Application of machine learning algorithms to predict the thyroid disease risk: an experimental comparative study

Thyroid disease is the general concept for a medical problem that prevents one’s thyroid from producing enough hormones. Thyroid disease can affect everyone—men, women, children, adolescents, and the elderly. Thyroid disorders are detected by blood tests, which are notoriously difficult to interpret...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:PeerJ. Computer science Ročník 8; s. e898
Hlavní autoři: Islam, Saima Sharleen, Haque, Md. Samiul, Miah, M. Saef Ullah, Sarwar, Talha Bin, Nugraha, Ramdhan
Médium: Journal Article
Jazyk:angličtina
Vydáno: United States PeerJ. Ltd 03.03.2022
PeerJ, Inc
PeerJ Inc
Témata:
ISSN:2376-5992, 2376-5992
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Thyroid disease is the general concept for a medical problem that prevents one’s thyroid from producing enough hormones. Thyroid disease can affect everyone—men, women, children, adolescents, and the elderly. Thyroid disorders are detected by blood tests, which are notoriously difficult to interpret due to the enormous amount of data necessary to forecast results. For this reason, this study compares eleven machine learning algorithms to determine which one produces the best accuracy for predicting thyroid risk accurately. This study utilizes the Sick-euthyroid dataset, acquired from the University of California, Irvine’s machine learning repository, for this purpose. Since the target variable classes in this dataset are mostly one, the accuracy score does not accurately indicate the prediction outcome. Thus, the evaluation metric contains accuracy and recall ratings. Additionally, the F1-score produces a single value that balances the precision and recall when an uneven distribution class exists. Finally, the F1-score is utilized to evaluate the performance of the employed machine learning algorithms as it is one of the most effective output measurements for unbalanced classification problems. The experiment shows that the ANN Classifier with an F1-score of 0.957 outperforms the other nine algorithms in terms of accuracy.
AbstractList Thyroid disease is the general concept for a medical problem that prevents one's thyroid from producing enough hormones. Thyroid disease can affect everyone-men, women, children, adolescents, and the elderly. Thyroid disorders are detected by blood tests, which are notoriously difficult to interpret due to the enormous amount of data necessary to forecast results. For this reason, this study compares eleven machine learning algorithms to determine which one produces the best accuracy for predicting thyroid risk accurately. This study utilizes the Sick-euthyroid dataset, acquired from the University of California, Irvine's machine learning repository, for this purpose. Since the target variable classes in this dataset are mostly one, the accuracy score does not accurately indicate the prediction outcome. Thus, the evaluation metric contains accuracy and recall ratings. Additionally, the F1-score produces a single value that balances the precision and recall when an uneven distribution class exists. Finally, the F1-score is utilized to evaluate the performance of the employed machine learning algorithms as it is one of the most effective output measurements for unbalanced classification problems. The experiment shows that the ANN Classifier with an F1-score of 0.957 outperforms the other nine algorithms in terms of accuracy.
Thyroid disease is the general concept for a medical problem that prevents one's thyroid from producing enough hormones. Thyroid disease can affect everyone-men, women, children, adolescents, and the elderly. Thyroid disorders are detected by blood tests, which are notoriously difficult to interpret due to the enormous amount of data necessary to forecast results. For this reason, this study compares eleven machine learning algorithms to determine which one produces the best accuracy for predicting thyroid risk accurately. This study utilizes the Sick-euthyroid dataset, acquired from the University of California, Irvine's machine learning repository, for this purpose. Since the target variable classes in this dataset are mostly one, the accuracy score does not accurately indicate the prediction outcome. Thus, the evaluation metric contains accuracy and recall ratings. Additionally, the F1-score produces a single value that balances the precision and recall when an uneven distribution class exists. Finally, the F1-score is utilized to evaluate the performance of the employed machine learning algorithms as it is one of the most effective output measurements for unbalanced classification problems. The experiment shows that the ANN Classifier with an F1-score of 0.957 outperforms the other nine algorithms in terms of accuracy.Thyroid disease is the general concept for a medical problem that prevents one's thyroid from producing enough hormones. Thyroid disease can affect everyone-men, women, children, adolescents, and the elderly. Thyroid disorders are detected by blood tests, which are notoriously difficult to interpret due to the enormous amount of data necessary to forecast results. For this reason, this study compares eleven machine learning algorithms to determine which one produces the best accuracy for predicting thyroid risk accurately. This study utilizes the Sick-euthyroid dataset, acquired from the University of California, Irvine's machine learning repository, for this purpose. Since the target variable classes in this dataset are mostly one, the accuracy score does not accurately indicate the prediction outcome. Thus, the evaluation metric contains accuracy and recall ratings. Additionally, the F1-score produces a single value that balances the precision and recall when an uneven distribution class exists. Finally, the F1-score is utilized to evaluate the performance of the employed machine learning algorithms as it is one of the most effective output measurements for unbalanced classification problems. The experiment shows that the ANN Classifier with an F1-score of 0.957 outperforms the other nine algorithms in terms of accuracy.
