discovery and diagnosis publication-title: IAENG International Journal of Computer Science – volume: 11 start-page: 612 year: 2020 ident: 10.7717/peerj-cs.898/ref-53 article-title: Evaluating the impact of GINI index and information gain on classification using decision tree classifier algorithm publication-title: International Journal of Advanced Computer Science and Applications doi: 10.14569/IJACSA.2020.0110277 – volume: 7 start-page: 78 issue: 10 year: 2017 ident: 10.7717/peerj-cs.898/ref-1 article-title: Thyroid diseases forecasting using a hybrid decision support system based on ANFIS, k-NN and information gain method publication-title: Journal of Applied Environmental and Biological Sciences – volume: 32 start-page: 1141 issue: 4 year: 2007 ident: 10.7717/peerj-cs.898/ref-42 article-title: A novel hybrid method based on artificial immune recognition system (AIRS) with fuzzy weighted pre-processing for thyroid disease diagnosis publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2006.02.007 – year: 2021 ident: 10.7717/peerj-cs.898/ref-49 article-title: User guide: contents scikit-learn 0.24.2 documentation – volume: 27 start-page: 130 issue: 2 year: 2015 ident: 10.7717/peerj-cs.898/ref-50 article-title: Decision tree methods: applications for classification and prediction publication-title: Shanghai Archives of Psychiatry – volume: 8 start-page: 63482 year: 2020 ident: 10.7717/peerj-cs.898/ref-28 article-title: Automated segmentation of thyroid nodule, gland, and cystic components from ultrasound images using deep learning publication-title: IEEE Access doi: 10.1109/ACCESS.2020.2982390 – year: 2018 ident: 10.7717/peerj-cs.898/ref-17 article-title: CatBoost: gradient boosting with categorical features support – volume: 1125 start-page: 213 year: 2020 ident: 10.7717/peerj-cs.898/ref-11 article-title: Ensemble based approach for intrusion detection using extra tree classifier publication-title: Intelligent Computing in Engineering doi: 10.1007/978-981-15-2780-7_25 – volume: 13 start-page: 10 issue: 5 year: 2020 ident: 10.7717/peerj-cs.898/ref-52 article-title: The prediction of diseases using rough set theory with recurrent neural network in big data analytics publication-title: International Journal of Intelligent Engineering and Systems doi: 10.22266/ijies2020.1031.02 – volume: 7 start-page: 115 issue: 3 year: 2016 ident: 10.7717/peerj-cs.898/ref-22 article-title: Prediction of thyroid disease using data mining techniques publication-title: BRAIN. Broad Research in Artificial Intelligence and Neuroscience – volume: 7 start-page: 275 issue: 6 year: 2015 ident: 10.7717/peerj-cs.898/ref-40 article-title: Diagnosing common skin diseases using soft computing techniques publication-title: International Journal of Bio-Science and Bio-Technology doi: 10.14257/ijbsbt.2015.7.6.28 – start-page: 127 year: 2009 ident: 10.7717/peerj-cs.898/ref-23 article-title: An improved ID3 decision tree algorithm – year: 2010 ident: 10.7717/peerj-cs.898/ref-48 article-title: SVM classifier estimation from group probabilities – volume: 6 start-page: 217 issue: 2 year: 2016 ident: 10.7717/peerj-cs.898/ref-10 article-title: An overview of the thyroid gland and thyroid-related deaths for the forensic pathologist publication-title: Academic Forensic Pathology doi: 10.23907/2016.024 – volume: 16 start-page: 147 issue: 3 year: 2020 ident: 10.7717/peerj-cs.898/ref-30 article-title: Role of thyroid hormones in craniofacial development publication-title: Nature Reviews Endocrinology doi: 10.1038/s41574-019-0304-5 – volume: 9 start-page: 272 issue: 5 year: 2012 ident: 10.7717/peerj-cs.898/ref-4 article-title: Random forests and decision trees publication-title: