Electrical stimulation of the frontal cortex enhances slow-frequency EEG activity and sleepiness

•5Hz more than 0.8Hz anodal tDCS is effective in inducing EEG synchronization.•5Hz anodal tDCS as compared to sham induces an enhancement of sleepiness.•Cortical topography of delta EEG changes is regionally related to sleepiness. Our aim was to enhance the spontaneous slow-frequency EEG activity du...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Neuroscience Ročník 324; s. 119 - 130
Hlavní autori: D’Atri, A., De Simoni, E., Gorgoni, M., Ferrara, M., Ferlazzo, F., Rossini, P.M., De Gennaro, L.
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: United States Elsevier Ltd 02.06.2016
Predmet:
ISSN:0306-4522, 1873-7544
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract •5Hz more than 0.8Hz anodal tDCS is effective in inducing EEG synchronization.•5Hz anodal tDCS as compared to sham induces an enhancement of sleepiness.•Cortical topography of delta EEG changes is regionally related to sleepiness. Our aim was to enhance the spontaneous slow-frequency EEG activity during the resting state using oscillating transcranial direct currents (tDCS) with a stimulation frequency that resembles the spontaneous oscillations of sleep onset. Accordingly, in this preliminary study, we assessed EEG after-effects of a frontal oscillatory tDCS with different frequency (0.8 vs. 5Hz) and polarity (anodal, cathodal, and sham). Two single-blind experiments compared the after effects on the resting EEG of oscillatory tDCS [Exp. 1=0.8Hz, 10 subjects (26.2±2.5years); Exp. 2=5Hz, 10 subjects (27.4±2.4years)] by manipulating its polarity. EEG signals recorded (28 scalp derivations) before and after stimulation [slow oscillations (0.5–1Hz), delta (1–4Hz), theta (5–7Hz), alpha (8–12Hz), beta 1 (13–15Hz) and beta 2 (16–24Hz)] were compared between conditions as a function of polarity (anodal vs. cathodal vs. sham) and frequency of stimulation (0.8 vs. 5Hz). We found a significant relative enhancement of the delta activity after the anodal tDCS at 5Hz compared to that at 0.8Hz. This increase, even though not reaching the statistical significance compared to sham, is concomitant to a significant increase of subjective sleepiness, as assessed by a visual analog scale. These two phenomena are linearly related with a regional specificity, correlations being restricted to cortical areas perifocal to the stimulation site. We have shown that a frontal oscillating anodal tDCS at 5Hz results in an effective change of both subjective sleepiness and spontaneous slow-frequency EEG activity. These changes are critically associated to both stimulation polarity (anodal) and frequency (5Hz). However, evidence of frequency-dependence seems more unequivocal than evidence of polarity-dependence.
AbstractList •5Hz more than 0.8Hz anodal tDCS is effective in inducing EEG synchronization.•5Hz anodal tDCS as compared to sham induces an enhancement of sleepiness.•Cortical topography of delta EEG changes is regionally related to sleepiness. Our aim was to enhance the spontaneous slow-frequency EEG activity during the resting state using oscillating transcranial direct currents (tDCS) with a stimulation frequency that resembles the spontaneous oscillations of sleep onset. Accordingly, in this preliminary study, we assessed EEG after-effects of a frontal oscillatory tDCS with different frequency (0.8 vs. 5Hz) and polarity (anodal, cathodal, and sham). Two single-blind experiments compared the after effects on the resting EEG of oscillatory tDCS [Exp. 1=0.8Hz, 10 subjects (26.2±2.5years); Exp. 2=5Hz, 10 subjects (27.4±2.4years)] by manipulating its polarity. EEG signals recorded (28 scalp derivations) before and after stimulation [slow oscillations (0.5–1Hz), delta (1–4Hz), theta (5–7Hz), alpha (8–12Hz), beta 1 (13–15Hz) and beta 2 (16–24Hz)] were compared between conditions as a function of polarity (anodal vs. cathodal vs. sham) and frequency of stimulation (0.8 vs. 5Hz). We found a significant relative enhancement of the delta activity after the anodal tDCS at 5Hz compared to that at 0.8Hz. This increase, even though not reaching the statistical significance compared to sham, is concomitant to a significant increase of subjective sleepiness, as assessed by a visual analog scale. These two phenomena are linearly related with a regional specificity, correlations being restricted to cortical areas perifocal to the stimulation site. We have shown that a frontal oscillating anodal tDCS at 5Hz results in an effective change of both subjective sleepiness and spontaneous slow-frequency EEG activity. These changes are critically associated to both stimulation polarity (anodal) and frequency (5Hz). However, evidence of frequency-dependence seems more unequivocal than evidence of polarity-dependence.
Our aim was to enhance the spontaneous slow-frequency EEG activity during the resting state using oscillating transcranial direct currents (tDCS) with a stimulation frequency that resembles the spontaneous oscillations of sleep onset. Accordingly, in this preliminary study, we assessed EEG after-effects of a frontal oscillatory tDCS with different frequency (0.8 vs. 5Hz) and polarity (anodal, cathodal, and sham). Two single-blind experiments compared the after effects on the resting EEG of oscillatory tDCS [Exp. 1=0.8Hz, 10 subjects (26.2 plus or minus 2.5years); Exp. 2=5Hz, 10 subjects (27.4 plus or minus 2.4years)] by manipulating its polarity. EEG signals recorded (28 scalp derivations) before and after stimulation [slow oscillations (0.5-1Hz), delta (1-4Hz), theta (5-7Hz), alpha (8-12Hz), beta 1 (13-15Hz) and beta 2 (16-24Hz)] were compared between conditions as a function of polarity (anodal vs. cathodal vs. sham) and frequency of stimulation (0.8 vs. 5Hz). We found a significant relative enhancement of the delta activity after the anodal tDCS at 5Hz compared to that at 0.8Hz. This increase, even though not reaching the statistical significance compared to sham, is concomitant to a significant increase of subjective sleepiness, as assessed by a visual analog scale. These two phenomena are linearly related with a regional specificity, correlations being restricted to cortical areas perifocal to the stimulation site. We have shown that a frontal oscillating anodal tDCS at 5Hz results in an effective change of both subjective sleepiness and spontaneous slow-frequency EEG activity. These changes are critically associated to both stimulation polarity (anodal) and frequency (5Hz). However, evidence of frequency-dependence seems more unequivocal than evidence of polarity-dependence.