ArticleNumber e898
Audience Academic
Author Haque, Md. Samiul
Miah, M. Saef Ullah
Islam, Saima Sharleen
Nugraha, Ramdhan
Sarwar, Talha Bin
Author_xml – sequence: 1
  givenname: Saima Sharleen
  surname: Islam
  fullname: Islam, Saima Sharleen
  organization: Department of Computer Science, Faculty of Science and Technology, American International University - Bangladesh (AIUB), Dhaka, Bangladesh
– sequence: 2
  givenname: Md. Samiul
  surname: Haque
  fullname: Haque, Md. Samiul
  organization: Department of Computer Science, Faculty of Science and Technology, American International University - Bangladesh (AIUB), Dhaka, Bangladesh
– sequence: 3
  givenname: M. Saef Ullah
  surname: Miah
  fullname: Miah, M. Saef Ullah
  organization: Faculty of Computing, College of Computing and Applied Sciences, Universiti Malaysia Pahang, Pekan, Pahang, Malaysia
– sequence: 4
  givenname: Talha Bin
  surname: Sarwar
  fullname: Sarwar, Talha Bin
  organization: Faculty of Computing, College of Computing and Applied Sciences, Universiti Malaysia Pahang, Pekan, Pahang, Malaysia
– sequence: 5
  givenname: Ramdhan
  surname: Nugraha
  fullname: Nugraha, Ramdhan
  organization: Faculty of Electrical Engineering, Telkom University, Bandung, Indonesia
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35494828$$D View this record in MEDLINE/PubMed
BookMark eNptkttr2zAUh83oWLusb3segr1ssGSy5IvUh0EouwQKg12ehSwdO8psyZXk0vz3U5Kua0otjGX5O5-lw-9ldmKdhSx7neNFXef1xxHAb-YqLBhnz7IzQutqXnJOTh7MT7PzEDYY47zM08VfZKe0LHjBCDvLrpfj2Bslo3EWuRYNUq2NBdSD9NbYDsm-c97E9RBQdGj0oI2KKK4h3VvvjEbaBJABkDfhzwWSFsHtCN4MYKPskXLDKH3y3wAKcdLbV9nzVvYBzu-es-z3l8-_Lr_Nr75_XV0ur-aqrHmcVw2rWiprXildgdSVIpXmTS4ZLmpcNhywrGjDcqhpW-BaMYJp2WCdXhhtczrLVgevdnIjxrQh6bfCSSP2C853QvpoVA-ipoRy3TJNcFW0rJQagOWFAkZU3rY4uT4dXOPUDKBVOpqX_ZH0-Is1a9G5G8FxUZBkn2Xv7gTeXU8QohhMUND30oKbgiBVyaoy52SHvn2EbtzkbWpVomhJKUnO_1Qn0wGMbV36r9pJxbLGLLWoSOgsWzxBpaFhMCpFqTVp_ajg_VFBYiLcxk5OIYjVzx_H7JuHTbnvxr9wJeDDAVDeheChvUdyLHbxFfv4ChVEim_CySNcmbgPZtq06Z8u-gt8PPUA
CitedBy_id crossref_primary_10_3390_diagnostics13121995
crossref_primary_10_1016_j_compbiomed_2025_109974
crossref_primary_10_3390_make5030061
crossref_primary_10_1016_j_procs_2025_04_602
crossref_primary_10_1007_s44163_025_00225_9
crossref_primary_10_1016_j_bspc_2024_107207
crossref_primary_10_7717_peerj_cs_2819
crossref_primary_10_3390_cancers16193417
crossref_primary_10_1371_journal_pone_0300670
crossref_primary_10_7759_cureus_54393
crossref_primary_10_1097_MD_0000000000037396
crossref_primary_10_1016_j_compbiomed_2023_106578
crossref_primary_10_1016_j_heliyon_2023_e23163
crossref_primary_10_1016_j_heliyon_2024_e29583
crossref_primary_10_1007_s10115_023_01894_7
crossref_primary_10_1016_j_engappai_2025_110209
crossref_primary_10_3390_cancers16234046
crossref_primary_10_1109_ACCESS_2024_3418974
crossref_primary_10_7717_peerj_cs_1394
crossref_primary_10_2196_43734
crossref_primary_10_1109_TCSS_2024_3449748
crossref_primary_10_1186_s12911_024_02780_0
crossref_primary_10_22581_muet1982_0035
crossref_primary_10_1109_ACCESS_2024_3408869
crossref_primary_10_1109_ACCESS_2023_3279724
crossref_primary_10_1371_journal_pone_0325900
crossref_primary_10_12720_jait_16_8_1169_1177
crossref_primary_10_1016_j_nut_2022_111947
crossref_primary_10_1177_09544119231186074
crossref_primary_10_1109_TAI_2023_3327981
crossref_primary_10_1007_s42979_025_04321_6
crossref_primary_10_1016_j_bioana_2024_08_001
crossref_primary_10_3390_cancers17010121
crossref_primary_10_32604_cmc_2024_047621
crossref_primary_10_7717_peerj_cs_2397
crossref_primary_10_1080_10255842_2024_2341969
Cites_doi 10.1109/ACCESS.2019.2901920
10.5603/EP.a2020.0079
10.1136/bmj.297.6663.1586
10.1038/nrendo.2018.18
10.1109/MSP.2004.1311138
10.1016/j.procs.2021.08.106
10.1016/j.patcog.2017.07.024
10.1016/j.elerap.2018.08.002
10.14569/IJACSA.2020.0110277
10.1016/j.eswa.2006.02.007
10.1109/ACCESS.2020.2982390
10.1007/978-981-15-2780-7_25
10.22266/ijies2020.1031.02
10.14257/ijbsbt.2015.7.6.28
10.23907/2016.024
10.1038/s41574-019-0304-5
10.1016/j.bdr.2015.12.001
10.1613/jair.953
10.1016/j.eswa.2006.09.028
10.1007/978-1-4419-9326-7_11
10.1016/j.inffus.2015.06.005
10.1016/j.nicl.2014.08.023
10.1016/j.cmpb.2013.01.002
10.1016/j.engappai.2006.06.005
10.4236/eng.2013.510B055
10.1007/s13042-017-0756-7
10.1177/1748301818756225
ContentType Journal Article
Copyright 2022 Islam et al.