International Journal of Computer Science Issues (IJCSI) – year: 2017 ident: 10.7717/peerj-cs.898/ref-18 article-title: UCI machine learning repository – year: 2015 ident: 10.7717/peerj-cs.898/ref-15 article-title: Xgboost: extreme gradient boosting – start-page: 7 year: 2017 ident: 10.7717/peerj-cs.898/ref-55 article-title: LightGBM: an effective miRNA classification method in breast cancer patients – volume: 5 start-page: 2 year: 2016 ident: 10.7717/peerj-cs.898/ref-57 article-title: Finding the best classification threshold in imbalanced classification publication-title: Big Data Research doi: 10.1016/j.bdr.2015.12.001 – year: 2021 ident: 10.7717/peerj-cs.898/ref-39 article-title: pandas.DataFrame.fillna pandas 1.2.4 documentation – volume: 8 start-page: 30 issue: 1 year: 2015 ident: 10.7717/peerj-cs.898/ref-36 article-title: Diagnosis and treatment of patients with thyroid cancer publication-title: American Health & Drug Benefits – volume: 16 start-page: 321 year: 2002 ident: 10.7717/peerj-cs.898/ref-13 article-title: SMOTE: synthetic minority over-sampling technique publication-title: Journal of Artificial Intelligence Research doi: 10.1613/jair.953 – volume: 34 start-page: 242 issue: 1 year: 2008 ident: 10.7717/peerj-cs.898/ref-26 article-title: ESTDD: expert system for thyroid diseases diagnosis publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2006.09.028 – start-page: 307 volume-title: Ensemble machine learning year: 2012 ident: 10.7717/peerj-cs.898/ref-43 article-title: Random forest for bioinformatics doi: 10.1007/978-1-4419-9326-7_11 – volume: 27 start-page: 111 year: 2016 ident: 10.7717/peerj-cs.898/ref-47 article-title: Decision forest: twenty years of research publication-title: Information Fusion doi: 10.1016/j.inffus.2015.06.005 – volume: 6 start-page: 115 year: 2014 ident: 10.7717/peerj-cs.898/ref-29 article-title: Random Forest ensembles for detection and prediction of Alzheimer’s disease with a good between-cohort robustness publication-title: NeuroImage: Clinical doi: 10.1016/j.nicl.2014.08.023 – volume: 2 start-page: 18 issue: 3 year: 2002 ident: 10.7717/peerj-cs.898/ref-33 article-title: Classification and regression by randomForest publication-title: R News – volume: 111 start-page: 1 issue: 1 year: 2013 ident: 10.7717/peerj-cs.898/ref-7 article-title: Fuzzy and hard clustering analysis for thyroid disease publication-title: Computer Methods and Programs in Biomedicine doi: 10.1016/j.cmpb.2013.01.002 – volume: 20 start-page: 365 issue: 3 year: 2007 ident: 10.7717/peerj-cs.898/ref-9 article-title: Optimizing feedforward artificial neural network architecture publication-title: Engineering Applications of Artificial Intelligence doi: 10.1016/j.engappai.2006.06.005 – volume: 5 start-page: 264 issue: 10 year: 2013 ident: 10.7717/peerj-cs.898/ref-2 article-title: Performance improvement with combining multiple approaches to diagnosis of thyroid cancer publication-title: Engineering doi: 10.4236/eng.2013.510B055 – start-page: 2033 year: 2002 ident: 10.7717/peerj-cs.898/ref-37 article-title: Diagnosis of thyroid disease using artificial neural network methods – volume: 10 start-page: 1227 issue: 6 year: 2019 ident: 10.7717/peerj-cs.898/ref-5 article-title: Clustering ensemble method publication-title: International Journal of Machine Learning and Cybernetics doi: 10.1007/s13042-017-0756-7 – start-page: 41 year: 2001 ident: 10.7717/peerj-cs.898/ref-46 article-title: An empirical study of the naive Bayes classifier – volume: 12 start-page: 119 issue: 2 year: 2018 ident: 10.7717/peerj-cs.898/ref-12 article-title: Prediction of benign and malignant breast cancer using data mining techniques publication-title: Journal of Algorithms & Computational Technology doi: 10.1177/1748301818756225 – year: 1987 ident: 10.7717/peerj-cs.898/ref-44 article-title: Thyroid disease data set |