Our aim was to enhance the spontaneous slow-frequency EEG activity during the resting state using oscillating transcranial direct currents (tDCS) with a stimulation frequency that resembles the spontaneous oscillations of sleep onset. Accordingly, in this preliminary study, we assessed EEG after-effects of a frontal oscillatory tDCS with different frequency (0.8 vs. 5 Hz) and polarity (anodal, cathodal, and sham). Two single-blind experiments compared the after effects on the resting EEG of oscillatory tDCS [Exp. 1=0.8 Hz, 10 subjects (26.2 ± 2.5 years); Exp. 2=5 Hz, 10 subjects (27.4 ± 2.4 years)] by manipulating its polarity. EEG signals recorded (28 scalp derivations) before and after stimulation [slow oscillations (0.5-1 Hz), delta (1-4 Hz), theta (5-7 Hz), alpha (8-12 Hz), beta 1 (13-15 Hz) and beta 2 (16-24 Hz)] were compared between conditions as a function of polarity (anodal vs. cathodal vs. sham) and frequency of stimulation (0.8 vs. 5 Hz). We found a significant relative enhancement of the delta activity after the anodal tDCS at 5 Hz compared to that at 0.8 Hz. This increase, even though not reaching the statistical significance compared to sham, is concomitant to a significant increase of subjective sleepiness, as assessed by a visual analog scale. These two phenomena are linearly related with a regional specificity, correlations being restricted to cortical areas perifocal to the stimulation site. We have shown that a frontal oscillating anodal tDCS at 5 Hz results in an effective change of both subjective sleepiness and spontaneous slow-frequency EEG activity. These changes are critically associated to both stimulation polarity (anodal) and frequency (5 Hz). However, evidence of frequency-dependence seems more unequivocal than evidence of polarity-dependence.
Highlights • 5 Hz more than 0.8 Hz anodal tDCS is effective in inducing EEG synchronization. • 5 Hz anodal tDCS as compared to sham induces an enhancement of sleepiness. • Cortical topography of delta EEG changes is regionally related to sleepiness.
Author De Gennaro, L.
D’Atri, A.
Ferrara, M.
Ferlazzo, F.
Rossini, P.M.
De Simoni, E.
Gorgoni, M.
Author_xml – sequence: 1
  givenname: A.
  surname: D’Atri
  fullname: D’Atri, A.
  email: aurora.datri@uniroma1.it
  organization: Department of Psychology, University of Rome “Sapienza”, Via dei Marsi 78, 00185 Rome, Italy
– sequence: 2
  givenname: E.
  surname: De Simoni
  fullname: De Simoni, E.
  email: elisa.desimoni@uniroma1.it
  organization: Department of Psychology, University of Rome “Sapienza”, Via dei Marsi 78, 00185 Rome, Italy
– sequence: 3
  givenname: M.
  surname: Gorgoni
  fullname: Gorgoni, M.
  email: maurizio.gorgoni@uniroma1.it
  organization: Department of Psychology, University of Rome “Sapienza”, Via dei Marsi 78, 00185 Rome, Italy
– sequence: 4
  givenname: M.
  orcidid: 0000-0003-2304-7576
  surname: Ferrara
  fullname: Ferrara, M.
  email: michele.ferrara@univaq.it
  organization: Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, Via Vetoio (Coppito 2), 67100 Coppito (L’Aquila), Italy
– sequence: 5
  givenname: F.
  surname: Ferlazzo
  fullname: Ferlazzo, F.
  email: fabio.ferlazzo@uniroma1.it
  organization: Department of Psychology, University of Rome “Sapienza”, Via dei Marsi 78, 00185 Rome, Italy
– sequence: 6
  givenname: P.M.
  surname: Rossini
  fullname: Rossini, P.M.
  email: paolomaria.rossini@afar.it
  organization: IRCCS San Raffaele Pisana, Via della Pisana 235, 00163 Rome, Italy
– sequence: 7
  givenname: L.
  surname: De Gennaro
  fullname: De Gennaro, L.
  email: luigi.degennaro@uniroma1.it
  organization: Department of Psychology, University of Rome “Sapienza”, Via dei Marsi 78, 00185 Rome, Italy
BackLink https://www.ncbi.nlm.nih.gov/pubmed/26964682$$D View this record in MEDLINE/PubMed
BookMark eNqNksFu1DAQhi1URLeFV0ARJy4JYzuJEw4IKNuCVIkDIHEzXnuiesnai-0U9u3rsAtClZDWF0uef37PzDdn5MR5h4Q8o1BRoO2LdeVwCj5qi05jxfJbBbwCEA_IgnaCl6Kp6xOyAA5tWTeMnZKzGNeQT1PzR-SUtX1btx1bkG_LEXUKVquxiMluplEl613hhyLdYDEE71IOaR8S_irQ3aj8ZSzi6H-WQ8AfUy5hVyyXV4XSyd7atCuUMzmOuLUOY3xMHg5qjPjkcJ-TL5fLzxfvy-uPVx8u3lyXuhF9KhnSBhtdm8ZAY7BbrQz0Atoe6SBwELkTMIpRldtbMb7ShtV0QOhzv53Wmp-T53vfbfC5qpjkxkaN46gc-ilKKjrRi66m_Bgp57wTTZ-lTw_SabVBI7fBblTYyT8DzIKXe4HOQGLA4a-EgpxpybX8l5acaUngMtPKya_vJWubfs8_BWXH4yze7S0wz_bWYpAHlbEhg5XG2-NsXt2z0aN181Z8xx3GtZ-Cy_QklZFJkJ_mzZoXi7YAjMPXbPD2_wbHVnEHLprnNQ
CitedBy_id crossref_primary_10_1016_j_sleep_2023_04_029
crossref_primary_10_1002_jnr_25029
crossref_primary_10_1097_CM9_0000000000000589
crossref_primary_10_1016_j_jpsychires_2023_12_037
crossref_primary_10_3389_fnhum_2019_00425
crossref_primary_10_1016_j_jpsychires_2018_05_002
crossref_primary_10_3390_brainsci11020220
crossref_primary_10_1016_j_brs_2019_01_001
crossref_primary_10_1038_s41598_017_16003_2
crossref_primary_10_1016_j_neurom_2022_12_007
crossref_primary_10_3390_brainsci7040034
crossref_primary_10_1111_jsr_13869
crossref_primary_10_1093_sleep_zsaa143
crossref_primary_10_3389_fnhum_2021_710003
crossref_primary_10_3390_brainsci9110324
crossref_primary_10_3389_fnhum_2022_1066453
crossref_primary_10_3390_brainsci11101261
crossref_primary_10_1016_j_neubiorev_2020_04_003
crossref_primary_10_1007_s00221_022_06462_z
crossref_primary_10_1159_000504609
crossref_primary_10_3390_brainsci8070137
crossref_primary_10_1016_j_brainresbull_2022_05_002
crossref_primary_10_3390_clockssleep7010003
crossref_primary_10_1097_MD_0000000000019671
crossref_primary_10_1109_TNSRE_2021_3131728
crossref_primary_10_1016_j_buildenv_2019_04_010
crossref_primary_10_1515_tnsci_2020_0157
crossref_primary_10_1016_j_jobe_2023_106417
Cites_doi 10.1080/09602011.2011.557292
10.1073/pnas.0909710107
10.1016/j.neuron.2010.06.005
10.1093/sleep/30.5.610
10.1016/j.brs.2013.05.006
10.1523/JNEUROSCI.1318-04.2004
10.1016/j.neuroimage.2013.10.031
10.1016/j.clinph.2006.04.009
10.1152/jn.2001.86.1.368
10.1016/j.sleep.2014.04.022
10.1523/JNEUROSCI.0412-11.2011
10.1111/j.1460-9568.2007.05633.x
10.1371/journal.pone.0016905
10.1016/j.clinph.2010.04.033
10.1093/sleep/10.4.343
10.1007/BF01184793
10.1523/JNEUROSCI.2059-10.2010
10.1016/j.neuroimage.2011.11.093
10.1038/nature05278
10.1152/jn.1965.28.1.166
10.1016/j.brs.2015.01.414
10.1111/j.1467-9868.2004.00439.x
10.1016/j.sleep.2013.05.021
10.1523/JNEUROSCI.5867-12.2013
10.1016/S0304-3940(99)00679-5
10.1016/j.neuroimage.2007.04.013
10.1152/jn.00437.2009
10.1097/00001756-199903170-00003
10.1073/pnas.0904438106
10.1136/bmj.316.7139.1236
10.1016/j.brs.2015.01.410
10.1113/jphysiol.2003.055772
10.1016/S0306-4522(00)00409-7
10.1016/j.brs.2008.06.004
10.1113/jphysiol.1964.sp007425
10.1016/j.cub.2008.10.027
10.3389/fnhum.2015.00054
10.1523/JNEUROSCI.0095-07.2007
10.1016/j.neuroscience.2010.01.019
10.1523/JNEUROSCI.5252-09.2010
10.1002/(SICI)1097-0258(19971130)16:22<2529::AID-SIM692>3.0.CO;2-J
ContentType Journal Article
Copyright 2016 IBRO
Copyright © 2016 IBRO. Published by Elsevier Ltd. All rights reserved.