COPYRIGHT 2022 PeerJ. Ltd.
2022 Islam et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: https://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, reproduction and adaptation in any medium and for any purpose provided that it is properly attributed. For attribution, the original author(s), title, publication source (PeerJ Computer Science) and either DOI or URL of the article must be cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2022 Islam et al. 2022 Islam et al.
Copyright_xml – notice: 2022 Islam et al.
– notice: COPYRIGHT 2022 PeerJ. Ltd.
– notice: 2022 Islam et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: https://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, reproduction and adaptation in any medium and for any purpose provided that it is properly attributed. For attribution, the original author(s), title, publication source (PeerJ Computer Science) and either DOI or URL of the article must be cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2022 Islam et al. 2022 Islam et al.
DBID AAYXX
CITATION
NPM
ISR
3V.
7XB
8AL
8FE
8FG
8FK
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
M0N
P5Z
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
DOA
DOI 10.7717/peerj-cs.898
DatabaseName CrossRef
PubMed
Gale In Context: Science
ProQuest Central (Corporate)
ProQuest Central (purchase pre-March 2016)
Computing Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central Korea
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
Computing Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
Computer Science Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies & Aerospace Collection
ProQuest Computing
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList PubMed

CrossRef
MEDLINE - Academic


Publicly Available Content Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 2376-5992
ExternalDocumentID oai_doaj_org_article_73239df8d2064f85adee814ce82c1ff0
PMC9044232
A708470453
35494828
10_7717_peerj_cs_898
Genre Journal Article
GrantInformation_xml – fundername: The Directorate of Research and Community Service, Telkom University
GroupedDBID 53G
5VS
8FE
8FG
AAFWJ
AAYXX
ABUWG
ADBBV
AFFHD
AFKRA
AFPKN
ALMA_UNASSIGNED_HOLDINGS
ARAPS
AZQEC
BCNDV
BENPR
BGLVJ
BPHCQ
CCPQU
CITATION
DWQXO
FRP
GNUQQ
GROUPED_DOAJ
H13
HCIFZ
IAO
ICD
IEA
ISR
ITC
K6V
K7-
M~E
OK1
P62
PHGZM
PHGZT
PIMPY
PQGLB
PQQKQ
PROAC
RPM
3V.
ARCSS
M0N
NPM
7XB
8AL
8FK
JQ2
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
PUEGO
5PM
ID FETCH-LOGICAL-c579t-6b86f3a796cd6ead6c26d9b1a804705b9e0a63b81e73f407c82035b0df4083f13
IEDL.DBID DOA
ISICitedReferencesCount 40
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000767379800004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2376-5992
IngestDate Mon Nov 10 04:29:51 EST 2025
Tue Nov 04 02:05:28 EST 2025
Thu Sep 04 16:38:17 EDT 2025
Sun Nov 30 04:10:54 EST 2025
Tue Nov 11 08:19:16 EST 2025
Tue Nov 04 17:27:46 EST 2025
Thu Nov 13 14:32:45 EST 2025
Thu Jan 02 22:54:08 EST 2025
Tue Nov 18 22:29:51 EST 2025
Sat Nov 29 03:45:05 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Machine Learning Algorithm
Machine Learning Classifier
Thyroid Risk Prediction
Sick-euthyroid
Thyroid Disease
Language English
License https://creativecommons.org/licenses/by/4.0
2022 Islam et al.
This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, reproduction and adaptation in any medium and for any purpose provided that it is properly attributed. For attribution, the original author(s), title, publication source (PeerJ Computer Science) and either DOI or URL of the article must be cited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c579t-6b86f3a796cd6ead6c26d9b1a804705b9e0a63b81e73f407c82035b0df4083f13
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://doaj.org/article/73239df8d2064f85adee814ce82c1ff0
PMID 35494828
PQID 2635332044
PQPubID 2045934
PageCount e898
ParticipantIDs doaj_primary_oai_doaj_org_article_73239df8d2064f85adee814ce82c1ff0
pubmedcentral_primary_oai_pubmedcentral_nih_gov_9044232
proquest_miscellaneous_2658651922
proquest_journals_2635332044
gale_infotracmisc_A708470453
gale_infotracacademiconefile_A708470453
gale_incontextgauss_ISR_A708470453
pubmed_primary_35494828
crossref_primary_10_7717_peerj_cs_898
crossref_citationtrail_10_7717_peerj_cs_898
PublicationCentury 2000
PublicationDate 2022-03-03
PublicationDateYYYYMMDD 2022-03-03
PublicationDate_xml – month: 03
  year: 2022
  text: 2022-03-03
  day: 03
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: San Diego
– name: San Diego, USA
PublicationTitle PeerJ. Computer science
PublicationTitleAlternate PeerJ Comput Sci
PublicationYear 2022
Publisher PeerJ. Ltd
PeerJ, Inc
PeerJ Inc
Publisher_xml – name: PeerJ. Ltd
– name: PeerJ, Inc
– name: PeerJ Inc
References Ali (10.7717/peerj-cs.898/ref-4) 2012; 9
Lebedev (10.7717/peerj-cs.898/ref-29) 2014; 6
Talasila (10.7717/peerj-cs.898/ref-52) 2020; 13
Tangirala (10.7717/peerj-cs.898/ref-53) 2020; 11
Pichardo (10.7717/peerj-cs.898/ref-41) 2021
Alqurashi (10.7717/peerj-cs.898/ref-5) 2019; 10