| SSID | ssj0001511119 |
| Score | 2.492899 |
| Snippet | Thyroid disease is the general concept for a medical problem that prevents one’s thyroid from producing enough hormones. Thyroid disease can affect... Thyroid disease is the general concept for a medical problem that prevents one's thyroid from producing enough hormones. Thyroid disease can affect... |
| SourceID | doaj pubmedcentral proquest gale pubmed crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
| StartPage | e898 |
| SubjectTerms | Accuracy Algorithms Algorithms and Analysis of Algorithms Artificial Intelligence Back propagation Bioinformatics Blood Children Classification Clustering Comparative studies Data mining Data Mining and Machine Learning Datasets Decision trees Hormones Hyperthyroidism Hypothyroidism Illnesses Machine learning Machine Learning Algorithm Machine Learning Classifier Medical examination Medical research Medicine, Experimental Microbalances Neural networks Performance evaluation Physiology Recall Risk factors Sick-euthyroid Thyroid cancer Thyroid Disease Thyroid diseases Thyroid Risk Prediction |
| SummonAdditionalLinks | – databaseName: ProQuest advanced technologies & aerospace journals dbid: P5Z link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELagcOBCeRMoyCAQB5Q2sZ3E4YIWRAUSqipeqrhYfmW7qE22SRaJf89M1vuIEFw45JB4Eo0z4_HYM_6GkGfOO5NpYeKcpywWlfGxrEwWu8wXwkmR6gFS6NvH4uhInpyUx2HDrQtplSubOBhq11jcIz9A0BTOWSLE6_lFjFWjMLoaSmhcJlcQJQFLNxxn3zd7LBkahHKZ717AwuVg7n37I7bdvizlaCYaAPv_NMtb89I4Z3JrEjrc_V_2b5Drwf2kk6W-3CSXfH2L7K5KO9Aw0m-Ti8kmsE2bip4POZeehiITU6rPpvD5_vS8o31D5y3Ge3oK3iRcv9pm5mgI_VBMXn9FdU23iwlQu0EdpwPE7R3y9fDdl7fv41CdIbZZUfZxbmRecRBlbl0O-phblrvSpFomokgyU_pE59zI1Be8gmWjBV-DZyZxcCN5lfK7ZKduan-fUMFMaUSOrloiqioptU7xVDdYCF-ChxaRlytJKRugy7GCxpmCJQzKVQ1yVbZTINeIPF9Tz5eQHX-he4NCX9Mg0PbwoGmnKoxbVXDGS1dJx8B3q2SmnfcyFdZLZlNgNSJPUWUUQmnUmKsz1YuuUx8-f1KTIoGpH1xmHpEXgahqgG-rw9EH6D2ib40o90aUMNbtuHmlXSrYmk5tVCsiT9bN-Cbmz9W-WSBNJnNw1hmLyL2lIq_7zTOECGLwP4qRio9-zLilnp0OSOQgLgz0P_g3Ww_JNYaHRjBzj--Rnb5d-Efkqv3Zz7r28TBkfwPysE-1 priority: 102 providerName: ProQuest |
| Title | Application of machine learning algorithms to predict the thyroid disease risk: an experimental comparative study |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/35494828 https://www.proquest.com/docview/2635332044 https://www.proquest.com/docview/2658651922 https://pubmed.ncbi.nlm.nih.gov/PMC9044232 https://doaj.org/article/73239df8d2064f85adee814ce82c1ff0 |
| Volume | 8 |
| WOSCitedRecordID | wos000767379800004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ customDbUrl: eissn: 2376-5992 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001511119 issn: 2376-5992 databaseCode: DOA dateStart: 20150101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2376-5992 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001511119 issn: 2376-5992 databaseCode: M~E dateStart: 20150101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Advanced Technologies & Aerospace Database customDbUrl: eissn: 2376-5992 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001511119 issn: 2376-5992 databaseCode: P5Z dateStart: 20150527 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: Computer Science Database customDbUrl: eissn: 2376-5992 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001511119 issn: 2376-5992 databaseCode: K7- dateStart: 20150527 isFulltext: true titleUrlDefault: http://search.proquest.com/compscijour providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2376-5992 