Copyright_xml – notice: 2016 IBRO
– notice: Copyright © 2016 IBRO. Published by Elsevier Ltd. All rights reserved.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7TK
DOI 10.1016/j.neuroscience.2016.03.007
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
Neurosciences Abstracts
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
Neurosciences Abstracts
DatabaseTitleList

Neurosciences Abstracts
MEDLINE
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
EISSN 1873-7544
EndPage 130
ExternalDocumentID 26964682
10_1016_j_neuroscience_2016_03_007
S030645221600230X
1_s2_0_S030645221600230X
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
--K
--M
-DZ
-~X
.1-
.FO
.~1
0R~
123
1B1
1P~
1RT
1~.
1~5
4.4
457
4G.
5RE
7-5
71M
8P~
9JM
AABNK
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AATTM
AAXKI
AAXLA
AAXUO
AAYWO
ABCQJ
ABFNM
ABFRF
ABJNI
ABLJU
ABMAC
ABTEW
ACDAQ
ACGFO
ACGFS
ACIUM
ACLOT
ACRLP
ACVFH
ADBBV
ADCNI
ADEZE
AEBSH
AEFWE
AEIPS
AEKER
AENEX
AEUPX
AEVXI
AFPUW
AFRHN
AFTJW
AFXIZ
AGUBO
AGWIK
AGYEJ
AIEXJ
AIIUN
AIKHN
AITUG
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
AXJTR
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFKBS
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HMQ
IHE
J1W
KOM
L7B
M2V
M41
MO0
MOBAO
N9A
O-L
O9-
OAUVE
OP~
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SCC
SDF
SDG
SDP
SES
SPCBC
SSN
SSZ
T5K
UNMZH
Z5R
~G-
~HD
.55
.GJ
29N
53G
5VS
AACTN
AAQXK
ABWVN
ABXDB
ACRPL
ADMUD
ADNMO
AFCTW
AFJKZ
AFKWA
AGHFR
AHHHB
AJOXV
AMFUW
ASPBG
AVWKF
AZFZN
FEDTE
FGOYB
G-2
HVGLF
HZ~
R2-
RIG
SEW
SNS
WUQ
X7M
YYP
ZGI
ZXP
AADPK
AAIAV
ABYKQ
AJBFU
9DU
AAYXX
AGQPQ
AIGII
APXCP
CITATION
AGCQF
AGRNS
CGR
CUY
CVF
ECM
EIF
NPM
SSH
7X8
7TK
ID FETCH-LOGICAL-c579t-2e15e5c4d5d05de8bbd097069e1f7ef73060da21a873b23bcd241fe091878ccc3
ISICitedReferencesCount 28
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000374145700012&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0306-4522
IngestDate Tue Sep 30 21:02:17 EDT 2025
Wed Oct 01 14:15:43 EDT 2025
Mon Jul 21 06:04:43 EDT 2025
Sat Nov 29 03:40:48 EST 2025
Tue Nov 18 20:44:41 EST 2025
Fri Feb 23 02:29:41 EST 2024
Tue Feb 25 20:01:18 EST 2025
Tue Oct 14 19:36:00 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords resting EEG
AC
tCS
tACS
sleep onset
sleepiness
oscillatory transcranial direct current stimulation (osc-tDCS)
frontal cortex
tDCS
EEG synchronization
EOG
ANOVAs
EMG
DC
electrooculogram
transcranial alternating current stimulation
transcranial current stimulation
electromyogram
transcranial direct current stimulation
Analyses of Variance
time-varying currents
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
Copyright © 2016 IBRO. Published by Elsevier Ltd. All rights reserved.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c579t-2e15e5c4d5d05de8bbd097069e1f7ef73060da21a873b23bcd241fe091878ccc3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-2304-7576
OpenAccessLink http://hdl.handle.net/11573/871366
PMID 26964682
PQID 1783338759
PQPubID 23479
PageCount 12
ParticipantIDs proquest_miscellaneous_1787978413
proquest_miscellaneous_1783338759
pubmed_primary_26964682
crossref_primary_10_1016_j_neuroscience_2016_03_007
crossref_citationtrail_10_1016_j_neuroscience_2016_03_007
elsevier_sciencedirect_doi_10_1016_j_neuroscience_2016_03_007
elsevier_clinicalkeyesjournals_1_s2_0_S030645221600230X
elsevier_clinicalkey_doi_10_1016_j_neuroscience_2016_03_007
PublicationCentury 2000
PublicationDate 2016-06-02
PublicationDateYYYYMMDD 2016-06-02
PublicationDate_xml – month: 06
  year: 2016
  text: 2016-06-02
  day: 02
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Neuroscience
PublicationTitleAlternate Neuroscience
PublicationYear 2016
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Bikson, Inoue, Akiyama, Deans, Fox, Miyakawa, Jefferys (b0020) 2004; 557
Monk (b0145) 1987; 10
Sankoh, Huque, Dubey (b0200) 1997; 16
Magnin, Rey, Bastuji, Guillemant, Mauguiere, Garcia-Larrea (b0100) 2010; 107
Massimini, Huber, Ferrarelli, Tononi (b0130) 2004; 24
Moroni, Nobili, De Carli, Massimini, Francione, Marzano, Proserpio, Cipolli, De Gennaro, Ferrara (b0150) 2012; 60
Kirov, Weiss, Siebner, Born, Marshall (b0095) 2009; 106
Del Felice, Magalini, Masiero (b0050) 2015; 8
Nasseri, Nitsche, Ekhtiari (b0155) 2015; 9
Ali, Sellers, Frohlich (b0005) 2013; 33
Finelli, Baumann, Borbély, Achermann (b0060) 2000; 101
Cogiamanian, Marceglia, Ardolino, Barbieri, Priori (b0040) 2007; 26
Gorgoni, Ferlazzo, Ferrara, Moroni, D’Atri, Fanelli, Gizzi Torriglia, Lauri, Marzano, Rossini, De Gennaro (b0070) 2014; 15
Ishii, Shinosaki, Ukai, Inouye, Ishihara, Yoshimine, Hirabuki, Asada, Kihara, Robinson, Takeda (b0085) 1999; 10
Perneger (b0175) 1998; 316
De Gennaro, Marzano, Veniero, Moroni, Fratello, Curcio, Ferrara, Ferlazzo, Novelli, Pellicciari, Bertini, Rossini (b0045) 2007; 36
Iramina, Ueno, Matsuoka (b0080) 1996; 8
Marshall, Helgadóttir, Mölle, Born (b0105) 2006; 444
Nitsche, Cohen, Wassermann, Priori, Lang, Antal, Paulus, Hummel, Boggio, Fregni, Pascual-Leone (b0160) 2008; 1
Purpura, McMurtry (b0180) 1965; 28
Kanai, Chaieb, Antal, Walsh, Paulus (b0090) 2008; 18
Fröhlich, McCormick (b0065) 2010; 67
Moliadze, Antal, Paulus (b0140) 2010; 121
Asada, Fukuda, Tsunoda, Yamaguchi, Tonoike (b0010) 1999; 274
Bindman, Lippold, Redfearn (b0025) 1964; 172
Borbély (b0030) 1982; 1
Marzano, Fratello, Moroni, Pellicciari, Curcio, Ferrara, Ferlazzo, De Gennaro (b0120) 2007; 30
Sarasso, Proserpio, Pigorini, Moroni, Ferrara, De Gennaro, De Carli, Lo Russo, Massimini, Nobili (b0205) 2014; 86
Storey, Taylor, Siegmund (b0210) 2004; 66