Kumar (10.7717/peerj-cs.898/ref-27) 2020
Zhu (10.7717/peerj-cs.898/ref-56) 2017; 72
Qi (10.7717/peerj-cs.898/ref-43) 2012
Beynon (10.7717/peerj-cs.898/ref-10) 2016; 6
Chaurasia (10.7717/peerj-cs.898/ref-12) 2018; 12
Chen (10.7717/peerj-cs.898/ref-15) 2015
Benardos (10.7717/peerj-cs.898/ref-9) 2007; 20
Ioniţă (10.7717/peerj-cs.898/ref-22) 2016; 7
Keleş (10.7717/peerj-cs.898/ref-26) 2008; 34
Leitch (10.7717/peerj-cs.898/ref-30) 2020; 16
Akbaş (10.7717/peerj-cs.898/ref-2) 2013; 5
Pandas development team (10.7717/peerj-cs.898/ref-39) 2021
Kumar (10.7717/peerj-cs.898/ref-28) 2020; 8
Dorogush (10.7717/peerj-cs.898/ref-17) 2018
Li (10.7717/peerj-cs.898/ref-31) 2020; 47
Jin (10.7717/peerj-cs.898/ref-23) 2009
Akbas (10.7717/peerj-cs.898/ref-3) 2021
Aversano (10.7717/peerj-cs.898/ref-6) 2021; 192
Paczkowska (10.7717/peerj-cs.898/ref-38) 2020; 71
Bastias (10.7717/peerj-cs.898/ref-8) 2011
Han (10.7717/peerj-cs.898/ref-21) 2005
Bhati (10.7717/peerj-cs.898/ref-11) 2020; 1125
Ozyilmaz (10.7717/peerj-cs.898/ref-37) 2002
Scikit-learn developers (10.7717/peerj-cs.898/ref-49) 2021
Liaw (10.7717/peerj-cs.898/ref-33) 2002; 2
Quinlan (10.7717/peerj-cs.898/ref-44) 1987
Chen (10.7717/peerj-cs.898/ref-14) 2017
Wang (10.7717/peerj-cs.898/ref-55) 2017
Zou (10.7717/peerj-cs.898/ref-57) 2016; 5
Stoica (10.7717/peerj-cs.898/ref-51) 2004; 21
Azar (10.7717/peerj-cs.898/ref-7) 2013; 111
Song (10.7717/peerj-cs.898/ref-50) 2015; 27
Liu (10.7717/peerj-cs.898/ref-34) 2008; 39
Ju (10.7717/peerj-cs.898/ref-24) 2019; 7
Eggertsen (10.7717/peerj-cs.898/ref-19) 1988; 297
Razia (10.7717/peerj-cs.898/ref-45) 2020; 885
Gou (10.7717/peerj-cs.898/ref-20) 2012; 9
Dua (10.7717/peerj-cs.898/ref-18) 2017
Ke (10.7717/peerj-cs.898/ref-25) 2017; 30
Polat (10.7717/peerj-cs.898/ref-42) 2007; 32
Dongare (10.7717/peerj-cs.898/ref-16) 2012; 2
Ma (10.7717/peerj-cs.898/ref-35) 2018; 31
Rish (10.7717/peerj-cs.898/ref-46) 2001
Taylor (10.7717/peerj-cs.898/ref-54) 2018; 14
Rokach (10.7717/peerj-cs.898/ref-47) 2016; 27
Chawla (10.7717/peerj-cs.898/ref-13) 2002; 16
Nguyen (10.7717/peerj-cs.898/ref-36) 2015; 8
Ahmad (10.7717/peerj-cs.898/ref-1) 2017; 7
Li (10.7717/peerj-cs.898/ref-32) 2020
Parikh (10.7717/peerj-cs.898/ref-40) 2015; 7
Rueping (10.7717/peerj-cs.898/ref-48) 2010
References_xml – volume: 7
  start-page: 28309
  year: 2019
  ident: 10.7717/peerj-cs.898/ref-24
  article-title: A model combining convolutional neural network and LightGBM algorithm for ultra-short-term wind power forecasting
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2901920
– volume: 71
  start-page: 551
  issue: 6
  year: 2020
  ident: 10.7717/peerj-cs.898/ref-38
  article-title: Laboratory interference in the thyroid function test
  publication-title: Endokrynologia Polska
  doi: 10.5603/EP.a2020.0079
– volume: 297
  start-page: 1586
  issue: 6663
  year: 1988
  ident: 10.7717/peerj-cs.898/ref-19
  article-title: Screening for thyroid disease in a primary care unit with a thyroid stimulating hormone assay with a low detection limit
  publication-title: British Medical Journal
  doi: 10.1136/bmj.297.6663.1586
– start-page: 072093
  year: 2020
  ident: 10.7717/peerj-cs.898/ref-32
  article-title: Diabetes prediction based on xgboost algorithm
– start-page: 92
  year: 2011
  ident: 10.7717/peerj-cs.898/ref-8
  article-title: Predictive model based on neural networks to assist the diagnosis of malignancy of thyroid nodules
– volume: 14
  start-page: 301
  issue: 5
  year: 2018
  ident: 10.7717/peerj-cs.898/ref-54
  article-title: Global epidemiology of hyperthyroidism and hypothyroidism
  publication-title: Nature Reviews Endocrinology
  doi: 10.1038/nrendo.2018.18
– start-page: 836
  year: 2020
  ident: 10.7717/peerj-cs.898/ref-27
  article-title: A novel approach of SVM based classification on thyroid disease stage detection
– volume: 39
  start-page: 539
  issue: 2
  year: 2008
  ident: 10.7717/peerj-cs.898/ref-34
  article-title: Exploratory undersampling for class-imbalance learning
  publication-title: IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics)
– volume: 9
  start-page: 1429
  issue: 6
  year: 2012
  ident: 10.7717/peerj-cs.898/ref-20
  article-title: A new distance-weighted k-nearest neighbor classifier
  publication-title: Journal of Information and Computing Science
– volume: 21
  start-page: 36
  issue: 4
  year: 2004
  ident: 10.7717/peerj-cs.898/ref-51
  article-title: Model-order selection: a review of information criterion rules
  publication-title: IEEE Signal Processing Magazine
  doi: 10.1109/MSP.2004.1311138
– volume: 2
  start-page: 189
  issue: 1
  year: 2012
  ident: 10.7717/peerj-cs.898/ref-16
  article-title: Introduction to artificial neural network
  publication-title: International Journal of Engineering and Innovative Technology (IJEIT)
– volume: 885
  start-page: 203
  year: 2020
  ident: 10.7717/peerj-cs.898/ref-45
  article-title: Machine learning techniques for thyroid disease diagnosis: a systematic review
  publication-title: Modern Approaches in Machine Learning and Cognitive Science: A Walkthrough