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001511119 issn: 2376-5992 databaseCode: BENPR dateStart: 20150527 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 2376-5992 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001511119 issn: 2376-5992 databaseCode: PIMPY dateStart: 20150527 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELagcODC-xEoK4NAHFBoYjuxw22LtqKCrlblocLFsh17u6hNliSLxIXfzjjJbjdCiAuHWEo8keyZsWdGHn-D0LPc5jpRTIcpjUnInLahcDoJ88RylgsWqxZS6PN7Pp2Kk5NstlXqy-eEdfDAHeP2OCU0y53ICRhPJxKVWytiZqwgJnaujdYjnm0FU939YL8VZF2mO4eQZW9pbfUtNPUrkYmBDWqh-v_ckLcs0jBbcsv8HNxE13u_EY-78d5Cl2xxG91Y12TA_RK9g76PL06kcenweZssaXFfHWKO1dm8rBbN6XmNmxIvK39Q02BwA-H5WZWLHPdnNthnnb_GqsDbVQCwuYALxy027V306WDy8c3bsC-rEJqEZ02YapE6CjJITZ6CIqWGpHmmYyUixqNEZzZSKdUitpw6iPcMOAk00VEOL4K6mN5DO0VZ2AcIM6IzzVLvY0UMhJEpFfvr2LC0bQauVYBerhktTY857ktfnEmIPbxYZCsWaWoJYgnQ8w31ssPa-AvdvpfZhsYjZLcfQG9krzfyX3oToKde4tJjYBQ-yWauVnUtDz8cyzGPwGaDr0sD9KInciWM26j-zgLM3sNmDSh3B5SwSM2we61Yst8kaulxgCglEWMBerLp9n_6xLfClitPk4gUvGxCAnS_08PNvGnisX0I8IMPNHTAmGFPsThtIcRBXP6E_uH_4OQjdI34OyE-MY_uop2mWtnH6Kr50SzqaoQu8xMxQlf2J9PZ8ahdpdC-4yG0R78m0M6Sr9A_OzyaffkNgVJJbg |
| linkProvider | Directory of Open Access Journals |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwELZKQYIL5U2ggEFUHFBoYjuJg4TQ8qi62mWFoKDeTGI720Vtsk2yoP4pfiMz2ewjQnDrgUMOiSeR7czTHn9DyFNjTRokInVD7jNXZKl1ZZYGrglsJIwUftJACn0dRqORPDyMP26QX4uzMJhWudCJjaI2hcY18l0ETeGceUK8np66WDUKd1cXJTTmbDGwZz8hZKte9d_B_91hbO_9wdt9t60q4Oogims3TGWYcehCqE0I8xhqFpo49RPpicgL0th6SchT6duIZxDuaLCRPEg9AzeSZz6H714gFwWXEcrVIHJXazoBKqB4nl8fQaC0O7W2_O7q6oWMZcfyNQUC_jQDa3awm6O5ZvT2tv636bpGrrbuNe3N5eE62bD5DbK1KF1BW012k5z2Vhv3tMjoSZNTamlbRGNMk-MxDKc-OqloXdBpiftZNQVvGa6zspgY2m5tUUzOf0mTnK4XS6B6hapOGwjfW-TLuQz8NtnMi9zeJVSwNE5FiK6oJ7LMi5PEx1ProAFtDB6oQ54vOEPpFpodK4QcKwjRkI9Uw0dKVwr4yCE7S-rpHJLkL3RvkMmWNAgk3jwoyrFq9ZKKOOOxyaRh4JtmMkiMtdIX2kqmfeiqQ54giyqECskxF2mczKpK9T9_Ur3IA9cGQgLukGctUVZAv3XSHu2A0SO6WIdyu0MJukx3mxfcrFpdWqkVKzvk8bIZ38T8wNwWM6QJZAjBCGMOuTMXnOW4eYAQSAzmI-qIVGdiui355KhBWoffhYkM9_7drUfk8v7Bh6Ea9keD--QKwwMymKXIt8lmXc7sA3JJ_6gnVfmwUReUfDtvgfsN4Kurgw |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwELZKQYgL5U2ggEFUHFDYxM7DQUJooVSsWq1WvFRxMYkf20Vtsk2yoP41fh0z2ewjQnDrgcMesp5EtvPNeCYef0PIU210FqZB5kbcZ25gM-MKm4WuDk0caBH4aUMp9OUgHg7F4WEy2iC_FmdhMK1yYRMbQ60Lhd_Ie0iawjnzgqBn27SI0e7e6-mpixWkcKd1UU5jDpF9c_YTwrfq1WAX3vUOY3vvPr1977YVBlwVxkntRpmILIfuREpHMKeRYpFOMj8VXhB7YZYYL414JnwTcwuhj4L1koeZp-FCcOtzeO4FcjGGGBPTCUfh19X3nRCNUTLPtY8haOpNjSm_u6p6IRLRWQWbYgF_Lglra2I3X3NtAdzb-p-n7hq52rrdtD_Xk-tkw-Q3yNaipAVtLdxNctpfbejTwtKTJtfU0La4xpimx2MYTn10UtG6oNMS97lqCl40_M7KYqJpu-VFMWn_JU1zul5EgaoV2zptqH1vkc_nMvDbZDMvcnOX0IBlSRZE6KJ6gbVekqY-nmYHy2gS8Ewd8nyBEqlaynasHHIsIXRDTMkGU1JVEjDlkJ2l9HROVfIXuTcIuKUMEow3fxTlWLb2Ssac8URboRn4rFaEqTZG-IEygikfuuqQJwhXiRQiOSJqnM6qSg4-fpD92AOXB0IF7pBnrZAtoN8qbY98wOiRdawjud2RBBunus0LZMvWxlZyBWuHPF42452YN5ibYoYyoYggSGHMIXfmSrQcNw-RGonBfMQd9epMTLclnxw1DOzwujDB4d6_u_WIXAY9kweD4f59coXhuRlMXuTbZLMuZ-YBuaR-1JOqfNhYDkq-nbe-_QaearSn |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Application+of+machine+learning+algorithms+to+predict+the+thyroid+disease+risk%3A+an+experimental+comparative+study&rft.jtitle=PeerJ.+Computer+science&rft.au=Islam%2C+Saima+Sharleen&rft.au=Haque%2C+Md.+Samiul&rft.au=Miah%2C+M.+Saef+Ullah&rft.au=Sarwar%2C+Talha+Bin&rft.date=2022-03-03&rft.pub=PeerJ.+Ltd&rft.issn=2376-5992&rft.eissn=2376-5992&rft.volume=8&rft.spage=e898&rft_id=info:doi/10.7717%2Fpeerj-cs.898&rft.externalDBID=ISR&rft.externalDocID=A708470453 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2376-5992&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2376-5992&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2376-5992&client=summon |