Radman, Su, An, Parra, Bikson (b0185) 2007; 27
Eggert, Dorn, Sauter, Nitsche, Bajbouj, Danker-Hopfe (b0055) 2013; 6
Sahlem, Badran, Halford, Williams, Korte, Leslie, Strachan, Breedlove, Runion, Bachman, Uhde, Borckardt, George (b0195) 2015; 8
Caplan, Kahana, Raghavachari, Madsen (b0035) 2001; 86
Marshall, Kirov, Brade, Mölle, Born (b0110) 2011; 6
Miranda, Lomarev, Hallett (b0135) 2006; 117
Ozen, Sirota, Belluscio, Anastassiou, Stark, Koch, Buzsáki (b0165) 2010; 30
Marzano, Ferrara, Mauro, Moroni, Gorgoni, Tempesta, Cipolli, De Gennaro (b0115) 2011; 3
Groppa, Bergmann, Siems, Mölle, Marshall, Siebner (b0075) 2010; 166
Paulus (b0170) 2011; 21
Reato, Rahman, Bikson, Parra (b0190) 2010; 30
Bergmann, Groppa, Seeger, Mölle, Marshall, Siebner (b0015) 2009; 102
Marzano, Moroni, Gorgoni, Nobili, Ferrara, De Gennaro (b0125) 2013; 14
Ozen (10.1016/j.neuroscience.2016.03.007_b0165) 2010; 30
Marzano (10.1016/j.neuroscience.2016.03.007_b0115) 2011; 3
Reato (10.1016/j.neuroscience.2016.03.007_b0190) 2010; 30
Marshall (10.1016/j.neuroscience.2016.03.007_b0110) 2011; 6
Iramina (10.1016/j.neuroscience.2016.03.007_b0080) 1996; 8
Ishii (10.1016/j.neuroscience.2016.03.007_b0085) 1999; 10
Fröhlich (10.1016/j.neuroscience.2016.03.007_b0065) 2010; 67
Ali (10.1016/j.neuroscience.2016.03.007_b0005) 2013; 33
Monk (10.1016/j.neuroscience.2016.03.007_b0145) 1987; 10
Perneger (10.1016/j.neuroscience.2016.03.007_b0175) 1998; 316
Finelli (10.1016/j.neuroscience.2016.03.007_b0060) 2000; 101
Borbély (10.1016/j.neuroscience.2016.03.007_b0030) 1982; 1
Moroni (10.1016/j.neuroscience.2016.03.007_b0150) 2012; 60
Bergmann (10.1016/j.neuroscience.2016.03.007_b0015) 2009; 102
Sahlem (10.1016/j.neuroscience.2016.03.007_b0195) 2015; 8
Eggert (10.1016/j.neuroscience.2016.03.007_b0055) 2013; 6
Paulus (10.1016/j.neuroscience.2016.03.007_b0170) 2011; 21
Cogiamanian (10.1016/j.neuroscience.2016.03.007_b0040) 2007; 26
Magnin (10.1016/j.neuroscience.2016.03.007_b0100) 2010; 107
Sarasso (10.1016/j.neuroscience.2016.03.007_b0205) 2014; 86
Marzano (10.1016/j.neuroscience.2016.03.007_b0120) 2007; 30
Gorgoni (10.1016/j.neuroscience.2016.03.007_b0070) 2014; 15
Miranda (10.1016/j.neuroscience.2016.03.007_b0135) 2006; 117
Del Felice (10.1016/j.neuroscience.2016.03.007_b0050) 2015; 8
Asada (10.1016/j.neuroscience.2016.03.007_b0010) 1999; 274
Marshall (10.1016/j.neuroscience.2016.03.007_b0105) 2006; 444
Storey (10.1016/j.neuroscience.2016.03.007_b0210) 2004; 66
Bindman (10.1016/j.neuroscience.2016.03.007_b0025) 1964; 172
Nasseri (10.1016/j.neuroscience.2016.03.007_b0155) 2015; 9
Nitsche (10.1016/j.neuroscience.2016.03.007_b0160) 2008; 1
De Gennaro (10.1016/j.neuroscience.2016.03.007_b0045) 2007; 36
Massimini (10.1016/j.neuroscience.2016.03.007_b0130) 2004; 24
Kirov (10.1016/j.neuroscience.2016.03.007_b0095) 2009; 106
Bikson (10.1016/j.neuroscience.2016.03.007_b0020) 2004; 557
Moliadze (10.1016/j.neuroscience.2016.03.007_b0140) 2010; 121
Purpura (10.1016/j.neuroscience.2016.03.007_b0180) 1965; 28
Marzano (10.1016/j.neuroscience.2016.03.007_b0125) 2013; 14
Radman (10.1016/j.neuroscience.2016.03.007_b0185) 2007; 27
Kanai (10.1016/j.neuroscience.2016.03.007_b0090) 2008; 18
Groppa (10.1016/j.neuroscience.2016.03.007_b0075) 2010; 166
Caplan (10.1016/j.neuroscience.2016.03.007_b0035) 2001; 86
Sankoh (10.1016/j.neuroscience.2016.03.007_b0200) 1997; 16
References_xml – volume: 15
  start-page: 1132
  year: 2014
  end-page: 1139
  ident: b0070
  article-title: Topographic electroencephalogram changes associated with psychomotor vigilance task performance after sleep deprivation
  publication-title: Sleep Med
– volume: 86
  start-page: 368
  year: 2001
  end-page: 380
  ident: b0035
  article-title: Distinct patterns of brain oscillations underlie two basic parameters of human maze learning
  publication-title: J Neurophysiol
– volume: 60
  start-page: 497
  year: 2012
  end-page: 504
  ident: b0150
  article-title: Slow EEG rhythms and inter-hemispheric synchronization across sleep and wakefulness in the human hippocampus
  publication-title: Neuroimage
– volume: 16
  start-page: 2529
  year: 1997
  end-page: 2542
  ident: b0200
  article-title: Some comments on frequently used multiple endpoint adjustments methods in clinical trials
  publication-title: Stat Med
– volume: 86
  start-page: 425
  year: 2014
  end-page: 432
  ident: b0205
  article-title: Hippocampal sleep spindles preceding neocortical sleep onset in humans
  publication-title: NeuroImage
– volume: 67
  start-page: 129
  year: 2010
  end-page: 143
  ident: b0065
  article-title: Endogenous electric fields may guide neocortical network activity
  publication-title: Neuron
– volume: 28
  start-page: 166
  year: 1965
  end-page: 185
  ident: b0180
  article-title: Intracellular activities and evoked potential changes during polarization of motor cortex
  publication-title: J Neurophysiol
– volume: 106
  start-page: 15460
  year: 2009
  end-page: 15465
  ident: b0095
  article-title: Slow oscillation electrical brain stimulation during waking promotes EEG theta activity and memory encoding
  publication-title: Proc Natl Acad Sci USA
– volume: 316
  start-page: 1236
  year: 1998
  end-page: 1238
  ident: b0175
  article-title: What’s wrong with Bonferroni adjustments
  publication-title: BMJ
– volume: 36
  start-page: 1277
  year: 2007
  end-page: 1287
  ident: b0045
  article-title: Neurophysiological correlates of sleepiness: a combined TMS and EEG study
  publication-title: Neuroimage
– volume: 166
  start-page: 1219
  year: 2010