– start-page: 878
  year: 2005
  ident: 10.7717/peerj-cs.898/ref-21
  article-title: Borderline-SMOTE: a new over-sampling method in imbalanced data sets learning
– year: 2021
  ident: 10.7717/peerj-cs.898/ref-41
  article-title: Thyroid cancer: symptoms, causes, diagnosis, treatment, WebMD
– year: 2021
  ident: 10.7717/peerj-cs.898/ref-3
  article-title: Key statistics for thyroid cancer
– volume: 30
  start-page: 3146
  year: 2017
  ident: 10.7717/peerj-cs.898/ref-25
  article-title: Lightgbm: a highly efficient gradient boosting decision tree
  publication-title: Advances in Neural Information Processing Systems
– volume: 192
  start-page: 1031
  year: 2021
  ident: 10.7717/peerj-cs.898/ref-6
  article-title: Thyroid disease treatment prediction with machine learning approaches
  publication-title: Procedia Computer Science
  doi: 10.1016/j.procs.2021.08.106
– volume: 72
  start-page: 327
  year: 2017
  ident: 10.7717/peerj-cs.898/ref-56
  article-title: Synthetic minority oversampling technique for multiclass imbalance problems
  publication-title: Pattern Recognition
  doi: 10.1016/j.patcog.2017.07.024
– volume: 31
  start-page: 24
  year: 2018
  ident: 10.7717/peerj-cs.898/ref-35
  article-title: Study on a prediction of P2P network loan default based on the machine learning LightGBM and XGboost algorithms according to different high dimensional data cleaning
  publication-title: Electronic Commerce Research and Applications
  doi: 10.1016/j.elerap.2018.08.002
– start-page: 199
  year: 2017
  ident: 10.7717/peerj-cs.898/ref-14
  article-title: A deep-learning based ultrasound text classifier for predicting benign and malignant thyroid nodules
– volume: 47
  start-page: 25
  issue: 1
  year: 2020
  ident: 10.7717/peerj-cs.898/ref-31
  article-title: Ar-ann: incorporating association rule mining in artificial neural network for thyroid disease knowledge discovery and diagnosis
  publication-title: IAENG International Journal of Computer Science
– volume: 11
  start-page: 612
  year: 2020
  ident: 10.7717/peerj-cs.898/ref-53
  article-title: Evaluating the impact of GINI index and information gain on classification using decision tree classifier algorithm
  publication-title: International Journal of Advanced Computer Science and Applications
  doi: 10.14569/IJACSA.2020.0110277
– volume: 7
  start-page: 78
  issue: 10
  year: 2017
  ident: 10.7717/peerj-cs.898/ref-1
  article-title: Thyroid diseases forecasting using a hybrid decision support system based on ANFIS, k-NN and information gain method
  publication-title: Journal of Applied Environmental and Biological Sciences
– volume: 32
  start-page: 1141
  issue: 4
  year: 2007
  ident: 10.7717/peerj-cs.898/ref-42
  article-title: A novel hybrid method based on artificial immune recognition system (AIRS) with fuzzy weighted pre-processing for thyroid disease diagnosis
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2006.02.007
– year: 2021
  ident: 10.7717/peerj-cs.898/ref-49
  article-title: User guide: contents scikit-learn 0.24.2 documentation
– volume: 27
  start-page: 130
  issue: 2
  year: 2015
  ident: 10.7717/peerj-cs.898/ref-50
  article-title: Decision tree methods: applications for classification and prediction
  publication-title: Shanghai Archives of Psychiatry
– volume: 8
  start-page: 63482
  year: 2020
  ident: 10.7717/peerj-cs.898/ref-28
  article-title: Automated segmentation of thyroid nodule, gland, and cystic components from ultrasound images using deep learning
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2982390
– year: 2018
  ident: 10.7717/peerj-cs.898/ref-17
  article-title: CatBoost: gradient boosting with categorical features support
– volume: 1125
  start-page: 213
  year: 2020
  ident: 10.7717/peerj-cs.898/ref-11
  article-title: Ensemble based approach for intrusion detection using extra tree classifier
  publication-title: Intelligent Computing in Engineering
  doi: 10.1007/978-981-15-2780-7_25
– volume: 13
  start-page: 10
  issue: 5
  year: 2020
  ident: 10.7717/peerj-cs.898/ref-52
  article-title: The prediction of diseases using rough set theory with recurrent neural network in big data analytics
  publication-title: International Journal of Intelligent Engineering and Systems
  doi: 10.22266/ijies2020.1031.02
– volume: 7
  start-page: 115
  issue: 3
  year: 2016
  ident: 10.7717/peerj-cs.898/ref-22
  article-title: Prediction of thyroid disease using data mining techniques
  publication-title: BRAIN. Broad Research in Artificial Intelligence and Neuroscience
– volume: 7
  start-page: 275
  issue: 6
  year: 2015
  ident: 10.7717/peerj-cs.898/ref-40
  article-title: Diagnosing common skin diseases using soft computing techniques
  publication-title: International Journal of Bio-Science and Bio-Technology
  doi: 10.14257/ijbsbt.2015.7.6.28
– start-page: 127
  year: 2009
  ident: 10.7717/peerj-cs.898/ref-23
  article-title: An improved ID3 decision tree algorithm
– year: 2010
  ident: 10.7717/peerj-cs.898/ref-48
  article-title: SVM classifier estimation from group probabilities
– volume: 6
  start-page: 217
  issue: 2
  year: 2016
  ident: 10.7717/peerj-cs.898/ref-10
  article-title: An overview of the thyroid gland and thyroid-related deaths for the forensic pathologist
  publication-title: Academic Forensic Pathology
  doi: 10.23907/2016.024
– volume: 16
  start-page: 147
  issue: 3
  year: 2020
  ident: 10.7717/peerj-cs.898/ref-30
  article-title: Role of thyroid hormones in craniofacial development
  publication-title: Nature Reviews Endocrinology
  doi: 10.1038/s41574-019-0304-5
– volume: 9
  start-page: 272
  issue: 5
  year: 2012
  ident: 10.7717/peerj-cs.898/ref-4
  article-title: Random forests and decision trees
  publication-title: International Journal of Computer Science Issues (IJCSI)
– year: 2017
  ident: 10.7717/peerj-cs.898/ref-18
  article-title: UCI machine learning repository
– year: 2015
  ident: 10.7717/peerj-cs.898/ref-15
  article-title: Xgboost: extreme gradient boosting
– start-page: 7
  year: 2017
  ident: 10.7717/peerj-cs.898/ref-55
  article-title: LightGBM: an effective miRNA classification method in breast cancer patients
– volume: 5
  start-page: 2
  year: 2016
  ident: 10.7717/peerj-cs.898/ref-57
  article-title: Finding the best classification threshold in imbalanced classification
  publication-title: Big Data Research
  doi: 10.1016/j.bdr.2015.12.001
– year: 2021
  ident: 10.7717/peerj-cs.898/ref-39
  article-title: pandas.DataFrame.fillna pandas 1.2.4 documentation
– volume: 8
  start-page: 30
  issue: 1
  year: 2015
  ident: 10.7717/peerj-cs.898/ref-36
  article-title: Diagnosis and treatment of patients with thyroid cancer
  publication-title: American Health & Drug Benefits
– volume: 16
  start-page: 321
  year: 2002
  ident: 10.7717/peerj-cs.898/ref-13
  article-title: SMOTE: synthetic minority over-sampling technique
  publication-title: Journal of Artificial Intelligence Research
  doi: 10.1613/jair.953
– volume: 34
  start-page: 242
  issue: 1
  year: 2008
  ident: 10.7717/peerj-cs.898/ref-26
  article-title: ESTDD: expert system for thyroid diseases diagnosis
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2006.09.028
– start-page: 307
  volume-title: Ensemble machine learning
  year: 2012
  ident: 10.7717/peerj-cs.898/ref-43
  article-title: Random forest for bioinformatics
  doi: 10.1007/978-1-4419-9326-7_11
– volume: 27
  start-page: 111
  year: 2016
  ident: 10.7717/peerj-cs.898/ref-47
  article-title: Decision forest: twenty years of research
  publication-title: Information Fusion
  doi: 10.1016/j.inffus.2015.06.005
– volume: 6
  start-page: 115
  year: 2014
  ident: 10.7717/peerj-cs.898/ref-29
  article-title: Random Forest ensembles for detection and prediction of Alzheimer’s disease with a good between-cohort robustness
  publication-title: NeuroImage: Clinical
  doi: 10.1016/j.nicl.2014.08.023
– volume: 2
  start-page: 18
  issue: 3
  year: 2002
  ident: 10.7717/peerj-cs.898/ref-33
  article-title: Classification and regression by randomForest
  publication-title: R News
– volume: 111
  start-page: 1
  issue: 1
  year: 2013
  ident: 10.7717/peerj-cs.898/ref-7
  article-title: Fuzzy and hard clustering analysis for thyroid disease
  publication-title: Computer Methods and Programs in Biomedicine
  doi: 10.1016/j.cmpb.2013.01.002
– volume: 20
  start-page: 365
  issue: 3
  year: 2007
  ident: 10.7717/peerj-cs.898/ref-9
  article-title: Optimizing feedforward artificial neural network architecture
  publication-title: Engineering Applications of Artificial Intelligence
  doi: 10.1016/j.engappai.2006.06.005
– volume: 5
  start-page: 264
  issue: 10
  year: 2013
  ident: 10.7717/peerj-cs.898/ref-2
  article-title: Performance improvement with combining multiple approaches to diagnosis of thyroid cancer
  publication-title: Engineering
  doi: 10.4236/eng.2013.510B055
– start-page: 2033
  year: 2002
  ident: 10.7717/peerj-cs.898/ref-37
  article-title: Diagnosis of thyroid disease using artificial neural network methods
– volume: 10
  start-page: 1227
  issue: 6
  year: 2019
  ident: 10.7717/peerj-cs.898/ref-5
  article-title: Clustering ensemble method
  publication-title: International Journal of Machine Learning and Cybernetics
  doi: 10.1007/s13042-017-0756-7
– start-page: 41
  year: 2001
  ident: 10.7717/peerj-cs.898/ref-46
  article-title: An empirical study of the naive Bayes classifier
– volume: 12
  start-page: 119
  issue: 2
  year: 2018
  ident: 10.7717/peerj-cs.898/ref-12
  article-title: Prediction of benign and malignant breast cancer using data mining techniques
  publication-title: Journal of Algorithms & Computational Technology
  doi: 10.1177/1748301818756225
– year: 1987
  ident: 10.7717/peerj-cs.898/ref-44
  article-title: Thyroid disease data set
SSID ssj0001511119
Score 2.492825
Snippet Thyroid disease is the general concept for a medical problem that prevents one’s thyroid from producing enough hormones. Thyroid disease can affect...