  end-page: 1225
  ident: b0075
  article-title: Slow-oscillatory transcranial direct current stimulation can induce bidirectional shifts in motor cortical excitability in awake humans
  publication-title: Neuroscience
– volume: 10
  start-page: 343
  year: 1987
  end-page: 353
  ident: b0145
  article-title: Subjective ratings of sleepiness - the underlying circadian mechanisms
  publication-title: Sleep
– volume: 8
  start-page: 329
  year: 1996
  end-page: 331
  ident: b0080
  article-title: MEG and EEG topography of frontal midline theta rhythm and source localization
  publication-title: Brain Topogr
– volume: 18
  start-page: 1839
  year: 2008
  end-page: 1843
  ident: b0090
  article-title: Frequency-dependent electrical stimulation of the visual cortex
  publication-title: Curr Biol
– volume: 30
  start-page: 610
  year: 2007
  end-page: 616
  ident: b0120
  article-title: Slow eye movements and subjective estimates of sleepiness predict EEG power changes during sleep deprivation
  publication-title: Sleep
– volume: 26
  start-page: 242
  year: 2007
  end-page: 249
  ident: b0040
  article-title: Improved isometric force endurance after transcranial direct current stimulation over the human motor cortical areas
  publication-title: Eur J Neurosci
– volume: 101
  start-page: 523
  year: 2000
  end-page: 529
  ident: b0060
  article-title: Dual electroencephalogram markers of human sleep homeostasis: correlation between theta activity in waking and slow-wave activity in sleep
  publication-title: Neuroscience
– volume: 30
  start-page: 15067
  year: 2010
  end-page: 15079
  ident: b0190
  article-title: Low-intensity electrical stimulation affects network dynamics by modulating population rate and spike timing
  publication-title: J Neurosci
– volume: 10
  start-page: 675
  year: 1999
  end-page: 679
  ident: b0085
  article-title: Medial prefrontal cortex generates frontal midline theta rhythm
  publication-title: Neuroreport
– volume: 557
  start-page: 175
  year: 2004
  end-page: 190
  ident: b0020
  article-title: Effects of uniform extracellular DC electric fields on excitability in rat hippocampal slices in vitro
  publication-title: J Physiol
– volume: 444
  start-page: 610
  year: 2006
  end-page: 613
  ident: b0105
  article-title: Boosting slow oscillations during sleep potentiates memory
  publication-title: Nature
– volume: 107
  start-page: 3829
  year: 2010
  end-page: 3833
  ident: b0100
  article-title: Thalamic deactivation at sleep onset precedes that of the cerebral cortex in humans
  publication-title: Proc Natl Acad Sci USA
– volume: 66
  start-page: 187
  year: 2004
  end-page: 205
  ident: b0210
  article-title: Strong control, conservative point estimation, and simultaneous conservative consistency of false discovery rates: a unified approach
  publication-title: J Roy Statist Soc Ser B
– volume: 121
  start-page: 2165
  year: 2010
  end-page: 2171
  ident: b0140
  article-title: Electrode-distance dependent after-effects of transcranial direct and random noise stimulation with extracephalic reference electrodes
  publication-title: Clin Neurophysiol
– volume: 8
  start-page: 567
  year: 2015
  end-page: 573
  ident: b0050
  article-title: Slow-oscillatory transcranial direct current stimulation modulates memory in temporal lobe epilepsy by altering sleep spindle generators: a possible rehabilitation tool
  publication-title: Brain Stimul
– volume: 3
  start-page: 6674
  year: 2011
  end-page: 6683
  ident: b0115
  article-title: Recalling and forgetting dreams: Theta and alpha oscillations during sleep predict subsequent dream recall
  publication-title: J Neurosci
– volume: 117
  start-page: 1623
  year: 2006
  end-page: 1629
  ident: b0135
  article-title: Modeling the current distribution during transcranial direct current stimulation
  publication-title: Clin Neurophysiol
– volume: 14
  start-page: 1112
  year: 2013
  end-page: 1122
  ident: b0125
  article-title: How we fall asleep: regional and temporal differences in electroencephalographic synchronization at sleep onset
  publication-title: Sleep Med
– volume: 8
  start-page: 528
  year: 2015
  end-page: 534
  ident: b0195
  article-title: Oscillating square wave transcranial direct current stimulation (tDCS) delivered during slow wave sleep does not improve declarative memory more than sham: a randomized sham controlled crossover study
  publication-title: Brain Stimul
– volume: 1
  start-page: 195
  year: 1982
  end-page: 204
  ident: b0030
  article-title: A two process model of sleep regulation
  publication-title: Hum Neurobiol
– volume: 172
  start-page: 369
  year: 1964
  end-page: 382
  ident: b0025
  article-title: The action of brief polarizing currents on the cerebral cortex of the rat (1) during current flow and (2) in the production of long-lasting after-effects
  publication-title: J Physiol
– volume: 24
  start-page: 6862
  year: 2004
  end-page: 6870
  ident: b0130
  article-title: The sleep slow oscillation as a traveling wave
  publication-title: J Neurosci
– volume: 274
  start-page: 29
  year: 1999
  end-page: 32
  ident: b0010
  article-title: Frontal midline theta rhythms reflect alternative activation of prefrontal cortex and anterior cingulated cortex in humans
  publication-title: Neurosci Let
– volume: 30
  start-page: 11476
  year: 2010
  end-page: 11485
  ident: b0165
  article-title: Transcranial electric stimulation entrains cortical neuronal populations in rats
  publication-title: J Neurosci
– volume: 9
  start-page: 54
  year: 2015