Thyroid disease is the general concept for a medical problem that prevents one's thyroid from producing enough hormones. Thyroid disease can affect...
SourceID doaj
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage e898
SubjectTerms Accuracy
Algorithms
Algorithms and Analysis of Algorithms
Artificial Intelligence
Back propagation
Bioinformatics
Blood
Children
Classification
Clustering
Comparative studies
Data mining
Data Mining and Machine Learning
Datasets
Decision trees
Hormones
Hyperthyroidism
Hypothyroidism
Illnesses
Machine learning
Machine Learning Algorithm
Machine Learning Classifier
Medical examination
Medical research
Medicine, Experimental
Microbalances
Neural networks
Performance evaluation
Physiology
Recall
Risk factors
Sick-euthyroid
Thyroid cancer
Thyroid Disease
Thyroid diseases
Thyroid Risk Prediction
SummonAdditionalLinks – databaseName: Advanced Technologies & Aerospace Database
  dbid: P5Z
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELagcOBCeRMoyCAQB5Q2iWPH5oIWRAUSqipeqrhYjmNvF7XJNski8e-ZyXofEYILhz3sepJ1POPx5_HkG0KeeVHm0iYm9nmWY7SKxSVjRcxLzrlVTtkhlP3tY3F0JE9O1HEIuHUhrXLlEwdHXTUWY-QHSJrCWJbk-ev5RYxVo_B0NZTQuEyuIEsClm445t83MRaODkEt890L2LgczJ1rf8S225dKjlaigbD_T7e8tS6Ncya3FqHD3f_t_g1yPcBPOlnay01yydW3yO6qtAMNM_02uZhsDrZp4-n5kHPpaCgyMaXmbAq370_PO9o3dN7ieU9PAU3C51fbzCoajn4oJq-_oqam28UEqN2wjtOB4vYO-Xr47svb93GozhBbXqg-FqUUnplCCVsJsEdhM1GpMjUyyYuEl8olRrBSpq5gHraNFrAG42VSwRfJfMrukp26qd19Qo23JnVS8ArhEMtkaURunAf06kzKbURerjSlbaAuxwoaZxq2MKhXPehV206DXiPyfC09X1J2_EXuDSp9LYNE28MPTTvVYd7qgmVMVV5WGWA3L7mpnJNpbp3MbOp9EpGnaDIaqTRqzNWZmkXX6Q-fP-lJkcDSD5CZReRFEPIN9Nua8OoDPD2yb40k90aSMNftuHllXTr4mk5vTCsiT9bNeCXmz9WuWaAMh-EFNJ9F5N7SkNfPzThSBGUwHsXIxEcDM26pZ6cDE7mCPwVI_uDf3XpIrmX40ghm7rE9stO3C_eIXLU_-1nXPh6m7G-RE1AW
  priority: 102
  providerName: ProQuest
Title Application of machine learning algorithms to predict the thyroid disease risk: an experimental comparative study
URI https://www.ncbi.nlm.nih.gov/pubmed/35494828
https://www.proquest.com/docview/2635332044
https://www.proquest.com/docview/2658651922
https://pubmed.ncbi.nlm.nih.gov/PMC9044232
https://doaj.org/article/73239df8d2064f85adee814ce82c1ff0
Volume 8
WOSCitedRecordID wos000767379800004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2376-5992
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001511119
  issn: 2376-5992
  databaseCode: DOA
  dateStart: 20150101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2376-5992
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001511119
  issn: 2376-5992
  databaseCode: M~E
  dateStart: 20150101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 2376-5992
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001511119
  issn: 2376-5992
  databaseCode: P5Z
  dateStart: 20150527
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Computer Science Database
  customDbUrl:
  eissn: 2376-5992
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001511119
  issn: 2376-5992
  databaseCode: K7-
  dateStart: 20150527
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/compscijour
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2376-5992
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001511119
  issn: 2376-5992
  databaseCode: BENPR
  dateStart: 20150527
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 2376-5992
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001511119