  ident: b0155
  article-title: A framework for categorizing electrode montages in transcranial direct current stimulation
  publication-title: Front Hum Neurosci
– volume: 6
  start-page: 938
  year: 2013
  end-page: 945
  ident: b0055
  article-title: No effects of slow oscillatory transcranial direct current stimulation (tDCS) on sleep-dependent memory consolidation in healthy elderly subjects
  publication-title: Brain Stimul
– volume: 6
  year: 2011
  ident: b0110
  article-title: Transcranial electrical currents to probe EEG brain rhythms and memory consolidation during sleep in humans
  publication-title: PLoS One
– volume: 21
  start-page: 602
  year: 2011
  end-page: 617
  ident: b0170
  article-title: Transcranial electrical stimulation (tES – tDCS; tRNS, tACS) methods
  publication-title: Neuropsychol Rehabil
– volume: 1
  start-page: 206
  year: 2008
  end-page: 223
  ident: b0160
  article-title: Transcranial direct current stimulation: state of the art 2008
  publication-title: Brain Stimul
– volume: 27
  start-page: 3030
  year: 2007
  end-page: 3036
  ident: b0185
  article-title: Spike timing amplifies the effect of electric fields on neurons: implications for endogenous field effects
  publication-title: J Neurosci
– volume: 33
  start-page: 11262
  year: 2013
  end-page: 11275
  ident: b0005
  article-title: Transcranial alternating current stimulation modulates large-scale cortical network activity by network resonance
  publication-title: J Neurosci
– volume: 102
  start-page: 2303
  year: 2009
  end-page: 2311
  ident: b0015
  article-title: Acute changes in motor cortical excitability during slow oscillatory and constant anodal transcranial direct current stimulation
  publication-title: J Neurophysiol
– volume: 1
  start-page: 195
  year: 1982
  ident: 10.1016/j.neuroscience.2016.03.007_b0030
  article-title: A two process model of sleep regulation
  publication-title: Hum Neurobiol
– volume: 21
  start-page: 602
  year: 2011
  ident: 10.1016/j.neuroscience.2016.03.007_b0170
  article-title: Transcranial electrical stimulation (tES – tDCS; tRNS, tACS) methods
  publication-title: Neuropsychol Rehabil
  doi: 10.1080/09602011.2011.557292
– volume: 107
  start-page: 3829
  year: 2010
  ident: 10.1016/j.neuroscience.2016.03.007_b0100
  article-title: Thalamic deactivation at sleep onset precedes that of the cerebral cortex in humans
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.0909710107
– volume: 67
  start-page: 129
  year: 2010
  ident: 10.1016/j.neuroscience.2016.03.007_b0065
  article-title: Endogenous electric fields may guide neocortical network activity
  publication-title: Neuron
  doi: 10.1016/j.neuron.2010.06.005
– volume: 30
  start-page: 610
  year: 2007
  ident: 10.1016/j.neuroscience.2016.03.007_b0120
  article-title: Slow eye movements and subjective estimates of sleepiness predict EEG power changes during sleep deprivation
  publication-title: Sleep
  doi: 10.1093/sleep/30.5.610
– volume: 6
  start-page: 938
  year: 2013
  ident: 10.1016/j.neuroscience.2016.03.007_b0055
  article-title: No effects of slow oscillatory transcranial direct current stimulation (tDCS) on sleep-dependent memory consolidation in healthy elderly subjects
  publication-title: Brain Stimul
  doi: 10.1016/j.brs.2013.05.006
– volume: 24
  start-page: 6862
  year: 2004
  ident: 10.1016/j.neuroscience.2016.03.007_b0130
  article-title: The sleep slow oscillation as a traveling wave
  publication-title: J Neurosci
  doi: 10.1523/JNEUROSCI.1318-04.2004
– volume: 86
  start-page: 425
  year: 2014
  ident: 10.1016/j.neuroscience.2016.03.007_b0205
  article-title: Hippocampal sleep spindles preceding neocortical sleep onset in humans
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2013.10.031
– volume: 117
  start-page: 1623
  year: 2006
  ident: 10.1016/j.neuroscience.2016.03.007_b0135
  article-title: Modeling the current distribution during transcranial direct current stimulation
  publication-title: Clin Neurophysiol
  doi: 10.1016/j.clinph.2006.04.009
– volume: 86
  start-page: 368
  year: 2001
  ident: 10.1016/j.neuroscience.2016.03.007_b0035
  article-title: Distinct patterns of brain oscillations underlie two basic parameters of human maze learning
  publication-title: J Neurophysiol
  doi: 10.1152/jn.2001.86.1.368
– volume: 15
  start-page: 1132
  year: 2014
  ident: 10.1016/j.neuroscience.2016.03.007_b0070
  article-title: Topographic electroencephalogram changes associated with psychomotor vigilance task performance after sleep deprivation
  publication-title: Sleep Med
  doi: 10.1016/j.sleep.2014.04.022
– volume: 3
  start-page: 6674
  year: 2011
  ident: 10.1016/j.neuroscience.2016.03.007_b0115
  article-title: Recalling and forgetting dreams: Theta and alpha oscillations during sleep predict subsequent dream recall
  publication-title: J Neurosci
  doi: 10.1523/JNEUROSCI.0412-11.2011
– volume: 26
  start-page: 242
  year: 2007
  ident: 10.1016/j.neuroscience.2016.03.007_b0040
  article-title: Improved isometric force endurance after transcranial direct current stimulation over the human motor cortical areas
  publication-title: Eur J Neurosci
  doi: 10.1111/j.1460-9568.2007.05633.x
– volume: 6
  year: 2011
  ident: 10.1016/j.neuroscience.2016.03.007_b0110
  article-title: Transcranial electrical currents to probe EEG brain rhythms and memory consolidation during sleep in humans
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0016905
– volume: 121
  start-page: 2165
  issue: 12
  year: 2010
  ident: 10.1016/j.neuroscience.2016.03.007_b0140
  article-title: Electrode-distance dependent after-effects of transcranial direct and random noise stimulation with extracephalic reference electrodes
  publication-title: Clin Neurophysiol
  doi: 10.1016/j.clinph.2010.04.033
– volume: 10
  start-page: 343
  year: 1987
  ident: 10.1016/j.neuroscience.2016.03.007_b0145
  article-title: Subjective ratings of sleepiness - the underlying circadian mechanisms
  publication-title: Sleep
  doi: 10.1093/sleep/10.4.343
– volume: 8
  start-page: 329
  year: 1996
  ident: 10.1016/j.neuroscience.2016.03.007_b0080
  article-title: MEG and EEG topography of frontal midline theta rhythm and source localization
  publication-title: Brain Topogr
  doi: 10.1007/BF01184793
– volume: 30
  start-page: 15067
  year: 2010
  ident: 10.1016/j.neuroscience.2016.03.007_b0190
  article-title: Low-intensity electrical stimulation affects network dynamics by modulating population rate and spike timing
  publication-title: J Neurosci
  doi: 10.1523/JNEUROSCI.2059-10.2010
– volume: 60
  start-page: 497
  year: 2012
  ident: 10.1016/j.neuroscience.2016.03.007_b0150
  article-title: Slow EEG rhythms and inter-hemispheric synchronization across sleep and wakefulness in the human hippocampus
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2011.11.093
– volume: 444
  start-page: 610
  year: 2006
  ident: 10.1016/j.neuroscience.2016.03.007_b0105
  article-title: Boosting slow oscillations during sleep potentiates memory
  publication-title: Nature
  doi: 10.1038/nature05278
– volume: 28
  start-page: 166
  year: 1965
  ident: 10.1016/j.neuroscience.2016.03.007_b0180
  article-title: Intracellular activities and evoked potential changes during polarization of motor cortex
  publication-title: J Neurophysiol
  doi: 10.1152/jn.1965.28.1.166
– volume: 8
  start-page: 528
  year: 2015
  ident: 10.1016/j.neuroscience.2016.03.007_b0195
  article-title: Oscillating square wave transcranial direct current stimulation (tDCS) delivered during slow wave sleep does not improve declarative memory more than sham: a randomized sham controlled crossover study
  publication-title: Brain Stimul
  doi: 10.1016/j.brs.2015.01.414
– volume: 66
  start-page: 187
  year: 2004
  ident: 10.1016/j.neuroscience.2016.03.007_b0210
  article-title: Strong control, conservative point estimation, and simultaneous conservative consistency of false discovery rates: a unified approach
  publication-title: J Roy Statist Soc Ser B
  doi: 10.1111/j.1467-9868.2004.00439.x
– volume: 14
  start-page: 1112
  year: 2013
  ident: 10.1016/j.neuroscience.2016.03.007_b0125
  article-title: How we fall asleep: regional and temporal differences in electroencephalographic synchronization at sleep onset
  publication-title: Sleep Med
  doi: 10.1016/j.sleep.2013.05.021
– volume: 33
  start-page: 11262
  year: 2013
  ident: 10.1016/j.neuroscience.2016.03.007_b0005
  article-title: Transcranial alternating current stimulation modulates large-scale cortical network activity by network resonance
  publication-title: J Neurosci
  doi: 10.1523/JNEUROSCI.5867-12.2013
– volume: 274
  start-page: 29
  year: 1999
  ident: 10.1016/j.neuroscience.2016.03.007_b0010
  article-title: Frontal midline theta rhythms reflect alternative activation of prefrontal cortex and anterior cingulated cortex in humans
  publication-title: Neurosci Let
  doi: 10.1016/S0304-3940(99)00679-5
– volume: 36
  start-page: 1277
  year: 2007
  ident: 10.1016/j.neuroscience.2016.03.007_b0045
  article-title: Neurophysiological correlates of sleepiness: a combined TMS and EEG study
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2007.04.013
– volume: 102
  start-page: 2303
  year: 2009
  ident: 10.1016/j.neuroscience.2016.03.007_b0015
  article-title: Acute changes in motor cortical excitability during slow oscillatory and constant anodal transcranial direct current stimulation
  publication-title: J Neurophysiol
  doi: 10.1152/jn.00437.2009
– volume: 10
  start-page: 675
  year: 1999
  ident: 10.1016/j.neuroscience.2016.03.007_b0085
  article-title: Medial prefrontal cortex generates frontal midline theta rhythm
  publication-title: Neuroreport
  doi: 10.1097/00001756-199903170-00003
– volume: 106
  start-page: 15460
  year: 2009
  ident: 10.1016/j.neuroscience.2016.03.007_b0095
  article-title: Slow oscillation electrical brain stimulation during waking promotes EEG theta activity and memory encoding
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.0904438106
– volume: 316
  start-page: 1236
  year: 1998
  ident: 10.1016/j.neuroscience.2016.03.007_b0175
  article-title: What’s wrong with Bonferroni adjustments
  publication-title: BMJ
  doi: 10.1136/bmj.316.7139.1236
– volume: 8
  start-page: 567
  year: 2015
  ident: 10.1016/j.neuroscience.2016.03.007_b0050
  article-title: Slow-oscillatory transcranial direct current stimulation modulates memory in temporal lobe epilepsy by altering sleep spindle generators: a possible rehabilitation tool
  publication-title: Brain Stimul
  doi: 10.1016/j.brs.2015.01.410
– volume: 557
  start-page: 175
  year: 2004
  ident: 10.1016/j.neuroscience.2016.03.007_b0020
  article-title: Effects of uniform extracellular DC electric fields on excitability in rat hippocampal slices in vitro
  publication-title: J Physiol
  doi: 10.1113/jphysiol.2003.055772
– volume: 101
  start-page: 523
  year: 2000
  ident: 10.1016/j.neuroscience.2016.03.007_b0060
  article-title: Dual electroencephalogram markers of human sleep homeostasis: correlation between theta activity in waking and slow-wave activity in sleep