  issn: 2376-5992
  databaseCode: PIMPY
  dateStart: 20150527
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3dj5QwEG_09MEXz285z001Gh8MHlBKW9_2zF686G0250dWX5pS2r01d7ACa-KLf7tTYPcgxvjiA02gQ4CZaWeGTn-D0DObpDHXgfJtHMXubxXxU0KYT1NKqRZG6OZX9uf3bDrl87mY9Up9uZywFh64ZdwBIxERmeVZBMbTcqoyY3gYa8MjHVrbROsBE71gqt0f7KYC0Wa6MwhZDlbGlN98Xb3igg9sUAPV_-eE3LNIw2zJnvk5uoVudn4jHrfvextdMfkdtLupyYC7IXoXfR9frkjjwuKLJlnS4K46xAKr80VRLuuziwrXBV6VbqGmxuAGwvGzLJYZ7tZssMs6f41VjvtVALC-hAvHDTbtPfTpaPLxzVu_K6vga8pE7ScpTyxRTCQ6S0CREh0lmUhDxYOYBTQVJlAJSXloGLEQ72lwEghNgwxOOLEhuY928iI3DxFWVqvQ8IRmzo8hEU9VEitjwe00KqTaQy83jJa6wxx3pS_OJcQeTiyyEYvUlQSxeOj5lnrVYm38he7QyWxL4xCymwugN7LTG_kvvfHQUydx6TAwcpdks1DrqpLHH07lmAVgs8HXJR560RHZAt5bq27PAny9g80aUO4PKGGQ6mH3RrFkN0lU0uEAERIFceyhJ9tud6dLfMtNsXY0FNgLbnjkoQetHm6_m1CH7RMBP9hAQweMGfbky7MGQlzAQ8GX3vsfnHyEbkRuT4hLzCP7aKcu1-Yxuq5_1MuqHKGrbM5H6NrhZDo7HTWjFNp3zIf25NcE2hn9Cv2z45PZl9-BfUnP
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1bb9MwFLbGQIIXxp3AAIOYeEBhSRwnDhJC5TKtaqkQDLQ34zh2V7QlXZKC9qf4jZyTppcIwdseeOhD6tMmPjlX-_g7hDy1URoK7SnXhkGIq1XMTRmLXZ5yznViEt0sZX8dxqORODxMPm6QX4uzMFhWubCJjaHOCo1r5LsImsJY4IXh6-mpi12jcHd10UJjLhYDc_YTUrbqVf8dvN-dINh7f_B23227Criax0ntRqmILFNxEuksAj5GOoiyJPWV8MLY42liPBWxVPgmZhbSHQ0-kvHUy-BCMOsz-N8L5GLIRIx6NYjd1ZoORwOUzOvrY0iUdqfGlN9dXb0Qieh4vqZBwJ9uYM0Pdms015ze3tb_xq5r5GobXtPeXB-ukw2T3yBbi9YVtLVkN8lpb7VxTwtLT5qaUkPbJhpjqo7HMJ366KSidUGnJe5n1RSiZficlcUko-3WFsXi_JdU5XS9WQLVK1R12kD43iJfzmXit8lmXuTmLqHKauUbEfEMwz0WiFRFoTIWonOjfK4d8nwhGVK30OzYIeRYQoqGciQbOZK6kiBHDtlZUk_nkCR_oXuDQrakQSDx5ouiHMvWLsmYBSzJrMgCiE2t4CozRvihNiLQvrWeQ56giEqECsmxFmmsZlUl-58_yV7sQWgDKQFzyLOWyBbw3Fq1Rztg9ogu1qHc7lCCLdPd4YU0y9aWVnIlyg55vBzGX2J9YG6KGdJwYC9kK4FD7swVZzlvxhECKQB-xB2V6jCmO5JPjhqk9QRuCinHvX8_1iNyef_gw1AO-6PBfXIlwAMyWKXItslmXc7MA3JJ_6gnVfmwMReUfDtvhfsN0c6r5A
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1bb9MwFLbGQIgXxp3AAIOYeEChSRwnDhJChTFRbaoqbpp4MY5jd0Vb0iUpaH-NX8c5aXqJELztgYc-pD5t4pNztY-_Q8hTG6Wh0J5ybRiEuFrF3JSx2OUp51wnJtHNUvaXg3g4FIeHyWiD_FqchcGyyoVNbAx1VmhcI-8haApjgReGPduWRYx2915PT13sIIU7rYt2GnMR2TdnPyF9q14NduFd7wTB3rtPb9-7bYcBV_M4qd0oFZFlKk4inUXA00gHUZakvhJeGHs8TYynIpYK38TMQuqjwV8ynnoZXAhmfQb_e4FcjCHHxHLCEf-6Wt_haIySea19DElTb2pM-d3V1QuRiI4XbJoF_OkS1nxit15zzQHubf3PrLtGrrZhN-3P9eQ62TD5DbK1aGlBWwt3k5z2Vxv6tLD0pKk1NbRtrjGm6ngM06mPTipaF3Ra4j5XTSGKhs9ZWUwy2m55USzaf0lVTtebKFC9QlunDbTvLfL5XCZ-m2zmRW7uEqqsVr4REc8wDGSBSFUUKmMhajfK59ohzxdSInUL2Y6dQ44lpG4oU7KRKakrCTLlkJ0l9XQOVfIXujcocEsaBBhvvijKsWztlYxZwJLMiiyAmNUKrjJjhB9qIwLtW-s55AmKq0QIkRwlaqxmVSUHHz_IfuxByAOpAnPIs5bIFvDcWrVHPmD2iDrWodzuUIKN093hhWTL1sZWciXWDnm8HMZfYt1gbooZ0nBgL2QxgUPuzJVoOW_GERopAH7EHfXqMKY7kk-OGgT2BG4Kqci9fz_WI3IZ9EweDIb798mVAM_NYPEi2yabdTkzD8gl_aOeVOXDxnJQ8u289e03eBy1CA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Application+of+machine+learning+algorithms+to+predict+the+thyroid+disease+risk%3A+an+experimental+comparative+study&rft.jtitle=PeerJ.+Computer+science&rft.au=Islam%2C+Saima+Sharleen&rft.au=Haque%2C+Md+Samiul&rft.au=Miah%2C+M+Saef+Ullah&rft.au=Sarwar%2C+Talha+Bin&rft.date=2022-03-03&rft.issn=2376-5992&rft.eissn=2376-5992&rft.volume=8&rft.spage=e898&rft_id=info:doi/10.7717%2Fpeerj-cs.898&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2376-5992&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2376-5992&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2376-5992&client=summon