  publication-title: Neuroscience
  doi: 10.1016/S0306-4522(00)00409-7
– volume: 1
  start-page: 206
  year: 2008
  ident: 10.1016/j.neuroscience.2016.03.007_b0160
  article-title: Transcranial direct current stimulation: state of the art 2008
  publication-title: Brain Stimul
  doi: 10.1016/j.brs.2008.06.004
– volume: 172
  start-page: 369
  year: 1964
  ident: 10.1016/j.neuroscience.2016.03.007_b0025
  article-title: The action of brief polarizing currents on the cerebral cortex of the rat (1) during current flow and (2) in the production of long-lasting after-effects
  publication-title: J Physiol
  doi: 10.1113/jphysiol.1964.sp007425
– volume: 18
  start-page: 1839
  year: 2008
  ident: 10.1016/j.neuroscience.2016.03.007_b0090
  article-title: Frequency-dependent electrical stimulation of the visual cortex
  publication-title: Curr Biol
  doi: 10.1016/j.cub.2008.10.027
– volume: 9
  start-page: 54
  year: 2015
  ident: 10.1016/j.neuroscience.2016.03.007_b0155
  article-title: A framework for categorizing electrode montages in transcranial direct current stimulation
  publication-title: Front Hum Neurosci
  doi: 10.3389/fnhum.2015.00054
– volume: 27
  start-page: 3030
  year: 2007
  ident: 10.1016/j.neuroscience.2016.03.007_b0185
  article-title: Spike timing amplifies the effect of electric fields on neurons: implications for endogenous field effects
  publication-title: J Neurosci
  doi: 10.1523/JNEUROSCI.0095-07.2007
– volume: 166
  start-page: 1219
  year: 2010
  ident: 10.1016/j.neuroscience.2016.03.007_b0075
  article-title: Slow-oscillatory transcranial direct current stimulation can induce bidirectional shifts in motor cortical excitability in awake humans
  publication-title: Neuroscience
  doi: 10.1016/j.neuroscience.2010.01.019
– volume: 30
  start-page: 11476
  year: 2010
  ident: 10.1016/j.neuroscience.2016.03.007_b0165
  article-title: Transcranial electric stimulation entrains cortical neuronal populations in rats
  publication-title: J Neurosci
  doi: 10.1523/JNEUROSCI.5252-09.2010
– volume: 16
  start-page: 2529
  year: 1997
  ident: 10.1016/j.neuroscience.2016.03.007_b0200
  article-title: Some comments on frequently used multiple endpoint adjustments methods in clinical trials
  publication-title: Stat Med
  doi: 10.1002/(SICI)1097-0258(19971130)16:22<2529::AID-SIM692>3.0.CO;2-J
SSID ssj0000543
Score 2.362622
Snippet •5Hz more than 0.8Hz anodal tDCS is effective in inducing EEG synchronization.•5Hz anodal tDCS as compared to sham induces an enhancement of...
Highlights • 5 Hz more than 0.8 Hz anodal tDCS is effective in inducing EEG synchronization. • 5 Hz anodal tDCS as compared to sham induces an enhancement of...
Our aim was to enhance the spontaneous slow-frequency EEG activity during the resting state using oscillating transcranial direct currents (tDCS) with a...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 119
SubjectTerms Adolescent
Adult
Delta Rhythm - physiology
EEG synchronization
Electroencephalography
Female
frontal cortex
Frontal Lobe - physiology
Humans
Linear Models
Neurology
oscillatory transcranial direct current stimulation (osc-tDCS)
Polysomnography
Rest
resting EEG
Single-Blind Method
Sleep - physiology
sleep onset
sleepiness
Transcranial Direct Current Stimulation - methods
Young Adult
Title Electrical stimulation of the frontal cortex enhances slow-frequency EEG activity and sleepiness
URI https://www.clinicalkey.com/#!/content/1-s2.0-S030645221600230X
https://www.clinicalkey.es/playcontent/1-s2.0-S030645221600230X
https://dx.doi.org/10.1016/j.neuroscience.2016.03.007
https://www.ncbi.nlm.nih.gov/pubmed/26964682
https://www.proquest.com/docview/1783338759
https://www.proquest.com/docview/1787978413
Volume 324
WOSCitedRecordID wos000374145700012&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: ScienceDirect database
  customDbUrl:
  eissn: 1873-7544
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000543
  issn: 0306-4522
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF7RlgMXBBRoeFSLBL1ERrbX9tpCHCLqFFAUkJqi3BZ7vYZWqR1iF9J_z-zDDwRB4cDFilYZr-Xv887s7DwQei54FuTcIxaPksjyOM2sJPFtC2x3SogHlFIBsp8mdDoN5_Poo3FlV6qdAC2KcL2Olv8VahgDsGXq7D_A3d4UBuA3gA5XgB2uWwEfq8Y2OtuxPr807bmaWIBcFixQNUFWtVgPRfFVwl4Nq0X5w8pXOrD6ehjHJ6rMhuosoXzrCyGWKkS-b85Ou2qYLUGOX7h0VOsE9pYex2J4CqxQ_aO65IeTcvXFjLUOoLGQjeeTbsy4JJxAhU71vZSwD7Fkqfb-Mktcr7dQOmah1DrX0Wczvy3n2rNw8bJX21OWNnUCXZiWdkqsObiffmDjs8mEzeL57Gj5zZLtxeQxvOm1soP2XOpHsPztjd7F8_ed0vZ1gGXz5E19WhUKuGn6TbbMpr2Ksllmd9Bts9nAI02Su-iGKO6h_VGR1OXlNT7CKvxXnavso88db3CPN7jMMfAGG95gzRvc8Ab_yhsMvMENbzDwBne8uY_OxvHszVvLtN-wuE-j2nKF4wufe5mf2X4mwjTN7IjaQSScnIocVENgZ4nrJCElqUtSnoE1mAswQEMacs7JA7RblIU4QBjMYB6GMkc7iDyPpBHsEkDVBn4u_DTLvQGKmhfJuKlNL1ukLFgThHjB-iAwCQKzCQMQBoi0sktdoWUrqVcNXqzJQQatyYB5W0nTP0mLyqwDFXNY5TKbnUpCST45gdrtzwfodStpbqxt161nftaQi4EikKd7SSHKK5iRhoSQENj91__QSEYakAF6qJnZvjOAJvCC0H20hfRjdKv77p-g3Xp1JZ6im_x7fV6tDtEOnYeH5gv7CbMn7ns
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Electrical+stimulation+of+the+frontal+cortex+enhances+slow-frequency+EEG+activity+and+sleepiness&rft.jtitle=Neuroscience&rft.au=D%27Atri%2C+A&rft.au=De+Simoni%2C+E&rft.au=Gorgoni%2C+M&rft.au=Ferrara%2C+M&rft.date=2016-06-02&rft.issn=0306-4522&rft.volume=324&rft.spage=119&rft.epage=130&rft_id=info:doi/10.1016%2Fj.neuroscience.2016.03.007&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0306-4522&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0306-4522&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0306-4522&client=summon